
Let Them Fail
Towards VM built-in behavior that falls back to the program

Tobias Pape
Software Architecture Group

Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

tobias.pape@hpi.uni-potsdam.de

Tim Felgentreff
Oracle Labs

Potsdam, Germany
tim.felgentreff@oracle.com

Fabio Niephaus
Software Architecture Group

Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

fabio.niephaus@hpi.uni-potsdam.de

Robert Hirschfeld
Software Architecture Group

Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

hirschfeld@hpi.uni-potsdam.de

ABSTRACT
An important purpose of managed runtime environments like vir-
tual machines is to provide built-in behavior to their programs, that
is, behavior that cannot or may not be expressed in the program’s
language and is implemented inside the vm. For performance, sta-
bility, and security, such built-in behavior is typically rigorous, and
if it deems its invocation to be erroneous, ill-suited, or just not
quite right, it communicates this failure via exceptions at best. This
implies that a vm’s sphere of influence extends rather far into the
realm of the program executed: at best, exceptions can be reacted to
when built-in behavior fails, even though a program might be able
to provide alternatives, improvements, or other ways of handling a
failure.

By reflecting on how built-in behavior works in a Smalltalk sys-
tem, we argue that the sphere of influence of programs on vms is
extensible with regard to built-in behavior. For that, we suggest to
let built-in behavior fail and let programs decide whether to raise
exceptions, try again, or simply do nothing at all.
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1 HELICOPTER VMS
Virtual machines (vms) are expected to be reliable executive agents
of the program they are given.1 In amanner of speaking, they tend to
“hover over” the programs they are executing. With great care, and
even more suspicion, they shall carry out a program’s instructions,
and quickly so. This view of vms emerged from an environment
where hosted language— such as Java, JavaScript, Python, Ruby,
but also Smalltalk, etc.— take the abstraction barrier provided by
the hosted-ness quite literally, relying on built-in behavior of the
vms without question.

An important effect of this bipartite division of responsibilities—
oversimplified: programs do the sophisticated parts and vms do
the primitive parts— is that vms have to make sure they get their
part right. Every data passed, every behavior invoked has to be
scrutinized thoroughly as to not break execution.

This is, in fact, a good thing: programmers gain trust in the
platform, and vm, to get things right and be vocal about it. Yet, it is,
in fact, a bad thing, too: sufficiently advanced programmers might
increasingly see behavior that, while being reliable and sound, can
be improved or adapted for unforeseen use cases, but they have no
power to express themselves, as the vm would bail. Another aspect
is, that scrutinizing precludes vagueness on principle. So even if the
instruction to the vm is almost right, and to the human eye even
understandable, the vm’s duty is to complain.

But also the vm side might suffer. Introduction of new features,
such as language concepts, that do not fit the way a language is
currently used is often hard to do. A vm can maybe anticipate
programs that are not yet apt to use a new feature, but programs
that are aware of a new feature maybe have a hard time dealing
with a vm not yet capable.

1We will use vm to collectively refer to managed runtime environments (mres), vms,
and execution environments in general in this paper. Also, for the sake of simplicity
we subsume libraries, frameworks, or applications running on a vm under programs.
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***
Bailing and complaining typically means one of two things for a vm:
crashing or throwing an exception. Leaving out the fatal variant,
we are left with exceptions. However, everything unforeseen by
the vm developers, everything deviating from a narrow definition
of successful completion is subsumed under exceptional behavior,
failure is nothing normal. Moreover, exceptions are challenging,
too. Vms often prescribe the set of exceptions it would raise and
the program has no say. Technically, exceptions can be painful to
implement on vm level, especially when they have to be fast, which
can happen when they are frequent, that is to say, not exceptional
in the first place, but rather an alternative action. Admittedly, such
alternative action typically starts out as merely conveying the fact
of failure,2 but seldom remains that way indefinitely.

We propose that vms should share the responsibility they have
with the program they are running—and their power accordingly;
that is, to allow the failure of built-in behavior being handled by the
program that induced the behavior. We propose to thereby reduce
the vm’s sphere of influence and increase that of the running pro-
gram. We show a vm where this is indeed the case and argue that
a vm behavior like this is beneficial to the development experience
of several programming tasks.

2 BACKGROUND: SQUEAK AND ITS VM
Squeak [8] is a Smalltalk system derived from Smalltalk-80 [7].
Squeak’s current default vm, the OpenSmalltalk vm [10], is based
on the original Squeak vm [8] and applies additional optimization
techniques to efficiently execute Smalltalk code.

The vm provides built-in behavior named primitives which are
used to facilitate the communication between language and exe-
cution environment. Squeak primitives are invoked by first “tag-
ging” methods with a primitive marker: <primitive: aNumber> or
<primitive: 'aName' module: 'aPluginName'> . Whenever such a
method is executed, the vm locates the primitive built-in behavior
by its name or number, executes it, and if successful, returns a re-
sult. A method with a primitive tag can, however, include fallback
code, which is executed whenever the execution of the primitive
is not successful. The result of a primitive-tagged method hence is
either the result of the built-in behavior or that of the fallback code.

The OpenSmalltalk vm is written in Slang, a subset of Smalltalk,
and translated to C. This means that most primitives actually con-
sist of executable Smalltalk code, which can come in handy when
fallback code is necessary.

3 HOW SQUEAK FALLS BACK TO THE
PROGRAM

We reflect on the fallback mechanism for Squeak’s built-in behavior
and show the broad applicability of fallback code.We identified nine
variants of how fallback code is used, yet with slight overlap.3

3.1 Raise
For a large part of built-in behavior it is, in fact, a good idea to raise
an exception to inform callers or end users in a structured way. In
2That is why we will call it failing here.
3The variants marked † and ‡ are only more broadly applicable to metacirular vms
but included to show the diverse ways of utilizing fallback code.

Squeak, the method primitiveFailed does exactly that. It is used
whenever a primitive is unavailable or it encountered a situation it
cannot handle (cf. Figure 1). This is the way probably most execu-
tion environments and vms handle failure of built-in behavior, but
instead of prescribing the reaction at the vm implementation level,
Squeak is able to react at the language level.

Figure 1: Raise an error when a primitive fails.

3.2 Ignore
Complement to explicitly raising an exception on failing built-in
behavior, Squeak’s fallbacks support ignoring failing behavior. That
is, in case a primitive fails or is absent, fallback code can simply be
left out (cf. Figure 2). The effect is equivalent to any other empty
Smalltalk method: in case of failure, the receiver (viz. self) is re-
turned.

Figure 2: Ignore a failing primitive.

3.3 Chain
Fallback code can be put to good use to also keep inheritance and
polymorphism working correctly. For example, in Squeak, some
objects may want to provide specialized behavior for certain access
patterns— such as accessing the high and low word in a double
word float object (cf. Figure 3a). However, if the primitive access to
those fails, the inherited built-in behavior for accessing an object’s
memory can be re-used using an object-oriented super call in the
Smalltalk code (cf. Figure 3b), rather than some special handling
for the primitive.
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(a) A primitive might fail and resort to its inherited behavior (via
super-send).

(b) The inherited behavior is itself built-in.

Figure 3: Invoking a different primitive when one fails.

This way, the benefits of an object-oriented system are not lost
only because multiple behaviors are implemented as primitive and
neither are wrapper functions necessary to chain the primitives
explicitly.

3.4 Adapt
Since fallback code in Squeak is ordinary Smalltalk code, it is pos-
sible react to failure with adaptation to the current situation. For
example, to instantiate (or construct) an object in Smalltalk, the
message new is sent to a class. This is actually an idiom and not part
of the language per se. Typically. new is implemented in a way that
it calls basicNew, which invokes the built-in behavior (cf. Figure 4).
However, there is a certain category of objects, such as Arrays, that
require the number of elements to be given at the time of creation
and, hence, requires sending basicNew: instead. Squeak copes for
code not completely complying with this idiom. That is, when a
variable object like an Array is instantiated via basicNew, the primi-
tive fails, and the fallback code calls another primitive with a default
number of elements (zero, in this case).

That way, it is possible to use primitives in almost the right way
and adapt to such situations post hoc.

Figure 4: Handle a nearly-correct primitive usage.

Nota bene: The code shown (Figure 4) actually includes additional
strategies to deal with failure: first, it reacts to a certain kind of
failure (communicated by the vm as a symbol or string via the
variable ec) by “chaining” to a different primitive, and in case that
or the adaptation here does not work, “raises”.

Another way of adapting to failing behavior is returning defaults
upon failure. This idiom is also common in Squeak fallback code.

3.5 Retry
Built-in behavior, regardless of how it implemented, by its very
nature only has access to a subset of the capabilities of the imple-
mented language. This also holds for Squeak and its subset Slang
(see Section 2). Thus it can be a lot of effort to support a wide
range of inputs in primitives. An example for this can be found in
the BitBlt primitive that is used to combine rectangular areas of
one display form with another according to some combination rule
(cf. Figure 5). This primitive takes a large number of arguments to
specify the source and target forms, the rectangular areas in ques-
tion, and color palette conversions. It would be a lot of work to
support all kinds of parameters in the primitive code, so the primi-
tive supports only integers and uncompressed forms as parameters.
If an argument is given that is of a different type, the primitive fails.

The fallback now attempts to coerce all arguments into appro-
priate types by sending messages such as asInteger to round non-
integer values or unbent to decompress display forms. Afterwards,
the same primitive is simply re-tried.

The advantage here is that programmers can easily add new
abstractions in the language for numbers of display forms with-
out having to touch the primitive code; as long as coercion to the
accepted types is possible.

3.6 Rescue
The reasons for built-in behavior failing to do what was intended
are not always clear. Sometimes it is undesirable to either just raise
or ignore the failure, but the situation is not as clear cut to simply
chain to another primitive or adapt.

In this case, the fallback code in Squeak can be used to actu-
ally carry out the functionality that the primitive was intended to

3
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Figure 5: On failure, adjust BitBlt’s object state and retry the
primitive.

provide. In the example (cf. Figure 6), a fast Fourier transform is
computed, either via primitive or using Smalltalk code. In fact, for
several methods in Squeak, this variant is used not to react to failure
of built-in behavior, but rather the other way round: the primitive
is optionally available to speed up certain computation that could
be too slow when executed as Smalltalk.4

Note, however, that now manual intervention is necessary to
keep the primitive implementation and the fallback code in sync.

3.7 Forgo
Squeak’s primitive fallback behavior can also be used to introduce
new concepts in a backwards-compatible way. Figure 7, for exam-
ple, shows a method for instantiating an immutable Cons cell. Using

4A more in-depth discussion of such algorithmic primitives is available in [6].

Figure 6: Fall back to non–built-in behavior on failure.

fallback code, the behavior can be mimicked in case the underly-
ing execution environment is unable to guarantee immutability
properties. A vm without the ImmutabilityPlugin would happily
allow these objects to be mutated which can simply be avoided by
overriding appropriate methods in Cons, so that an error is raised
instead.

Figure 7: Fallback code can be used to mimic certain behav-
ior.

3.8 Reuse†
The Squeak vm is predominantly written in Slang, a Smalltalk sub-
set, and so are numerous primitives. The effect is that such primi-
tives can both be executed as Smalltalk code or translated to C for
compilation into the vm. This makes it possible for certain primi-
tives to be their own fallback code (cf. Figure 8).While this approach
has its limitations (for example, no access to certain vm internal
interfaces), it avoids any behavioral deviation between primitive
and fallback code.

4
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Figure 8: Fallback code that also serves as source for transla-
tion to C.

3.9 Simulate‡
A more advanced version of handling the absence of certain built-
in behavior— as a special case of failing— is provided with the
R/SqueakVM [2, 5] implementation of Squeak’s vm.When it detects
that the invocation of a method requests a primitive not provided by
the vm, a configured callback can be sent to the send’s receiver (or
its class, for that) matter. The callback is called simulatePrimitive:

args:, as it makes it possible to re-use a so-called simulation version
of the primitive’s implementation [6]. This is possible, as the devel-
opment of the OpenSmalltalk vm happens, in fact, within Squeak
itself; the complete virtual machine can be executed from within a
running Squeak instance, then called the Simulator. Due to machine
restrictions, the translated-to-C code and the run-in-Simulator code
sometimes differ slightly. Compared with normal fallback code, the
distinctive feature of Simulator code is that it is written as if it is run
inside the vm, and hence using different interfaces and behavior.

This variant of fallback code is useful when the built-in behavior
already has fallback code to handle the “nearly-right” case of fail-
ing primitives. In Squeak, the low-level graphics routine, BitBlt’s
copyBits is written that way, but cannot deal with the absence of
the primitive. R/SqueakVM can however omit the (rather complex)
primitive and relies on the code of the BitBltSimulator, providing
the simulator code for BitBlt.

Note that this variant of fallback behavior needs explicit simula-
tion code which might be provided by a meta-circular vm.

Simulate (Sometimes). A variation of the simulation fallback ap-
proach has been tried out in GraalSqueak [11]. Instead of fully
simulating a primitive, such as BitBlt’s copyBits, the vm only falls
back to the simulation code for certain arguments. It only partially
implements that primitive. Since GraalSqueak is implemented in
Truffle, the language implementation for the GraalVM, it is possible
to implement only the most performance-critical code paths on the
vm-level by providing specializations based on certain argument
values.

In the case of copyBits, for example, specializations could be
activated for the most complex combination rules that specify how
BitBlt combines two bitmaps into one. For all other code paths that

are not covered by such specializations, the vm lets the primitive
fail and falls back to “simulate”.

***

The ways to handle failing built-in behavior in Squeak are manifold.
However, they are only because the vm relinquishes parts of its
sphere of influence to the running program. In the case of Squeak,
programs thus gain a lot of flexibility and room to improve on
failing built-in behavior.

4 DISCUSSION
4.1 Failure is not exceptional
While it could be dismissed as mere naming issue, mix-matching
failure-handling5 and exceptions leads to a dilemma: either failure
is truly the exception— then even trying to open a file without
proper access rights may be hard to express—or it is common an
hence not exceptional.

That being said, we cloud treat exceptions just as means to con-
vey the information that built-in behavior failed. However, a built-
in that raises puts the—possibly plenty of –callers of that built-in
in charge of handling that exception; if not, exceptions uncatched
typically end up effecting the other type of vms bailing, that is, they
crash.

The way fallback code works in Squeak, developers are very
much encouraged, if not forced, to deal with primitives failing at
its root, that is the methods with the primitive tag, not their callers.
We consider this a kind of psychological advantage. This could
be approximated in other environments by wrapping all built-in
behavior with exception-catching functions and only calling the
latter.

4.2 Spheres of influence challenged
When a program has the power to react to failing built-in behavior
in an arbitrary way, it certainly has the responsibility to do so, too.
Yet, it can be onerous to do the right thing, because the right thing
might be complex, slightly different, or simply not known.

Too simple fallback code could cover up actually erratic vm be-
havior. Without a fine-grained set of messages between vm and
program, separating recoverable or handleable failure from irrevo-
cable errors becomes guesswork. In fact, the possibility to hand an
error code from the failed primitive to the fallback code in Squeak
serves exactly this purpose and— as later addition not present in
Smalltalk-80—may be actually a reaction to this discovery.

Whenever a fallback’s intention is to “rescue”, “reuse”, or “simu-
late”, there is a chance that the observed behavior of primitive and
fallback get out of sync. Since typically vms change less often that
the programs they run, care must be taken on the program level to
synchronize behavior in such cases.

As with all powerful tools, a program with greater influence
on what it does when primitives fail poses an educational chal-
lenge. Programmers have to be aware of what they can do and
what they should do and what not. Squeak partly anticipates that.

5Or alternative action, for that matter.
5
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A lot of primitives bear a comment referring to a method Object

whatIsAPrimitive.6 This methods includes a quite extensive intro-
duction to the concept of primitives and how fallback code is to be
read and written, with examples. This could serve as starting point
for similar resources to make programmers ready for powerful fall-
back code.

5 RELATEDWORK
Most mre- or vm-based programming languages provides means
to invoke built-in behavior different from a mere foreign function
interface (ffi): Java Native Interface (jni) [9] for Java, Python C
extensions [4, 3], or Ruby Native Extensions [12], to name just a
few. None of them provide the means to execute fallback code as
presented here.

However, reacting to the absence of built-in behavior is not com-
pletely uncommon. The following pattern is rather common in
Python:

1 try:
2 import cPickle as pickle
3 except:
4 import pickle

This code tries to load a C-written module (cPickle) using the name
of the Python-written module (pickle). In case this fails, the actual,
Python-written module is loaded. This is typically used when the
C-written module is merely a performance-improved, interface-
compatible version of a Python module, possibly with reduced ex-
tensibility. We would classify this under “rescue”, but on a mod-
ule granularity instead of method/function granularity. Similarly,
it is possible to write wrappers for built-in functions, as in List-
ing 1. However, this depends on the built-in behavior actively using
Python’s exception mechanism and seems to be not very common.

Listing 1: Wrapping a built-in Python function and provid-
ing custom exception handling.

1 type(sum)
2 # => <type 'builtin_function_or_method'>
3 builtin_sum = sum
4
5 def sum(sequence, start=0):
6 try:
7 return builtin_sum(sequence, start)
8 except Exception as e:
9 print "NO: %s: %s" % (type(e).__name__, e)
10
11 type(sum)
12 # => <type 'function'>
13 sum([2, 3, 4], object())
14 # => "NO: TypeError: unsupported operand type(s) for +: 'object' and 'int'"

In Ruby, this works likewise, except that require there is a function
and not syntax. Others, mostly dynamic and scripting languages
such as Lua or R, behave comparably.

In contrast, Rubinius,7 a Ruby implementation, inherited (among
other things) the Smalltalk idea of a primitive method with fallback
code similar to what we presented.

A completely different approach is taken by Erlang [1]: rather
than handling failure, the whole environment is tuned to tolerate
6The method’s content is available on the web: https://marianopeck.wordpress.com/
2011/06/03/primitives-pragmas-literals-and-their-relation-to-compiledmethods/ (last
accessed 2019-01-20).
7https://rubinius.com/ (last accessed 2019-01-20).

failure or crash and will deal with it by restarting affected processes.
However, handling things that are not actually failures is hence not
as easy to achieve.

6 CONCLUSION
While common, it is not necessary for a vm to answer the failure
of built-in behavior solely with exceptions. With a bit of courage,
it can relinquish parts of its sphere of influence and let programs
decide what to do in such a case. The case of Squeak has shown
that— in a manner of speaking— “grown up” programs can handle
failure, in both responsible and creative ways, even facilitating the
adoption of new language or vm features. We think this would
make a good evolutionary step for vms of other languages.
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