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On July 25th, 2023, we experienced a total Honeycomb outage spanning ingest, querying,
triggers, SLOs, and our API. The condensed timeline is that following 10 minutes of partially
degraded ingestion, we saw a rapid failure cascade that took down most of our services. The
outage impacted all user-facing components from 1:40 p.m. UTC to 2:48 p.m. UTC, during which
no data could be processed or accessed.

The user interface recovered around 2:48 p.m. UTC, and querying recovered unevenly across all
partitions and teams. During this time, requests may have contained outdated information, or
simply failed.

Ingestion came back up around 3:15 p.m. UTC, at which point we could accept incoming traffic
and API requests. Query capacity, along with triggers and SLO alerting, kept regaining accuracy
and succeeded for more and more users, until service was fully restored at 3:35 p.m. UTC.

Our total outage time was roughly one hour and 10 minutes, with an extra 28 minutes for ingest
(10 minutes partial, 18 minutes total), and 47 minutes of degraded querying and alerting
(triggers and SLOs) for roughly two hours of incident time.

This outage is our biggest (or most total) since we’ve had paying customers, but the events
behind it are unremarkable. In this review, we will cover the incident itself, and then we’ll zoom
back out for an analysis of multiple contributing elements. Finally, we’ll go over our response
and the aftermath.

The incident

The setup
The events started on Monday July 24th, late in the day for our west coast engineers, when we
switched between two clusters of Retriever (our storage and query engine). We found a potential
bug on the cluster that represents the next software version to run there, so we decided to go
back to the old version and fix the problem on the new, unused cluster in the morning. This is a
routine change we’ve done multiple times in the past, and it felt like the safest option.

Shortly after, our internal SLO for Shepherd (our ingest service) started slowly burning. This
happened in short spikes at the end of each hour; however, since the service doesn’t normally
experience heavy load at night, it took multiple hours to make a significant enough dent for our
engineers to be notified.
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A different group of engineers looked into the issue, which seemed localized: the calls to refresh
their local in-memory cache appeared slow, and a live profiling check pointed at contention
around some mutexes. Eventually, they came to the conclusion that the database itself was
slow, which bubbled out to the ingest service. There had been a need for ingest scale-up around
that time, but the write volume didn’t match either. They looked into new code that shipped
earlier in the day and found nothing that could explain a database or ingest issue.

At about 8:00 p.m. local time, the engineers decided that since the problem was just a
marginally slow, inconsistent performance burn with a lack of good explanation, this was a
minor issue that could be investigated in the morning.

This is a judgment call we often recommend to engineers to ensure they are well rested when
dealing with incidents.

Early morning pages
Around 4:00 a.m. PDT, our on-call engineers—different from those who switched flags or who
investigated the night before—received pager alerts for ingest issues and performance. This
time around, the alerts paged because of the morning east coast scale-up in ingest volume,
which amplified the performance issues.

As the engineers looked into the alerts and the Slack logs from the night before, they noticed it
was a continuation of the same problem. They, too, concluded that this was an intermittent
issue without significant customer impact that could wait for investigation during business
hours.

Business hours investigation
In the morning, during east coast working hours, one of our engineers saw the issue logs from
the night before. They went over the same threads others had looked into, saw a query that
looked at all the database calls all of our services did, and re-ran it on a wider timeline (24 hours
instead of one minute) to see if any pattern held up over time. This pointed out a big change:
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Query showing the database calls over a one minute window, hoping to highlight specific costly operations that stack up
at the time symptoms are observed.
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The same query over a 24 hour period, hoping to show wide trends in events over time to highlight changes.

As a side note, this is a practice our engineers recommend: going from a narrow to a wide view
often rapidly invalidates or confirms potential investigation paths by showing whether patterns
are specific to the current investigation, or normal and misleading.

Going from a narrow view to a wide one immediately revealed a drastic drop in some database
calls (the blue ones). These calls are named SetDatasetColumnsLastWritten and they come
from our Retriever service, and updates the last time we received data for any field, for any
dataset, for any customer.
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Two things stood out right away:

1. This change was related to the shift in infrastructure from the night before. The engineer
who noticed the pattern was aware of the change, and knew that shifting between
clusters also shifted which set of servers would update these fields.

2. This field was used by our caching mechanism to know which dataset schemas we
needed to actively refresh, and was used to pre-warm caches for the whole ingest
service.

Put together, these things provided a convenient explanation: something about these updates
on the old query engine cluster failed, which undermined the cache. This explained the ingest
performance issues.

The dependency cycle looks a bit like this:

High-level architecture diagram showing how user events are used by the writer to update schemas, and that field is
required for cache backfilling, which if not done, has read fall through to the database.

The issue still wasn’t considered critical at this point, since there was only a slight degradation
in performance. Shepherds maintain their own in-memory cache, and we assumed that the
latency spikes happened when they bypassed the schema store to run expensive queries, but
otherwise, things were stable. This was still weird, though. We’ve made the switch between
storage clusters multiple times before without a problem. So as our engineers came online
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according to their respective time zones, they looked into what could be behind this drop of
writes to bring them back.

Since there’s a slight variation in infrastructure between the clusters, one of the theories we
entertained was that maybe, through recent changes, some permissions or write mechanisms
had gone wrong on the old infrastructure. We changed which cluster handled the writes back to
the new one by flipping a feature flag. This would let us get the fields updated without running
the risk of having queries encounter the bug we still had to address.

We’ve used that flag many times before, so we knew that flipping it temporarily stops all the
writes: the timestamp for any individual entry is only updated every 10 minutes or so, and
switching the writes creates a synchronization point by resetting timers uniformly. It usually
takes roughly 10 minutes before seeing them come back at full volume. After these 10 minutes,
however, they still didn’t come back. Things started to feel even weirder. We restarted a couple
hosts, but didn't notice an improvement.

An engineer started to dig into the feature flag’s implementation, and noticed a subtle bug:
whenever we switch the flag, the goroutine that writes the updates returns instead of continuing
over the current iteration. Therefore, whichever hosts did the writing in a timed loop stopped
doing so, but more importantly, never tried again even if the flag was switched back.

The key distinction was the time scales and when we used the flag. A full reboot was required
for writes to migrate over to a cluster whose writes had been turned off before. The flaw was
present in the flag all along, but hidden through our deployment mechanism often running in
parallel.

Since deploys caused all hosts on all services to restart, and deploys often happened right
around the time we switched flags, it papered over the behavior and made the flag look like it
worked as expected. Everyone knew it worked fine.

This surprised people in the incident; some were familiar with this code, had modified or
reviewed it in the past, and that “exit and never come back” behavior wasn’t something that they
ever noticed. As we learned through the incident review process, literally no one in the
organization, including the people who wrote the code and used it the most, had any idea that
this is how it actually worked.
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This insight let us find more data. The following query shows the history of the attempted writes
per cluster (purple being new, orange being old):

You can see every deployment prior to July 25th (in UTC) causing bumps of attempted writes on
the orange line, and then stopping as the code loops exits. The purple cluster is fully used.
However, when we switched clusters on July 24th, we did so at the tail end of a deployment
window and most but not all the Retriever hosts stopped writing. For the entire night, the few
trailing hosts on the old cluster wrote their data, so the customers who send us the most traffic
and span many partitions were able to keep their own schemas’ cache warm.

When we switched writes across clusters to bring data back in the morning, we stopped the
writes and kept the cache from refreshing. The moment we understood this, we wrote a
command to roll our query engine’s cluster as quickly as possible without interfering with other
critical features (querying and alerting).

But mere minutes before we got to it, things went bad:

Query volume before the incident, and after, when all the work started piling up.

The big green line is new schema changes lagging and piling up, which is a very bad thing. They
should be going much faster, and in lower volume.

Within two minutes, our end-to-end alerts (which monitor our ability for writes to go through the
system and get queried) fired and paged us, and a massive onslaught of database connection
errors (for having too many connections) happened. We noticed all critical services were 100%
down.
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Being in a bad place
In these two minutes, we went from a leisurely morning investigation into a full-blown incident
response.

We knew from past experience that ingest outages likely require weird manual circuit-breaking
of all traffic just to come back; the hosts can’t come up on their own. In this case, we also
proactively set up these circuit breakers and denied all traffic with a 5xx error, because we
assumed the database issue came from too many schema updates while overloaded.

The plan, in short, was to bring ingest back. But, bringing ingest back without a cache would
make it go down again, either through overload or database connection saturation. We first had
to make sure the database was ready to take connections, then restarted all of the Retriever
hosts on the query engine to provide the data for the cache.

As we cut traffic off, a group of engineers went to see if they could save the database by
removing whatever transactions were stuck. If we could take a few extra minutes to salvage the
current host, the overall recovery would be faster.

This, however, was unproductive. We couldn’t kill connections as everything would hang—even
commands like SHOW ENGINE INNODB STATUS, which call to none of the usual tables, would
never return. It appeared that a confluence of heavy read load, increasing writes, and overall
stress in the database locked it up.

At this point, we decided to call it quits on killing connections to save the database; we weren’t
making progress in reasonable time. Instead, we decided to fail over to a replica.

As it turns out though, the database came right back up. Most of our services came back nearly
instantly. Front-end queries worked, Shepherds (the ingest service) were booted up, and our
query engine appeared mostly functional, it just had no fresh data.

But we couldn’t bring traffic back just yet by removing our circuit-breaking. The flags were
flipped the previous night, which meant freshness data behind the cache was sparse, and since
no updates at all had happened since the start of the actual outage, the cache was empty.
Retriever was up and could mark recently written data, but wasn’t getting traffic: allowing traffic
to Shepherd without a cache is risky, and until it flows through, we can’t update the cache.
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We split into two investigative paths: one of making the schema cache service reload a longer
history of data, and one to manually do SQL surgery in our database to force a data reload.
Unfortunately, the last experiment we had run with the schema reloading service to make it
force reload more data was unsuccessful, and the engineers who owned the service were not up
yet.

Since we made progress on the SQL surgery front, we decided to go with that approach. We
manually updated the ‘last written’ timestamp of all schemas that had seen traffic in the last day
and marked it as now. This introduced incorrect data that is used in two places: the parts of our
UI that tell you how fresh data is, and the query assistant, which looks into time windows greater
than a day and would have been unaffected during the time of the incident.

Example data for which we introduced inaccuracies in order to bring service back.
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This worked, and on the next scan, the schema cache updater reloaded all the data we needed.
At that point, we still didn’t know how well the database might take the traffic or if it needed to
warm up, and a prior outage revealed a tendency for our users to have lots of data buffered that
they’d send all at once. We used short time periods with our circuit breaker to let in traffic, then
choked it back, and analyzed.

We let traffic through for a few seconds, then turned it off. CPU and memory usage were high,
which we believed to be normal when first warming up. After a pause to let it all settle, we let
more traffic go through for half a minute or so, and this time it looked stable. We managed to
confirm that Retrievers were updating the last updated schema values, and so all the ingredients
were in place for a full success. We let traffic go through in a third circuit-breaking reset, which
repaired ingest.

We then worked to restore querying capacity. It seemed partially functional, and one of our
engineers restarted hosts on a rotation while these efforts were ongoing to make sure the flag
was active and that everything was up. Some hosts were lagging behind and required extra
restarts since the database faults made them fail some internal checks.

At this point, the whole fleet was healthy, and all we had left to do was to keep restarting the
inactive Retriever hosts and investigate the more specific failure modes we’ve seen in our
database.

Analysis
As the dust settled and we ran our incident investigation and review, multiple interesting threads
came up. One was to figure out how our database died so hard, which naturally led to a
discussion about its central role in our infrastructure. We also had a long discussion on how the
response felt, once we were stuck in it. Finally, we had a lot of talks about what exactly we can
do for this type of outage.

How a database dies
The precise database failure mode we encountered is difficult to explain. After digging into all
sorts of metrics and logs, we managed to figure out that at the core of the database failure was
a deadlock in MySQL’s internals, and not in our transactions.

There’s no clear path on how we specifically got to that deadlock, but we think that since this is
a concurrency issue, it’s non-deterministic, and the chances of hitting these increases with the
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amount of contention and parallelism going on. The more loaded the database is, the higher the
likelihood of hitting these rare bugs. Here’s what we observed:

As our cache mostly stopped working, the amount of reads (in purple) we ran shot up drastically,
overloaded the database, and then a few writes (in orange)—a decent amount, but nothing out of
the ordinary—seemingly tipped it over into a rare race condition in the MySQL internals, locking
thread after thread of the database, until operations piled up.

Eventually, all working threads were exhausted, the database ran out of connections, and our
services died when they were unable to get the information they needed to run. This internal
deadlock further explains why we weren’t able to free up connections: anything we did that tried
to interact with any stuck thread got stuck waiting on the same lock as well.

Part of the heavy write workload comes from sequences of insertions into our schema storage
when new fields are encountered by customers. This is generally a bit demanding for the
database, but the heavy read load moved us into a rather dangerous and uncomfortable
situation. Engineers described this as “playing golf in a storm,” denoting the probabilistic nature
of the issue, but also how our system was at the same time put in a vulnerable position.

Our cache implementation is perceived as being load-bearing and structural: the system isn’t
safe without it. This is known to be a less than ideal situation, particularly when this database is
so central to the system, which brings us to our next point on single points of failure.
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Single points of failure and ouroboroses
We run half a dozen different MySQL databases, all hosted via RDS. Although we have many, we
do have a “main” database that contains many types of data, required for everything related to
user accounts, permissions, configuration values around teams, SLOs and triggers, and finally,
environment and data schemas—to name the main ones. None of these contain actual
customer events, which are stored via our query engine, but they are necessary for the overall
system to work.

Most features are directly tied to environments and data schemas, and so this database
naturally “attracts” more data to it, as all services tend to require at least some of that
information to function. This represents an obvious Single Point of Failure (SPOF), which
everyone in the organization is aware of and continuously working on; the other databases we
have were mostly split away from the main one over time as an attempt to remove performance
bottlenecks and reduce the blast radius for certain features.

Our cache protects this database, and the ingestion of data is required to keep the cache as
warm as possible. Cold starts are challenging but manageable; it’s running hot without the
cache that causes issues.

As an additional factor, the cache is shared by multiple services, which all keep an in-memory
cache and refresh it from the layered one, and fall through to the database when there’s an
issue. To maintain correctness, a single process backfills the cache from the database; if the
layered cache isn’t around, processes can still update their own, and in theory, the system can
run for a long time, as long as the database does not hard lock—which is sadly what happened.

This creates a system where many dependencies are indirect, and things going wrong in one
end of the environment can end up degrading service for another. Many of these are set up
because they are more economical and less risky.

In fact, that complexity is hardly avoidable. Locally good decisions often interact in unexpected
ways:

● The query engine updated the timestamps to the database because it already had to see
all the data, and it ensured consistency between what the interface reports and what the
queries return.
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● The shared cache implementation was in part scaling work, and in part an effort to clean
up and normalize all schema usage—a first step in making it more manageable to
untangle the “main” database usage.

● We believed the failover of the primary database instance to be costly because we had
seen inadequate performance issues on replicas when failing over, for many hours that
follow.

● We now know that the replicas having reliability and performance issues were a disjoint
failure mode, but these prior problems are what made us want to switch the writes
across query engine clusters during migrations, and ultimately fed into this outage.

● We were migrating back to avoid a bug with the new cluster version that we thought
could corrupt data.

● Frequent deploys mitigated a non-obvious bug around a specific feature flag which
everyone therefore believed to be safe.

● During the early investigation, we had paused deployments to prevent interference with
new code and host restarts.

As it turns out, preventing a bug by switching to the old infrastructure set up the stage. This
investigation made us suspend otherwise frequent deployments, which made it a guarantee that
the restarts accidentally required for the query engine flags wouldn’t happen by accident. Finally,
recovery on the database was a bit slower because prior near-misses with our databases led us
to believe performance could be bad for a longer time than what we observed in practice.

It is a bit ironic how feature flags, frequent deploys, suspending deploys during incidents, and
learning from prior near-misses all technically contributed to this incident, while being some of
the most trusted practices we have to make our system safer.

Incident response is personal
We made a specific call during the incident to go down hard, only so that we could come back
up faster. What we knew at the time was that the load on the database without a cache was the
likely problem, that the cache required Retriever to be rebooted to work, and that we couldn’t
reboot Retriever until the database was back up, which wouldn’t be safe to assume unless
ingest was taken out of rotation.
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Under that pattern, the assumption was that any partial failure where we brought ingest back up
as fast as we could would not actually get us out of the incident. When this sort of
self-sustaining situation happens, the most effective course of action is often to interrupt it
entirely to restart it in a better state.

This strategy felt safer, faster, and also more straightforward at the time because of recent
experience with incidents, such as issues with our database replicas (to get more familiar
around database debugging and failovers), a full Shepherd outage (to exercise the circuit
breaking), and experiments with booting fresh clusters of Honeycomb in non-production
environments (which demonstrated we don’t have circular dependencies that prevent us from
cold restarting).

All these fragments of past responses were put together to handle this one bigger incident.
Engineers mentioned during the review that the response felt effective and well organized
internally, especially when compared to smaller outages in the past.

The moment the team investigating the issue noticed everything turned into an outage, the
whole response reorganized in a matter of minutes. It went from a brainstorm-centered
approach, where people looked at various things and suggested possible approaches, to one
that was a lot more focused on action.

Because responders knew everyone involved and their respective skill sets:

● We self-organized following known patterns for the overall response
● We identified an engineer who had done the ingest circuit breaking and was around to do

it as fast as possible to break off the crash loop
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● Another engineer self-assigned the role of looking into the database issues and
connection problems

● We brought in more engineers who understood MySQL really well to work on that issue
when it surfaced

● We started multi-pronged side investigations into how to most effectively backfill the
cache, hedging our bets since not all approaches were guaranteed to work

Since they had also dealt with a lot of incidents or high-stakes near-misses together in the past,
participants already knew to self-report their work. The self-appointed incident commander was
aware of their own tendency to veer off into debugging and monitoring work and both took
measures to stay focused and had coworkers reminding them of it, which opened the door to
side investigations being kept in the loop more effectively.

Finally, people whose tasks were under control passively listened to ongoing investigations (e.g.,
idling in Zoom calls) while our engineer handling comms made frequent updates in shared
channels. Everyone already had context into the incident. When all the pieces were in place, we
could join forces to merge the cache backfill, circuit breaking reopening, and database health
monitoring into a single operation.

In the end, the incident was high pace, but it didn’t feel confusing. We had a good balance of
orchestration and self-organization.

Corrective actions
For the duration of the outage, no new data could be ingested. If our users or customers did not
buffer this data to disk somewhere to replay it later, it is gone for good. This has knock-on
effects during the incident on alerting and querying, but the ingestion gap stays for as long as
there’s data retention. As such, major ingest outages like that have a way to stretch in time
beyond the period during which the system is down.

This type of failure mode is something both we and our customers understand is possible
based on how we are only present in one region (although we do run in multiple redundant
zones). The presence of SPOFs, while possibly less visible to people outside of Honeycomb, is
well known—and a frequent concern internally. Migrations away from such patterns are
considered safer when done gradually. Moving fast requires stopping all activity, even urgent
scaling work, and rushing can cause even more major outages.

The consequence of this is that nobody has seriously suggested “blow up the database and
remove the single point of failure” as an outcome of this incident, because it’s both impractical
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as an action item, and also something that is always on people’s minds and gradually being
worked on when doing their engineering job. Breaking apart SPOFs is part of a less explicit set
of long term objectives that we bake into designs, but having this sort of trade-off be made
more explicit in the aftermath of an incident review is something we are discussing within
engineering teams.

We’re exploring future architectures that may mitigate the impact of such incidents and their
implications. We are looking at ways to strengthen the cache further, mechanisms to lower the
amount of contention we put on our database during “update” storms from new schemas, and
to stabilize the performance costs of some operations within our system. We are studying them
along other measures, including those related to instrumentation or experimentation to better
detect and handle such edge cases.

In the short term, the chances of an incident happening with this specific failure mode have
been drastically reduced, mostly because our migration is complete and we have already
removed all code that allows writes behind the cache to be disabled. The expected response
time is also likely to be much faster since we’ve updated our understanding of database failures
and make recovery faster for unlikely lockups of this kind. In the meantime, we are carefully
evaluating the options above to see which represent the best trade-offs.

Conclusion
This incident is something we wish wouldn’t happen, but know that from time to time, we’ll have
to manage them—no matter how hard we plan for them. One of the most intriguing themes that
came up from many of our recent incidents and near-misses is how often one of their
contributing factors has been trying to prevent a subtle bug with possibly bad consequences
from happening—only to end up with a bigger unforeseen outage at the end.

The process around incidents is generally paved with good ideas for improvements, the best of
intentions, and fascinating surprises. We hope that we’ve been able to illustrate how these came
to interact with each other in this specific situation, and that they convey the complexity and
richness behind this outage.

Some of the patterns in incident response mentioned here may feel familiar with some of our
readers. If you’ve seen similar things and want to discuss them with us, reach out to us in
Pollinators, our Slack community.
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