
You Won’t Be Needing These Any More:
On Removing Unused Certificates From Trust

Stores

Henning Perl1, Sascha Fahl1, and Matthew Smith2

1 Leibniz University Hannover, Germany, {perl, fahl}@dcsec.uni-hannover.de
2 University of Bonn, Germany, smith@l3s.de

Abstract. SSL and HTTPS is currently a hotly debated topic – par-
ticularly the weakest link property of the CA based system has been
heavily criticized. This has become even more relevant in the light of
recent spying revelations. While there are several proposals how the CA
system could be improved or replaced, none of these solutions is receiv-
ing widespread adoption, and even in a best case scenario it would take
years to replace the current system. In this paper we examine a root prob-
lem of the weakest-link property and propose a simple stop-gap measure
which can improve the security of HTTPS immediately. Currently, over
400 trusted entities are contained in each of the common trust stores
of various platforms and operating systems. To find out which of these
trusted root certificates are actually needed for the HTTPS ecosystem,
we analyzed the trust stores of Windows, Linux, MacOS, Firefox, iOS
and Android, discuss the interesting differences and conduct an exten-
sive analysis against a database of roughly 47 million certificates collected
from HTTPS servers. We found that of the 426 trusted root certificates,
only 66% were used to sign HTTPS certificates. We discuss the benefits
and risks involved in removing the other 34% of trusted roots. On the
whole, we argue that this removal is an important first step to improve
HTTPS security.

1 Introduction

The TLS/SSL protocol is one of the mainstays of Internet security. However,
unrest is growing as more large-scale compromises and real-world MITM attacks
are discovered. This reflects the fact that the current certificate authority based
public key infrastructure (CA-PKI) is a prominent example of a weakest-link
security system: Since all trusted root CAs can issue certificates for any domain,
an attacker can pick the weakest or most coercible CA to target for an attack
– and a single vulnerable, malicious or coercible CA undermines the security
of the entire system. To make matters worse, these attacks can go unnoticed
quite easily. According to the EFF’s SSL Observatory [1], current browsers trust
roughly 1500 different CAs from roughly 650 different organizations.

Although the collection of trusted CA certificates, called trust store, can in
theory be configured by the user, it is de facto the operating system and browser



vendors that issue the trust in the CAs. And while there is a broad consensus for
a set of common CAs that are trusted by all common vendors, all vendors trust
additional uncommon CAs that are not trusted by other vendors. Particularly in
light of recent spying revelations, the inclusion of these uncommon CAs should
be analyzed and if possible unneeded CAs should be removed.

This is a common-sense step which, surprisingly, is not actively being pursued
by any of the companies responsible for the decisions on who we trust. There is
a very small community of power-users who manually remove CAs they think
they do not need and some tutorials on how this can be done, however, the
decision on which CAs should be removed is based on anecdotal evidence and
gut instinct.

As we will show in the course of this paper, a broad majority of HTTPS
servers use only CA certificates which are in all major trust stores to sign their
server certificate. This makes perfect sense: Only by using a CA trusted by all
platforms can a server administrator be sure that no user receives warning mes-
sages. In contrast, an adversary may be fine with an attack working only under,
e.g. Windows. Therefore, those uncommon CA certificates are still a security
threat.

This is especially true since an attacker could identify the client’s platform by
analyzing the choice and order of supported cipher suites in the TLS handshake.
If those match a vulnerable platform, a MITM attack is launched; otherwise the
connection would be forwarded to the legitimate server. Such an attack could go
undetected for a very long time. Additionally, a CA that is present only in a few
trust stores may not be subject to as much rigorous auditing as a common CA.

In this paper we conduct a scientific analysis of which CAs are trusted
on which platforms and correlate this data with 48million certificates from
Durumeric et al. that were collected by periodically scanning port 443 using
ZMAP [2]. Based on this analysis, we identify 148 CA candidates that are never
used to sign HTTPS server certificates. Following an in-depth analysis of these
certificates, we create a list of CAs that can be removed from users’ trust stores
without hampering their everyday Internet activities while significantly reduc-
ing the attack surface against them. While this reduction of attack surface does
not replace the need to find an improved certificate validation strategy, it is a
very simple and extremely low cost measure which can be applied with minimal
effort and should thus be considered as a first step to improve the security of
SSL. We evaluate our reduced set of trust against two months’ worth of traffic
analysis in our university’s network and show that there were no cases in which
our proposed improvements would have caused any problems to ours users.

1.1 Outline

In Section 2 we highlight previous and parallel efforts to making SSL and the
CA-PKI more secure. Section 3 describes our technical setup. In Section 4 we
show which trust stores include which and how many certificates as well as how
many certificates are present in every major trust store. Based on those findings,



we propose a set of 140 CA certificates that can be removed from trust stores in
Section 5. Section 6 concludes the paper and outlines future work.

2 Related Work

There have been various approaches and attempts to improve the CA-PKI sys-
tem. Perspectives [3] and Convergence [4] use network perspectives and multi-
path probing to validate certificates and were suggested as a way to replace
CAs completely. Both approaches need an additional network connection, which
significantly impacts performance during connection establishment. Other ap-
proaches like Certificate Transparency [5], Sovereign Keys [6], or AKI [7] aim to
control the PKI by keeping track of which CA issued which certificate. TACK [8]
combines pinning with elegant key rollover. Finally, DNS DANE [9] focuses on
putting certificates directly in the DNS record. While elegant, this requires the
roll-out of DNSSEC, which also suffers from adoption problems [10]. All of these
approaches fundamentally change the way validation is done in TLS. However,
the deployment of such a new system is a huge effort. In this paper, we focus on
improving the security of the CA-PKI on the short term, offering solutions that
can be deployed today to provide additional security benefits to individual users
immediately.

Akhawe et al. [11] looked at click-through rates for SSL warning messages in
browsers and found that users ignore one quarter to one third of all validation
errors. Based on a large dataset of TLS handshakes, Akhawe et al. [12] aimed to
reduce the number of warning messages that are due to configuration or admin-
istration errors. By relaxing the validation algorithm, i.e. allowing a certificate
that was issued for a certain domain to also be used for the www sub domain
they were able to reduce the number of warnings the end user has to deal with.

In a related effort to reduce the trust put into CAs, Kasten et al. [13] analyzed
which CAs usually sign for which TLDs and suggest restricting CA signing
capabilities based on their signing history. They show that this can be effective,
however, their system also requires some fundamental changes to the CA system.

3 Technical Setup

In order to evaluate which CAs could potentially be removed, we ran exten-
sive analyses and simulations to assert that our recommendations would not
lead to false positive SSL warnings. We used two different data sets for the
analysis: a collection of certificates from Internet-wide ZMAP scans (the ZMAP
database) [2], as well as all CA certificates found in trust stores (the trust store
database). Additionally, we used a collection of two months’ worth of TLS hand-
shakes collected in our university’s network in order to assert that the reduced
set of CAs is still capable of validating all certificates our users encounter.

The ZMAP database consists of approximately 48million certificates col-
lected in periodical scans of port 443 in 2012 and 2013. For each certificate in
the ZMAP database, the chain from the leaf certificate to a self-signed root



was rebuilt by validating the signature of the child certificate with the parent’s
public key. This step was important as, according to RFC5280 [14], HTTPS
servers only need to supply intermediate CAs, not the trusted root CA. With
the reconstructed chain, our dataset is independent of the server administrators’
configurations.

For the trust store database, we scraped certificates from twelve trust stores
used in smart phone operating systems (Android, BlackBerry, iOS), Linux dis-
tributions (CentOS, Debian, Gentoo, openSUSE, Ubuntu), as well as Mozilla
Firefox, OpenBSD, OSX and Windows 8. Google Chrome does not have a trust
store of its own but rather uses the trust store of the underlying operating sys-
tem. Since Apple has the same policies for iOS as for OSX, both of those trust
stores contain the same CA certificates. Table 1 shows the size of the trust stores
we analyzed. Our further analysis is based on these datasets.

4 Trusted Root CA Certificates

The set of CA certificates included in different trust stores varies significantly.
While there is a core set of 114 certificates that are included in all major trust
stores (Windows, OSX, iOS, Android, Mozilla), only 28 CA certificates are
present in all eleven trust stores (counting iOS and OSX as one), c.f. Figure 1.

..

n
u
m
b
e
r
o
f
c
e
rt
ifi
c
a
te

s

.

included in x trust stores

.

100

.

200

.

300

.

400

.

500

.
1

.
2

.
3

.
4

.
5

.
6

.
7

.
8

.
9

.
10

.
11

.

28

.

56

.

108

.

133

.

148

.

154

.

158

.

166

.

182

.

229

.

431

Fig. 1. How many certificates are included in 11 (all), 10, . . . , trust stores?

4.1 Windows Trust Store

With 377 certificates, the Windows trust store is the largest by far. Moreover, of
the 202 CA certificates included in only one trust store, 168 are included only in



the Windows trust store. This is partially due to the fact that the Windows trust
store also contains a large number of CA certificates used for other purposes like
email encryption (S/MIME) or code signing. It is possible for the Windows trust
store to restrict the purpose a CA certificate can be used for, however, this is
hardly done in practice. This unfortunately means that all these CAs are also
trusted for HTTPS connections.

However, users may not notice how many CAs they trust, as additional CA
certificates may be downloaded from the Microsoft servers as needed. Certifi-
cates can be inspected and manipulated using either the Microsoft Management
Console or through the certmgr.exe command line tool.

4.2 OSX and iOS Trust Store

In OSX, administration of CA certificates is done through either the Keychain
app or the security command line tool. Although the trust for a CA certificate
can be customized to e.g. never trust the certificate for SSL, no certificate has
those restrictions enabled by default. Furthermore, Apple includes their Apple
Root Certificate Authority certificate in the iOS and OSX trust stores, which
has never been used to sign a certificate used for HTTPS.

4.3 Linux/OpenBSD Trust Stores

On Linux and OpenBSD, the certificates are usually stored in a directory. By
default this is /etc/ssl/certs/. While this makes adding and deleting certifi-
cates trivial, it is not possible to restrict the purpose of the CA certificate, for
instance, to only use it for code signing.

However, the trust stores of Linux distributions are more consensus-driven:
No CA certificates appear in only one trust store on these platforms. On the
other side, OpenBSD is the only trust store that still includes an old CAcert
Class 3 Root, while all other trust stores (that trust CAcert) include a newer
CA certificate.

4.4 Mobile Trust Stores (Android, BlackBerry)

According to our measurements, trust stores on mobile devices tend to be both
smaller in size (146 CA certificates for Android, 90 for BlackBerry), and have
less unused CA certificates. Further, none of these trust stores have CA cer-
tificates that no one else trusts. This shows that it is possible to build a trust
store focusing on small size and consensus while supporting all CAs needed for
HTTPS.

4.5 Restricting the Purpose of CA Certificates

The Windows and OSX trust stores theoretically allow restricting CA certifi-
cates so that they can only be used for specific purposes like code signing, SSL,



S/MIME, etc. However, we did not find any purpose-restricted CA certificates.
While Windows and OSX do not use this sensible option, Linux does not offer
it at all.

Table 1. Used and unused CA certificates in trust stores.

Platform Total Unused To be Unknown Purpose Restrictions
certs certs removed purpose restrictable? used?

Windows 377 122 114 8 ✓ —
Mozilla 172 23 15 8 ✓ —
OSX/iOS 207 46 38 8 ✓ —
Ubuntu 159 23 15 8 — —
Debian 159 23 15 8 — —
Gentoo 159 23 15 8 — —
Android 146 15 7 8 — —
openSUSE 144 14 6 8 — —
CentOS 120 16 10 6 — —
BlackBerry 90 14 7 7 — —
OpenBSD 60 17 14 3 — —

total 431 148 140 8

5 Removing Unneeded CAs

Roughly 34% of all CA certificates are never used for signing HTTPS certificates.
Obviously certificates could be used for other purposes and HTTPS is not the
only (although most prominent) use of TLS. However: these 148 certificates
can be used for signing certificates and thus for launching a MITM attack. By
distrusting these CAs for SSL connections, the number of potential weakest links
is reduced in a simple and straightforward manner.

Instead of removing only non-signing CAs, we further checked in how many
trust stores the CAs are included. However, this only makes a difference for very
few CA certificates: Of the 148 unused certificates, 163 are not included in all
twelve trust stores, and 140 are not included in all major trust stores (Windows,
OSX, iOS, Android, Mozilla).

Based on these results, we make two recommendations: conservative and
very conservative. In the conservative recommendation, we propose that users
distrust (remove/restrict) all CAs that have never signed an HTTPS certificate.
This would lead to the removal of 148 CAs over all trust stores. We consider this
a safe choice, since it is based on the ZMAP datasets and thus no known HTTPS
certificate would create a false positive warning. Our very conservative recom-
mendation only removes those 140 CAs which are not contained in the trust
stores of Microsoft, Apple, Google, and Mozilla. Table 1 shows how many cer-
tificates could be removed from which trust store. While both recommendations
are safe in relation to the ZMAP dataset, the very conservative recommendation
is safer with respect to the possible use of a previously unused CA for signing a
HTTPS certificate. However, it should be noted that especially the CAs included



in all the major trust stores but have never been seen to sign an HTTPS certifi-
cate could be considered a risk factor for government coercion. The number of
these CAs per trust store is listed in the Unknown Purpose column of Table 1.

5.1 Potential Problems and Current Solutions

Problem: False positive warnings. Removing CA certificates from the trust
store could have annoying and – in the long term – potentially dangerous conse-
quences. If users encounter a certificate that was ultimately signed by a removed
CA, they will see a warning. No matter whether the users click through the warn-
ing message or stop using the site, this would encourage habituation of warning
messages and further weaken the effectiveness of SSL warnings – at least for that
site (c.f. [15, 16]). Therefore, when removing CA certificates, care must be taken
that no legitimate certificates become invalid.

Solution. We ensured this by using a current, extensive database of HTTPS
certificates that represents the current SSL landscape. Additionally, we evaluated
our solution on a database of 130 million SSL handshakes and found that the
proposal would not invalidate any previously valid certificates.

Problem: CA certificates are used for other purposes than SSL. As
described above, our database only includes certificates for HTTPS servers. Thus
CA certificates that are only used for code signing, IPSec gateways, or S/MIME
would go unnoticed, be removed and could break functionality.

Solution. We counter this problem in two different ways. For the browser-based
trust stores, there does not seem to be a reason to include CAs that do not sign
HTTPS certificates, so they can simply be removed. For the Windows and OSX
trust stores we recommend removing the HTTPS capabilities of those certificates
(c.f. Figure 2). This is a conservative approach which still leaves the user open to
MITM attacks for protocols such as S/MIME, however, further research is needed
to determine the relevance of CAs for other protocols. Until then, breaking (non-
HTTPS) SSL functionality by removing CAs too aggressively does not seem like
a good idea. One caveat lurks on the Windows platform starting with Windows
7. From 7 on, Microsoft only ships a small set of CAs during the installation,
but may load additional CAs on demand. This presents a unnecessary danger
for the user, since it is not possible to restrict the capabilities of CAs which have
not been downloaded yet. To counter this, we trigger the download of all CAs
trusted by Windows and then edit the trust settings. This prevents them from
being downloaded on demand with more capabilities than they need.

A critical exception to our approach is Linux which is not capable of restrict-
ing what a trusted CA can do: It is only possible to remove the CA entirely,
which endangers any browser relying on the OS trust store. Interestingly, while
Google’s Chrome browser relies on the OS trust store on Windows and OSX,



they use their own approach on Linux. The trust settings for Chrome on Linux
can be configured using certutil, which is part of the NSS command line tools.

The potential problems for mobile devices are still work in progress. Both
iOS and Android also use CA certificates for other protocols, such as RADIUS.
Thus there could potentially be problems if CAs are removed solely because they
have never signed a HTTPS certificate.

(a) Disabling a certificate in OSX (b) Disabling a certificate in Mozilla
Firefox

Fig. 2. Disabling certificates for the purpose of SSL/HTTPS

6 Conclusion

In this paper we argued for the removal of CA certificates that do not sign
any certificates used in HTTPS connections from desktop and browser trust
stores. We based our analysis on an Internet-wide dataset of 48 million HTTPS
certificates and compared them to trust stores from all major browser and OS
vendors. We were able to identify 140 CA certificates included in twelve trust
stores from all major platforms that are never used for signing certificates used
in HTTPS. Based on these findings, we suggest to remove or restrict these CA
certificates. Using two months’ worth of TLS handshake data from our university
network, we confirmed that removing these certificates from users’ trust stores
would not result in a single HTTPS warning message. Thus, this action provides
a simple and low-cost real-world improvement that users can implement right
now to make their HTTPS connections more secure. We are working on creating
tools and scripts to automate this process for different browsers and operating
systems.

Our current list of CAs we recommend for removal is a conservative one. It
includes all CAs that have never signed a HTTPS certificate. In future work,



we would like to analyze the trade-off between false positives and the size of
the trust store, as well as look into mechanisms to restrict the capabilities of
certificates on the Android platform.

References

1. EFF: SSL Observatory
2. Durumeric, Z., Wustrow, E., Halderman, J.A.: ZMap: Fast Internet-wide scan-

ning and its security applications. In: Proceedings of the 22nd USENIX Security
Symposium. (2013)

3. Wendlandt, D., Andersen, D.G., Perrig, A.: Perspectives: Improving SSH-style
Host Authentication with Multi-Path Probing. In: USENIX 2008 Annual Technical
Conference on Annual Technical Conference, Boston, Massachusetts (2008) 321–
334

4. Marlinspike, M.: SSL And The Future Of Authenticity. In: BlackHat USA 2011
5. Laurie, B., Langley, A., Kasper, E.: Certificate Transparency. RFC 6962 (Experi-

mental) (June 2013)
6. Eckersley, P.: Sovereign Key Cryptography for Internet Domains
7. Hyun-Jin Kim, T., Huang, L.S., Perrig, A., Jackson, C., Gligor, V.: Accountable

Key Infrastructure (AKI): A Proposal for a Public-Key Validation Infrastructure.
In: Proceedings of the 2013 Conference on World Wide Web. (2013)

8. Marlinspike, M.: TACK: Trust Assertions for Certificate Keys
9. Hoffman, P., Schlyter, J.: The DNS-Based Authentication of Named Entities

(DANE) Transport Layer Security (TLS) Protocol: TLSA. RFC 6698 (Proposed
Standard) (August 2012)

10. Lian, W., Rescorla, E., Shacham, H., Savage, S.: Measuring the practical impact of
DNSSEC deployment. In: Proceedings of the 22nd USENIX conference on Security,
USENIX Association (2013) 573–588

11. Akhawe, D., Felt, A.P.: Alice in warningland: A large-scale field study of browser
security warning effectiveness. In: Proceedings of the 22th USENIX Security Sym-
posium. (2013)

12. Akhawe, D., Amann, B., Vallentin, M., Sommer, R.: Here’s my cert, so trust me,
maybe?: understanding TLS errors on the web. In: Proceedings of the 22nd interna-
tional conference on World Wide Web, International World Wide Web Conferences
Steering Committee (2013) 59–70

13. Karsten, J., Wustrow, E., Halderman, J.A.: CAge: Taming Certificate Authorities
by Inferring Restricted Scopes. In: FC’13: Proceedings of the 17th international
conference on Financial Cryptography and Data Security. (2013)

14. Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk, W.: Internet
X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile. RFC 5280 (Proposed Standard) (May 2008) Updated by RFC 6818.

15. Sunshine, J., Egelman, S., Almuhimedi, H., Atri, N., Cranor, L.F.: Crying wolf: An
empirical study of SSL warning effectiveness. In: Proceedings of the 18th Usenix
Security Symposium. (2009)

16. Egelman, S., Cranor, L.F., Hong, J.: You’ve been warned. In: Proceeding of
the twenty-sixth annual CHI conference, New York, New York, USA, ACM Press
(2008) 1065–1074


