
Polyglot Code Finder
Jan Ehmueller

Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

jan.ehmueller@student.hpi.uni-
potsdam.de

Alexander Riese
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

alexander.riese@student.hpi.uni-
potsdam.de

Hendrik Tjabben
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

hendrik.tjabben@student.hpi.uni-
potsdam.de

Fabio Niephaus
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

fabio.niephaus@hpi.uni-potsdam.de

Robert Hirschfeld
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

hirschfeld@hpi.uni-potsdam.de

ABSTRACT
With the increasing complexity of software, it becomes even more
important to build on the work of others. At the same time, web-
sites, such as Stack Overflow or GitHub, are used by millions of
developers to host their code, which could potentially be reused.

The process of finding the right code, however, is often time-
consuming. In addition, the right solution may be written in a
programming language that does not fit the developer’s require-
ments. Current approaches to automate code search allow users to
search for code based on keywords and transformation rules, but
they are limited to one programming language.

Our approach enables developers to find code for reuse written
in different languages, which is especially useful when building
polyglot applications. In addition to conventional search filters,
users can filter code by providing example input and expected out-
put. Based on our approach, we have implemented a tool prototype
in GraalSqueak. We evaluate both approach and prototype with an
experience report.

CCS CONCEPTS
• Software and its engineering → Search-based software en-
gineering; Reusability; Automatic programming; Integrated and
visual development environments.

KEYWORDS
code reuse, code search, polyglot, programming experience, GraalVM
ACM Reference Format:
Jan Ehmueller, Alexander Riese, Hendrik Tjabben, FabioNiephaus, and Robert
Hirschfeld. 2020. Polyglot Code Finder. In Companion Proceedings of the 4th
International Conference on the Art, Science, and Engineering of Programming
(<Programming’20> Companion), March 23–26, 2020, Porto, Portugal. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3397537.3397559

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
<Programming’20> Companion, March 23–26, 2020, Porto, Portugal
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7507-8/20/03. . . $15.00
https://doi.org/10.1145/3397537.3397559

1 INTRODUCTION
In many cases programming is about finding the right building
blocks and putting them together. Douglas Crockford underlines
this by calling code reuse the “Holy Grail of Software Engineer-
ing” [1].

At the same time, the existing ecosystem of software, such as the
underlying programming language, often limits the search space
for potential building blocks. With the advent of polyglot runtime
environments, such as GraalVM [11], mechanisms for language
interoperability become more accessible. We believe that this opens
up new possibilities for reusing code snippets between languages.
Even if the user is not familiar with the programming language in
which the desired functionality is written, we argue that experi-
enced programmers can read and adjust the code to make it fit their
needs. In combination with available code sources from the web,
ranging from question-answering sites, such as Stack Overflow1,
to code hosting sites, such as GitHub2 and GitLab3, the user can
choose from a large amount of reusable code to find a code snippet
with the desired functionality.

To guide the user to the right code for reuse, we propose an
approach for a tool that can be embedded into an Integrated De-
velopment Environment (IDE) and provides search options across
different online code sources. The integration into the IDE work-
flow reduces context switches, for example, between the IDE and a
web browser.

Our approach allows for keyword searches with different filter
options that return the search result in the form of code snippets.
Furthermore, those code snippets can be filtered by testing and
evaluating them in an isolated sandbox. This evaluation step asserts
that a code snippet produces a specific output value for a given set
of input values, both provided by the user.

Contributions. In this work, we demonstrate the integration of a
web-based code search tool into a polyglot IDE. Our contributions
are as follows:

1https://stackoverflow.com (accessed 2020-01-20)
2https://github.com (accessed 2020-01-20)
3https://gitlab.com (accessed 2020-01-20)

106

https://doi.org/10.1145/3397537.3397559
https://doi.org/10.1145/3397537.3397559
https://stackoverflow.com
https://github.com
https://gitlab.com

<Programming’20> Companion, March 23–26, 2020, Porto, Portugal Jan Ehmueller, Alexander Riese, Hendrik Tjabben, Fabio Niephaus, and Robert Hirschfeld

(1) We present an approach that reduces context switches needed
when searching for code on the web and thus increases a
developer’s productivity.

(2) We explain how we have built the Polyglot Code Finder, an
implementation of our approach, and discuss challenges and
its limitations.

(3) We evaluate our work in an experience report, in which we
solve an example workflow. In this workflow, we demon-
strate how our tool allows us to find reusable code for a data
analysis task without having to leave the IDE.

Outline. First of all, we give an overview of the background
and context in Section 2. Then, Section 3 describes the concept of
web-based code search and polyglot development. Section 4 further
presents an implementation of this concept for a polyglot IDE called
Polyglot Code Finder. Section 5 demonstrates the Polyglot Code
Finder’s usage in an experience report and provides some limita-
tions and challenges of polyglot programming that we encountered
during our work. Afterwards, Section 6 gives an overview of re-
lated work in the field. Finally, Section 7 concludes this work and
presents avenues for future improvements and tasks.

2 BACKGROUND/CONTEXT
Within the scope of this work, we developed a prototype on top
of GraalVM. GraalVM is a virtual machine that provides interop-
erability between different programming languages and allows
developers to combine libraries and frameworks across languages.
Among others, Ruby [10], Python4, R5, and Squeak/Smalltalk [4]
are supported languages. Each of these languages is implemented
in Truffle, GraalVM’s language implementation framework. This
framework defines interfaces for language constructs that should be
accessible across different languages. It further enables languages
to send messages beyond language borders. To access the polyglot
functionality within a language, special built-in methods are added.
Besides running code within the context of a different language,
access to a shared object store is provided as well.

From the supported languages, Squeak/Smalltalk takes a unique
position. Through the tight integration between language and IDE,
it is particularly suitable for tool development. The programming
system shipping with GraalSqueak, the Squeak/Smalltalk imple-
mentation for GraalVM, comes with different tools, which support
multiple languages. This includes a polyglot code editor as well as
a polyglot notebook system [6]. Thus, GraalSqueak can be used as
a polyglot IDE.

3 APPROACH
We strived towards embedding a code search tool, which we call
Polyglot Code Finder, into a polyglot IDE. Figure 1 shows that it
can be accessed by other IDE-inclusive programming tools to query
code snippets and develop polyglot applications. The code snippets
are taken from online code sources. We formulate the following
four criteria that an online code source must meet to be suitable
for such a tool. A code source should be well-maintained, accepted,
universal, and queryable:

4https://github.com/graalvm/graalpython (accessed 2020-01-20)
5https://github.com/oracle/fastr (accessed 2020-01-20)

Polyglot
Application

GraalVM

IDE

Code Sources

Stack Overflow

GitHub

...

Code
Snippets

Editor Notebook ...

Programming tools

Polyglot Code Finder

Use

Develop

Runs on

Runs
on

Figure 1: The Polyglot Code Finder’s components and the
embedment into its environment.

(1) A well-maintained code source increases the chance of find-
ing executable code by promoting work that helps with solv-
ing a problem and rejecting unsuited solutions.

(2) A code source is accepted if it has been established in the
community and people rely on its service, for example, be-
cause it hosts software dependencies.

(3) A universal code source is a service that supports content
for different programming languages and paradigms.

(4) Queryable, in the context of code sources, means that the
code source provides some form of public Application Pro-
gramming Interface (API) that allows third parties to search
for code snippets.

To further sift out solutions that actually solve a specific prob-
lem, retrieved code snippets are statically analyzed towards the
following properties:

(1) Whether the code snippet is syntactically valid regarding
the considered programming language.

(2) If the code snippet is unstructured or wrapped in some struc-
ture, such as a function or a class.

(3) The number of parameters.

We propose possibilities to search for code snippets based on
specific method parameters and return values. We further aim at
making the input and output instances freely selectable by users. In
contrast to full text search, validating code snippets based on inputs
and outputs allows users to find useful solutions more quickly.
Therefore, every code snippet that passes the static analysis is
executed and validated in a sandbox provided by the runtime. Using
such a sandbox ensures security by limiting execution permissions
and easing the process of monitoring the execution.

The execution of the code snippets is also monitored regarding
performance. Thus, we allow the user to rank the results by different
measures, such as the performance of the snippet or the complexity
(i.e., lines of code).

107

https://github.com/graalvm/graalpython
https://github.com/oracle/fastr

Polyglot Code Finder <Programming’20> Companion, March 23–26, 2020, Porto, Portugal

4 IMPLEMENTATION
In this section, we describe the Polyglot Code Finder, an implemen-
tation of our approach. It is available on GitHub6.

We chose GraalSqueak as an IDE for four reasons. First of all,
because it is running on GraalVM, it allows the execution of code in
a polyglot runtime environment. On the contrary, general-purpose
IDEs like IntelliJ IDEA7 and Eclipse8 do not support a polyglot code
execution out-of-the-box.

Secondly, GraalSqueak itself can be extended in a polyglot man-
ner unlike, for example, IntelliJ IDEA, whose plugins are limited
to JVM languages, such as Java or Kotlin. The polyglot approach
allows us to separate tasks so that they can be implemented in the
language that is most fitting for each task.

Thirdly, GraalSqueak already provides a polyglot notebook sys-
tem and a polyglot code editor that can be integrated in the Poly-
glot Code Finder’s workflow. The notebook system is similar to
Jupyter9 notebooks, but is implemented in Squeak/Smalltalk and
comes with polyglot support. Our Polyglot Code Finder adds a
web-based search to this notebook system and enables users to
add snippets directly as cells into the notebook. This combines the
existing block-based workflow of the notebook with the possibility
to easily reuse existing blocks in any of the supported languages.
The polyglot code editor supports a user in implementing polyglot
programs by integrating GraalVM’s polyglot API. For example, it
generates boilerplate code necessary to import and export variables
to and from the different GraalVM languages.

Finally, unlike many other GraalVM languages, most of Graal-
Squeak’s Polyglot API is implemented on the language level rather
than on the level of the VM. Therefore, many low-level primi-
tives can be accessed directly, which allows the implementation
of language-agnostic tools. At the same time, Squeak/Smalltalk is
known to provide fast feedback loops and a framework for rapid
tool building.

We decided to implement the Polyglot Code Finder in a polyglot
manner, which enabled us to choose the best-suited language for
each of the Polyglot Code Finder’s tasks. This is especially important
considering that some of GraalVM’s language implementations are
still under development and thus differ in terms of how complete
they are. Additionally, we use some features that are not yet part
of the polyglot API, which would make them available in each
language, but that are already added to GraalVM and thereby usable
in Java. We access those features in the languages that are most
suited for them.

Figure 2 displays the modules of our Polyglot Code Finder, how
they communicate on an abstract level, and in which languages
they are implemented.

First, a user has to enter a plain-text query (e.g., “quick sort”)
and click on the search button. From this query we create an object
that knows how to use the API of its code source. The response is
parsed and stored in our code snippet datamodel. The resulting code
snippets are then filtered in two steps. In the first step, each snippet
is processed by a code highlighter to find syntax errors. If such an
error is detected in the code snippet, it is excluded from the result
6https://github.com/hpi-swa-lab/px20-code-finder
7https://www.jetbrains.com/idea/
8https://www.eclipse.org/ide/
9https://jupyter.org/ (accessed 2020-01-20)

Figure 2: The modules of the Polyglot Code Finder and how
they communicate.

and not shown to the user. In the second step, the code snippets are
further analyzed statically. This allows us to remove responses that
contain unwanted elements, such as output from an interactive shell
session or just unstructured code. In an optional third step, potential
code snippets are then executed with the given input values and
validated against the expected output value if the user has set
the Example Filter. For this, the code finder leverages GraalVM’s
sandboxing feature which is available through its ContextAPI10, for
example, to disallow access to the file system. Finally, the remaining
results are displayed in the user interface (UI).

Figure 3 shows the results of the query “quick sort”. On the top,
the query field, the language selection to select which languages
should be considered for the results, the search button, and a button
to open the Example Filter are located. On the left, the result code
snippets are listed with their respective language and their first
line of code. On the right, the full source code of the selected code
snippet is displayed. In this view, the code snippet can also be edited.
Below that, there is a workspace in which the selected snippet can
be used and executed with custom code. In the example case, Ruby
code is displayed which prints the result from the example that is
already given in the selected code snippet. At the lower edge is a
button that allows the user to export the snippet. If the Polyglot
Code Finder was opened via a tool like the polyglot notebook, this
button adds the source code, the answer URL, the author URL,
and the license information of the selected code snippet as a new
notebook cell. If, on the other hand, the Polyglot Code Finder was
opened by itself, the button copies that information to the clipboard
instead.

Figure 4 displays the results of the same query as before, but
this time with the Example Filter enabled as well. With this query
the number of results is much smaller. However, all of these code
snippets were validated to perform the desired transformation,

10https://git.io/JvUCq (accessed 2020-01-20)

108

https://github.com/hpi-swa-lab/px20-code-finder
https://www.jetbrains.com/idea/
https://www.eclipse.org/ide/
https://jupyter.org/
https://git.io/JvUCq

<Programming’20> Companion, March 23–26, 2020, Porto, Portugal Jan Ehmueller, Alexander Riese, Hendrik Tjabben, Fabio Niephaus, and Robert Hirschfeld

Polyglot Code Finder

quick sort Example Filter

Apply Example FilterSqueak/SmalltalkRubyPythonJavaScriptRLLVMSearch

class Array
def partition(lst, start, end):
def quickSort(numList, left, right):
from random import randint
def quicksort(lis):
def quick_sort(list)
def QuickSort(dataset, low, high):
def quick_sort(array, beg_index, end_index)
def quicksort_recursive(a):
def randQuickSort2(A):
def sort(*myarray):
def quick_sort(list):
def median(a, i, j, k):
def quickSort(aList, l, r):
def quickSort(mylist, start, end):
from threading import Thread
def partition(A,start,end):
def quick_sort(arr, start=0, end=None):
def Quicksort1(array, low, high): #fix
function qsort(arr, ret)
def quickSort(list):
def quick_sort(lis):
QUICKSORT
def qt(alist, l, r):
def quicksort(list, start, end):
def swap(p , q):
def quick_sort_2(items):
def quick_sort(list: MutableSequence, key = lambda x : x):

def quick_sort(list)

 return list if list.uniq.size < 2

 p = list.sample

 left, right = list.partition{|elmt| elmt <= p}

 quick_sort(left) + quick_sort(right)

end

a = [9,8,7,6,5,0,6]

b = quick_sort(a)

1

2

3

4

5

6

7

8

9

10

String(b) ForeignString[[0, 5, 6, 6, 7, 8, 9]]

Add snippet

Figure 3: Results of an example query in the Polyglot Code
Finder.

Polyglot Code Finder

quick sort Example Filter

Apply Example FilterSqueak/SmalltalkRubyPythonJavaScriptRLLVMSearch

def quicksort(lis):
def quicksort_recursive(a):
def quick_sort_2(items):
def quick_sort(list):
def qsort(list):

def quick_sort(list):

 if not list:

 return list

 pivot = list[0]

 lesser = quick_sort([x for x in list[1:] if x < pivot])

 greater = quick_sort([x for x in list[1:] if x >= pivot])

 return lesser + [pivot] + greater

1

2

3

4

5

6

7

8

str(quick_sort([1, 2, 3, 6, 5, 4, 10, 9])) ’[1, 2, 3, 4, 5, 6, 9, 10]’

Add snippet

Figure 4: Results of the example query filtered with the Ex-
ample Filter.

which, in this case, was sorting a list. Hence, all displayed results will
work as expected, at least for the provided example. Additionally, it
becomes evident that the input and output values were provided in
Python, since we can only see Python results. The reason for this
is discussed in Section 5.

5 EXPERIENCE REPORT
This section describes our experience when using the Polyglot
Code Finder to enhance the experience of polyglot notebooks. In
our example workflow, we analyze data from the Stack Overflow
Developer Survey 201911 and visualize howmany participants there
are from each country. This example is also recorded in a video
available on YouTube12.

First, we need to download the data. Using the Polyglot Code
Finder to look up how to download files from the web, we found
a well-suited solution in Ruby. Having done that, we see that the
downloaded file is a zip archive. We use our tool to find a way to
unzip that archive in-memory, which also happens to be Ruby.

In the decompressed archive we detect not only contains CSV-
files, but also other files. We want to extract the right CSV-file
11https://insights.stackoverflow.com/survey/2019 (accessed 2020-01-20)
12https://www.youtube.com/watch?v=r_xesEExHno

and simultaneously use this step to clean that data using regular
expressions. At this point, we only keep the first 1000 lines of the
data file for demonstration purposes. Then, not remembering the
exact syntax for regular expressions in Ruby, we use our tool to look
it up. Having cleaned the files, we now want to parse the CSV-file
containing the actual data.

We use the Polyglot Code Finder to find out how to do exactly
that and find a working solution in Python. Since we are working
in a polyglot context, we can easily switch programming languages
after exporting the CSV-files’ contents with the polyglot API. After-
wards, we are switching back to Ruby to use its powerful collection
API to extract the columns that we need.

We select the “Country” column and aggregate on it to find
out how many participants there are for each country. For the
visualization we only want to see the top ten countries, since there
are too many countries otherwise.

The last step is the data visualization, whichwe decided to do in R
with ggplot2. Thus, we need to export the data via the polyglot API
again. The polyglot notebook system supports a %ggplot2 command,
which handles themodule import and shortens the syntax to display
the plot. We use this command as well as the Polyglot Code Finder
to find out how to visualize our data and how to tune the fine details,
such as flipping the coordinates and setting the label for an axis.
Figure 5 shows the finished notebook that we created in this report.

Limitations. Some limitations of the Polyglot Code Finder be-
come clear in the example workflow. First, we are currently only
using Stack Overflow as a code source since the APIs of other sites,
such as GitHub and GitLab, do not provide a global search and thus
do not meet our criteria described in Section 3. Thus, our results
depend on the richness of Stack Overflow, which provides a lot of
examples for commonplace languages like Python and JavaScript,
but leads to limited results for languages such as Smalltalk and
R. Additionally, results are not always pure functions, but some-
times written as unstructured code or entire classes. This makes
the results harder to test and reuse in a different context. In our
example workflow, this was not a problem due to the nature of note-
books, but in a more conventional software architecture this would
be more problematic. Unstructured code, which was, for instance,
recorded from an interactive shell session, is more difficult to test
with our Example Filter, because there are no well-defined inputs
and outputs. Furthermore, some queries will not produce function
results that can be plugged into a different project immediately.

Another limitation are language specific details that affect the
validity of code snippets. For instance, various results for Python
might be written in different language versions which complicates
interoperability. In our example workflow, we observed a CSV-
parsing code snippet written in Python 2 trying to import a class
that is in a different module in Python 3. Since GraalPython is a
Python 3.7 implementation, that snippet did not work even though
it is a valid solution for Python 2. This is not immediately obvious
from the metadata, but becomes obvious when trying to use the
code.

Finally, the current interoperability between the different GraalVM
languages is still under active development. This means, that imple-
mentations for a sorting algorithm in Ruby do not yet necessarily
work with list objects from other languages, such as Python. One

109

https://insights.stackoverflow.com/survey/2019
https://www.youtube.com/watch?v=r_xesEExHno

Polyglot Code Finder <Programming’20> Companion, March 23–26, 2020, Porto, Portugal

Polyglot Notebook

%ggplot2

values <- data.frame(countries = bindings["x"], count = bindings["y"])

ggplot(values, aes(reorder(countries, count), count)) + geom_bar(stat="identity") + coord_flip() + xlab("Country") + ylab("Number of

participants")

R

require "json"

data = JSON.parse(Polyglot.import("parsed_data"))

countries = data.map {|_, entry| entry["Country"]}

 .group_by {|country| country}

 .map {|country, list| [country, list.size]}

 .sort_by {|_, count| -count}

 .slice(0, 10)

x = countries.map {|country, _| country}

y = countries.map {|_, count| count}

Polyglot.export("x", x)

Polyglot.export("y", y)

""

Ruby

Answer URL: https://stackoverflow.com/a/35822843

Author: https://stackoverflow.com/users/771848/alecxe

License: CC BY-SA 3.0

import csv

from io import StringIO

import polyglot

s = polyglot.import_value("data")

buff = StringIO(s)

reader = csv.reader(buff)

data = {}

header = next(reader)

for line in reader:

 data[line[0]] = dict(zip(header[1:], line[1:]))

import json

polyglot.export_value(json.dumps(data), "parsed_data")

""

Python

__MACOSX ForeignObject[memberSize=277]
README_2019.txt ForeignObject[memberSize=277]

root ForeignObject[memberSize=7]

Answer URL: https://stackoverflow.com/a/9204461

Author: https://stackoverflow.com/users/480943/ben-lee

License: CC BY-SA 3.0

require ’zip’

Zip::File.open($file.path) do |zipfile|

 zipfile.each do |file|

 if file.name == "survey_results_public.csv"

 content = file.get_input_stream.read

 content = content.split("\n").slice(0, 1000).join("\n")

 content = content.gsub(/[^ -~\n]/, ’’)

 Polyglot.export("data", content)

 end

 end

end

Ruby

Answer URL: https://stackoverflow.com/a/31114444

Author: https://stackoverflow.com/users/1553787/vamsi-krishna

License: CC BY-SA 3.0

require ’open-uri’

$file = open("https://drive.google.com/uc?export=download&id=1QOmVDpd8hcVYqqUXDXf68UMDWQZP0wQV")

""

Ruby SearchSaveLoadAdd cellRun all

y ForeignObject[arraySize=10,memberSize=307]
x ForeignObject[arraySize=10,memberSize=307]
polycode-editor:lexerName ’ruby’
polycode-editor:code ’require ’’open-uri’’’
parsed_data ’{"1": {"MainBranch": "I am a student who is learning to code", "Hobbyist": "Yes", "OpenSourcer": "Never", "OpenSource"
data ’Respondent,MainBranch,Hobbyist,OpenSourcer,OpenSource,Employment,Country,Student,EdLevel,UndergradMajor,EduOther,OrgSize,DevType,YearsCode,Age1stCode,YearsCodePro,CareerSat,JobSat,MgrIdiot,MgrMoney,MgrWant,JobSeek,LastHireDate,LastInt,FizzBuzz,JobFactors,ResumeUpdate,CurrencySymbol,CurrencyDesc,CompTotal,CompFreq,ConvertedComp,WorkWeekHrs,WorkPlan,WorkChallenge,WorkRemote,WorkLoc,ImpSyn,CodeRev,CodeRevHrs,UnitTests,PurchaseHow,PurchaseWhat,LanguageWorkedWith,LanguageDesireNextYear,DatabaseWorkedWith,DatabaseDesireNextYear,PlatformWorkedWith,PlatformDesireNextYear,WebFrameWorkedWith,WebFrameDesireNextYear,MiscTechWorkedWith,MiscTechDesireNextYear,DevEnviron,OpSys,Containers,BlockchainOrg,BlockchainIs,BetterLife,ITperson,OffOn,SocialMedia,Extraversion,ScreenName,SOVisit1st,SOVisitFreq,SOVisitTo,SOFindAnswer,SOTimeSaved,SOHowMuchTime,SOAccount,SOPartFreq,SOJobs,EntTeams,SOComm,WelcomeChange,SONewContent,Age,Gender,Trans,Sexuality,Ethnicity,Dependents,SurveyLength,SurveyEase

bindings ForeignObject[memberSize=7]

Figure 5: A polyglot notebook that analyzes the Stack Overflow Developer Survey from 2019 and plots the top ten countries
with the most participants.

110

<Programming’20> Companion, March 23–26, 2020, Porto, Portugal Jan Ehmueller, Alexander Riese, Hendrik Tjabben, Fabio Niephaus, and Robert Hirschfeld

of the reasons is that such an algorithm might use Ruby specific
methods, such as uniq, to sort the list. If that method is called on a
Python list, that object would not understand the message, because
the method does not exist in the Python world. One possible solu-
tion for this could be polyglot adapters [5]. These would map, for
example, the uniq method to a Python method that does the same
thing on the Python list. This limitation is one of GraalVM itself
and not of the Polyglot Code Finder, however it becomes apparent
when using the tool.

6 RELATEDWORK
In the following, we discuss related work.

How Developers Search Code. Sadowski et. al conducted a case
study at Google on when and how developers search for code on-
line [8]. Their results show that searching for information on the
web is a key software development activity and an essential part
of a programmer’s every-day life. On average, developers perform
12 search queries every weekday. Based on these insights, various
requirements for future code search techniques and tools are for-
mulated. One such requirement is that in order to facilitate the
search process, tools should be integrated into the development
environment and provide minimal yet informative results.

Internet-Scale Code Search. Gallardo-Valencia et al. claim that
developers like to build software composed of code that they have
found online in open-source software repositories [2]. The authors
aggregate the process of searching for software development so-
lutions online under the term “Internet-Scale Code Search”. They
argue that Internet-Scale Code Search has many similarities with
other research areas such as software reuse or code search, but
note that there are currently no novel solutions to facilitate such a
search.

IDE-embedded web browsers. Developers often use a web browser
for searching code online. For this reason, some IDEs, such as
Eclipse13 or IntelliJ IDEA14, come with an embedded web browser.
Unlike our approach, an integrated web browser allows users to
browse the web freely, but is usually not optimized for finding
reusable code.

Method Finder. Squeak/Smalltalk’s Method Finder [9] is a tool
that helps to find the right method in a Squeak/Smalltalk image.
It supports a keyword and an example-based search. While the
keyword search allows users to find methods based on their name,
the example-based search allows them to find methods based on
how they transform a specific input to a specific output. However,
the Squeak/Smalltalk internal Example Filter is limited to methods
that are written in Smalltalk and that are present in the current
Squeak/Smalltalk image. Our approach searches for code written in
arbitrary programming languages online using both keyword-based
and example-based search.

13https://git.eclipse.org/c/platform/eclipse.platform.ui.git/tree/bundles/org.eclipse.ui.
browser (accessed 2020-01-20)
14https://plugins.jetbrains.com/plugin/10750-embedded-web-browser-for-idea (ac-
cessed 2020-01-20)

Stack Overflow Importer. Stack Overflow Importer15 is a Python
module that can be used to import certain algorithms directly from
Stack Overflow. Similar to our approach, Stack Overflow Importer
implements this algorithm by querying Stack Overflow’s public
API and by searching for implementations written in Python. Af-
terwards, the retrieved code snippets are ranked by their number
of upvotes and are validated based on syntactic correctness. This
validation process, however, does not ensure that a retrieved code
snippet provides the desired result. Our Polyglot Code Finder, with
the integrated Example Filter, goes one step further and validates
that each code snippet transforms an input into the desired output.

StackInTheFlow. StackInTheFlow by Greco et al. is a tool that
queries code snippets by utilizing Stack Overflow’s API [3]. Queries
can either be manually constructed or automatically assembled
based on the current source code context. For example, the tool au-
tomatically detects compiler and runtime errors and queries Stack
Overflow to find solutions for these errors. A recommendation
system, which is based on Stack Overflow tags, personalizes re-
sults over time. The tool is available as a plugin for the IntelliJ
IDE family. Similar to our approach, StackInTheFlow is integrated
into the working environment and queries Stack Overflow’ API. It
further applies mechanisms for automatically detecting errors and
personalizing results. StackInTheFlow also provides static analysis
metrics, such as the post’s publishing date and number of votes.
However, our Polyglot Code Finder, and more specifically its Ex-
ample Filter, can execute code snippets in a sandbox to test them
for expected behavior. Additionally, this execution can also be used
to generate additional metrics, for example to assess their runtime
performance.

Reiss presents an approach for finding and validating solutions
for development problems [7]. It consists of the following steps.
First, a keyword based search is done to get possible solutions. Af-
terwards, each possible solution is validated with regard to static
specifications, such as a natural language description, and dynamic
checks, such as contracts and test cases. Contracts are defined as
preconditions and postconditions, while test cases are provided in
the form of input-output pairs. Finally, each potential solution is ex-
amined regarding further dimensions such as security, complexity,
or performance. Our approach follows the steps proposed by Reiss
to facilitate Internet-Scale Code Search. But in contrast to Reiss’
web tool, our approach aims to embed a code search tool directly
into a polyglot IDE.

7 CONCLUSION AND FUTUREWORK
In this work, we propose an approach and implementation of a
web-based code search tool that is integrated into a polyglot IDE.
By using this tool, developers can find reusable code from online
resources that fit their needs. The code search can be done without
leaving the IDE and across programming languages. To enhance
the search experience, we provide both a keyword-based search and
a search based on input to output transformation rules. Latter is
achieved by automatically executing and validating candidate code
snippets in a secure sandbox environment by specifying expected
input and output values. The main advantages of this approach

15https://github.com/drathier/stack-overflow-import (accessed 2020-01-20)

111

https://git.eclipse.org/c/platform/eclipse.platform.ui.git/tree/bundles/org.eclipse.ui.browser
https://git.eclipse.org/c/platform/eclipse.platform.ui.git/tree/bundles/org.eclipse.ui.browser
https://plugins.jetbrains.com/plugin/10750-embedded-web-browser-for-idea
https://github.com/drathier/stack-overflow-import

Polyglot Code Finder <Programming’20> Companion, March 23–26, 2020, Porto, Portugal

are that code snippets can be queried from within the IDE and
automatically filtered based on the developer’s needs.

As part of this work, we used our tool to solve an example
workflow and reported the experience.

For further research, a more sophisticated evaluation approach,
such as an empirical user study, is possible. In addition, some code
snippets need to be adjusted to specific use-cases. This can be
achieved by automatically encapsulating unstructured code snip-
pets in functions, which could be done by analyzing a code snippet’s
abstract syntax tree. Additionally, the number of results when using
the Example Filter can be increased by adding interface mapping,
such as polyglot adapters [5]. This mapping would allow code snip-
pets that use language-specific methods to properly work with
objects of different languages.

Furthermore, the Polyglot Code Finder could support specific
querying for different user groups. For example, for students that
are learning how to code, only parts of a code snippet could be
displayed. This would help students in solving a problem, but still
require them to come upwith themissing parts themselves. Another
example would be domain experts using the Polyglot Code Finder
to query a domain-specific code source, such as machine learning
specific code.

Finally, the integration of statically-typed languages, such as lan-
guages based on LLVM, provides challenges. Although it is possible
to execute LLVM bytecode on the GraalVM, relevant code snippets
are provided in the corresponding programming languages and
require further processing.

ACKNOWLEDGMENTS
We gratefully acknowledge the financial support of HPI’s Research
School16 and the Hasso Plattner Design Thinking Research Pro-
gram17.
16https://hpi.de/en/research/research-school.html
17https://hpi.de/en/dtrp/

REFERENCES
[1] Douglas Crockford. 2005. The Elements of JavaScript Style. https://crockford.

com/javascript/style1.html
[2] R. E. Gallardo-Valencia and S. Elliott Sim. 2009. Internet-Scale Code Search. In

2009 ICSE Workshop on Search-Driven Development-Users, Infrastructure, Tools
and Evaluation. 49–52. https://doi.org/10.1109/SUITE.2009.5070022

[3] Chase Greco, Tyler Haden, and Kostadin Damevski. 2018. StackInTheFlow:
Behavior-Driven Recommendation System for Stack Overflow Posts. In Proceed-
ings of the 40th International Conference on Software Engineering: Companion
Proceeedings (Gothenburg, Sweden) (ICSE ’18). Association for Computing Ma-
chinery, New York, NY, USA, 5–8. https://doi.org/10.1145/3183440.3183477

[4] Fabio Niephaus, Tim Felgentreff, and Robert Hirschfeld. 2019. GraalSqueak: To-
ward a Smalltalk-based Tooling Platform for Polyglot Programming. In Proceed-
ings of the 16th ACM SIGPLAN International Conference on Managed Programming
Languages and Runtimes (Athens, Greece) (MPLR 2019). ACM, New York, NY,
USA, 14–26. https://doi.org/10.1145/3357390.3361024

[5] Fabio Niephaus, Tim Felgentreff, and Robert Hirschfeld. 2019. Towards Polyglot
Adapters for the GraalVM. In Proceedings of the Conference Companion of the 3rd
International Conference on Art, Science, and Engineering of Programming (Genova,
Italy) (Programming ’19). Association for Computing Machinery, New York, NY,
USA, Article 1, 3 pages. https://doi.org/10.1145/3328433.3328458

[6] Fabio Niephaus, Eva Krebs, Christian Flach, Jens Lincke, and Robert Hirschfeld.
2019. PolyJuS: A Squeak/Smalltalk-based Polyglot Notebook System for the
GraalVM. In Proceedings of the Conference Companion of the 3rd International
Conference on Art, Science, and Engineering of Programming (Genova, Italy)
(Programming ’19). ACM, New York, NY, USA, Article 24, 6 pages. https:
//doi.org/10.1145/3328433.3328434

[7] Steven P. Reiss. 2009. Semantics-based Code Search. In Proceedings of the 31st
International Conference on Software Engineering (ICSE ’09). IEEE Computer
Society, Washington, DC, USA, 243–253. https://doi.org/10.1109/ICSE.2009.
5070525

[8] Caitlin Sadowski, Kathryn T. Stolee, and Sebastian Elbaum. 2015. HowDevelopers
Search for Code: A Case Study. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering (Bergamo, Italy) (ESEC/FSE 2015). Association
for Computing Machinery, New York, NY, USA, 191–201. https://doi.org/10.
1145/2786805.2786855

[9] Squeak/Smalltalk Community. 2019. Method Finder. https://wiki.squeak.org/
squeak/1916

[10] Thomas Würthinger, Christian Wimmer, Christian Humer, Andreas Wöunde-
fined, Lukas Stadler, Chris Seaton, Gilles Duboscq, Doug Simon, and Matthias
Grimmer. 2017. Practical Partial Evaluation for High-Performance Dynamic
Language Runtimes. SIGPLAN Not. 52, 6 (June 2017), 662–676. https://doi.org/
10.1145/3140587.3062381

[11] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles
Duboscq, Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko.
2013. One VM to Rule Them All. In Proceedings of the 2013 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Programming &
Software (Indianapolis, Indiana, USA) (Onward! 2013). ACM, New York, NY, USA,
187–204. https://doi.org/10.1145/2509578.2509581

112

https://hpi.de/en/research/research-school.html
https://hpi.de/en/dtrp/
https://crockford.com/javascript/style1.html
https://crockford.com/javascript/style1.html
https://doi.org/10.1109/SUITE.2009.5070022
https://doi.org/10.1145/3183440.3183477
https://doi.org/10.1145/3357390.3361024
https://doi.org/10.1145/3328433.3328458
https://doi.org/10.1145/3328433.3328434
https://doi.org/10.1145/3328433.3328434
https://doi.org/10.1109/ICSE.2009.5070525
https://doi.org/10.1109/ICSE.2009.5070525
https://doi.org/10.1145/2786805.2786855
https://doi.org/10.1145/2786805.2786855
https://wiki.squeak.org/squeak/1916
https://wiki.squeak.org/squeak/1916
https://doi.org/10.1145/3140587.3062381
https://doi.org/10.1145/3140587.3062381
https://doi.org/10.1145/2509578.2509581

	Abstract
	1 Introduction
	2 Background/Context
	3 Approach
	4 Implementation
	5 Experience Report
	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments
	References

