
User-Defined Interface Mappings for the GraalVM
Alexander Riese

Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

alexander.riese@student.hpi.uni-potsdam.de

Fabio Niephaus
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

fabio.niephaus@hpi.uni-potsdam.de

Tim Felgentreff
Oracle Labs

Potsdam, Germany
tim.felgentreff@oracle.com

Robert Hirschfeld
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

hirschfeld@hpi.uni-potsdam.de

ABSTRACT
To improve programming productivity, the right tools are crucial.
This starts with the choice of the programming language, which
often predetermines the libraries and frameworks one can use.
Polyglot runtime environments, such as GraalVM, provide mecha-
nisms for exchanging objects and sendingmessages across language
boundaries, which allow developers to combine different languages,
libraries, and frameworks with each other. However, polyglot appli-
cation developers are obligated to properly use the right interfaces
for accessing their data and objects from different languages.

To reduce the mental complexity for developers and let them
focus on the business logic, we introduce user-defined interface
mappings – an approach for adapting cross-language messages at
run-time to match an expected interface. Thereby, the translation
strategies are defined in an exchangeable and easy-to-edit configu-
ration file. Thus, different stakeholders ranging from library and
framework developers up to application developers can use and
extend these mappings for their needs.

CCS CONCEPTS
• Software and its engineering → Interoperability; Object ori-
ented languages; Patterns.

KEYWORDS
polyglot programming, language interoperability, portability, pat-
terns

ACM Reference Format:
Alexander Riese, Fabio Niephaus, Tim Felgentreff, and Robert Hirschfeld.
2020. User-Defined Interface Mappings for the GraalVM. In Companion
Proceedings of the 4th International Conference on the Art, Science, and Engi-
neering of Programming (<Programming’20> Companion), March 23–26, 2020,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
<Programming’20> Companion, March 23–26, 2020, Porto, Portugal
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7507-8/20/03. . . $15.00
https://doi.org/10.1145/3397537.3399577

Porto, Portugal. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/
3397537.3399577

1 INTRODUCTION
With the increasing complexity of software, it becomes all the more
important to use the right development tools. By using suitable
language constructs, frameworks, and libraries, the development
time can be significantly reduced.

To use the most appropriate parts of each programming language
for a given problem, polyglot programming provides a solution.
Thereby, the developer can write code in multiple languages. To
do so, polyglot runtime environments, such as GraalVM, provide
mechanisms for language interoperability, such as access to objects
across language borders.

In the case of GraalVM, the underlying framework provides in-
terchangeability of primitive types and some selected basic data
structures, such as lists. Since this mechanism is deeply integrated
into the framework, it is rather hard to extend for other objects
like dictionaries or even more domain-specific data types like data
frames. This makes them cumbersome to use from different lan-
guage contexts and therefore reduces the portability [3] of code.

To address this issue, we introduce user-defined interface map-
pings – an approach to provide cross-language interface mappings
by generating suitable adapters. Thereby, application and library
developers can extend the underlying interoperability mechanism
to generate these adapters for their needs and can even share them
with others.

Contributions. In this work, we introduce a concept to enable
polyglot application developers to define and to use cross-language
method mappings. Thereby, these predefined mappings can be used
in a semi-automatic fashion by determining the expected interface
from a method call and applying the corresponding mapping. To
do so, the underlying polyglot environment is extended to make
the internal message information accessible for tooling developers.
In the course of the development, some questions and challenges
are revealed, which will be discussed at the end.

Outline. In the next section, the required context for this work
is given. Thereby, the underlying polyglot environment, GraalVM,
and especially the interoperability mechanisms are explained. Build-
ing on this, the represented approach is outlined in the following

19

https://doi.org/10.1145/3397537.3399577
https://doi.org/10.1145/3397537.3399577
https://doi.org/10.1145/3397537.3399577


<Programming’20> Companion, March 23–26, 2020, Porto, Portugal Alexander Riese, Fabio Niephaus, Tim Felgentreff, and Robert Hirschfeld

section. This is followed by a discussion about the trade-offs and
challenges. Afterward, the approach is compared with other mech-
anisms providing access to data structures and object of different
languages. Finally, the results are summarized, and we give an
outlook for future work.

2 CONTEXT
This work focuses on language interoperability as provided by
the GraalVM [13]. GraalVM is based on the Java HotSpot VM
and provides interoperability between different programming lan-
guages. To archive this, language interpreters have to be imple-
mented in Truffle, GraalVM’s language implementation frame-
work. Amongst others, implementations for Python1, Ruby [7],
and Squeak/Smalltalk [8] are provided.

Thereby, objects that can be shared between languages imple-
ment a common interface for interoperability. In this way, all lan-
guages have a shared understanding of message communication
and messages can be sent to objects across language boundaries [6].

Moreover, GraalVM can be embedded into Java applications. For
this, it provides proxy interfaces2, ranging from array interfaces
(e.g., ProxyArray) up to time zone interfaces (e.g., ProxyTimeZone).
These interfaces can be implemented by using Java objects to mimic
the behavior of specific objects in the target language. This way, it
is possible to expose a domain-specific date object. For instance, a
JavaScript Date object.

Additionally, GraalVM has support for custom target type map-
pings3. This mechanism allows the conversion of objects given a
custom mapping. This functionality, however, is also limited to Java
embeddings and thus cannot be used by developers of polyglot
applications.

3 APPROACH
Our approach applies the adapter design pattern [5]. By wrapping
an object from one language with an adapter, it can be exposed
with appropriate interface from another language when called from
there.

To build the adapter, the adaptee interface as well as the desired
target interface is needed. While the former one can be determined
by exploring the wrapped object itself, the latter is more critical. We
assume that the target interface can be derived from the concept
represented by the adaptee together with the language from which
the adapter gets called. The underlying concept can be either ex-
pressed by the class of the wrapped object, or the user can explicitly
define it, as shown in Listing 1.

Listing 1: Example interface to generate the first half of the
adapter
from polyglot import PolyglotAdapter , mapping
adapter = PolyglotAdapter(dict(),

mapping['Dictionary '])

To be able to share an understanding of concepts and their inter-
faces, these are defined as a language-agnostic representation. For

1https://github.com/graalvm/graalpython
2org.graalvm.polyglot.proxy package (https://git.io/Jvvkz)
3See https://git.io/JfR0p for an example

Intermediate Part

Target
Interface

Adaptee
Inteface

Common
Representation

Adaptee Part

Figure 1: Illustration of the two-part adapter

the sake of simplicity, we describe the interface as a list of method
names inside a YAML [2] file, as shown in Listing 2.

Listing 2: Interface definition of Dictionary
identifier: Dictionary
methods:

- lookup
- add
- includes
...

Given this interface definition, the method names are mapped
in a YAML file, as shown in Listing 3. Thereby, each operation
specified in the intermediate representation is assigned with a list
of adaptee operations that implement the corresponding behavior.
Whereas, it is not necessary to provide alias names for wrapped
objects, since every translation should lead to the same result, it is
crucial if the mapping is used in the other direction, as explained
later. If the desired behavior is not provided from the adaptee, the
format can be extended to define specific implementations on top
of the shared operations.

Listing 3: Mapping file for Ruby hash and dictionary
lookup: "[]"
add: "[]="
includes:

- include?
- member?

...

By introducing a common representation of a shared interface,
the implementation effort can be reduced. Through this split, the
adapter consists of two components: The first part of the adapter,
called intermediate part, maps from the target interface to the in-
termediate representation, and the second part, called adaptee part,
maps from the intermediate representation to the adaptee interface,
as shown in Figure 1. Thus, instead of providing a mapping for
each concept between every language implementation, only the
mapping to the intermediate representation has to be given to fully
integrate it.

To create the intermediate part and to find the corresponding
mapping, the target interface must be known. However, the target
interface depends on the language context the adapter gets called
from. During the initialization phase of the adapter, this information
is not present.

To overcome this issue, the user could explicitly state the target
interface if the required information is available. For example, this
can be done by an explicit adaption call to the adapter before it is
used.

20

https://github.com/graalvm/graalpython
https://git.io/Jvvkz
https://git.io/JfR0p


User-Defined Interface Mappings for the GraalVM <Programming’20> Companion, March 23–26, 2020, Porto, Portugal

Figure 2: Sequence diagram of the adapter message resolution

While this approach provides fine-grained control, by stating
everything explicitly, it can be quite cumbersome. The reason for
this is primarily that, in many cases, the mapping intent is already
expressed in the underlying algorithm. If, for example, a Dictionary
is passed to a Ruby algorithm, it is clear that the target interface is at
least a Ruby object and should probably also have a Ruby Hash-like
interface. Therefore, the mapping is created during run-time, if the
adapter gets called from a language context, as shown in Figure 2.

Although from a user perspective, the desired language is clear,
it is not intended from the Truffle framework to be able to find out
the language of an object. While, from the view of an application
developer, the transparency between languages is desirable, it limits
the design space for tooling developers. Therefore, as part of the
implementation, such functionality was integrated into the Truffle
framework.

Every time a language context is requested, a newly introduced
management object saves the corresponding language. If now, a
method is called on one of the adapters, the currently active lan-
guage is recorded as the last caller language. Based on the language
the adapter is written in, a new primitive function has to be added
to access this value from a language level and use it to build the
desired mapping. To identify the right interface from the given lan-
guage, the language-agnostic, generic interface can specify default
mappings for the different languages. Given that information, the
adapter can fully automatically configure itself to the desired tar-
get interface. From an application developer’s view, the boundary
between the languages disappear.

4 DISCUSSION
There is always a trade-off between automatization and customiza-
tion. However, making the interface translation process fully trans-
parent to the user could result in behavior not intended by the user.
Therefore, this approach tries to balance both sides.

On the one hand, the application developers are in charge of
explicitly declaring an adapter with its corresponding concept. That
way, the users are aware of the adapter, and overhead introduced
by the adapter is prevented if not needed.

The mechanism to determine the target language, as well as
the creation of the mapping behavior during run-time, introduces
additional function calls and therefore performance overhead. This

overhead could be further reduced by utilizing caching and reusing
the mapping behaviors.

On the other hand, a lot of the process is performed automatically
and, therefore, transparent for the user. Instead of using explicit
conversion calls, the calls are translated automatically based on
predefined configuration files. Thus, verbosity in using the adapter
is reduced and makes it more accessible.

However, all non-trivial abstractions are, to some degree, leaky [11].
In the case of adapter, this appears particularly during debugging
or the use of meta-programming. If, for example, the class name is
requested, it is not clear whether the adapter itself or the wrapped
value is meant. A similar problem occurs if the identity is requested.
For these cases, a solution has to be established and consistently
used across different languages.

The open nature of the configuration files enables the users to
change the adapter behavior for their needs. Since every stakeholder
can create, edit, and combine these configuration files, different
kinds of conflicts can occur. For example, if a mapping file relies on a
specific interface definition file, and that file is modified. In this case,
a dependency and versioning system could help. For now, the users
are responsible for keeping their configuration files consistent.

To archive this, it is conceivable to support the user in this
process by providing tools. Such tools could be prototyped in Graal-
Squeak, the Truffle implementation of Squeak/Smalltalk, and can
range from providing a specialized editor to explore and connect
different interfaces, up to (fully-)automatic mapping approaches
by utilizing data from the underlying source code or test suites.
Furthermore, the exchange of these files can be simplified, by pro-
viding an infrastructure to upload, download, and explore these
files.

Lastly, our approach is not limited to mapping interfaces of
similar objects of different languages. As an example, it would be
possible to create a mapping that lets a graphical object, such as
a bitmap, from one language appear as a list of RGB triples in
another language. Therefore, it would be interesting to explore if
our approach could also be used for other purposes, such as data
transformation.

21



<Programming’20> Companion, March 23–26, 2020, Porto, Portugal Alexander Riese, Fabio Niephaus, Tim Felgentreff, and Robert Hirschfeld

5 RELATEDWORK
The need to use existing data structures and objects across different
runtimes has resulted in different related approaches.

Serialization. During serialization [10], an object is translated
into a format that can be stored, transmitted, and later reconstructed.
The advantage of this approach is that it can be integrated into
nearly every language as a library. However, complex object graphs
are often not supported. Since the memory is not shared between
the runtimes, each object exists as a separate object in each run-
time. Resulting in different identities, more memory consumption,
performance overhead to transfer the object, and the need for syn-
chronization.

In comparison, our approach preserves the identity by sharing
the same object across languages and translating messages accord-
ingly. Instead of representing a specific instance of an object in a
language-agnostic format, the underlying concept itself is repre-
sented that way. Thereby, several challenges are shared between
these approaches, such as schema evolution. Although this chal-
lenge is not directly addressed in this work, corresponding ideas
can be borrowed from this field. Popular serialization mechanisms
are, for example, Google Protocol Buffers [12], Apache Thrift [1],
and Avro [4].

Polyglot Adapters. The idea to provide adapters for the GraalVM
was discussed in related work [9]. It demonstrates that the adapter
pattern is suitable to translate messages between languages and
mimic language-specific behavior, but the approach was purely
on the language level. In the course of this, scaling and usability
challenges were revealed, which are tackled by this work. By in-
troducing a language-agnostic, generic interface representation
and splitting the adapter into two parts, the mapping overhead
can be reduced. Further, the language resolution, which creates the
adaptee part of the adapter on the fly, improves the overall usability.

6 CONCLUSION AND FUTUREWORK
In this work, user-defined interface mappings for the GraalVM are
introduced. These allow developers of polyglot applications to com-
bine algorithms and data structures from different languages more
effectively by making code more portable. Thereby, a mechanism is
introduced to make the whole process more transparent to the user.
There is no need to adjust either the interface from the object or
the calls out of the algorithm by hand. This approach enables the
application developer to focus on the domain-specific challenges
and using the best-fitted language concepts without being bothered
with language boundaries.

This work introduces the concept of such an approach. As the
next step, a concrete implementation is in planning. Building on
that, the surrounding infrastructure would be an interesting starting

point. Beginning from the development of tools to create and man-
age configuration files, up to a registry service to allow application
developers to share their files in a standardized way.

ACKNOWLEDGMENTS
We gratefully acknowledge the financial support of HPI’s Research
School4 and the Hasso Plattner Design Thinking Research Pro-
gram5.

REFERENCES
[1] Aditya Agarwal, Mark Slee, and Marc Kwiatkowski. 2007. Thrift: Scalable Cross-

Language Services Implementation. Technical Report. Facebook. http://thrift.
apache.org/static/files/thrift-20070401.pdf

[2] Oren Ben-Kiki, Clark Evans, and Brian Ingerson. 2009. YAML Ain’t Markup
Language (YAML) (tm) Version 1.2. Technical Report. YAML.org. http://www.
yaml.org/spec/1.2/spec.html

[3] P. J. Brown (Ed.). 1977. Software Portability: An Advanced Course. Cambridge
University Press Cambridge; New York. xiv + 328 pages.

[4] The Apache Software Foundation. 2019. Apache Avro. https://avro.apache.org
[5] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design

Patterns: Elements of Reusable Object-oriented Software. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

[6] Matthias Grimmer, Chris Seaton, Roland Schatz, Thomas Würthinger, and
Hanspeter Mössenböck. 2015. High-Performance Cross-Language Interoper-
ability in a Multi-Language Runtime. In Proceedings of the 11th Symposium on
Dynamic Languages (Pittsburgh, PA, USA) (DLS 2015). Association for Computing
Machinery, New York, NY, USA, 78–90. https://doi.org/10.1145/2816707.2816714

[7] Oracle Labs. 2020. TruffleRuby – A high performance implementation of the Ruby
programming language. https://github.com/oracle/truffleruby

[8] Fabio Niephaus, Tim Felgentreff, and Robert Hirschfeld. 2019. GraalSqueak:
Toward a Smalltalk-Based Tooling Platform for Polyglot Programming. In Pro-
ceedings of the 16th ACM SIGPLAN International Conference on Managed Pro-
gramming Languages and Runtimes (Athens, Greece) (MPLR 2019). Association
for Computing Machinery, New York, NY, USA, 14–26. https://doi.org/10.1145/
3357390.3361024

[9] Fabio Niephaus, Tim Felgentreff, and Robert Hirschfeld. 2019. Towards Polyglot
Adapters for the GraalVM. In Proceedings of the Conference Companion of the
3rd International Conference on Art, Science, and Engineering of Programming
(Genova, Italy) (Programming ’19). ACM, New York, NY, USA, Article 1, 3 pages.
https://doi.org/10.1145/3328433.3328458

[10] Michael Philippsen and Bernhard Haumacher. 1999. More efficient object serial-
ization. In Parallel and Distributed Processing, José Rolim, Frank Mueller, Albert Y.
Zomaya, Fikret Ercal, Stephan Olariu, Binoy Ravindran, Jan Gustafsson, Hiroaki
Takada, Ron Olsson, Laxmikant V. Kale, Pete Beckman, Matthew Haines, Hossam
ElGindy, Denis Caromel, Serge Chaumette, Geoffrey Fox, Yi Pan, Keqin Li, Tao
Yang, G. Chiola, G. Conte, L. V. Mancini, Domenique Méry, Beverly Sanders,
Devesh Bhatt, and Viktor Prasanna (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 718–732.

[11] Joel Spolsky. 2002. The Law of Leaky Abstractions. Joel on Software: And on
Diverse and Occasionally Related Matters (01 2002). https://doi.org/10.1007/978-
1-4302-0753-5_26

[12] Kenton Varda. 2008. Protocol Buffers: Google’s Data Interchange Format. Techni-
cal Report. Google. http://google-opensource.blogspot.com/2008/07/protocol-
buffers-googles-data.html

[13] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles
Duboscq, Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko.
2013. One VM to Rule Them All. In Proceedings of the 2013 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Programming &
Software (Indianapolis, Indiana, USA) (Onward! 2013). ACM, New York, NY, USA,
187–204. https://doi.org/10.1145/2509578.2509581

4https://hpi.de/en/research/research-school.html
5https://hpi.de/en/dtrp/

22

http://thrift.apache.org/static/files/thrift-20070401.pdf
http://thrift.apache.org/static/files/thrift-20070401.pdf
http://www.yaml.org/spec/1.2/spec.html
http://www.yaml.org/spec/1.2/spec.html
https://avro.apache.org
https://doi.org/10.1145/2816707.2816714
https://github.com/oracle/truffleruby
https://doi.org/10.1145/3357390.3361024
https://doi.org/10.1145/3357390.3361024
https://doi.org/10.1145/3328433.3328458
https://doi.org/10.1007/978-1-4302-0753-5_26
https://doi.org/10.1007/978-1-4302-0753-5_26
http://google-opensource.blogspot.com/2008/07/protocol-buffers-googles-data.html
http://google-opensource.blogspot.com/2008/07/protocol-buffers-googles-data.html
https://doi.org/10.1145/2509578.2509581
https://hpi.de/en/research/research-school.html
https://hpi.de/en/dtrp/

	Abstract
	1 Introduction
	2 Context
	3 Approach
	4 Discussion
	5 Related Work
	6 Conclusion and Future Work
	Acknowledgments
	References

