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Abstract

Consider the pricing decision for a manager at a large online retailer, that sells millions of products.

A manager must decide on real-time prices for each of these products. It is infeasible to have complete

knowledge of demand curve for each product. A manager can run price experiments to learn about

demand and maximize long run profits. There are two aspects that make this setting different from

traditional brick-and-mortar settings. First, due to the number of products the manager must be able

to automate pricing. Second, an online retailer can make frequent price changes. In this paper, we

propose a dynamic price experimentation policy where the firm has incomplete demand information.

For this general setting, we derive a pricing algorithm that balances earning profit immediately and

learning for future profits. The proposed approach combines multi-armed bandit (MAB) algorithms

statistical machine learning with partial identification of consumer demand from economic theory. Our

automated policy solves this problem using a scalable distribution-free algorithm. We show that our

method converges to the optimal price faster than standard machine learning MAB solutions to the

problem. In a series of Monte Carlo simulations, we show that the proposed approach perform favorably

compared to methods in computer science and revenue management.
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1 Introduction

1.1 Overview

Consider the pricing decision for a manager at a large online retailer. According to a 2015 estimate,

Amazon.com sells 356.2 million products, Jet.com sells 24.6 million products, and Walmart.com sells 4.3

million products 1. In these markets, managers have to set real-time retail prices for each of these products.

To learn optimal prices, they may use market research or run real-time experiments.

There are two features of this setting that make it different from brick-and-mortar retail settings. First,

given the number of products sold by large online retailers, pricing decisions must be largely automated.

Specifically, it is not feasible for a manager to run market research, estimate price elasticity, and set optimal

prices for each product [Baker et al., 2014]. Second, online sellers can vary prices nearly continuously and

often randomize those changes for learning purposes [White House, 2015]. This differs from a traditional

retail setting where retailers face high costs, known as menu costs, to change prices limiting the number

price changes [Anderson et al., 2015].

Consider how a firm typically tests prices when faced with incomplete demand information. For ex-

ample, a firm is deciding among a set of 5 prices (p ∈ {$0.30, $0.40, $0.50, $0.60, $0.70}), however does

not have information about demand at each price. The firm may experiment the prices, one at a time,

observe demand and profits at each level, and then select the price that leads to highest profits. This

approach is intuitive, often implemented in industry, and is a benchmark in the academic operations re-

search literature Besbes and Zeevi [2009]. This form of price experimentation is best described as “learn

then earn.” In our example, the firm runs a balanced experiment where the same number of consumers

are shown each of the 5 prices. The experiment estimates the mean (with measurement error) demand

(D(p = $0.30), . . . , D(p = $0.70)) and profit at each price (π(p = $0.30), . . . , π(p = $0.70))). The

manager can then select the price with the highest profits.

In this paper, we propose a dynamic price experimentation policy; instead of two distinct phases of

learning and earning, we frame this same problem as a dynamic optimization problem with the goal of

maximizing earning while learning. We maintain the objective of price experimentation is to maximize

long-run profits. However, we treat pricing decisions as a continuous experiment, where the firm wants to
1https://learn.scrapehero.com/how-many-products-does-jet-com-sell/ and https://learn.

scrapehero.com/how-many-products-does-walmart-com-sell-vs-amazon-com/ [Accessed on 17 March
2016]
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minimize lost profits due to experimentation. Our proposed pricing algorithm sequentially sets prices to

balance currently earning profits and learning about demand for future profits. The key difference here is

that the firm observes real-time purchase decisions and incorporates this additional information for future

pricing decisions. Therefore during the nth round of the experiment, the firm will use profit estimates from

the first (n − 1) rounds to decide the price to experiment. Multi-armed bandit (MAB) methods provide

algorithms for this adaptive experimentation.

Consider the example above, rather then balanced experiment, the firm runs a dynamic experiment where

consumers are more likely to be shown prices with higher profits from prior experiments. Consider a simple

algorithm that randomly alternates between learning and earning in each round. Suppose that with a 10%

probability the algorithm learns by setting a price at random (as in the balanced experiment); however with

a 90% probability the algorithm earns, by setting the price that has the highest average profit so far. 2 Such

an experiment differs from a balanced experiment because it uses real-time data to decide the price with the

highest profit so far.

To illustrate the difference between this simple MAB algorithm and a balanced experiment we assume

a demand curve (here, D(p) = 1 − p, with the profit maximizing price at $0.5) and run both experiments.

The results are shown in Figure 1. In Panel A, we show the prices played (by round and a histogram across

all rounds) in each method. In a balanced experiment, by definition, each price is played an equal number

of times. The bandit experiment, on the other hand is dedicated to the profit-maximizing price. As a result,

the bandit algorithm earns more profit than the balanced experiment (81% vs. 44%) 3.

A second important difference is the precision of the learning. Figure 1, Panel B, illustrates the stan-

dard errors for the balanced experiment are the same for all prices, and the profit-maximizing price can be

concluded to be significantly more profitable than all others at 95% level, using standard hypothesis tests.

Indeed, the balanced experiment maximizes learning everywhere. However, the bandit experiment results

in smaller standard errors for the truly optimal price and much larger ones for prices far from optimal. In

economic literature Aghion et al. [1991] label such learning as relevant learning.

[Figure 1 about here.]
2This algorithm, known as ε-greedy, in this case ε = .10, calculates the average profit for each price using all prior n−1 rounds,

then in round n, makes a stochastic choice: play any uniformly randomly chosen price with probability ε, and play the price with
highest estimated profit with 1− ε.

3The percentages express relative profits normalized by profits from worst price ($210; 0%) and optimal ($258, 100%), with
balanced ($231,44%), and bandit ($248,%81), as seen in Figure 1, Panel C.

3



The MAB problem is a fundamental dynamic optimization problem in reinforcement learning [Sutton

and Barto, 1998]. The problem has a long history in statistics and operations research [Gittins et al., 2011].

(see Schwartz et al. [2017] for a recent overview of MAB in the marketing literature). In the MAB problem,

the decision maker is faced with a set of possible decisions, also known as ‘arms’. Typically, each arm

has stable reward distribution unknown to the decision maker, but she has to select arms with the goal of

optimizing cumulative reward. In the learning-earning trade off (also known as, explore-exploit), the value

of uncertainty in a reward’s mean is due to potential future gains from learning. But there are many variations

of bandit problems as well as a variety of solution approaches.

Our proposed solution departs from common MAB implementations, as we account for the two key

features of the online retail pricing problem setting: wide variety of products and real-time changes for

those millions of products. To ensure our model can be used for a wide variety of products, we make

minimal assumptions about the underlying demand curve for a particular product. Instead of assuming each

product’s demand curve to come from the same family of distributions, we opt for an approach as flexible

as possible. By limiting parametric assumptions, our algorithm will be robust to any arbitrary unknown true

demand system. While traditional robust optimization solutions come with a relatively large computational

cost (e.g., Berger [1985] write “minimax principle can be devilishly hard to implement” page 309), our

algorithm can be estimated in real-time.

Our algorithm builds on the Upper Confidence Bound (UCB) algorithm in the non-parametric MAB

literature [Auer et al., 2002]. The family of UCB algorithms work as follows. In each time period, the

algorithm assigns each arm a so-called UCB value: the sum of expected reward and an exploration bonus.

That exploration bonus is the potential value from experimentation. Then the algorithm plays the arm with

the highest UCB value. The algorithm observes a noisy reward, and updates these values for each arm.

The UCB algorithm is guaranteed to be ‘best’ non-parametric algorithm for any bounded payoff function in

terms of achieving the theoretically optimal error rate in a finite-time setting [Lai, 1987].

We extend this MAB algorithm to incorporate economic theory. In the typical UCB algorithm, when

a particular price is charged (an arm is played), the firm’s observations are limited to profits (reward) from

that price (arm). We extend this to allow learning across prices (arms) based on economics. Formally,

we assume that a consumer’s choice structure is such that individual demand curves are weakly downward

sloping. With this additional yet minimal assumption, when a consumer is exposed to any price, the manager

can partially identify the consumer’s underlying preference across different potential prices. For example, if
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a consumer purchases a good at $3, the manager can infer she would have purchased at any price below $3.

And if a consumer does not purchases a good at $3, the manager can infer she would not have purchased at

any price above $3.

We consider a setting where each consumer makes a single purchase decision, so we rely on cross-

sectional identification to estimate aggregate demand. We assume each consumer belong to a segment, in

practice these segments may be based on many variables, including demographics and behavior. Due to the

abundance of data, online retailers can have a large number of segments. For example, Google analytics

and Facebook analytics offer over 1,000 segments to advertising brands.4 We estimate the within-segment

variation in customer valuations. And allow the heterogeneity across segments to be fully non-parametric,

that is information about preferences in each segment are independent.

Since we impose minimal assumptions about the shape or structure of demand model, our algorithm

is robust to heterogeneity, context, and selection, and therefore, it can be used for a variety of products.

We will show that this includes situations where demand and profit functions are discontinuous or multi-

modal. It even allows for special price effects (e.g., 9-endings and contextual factors). This robustness to the

structure of the demand model is important as our pricing model can be used to estimate prices for a variety

of products.

Finally, the other key feature of online retail is pricing in real-time at large scale. We ensure our algo-

rithm can run in real-time for millions of products. Since our proposed algorithm has minimal estimation

requirements, it plays prices at speeds orders of magnitude faster than current solutions. In a two-period

version of a pricing problem, the full solution in Handel and Misra [2015] plays first period prices for one

product in about 15 hours of computation time. Our proposed method can calculate about 2 million prices

per minute, and can be used for real-time online pricing.

1.2 Contributions

With the emergence of big data, we see an increase in machine learning applications in marketing [Chin-

tagunta et al., 2016]. But a natural critique is machine learning algorithms’ absence of economic theory. This

work illustrates how we can bridge this gap. We propose a novel combination of economic theory with ma-

chine learning. To marketing and economics, we adapt scalable reinforcement learning methods to address
4We note that in practice such segmentation is used by any advertisers using data from Facebook https://www.facebook.

com/help/analytics/1568220886796899/ or Google analytics https://support.google.com/analytics/
answer/3123951?hl=en, Accessed March 2016.
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dynamic optimization problems. We propose a fast dynamic pricing algorithm rooted in economic theory.

To machine learning, we introduce distribution-free theory of demand to improve existing algorithms

theoretically and empirically. Typically the models of active learning in computer science often rely on

stylized demand models since they are amenable to formal analysis. But they may lack the economic

theory, which, as we find, can improve the optimal pricing algorithms. We prove our proposed algorithm’s

performance using a novel analysis technique for MAB algorithms. This uses a potential function, which

departs from the standard methods for formal analyses of finite-time minimax regret. We show the practical

advantage of our algorithm in a series of simulations across demand setting.

1.3 Related Literature

1.3.1 Literature on Pricing

Our paper adds to a large literature on pricing and learning demand in marketing, economics, and op-

erations research. Much of the current literature makes strong assumptions about the information the firm

has about demand of each product. In marketing and operations, for instance, the literature often assumes

that firms make product pricing decisions based on knowing the demand curve [Oren et al., 1982, Rao and

Bass, 1985, Wernerfelt, 1986, Smith, 1986, Bayus, 1992, Rajan et al., 1992, Acquisti and Varian, 2005,

Nair, 2007, Akcay et al., 2010, Jiang et al., 2011]. These methods assume that the firm has access to perfect

information about the demand curve and consider the optimal dynamic pricing given this information. We

argue that it is infeasible for large online retailers to know the demand curve for millions of products.

A second related literature assumes that firms know demand only up to a parameter [Rothschild, 1974,

Lodish, 1980, Aghion et al., 1991, Braden and Oren, 1994, Kalyanam, 1996, Biyalogorsky and Gerstner,

2004, Bergemann and Valimaki, 1996, Aviv and Pazcal, 2002, Hitsch, 2006, Desai et al., 2010, Bonatti,

2011, Biyalogorsky and Koenigsberg, 2014]. The modeling approach in these papers assumes that the

manager knows the structure of demand and just learns the parameters. This could be a two-period model

[Biyalogorsky and Koenigsberg, 2014] or an infinite-time model [Aghion et al., 1991]. In the infinite-

time model, Aghion et al. [1991] consider a very general model where the manager knows the structure of

demand up to a parameter (θ), the firms sets prices and observes market outcomes. In subsequent periods

the firm updates the posterior belief distributions for the parameters, and then the firm sets prices. They

show that under this structure learning can be “inadequate” in cases where the profit function is multi-modal
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or discontinuous. Inadequate learning is defined as when the agent never acquires adequate knowledge

(i.e., asymptotically, adequate with probability zero). Adequate knowledge is defined when the agent knows

enough about the true profit function to achieve ex-post optimal profits. Aghion et al. [1991] concludes:

“even when learning goes on forever, it does not result in adequate knowledge” (pg. 642).

We argue that it is important for the robust pricing policy to incorporate all possible demand curves.

Therefore, we make weaker assumptions than assuming a demand model in order to derive optimal prices.

Economically, by making only weak assumptions about the demand curve, we sacrifice precision for credi-

bility [Manski, 2005]. This is consistent with saying that it is not feasible for a firm to have both precise and

credible demand information about every single product, so we have to make a trade-off between precision

and credibility.

Our non-parametric method builds on the robust pricing literature [Bergemann and Schlag, 2008, 2011,

Handel et al., 2013]. The robust dynamic pricing literature provides a solution for two-periods pricing

[Handel and Misra, 2015]. Here the authors consider a brick-and-mortar retail setting, where the retailer

must keep a fixed price for the entire time period. We differ from these papers by building a solution based

on the MAB literature in computer science. The advantage of our model is that it allows for continuous

learning and real-time changes to suggested prices. The key simplifying assumption here is that we do not

account for endogenous demand curve learning. Specifically, when estimating the value of experimenting

at price (say p1), we only consider the value of learning about demand at that price (D(p = p1)). However,

we do not consider the value of learning about the demand curve at other prices (D(p 6= p1)). We believe

endogenous demand curve learning is more relevant in settings with infrequent price changes.

The current work also contributes to some theoretical work in operations research, namely dynamic pric-

ing and revenue management. The area of revenue management has a large literature that considers dynamic

pricing (see Elmaghraby and Keskinocak [2003], den Boer [2015] for a reviews of the literature). Much of

this work assumes a functional form for the demand curve and uses Bayes updating on its parameters. Our

work falls into a category known as dynamic pricing without inventory constraints, where dynamics are due

to incomplete information and learning. Within this literature our paper fits with the less studied and more

recent stream of non-parametric work. Non-parametric approaches (Besbes and Zeevi [2009]), consider

pricing policies in an incomplete information setting. Here the authors consider algorithms that minimize

the maximum ex-post statistical regret from not charging the optimal static price. The proposed algorithm

divides the the sales horizon into an “exploration” phase during which the demand function is learned and an
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“exploitation” phase during which the estimated optimal price is used. The firm has to ex-ante set the length

of experimentation stage. More recent additions to this literature Wang and Hu [2014] and Lei et al. [2014]

improve the convergence results, yet the algorithms proposed in these paper also consider distinct phases for

exploration then exploitation, or as we refer to it, “learning then earning.” Instead, in our paper, we consider

the learning and earning phases simultaneously, accounting for the potential value from learning at each

point in time. This is consistent with the broader MAB literature from machine learning.

1.3.2 Literature on Multi-Armed Bandits

We consider the problem of pricing using MAB methods, which are not typically used for pricing, but

do stretch across computer science, statistics, operations research, and marketing. The MAB problem is the

quintessential problem of the fields of active learning, referring to the sequential decision-making process,

and reinforcement learning in the computer science literature (for an overview, see Sutton and Barto [1998]).

A large part of this literature provides theoretical analysis and mathematical guarantees of algorithms.

The algorithms are policies to adaptively select the arms to achieve the best profits. The objective function

for these algorithms is to minimize the statistical regret. Statistical regret “is the loss due to the fact that

the globally optimal policy is not followed all the times” [Auer et al., 2002]. That is the difference between

the achieved profits and the ex-post optimal profits, if the decision maker knew the true average profits for

each arm. Algorithms are compared based on the bounds on regret. This bound represents the worst case

performance, the maximum possible regret for any possible distribution of the true rewards across the arms.

These UCB policies provide the backbone of a stream of MAB solutions in reinforcement learning

coming from statistical machine learning [Agrawal, 1955, Auer et al., 2002]. Lai and Robbins [1985] first

obtained these “nearly optimal index rules in the finite-horizon case” where the indices can be interpreted as

“upper confidence bounds for the expected rewards,” hence UCB (Brezzi and Lai [2002], pp. 88-89). While

these index rules do not provide the exactly optimal solution to the optimization problem with discounted

infinite sum of expected rewards solved by the Gittins index, these rules are asymptotically optimal for

arbitrarily large finite-time horizons, T . As T →∞, the UCB-based index rule achieve optimal performance

with respect to maximizing the expected sum of rewards through T periods “from both the Bayesian and

frequentist viewpoints for moderate and small values of [T]” (Brezzi and Lai [2002], pp. 88-89). 5

5We note that if the decision maker is willing to make stronger parametric assumptions about the demand curve, alternative
streams of MAB algorithms based on parametric models are more appropriate. One such algorithm is the earliest Bayesian formu-
lation of the MAB problem, which led to Thompson Sampling Thompson [1933]. A more prominent formulation with Bayesian
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Asymptotic theory links the finite-horizon undiscounted case and the infinite-horizon discounted multi-

armed bandit problem [Brezzi and Lai, 2002]. Depending on the discount factor, disc, the UCB directly

approximates the Gittins index [Lai, 1987]. When setting T = (1− disc)−1, as disc→ 1, then the UCB in

Lai [1987] (pg. 1113) is not only asymptotically optimal for the finite-horizon undiscounted problem, but

also for the infinite-horizon undiscounted problem from Gittins. The link is strengthened as Brezzi and Lai

[2002] derive an Approximate Gittins Index, with a structure exactly the same as that of the UCB, the sum

of expected reward and an exploration bonus.

We add to this literature by allowing (partially identified) demand curve learning across the potential

prices. Formally, we assume that each consumers choice structure satisfies the weak axiom of revealed

preference (WARP) (see proposition 3.D.3 in Mas-Colell et al. [1995], and discussed in the next section).

While in the UCB models the prices would typically be considered independent arms, adding an economic

assumption allows us to use information about demand at a price (say p1) to make an inference about demand

at other prices (p 6= p1).

The learning-and-earning problem for pricing relates to a broader class of problems, optimizing mar-

keting experiments or so-called A/B testing. The emerging framework is using MAB methods to optimally

balance earning while learning. These approaches most commonly appear in online advertising or website

design [Hauser et al., 2009, Urban et al., 2013, Schwartz et al., 2017]. We argue that pricing is different

from other marketing decisions, in two key ways. First, economic theory gives strong predictions that indi-

vidual indirect utility functions are non-increasing in prices, but this is not true for other marketing decision

variables. Without particular parametric assumptions, learning about one ad creative or website design does

not inform predictions of others in a priori predictable ways. Second, unlike advertising, the randomization

of prices is imperfect. Retailers do not commonly offer the same product to different consumers at a given

point in time. 6 Therefore, price changes can happen only across time and not across consumers.

learning led to the Gittins index [Gittins, 1989] and Whittle index [Whittle, 1980].
6Amazon.com has run price experiments in 2000 and due to consumer feedback release a statement say “random testing was a

mistake, and we regret it because it created uncertainty and complexity for our customers, and our job is to simplify shopping for
customers. That is why, more than two weeks ago, in response to customer feedback, we changed our policy to protect customers”
http://cnnfn.cnn.com/2000/09/28/technology/amazon/.
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2 Dynamic Multi-Period Monopoly Pricing

2.1 Model setup and maintained assumptions

In this section, we state our main assumptions in our analysis. We first discuss our assumptions on the

demand side and then our assumptions on the supply side.

We assume there are a large set of potential consumers with unit demand for each product. For each

consumer we assume the following:

1. she has stable preferences,

2. she has a stable budget over time,

3. she faces a stable outside option, and

4. her choice structure satisfies the weak axiom of reveal preference (WARP).

We note that the first three (3) of these assumptions, while typically unstated, are assumed in any field

experiment; these assure that the results of the field experiment can be used to understand demand after

the experiment. With these assumptions, we represent the consumer’s preference as vi. In any purchase

occasion, when facing a price p, her indirect utility can be written as ui = vi − p and will purchase the

good if and only if ui ≥ 0, that is, vi ≥ p. The assumption of stable preference guarantees that vi does

not change over time, this rules out learning [Erdem and Keane, 1996], stockpiling [Hendel and Nevo,

2006], network externalities [Nair et al., 2004], reference price effect [Kalyanaram and Winer, 1995, Winer,

1986] and strategic consumers [Nair, 2007]. Unlike much of the prior work on dynamic prices (e.g., Nair

[2007]), in our paper firms change prices for learning the demand curve as opposed to inter-temporal price

discrimination.

Our next set of assumptions consider the heterogeneity across consumers. We assume each consumer i

can be assigned ex-ante to a segment s. In practice, these segments may be based on observable variables,

such as demographics and behavioral patterns, or model-based criteria. Unlike traditional retail segmenta-

tion, online retailers have the ability to use a large number of segments, for example Google and Facebook

offer over different 1,000 segments to its advertisers (see Footnote 4). We assume the firm knows the ag-

gregate proportion of consumers in each segment, ψs (or uses this based on some previous model-based

segmentation).
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Let vi be the preference for consumer i, and let vs represent the midpoint of range of consumer valuations

within segment s. We let within-segment heterogeneity of valuations to be δ. That is, the preference of all

consumers in a segment are within δ of the segment midpoint, vs. Taken together,

vi ∈ [vs − δ, vs + δ]∀i ∈ s.

We emphasize the generality of these assumptions. Within each segment, we allow for any distribution

of preferences within this range; therefore, we note that vs is not assumed to be the mean or the median of

the segment valuations. Across segments, We allow for fully non-parametric heterogeneity across segments.

This assumption allows cross-sectional learning of consumer preferences. We note that we will estimate δ in

our empirical algorithm. This can be viewed as a measure of “quality of segmentation”. If the firm’s ex-ante

segmentation does not group consumers with similar preferences, then the estimate of δ will be large. But

if the firm’s ex-ante segmentation does group consumers with similar preference, then δ will be small.

On the supply side, we assume that the firm is a monopolist who sets online prices to maximize profits

for a constant marginal cost product. The main deviation we make from the standard pricing literature

(e.g., Oren et al. [1982], Rao and Bass [1985]) we assume that firm does not know consumer valuations.

We assume that the only information available to the firm at the time of initial pricing is that consumer

valuations are between [vL, vH ]. The interpretation here is that if the product is sold for vL (can be zero) all

consumers will purchase for sure, and if the product is sold for vH , no consumers will buy. Consistent with

the robust pricing literature [Bergemann and Schlag, 2008, 2011, Besbes and Zeevi, 2009, Handel et al.,

2013, Wang and Hu, 2014, Handel and Misra, 2015, Lei et al., 2014] we assume within this range the firm

does not know the distribution of consumer preferences across or within segments. Our motivation for this

assumption is that it is infeasible for the manager to have credible priors for millions of products.

We assume that the firm does not price discriminate across consumers. Formally, the firm observes a

consumer’s identity and segment membership, only after the consumer’s makes a purchase decision. If we

had full information, there exists an optimal static price that a monopolist would charge. However, due to

the lack of information the monopolist must experiment with prices. We assume that the firm can change

prices quickly. White House [2015] reports that Amazon.com can change prices within 15 minutes. In our

model, we will assume that prices can change after every N consumers who visit the product. 7

7Websites http://camelcamelcamel.com and https://thetracktor.com we can track price changes.
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2.2 Overview of multi-armed bandit pricing

We begin by formulating the pricing problem as a dynamic optimization problem. We assume there exist

a finite set of K prices that the firm can chose from p ∈ {p1, . . . , pK}. For any price, p, the firm faces an

unknown true demand D(p). We assume a constant marginal cost (set to zero for ease of exposition). Given

this setup the true profit is given by π(p) = pD(p).

While the true profit function π(p) is unknown, the firm observes realizations of profits for each price

pk. Suppose by time t, the firm has charged pk a total of nkt times. Let πk,1, πk,2, . . . πk,nkt be realizations

from each time price pk has been charged. We assume that these are drawn from an unknown probability

distribution with a mean at the true profit π(pk). We refer to the sample mean at time t as π̄kt =
∑nkt
τ=1 πkτ
nkt

.

By definition, we must have
∑K

k=1 nkt = t.

A pricing policy or algorithm, φ, selects prices based on the history of past prices and earned profits.

Mathematically this can be described as, pt = φ({pτ , πτ |τ = 1, . . . , t− 1}). The policy maps data from all

previous experiments onto price.

To evaluate a policy’s performance, the literature considers statistical regret. 8 The key criterion to

evaluate policies is minimizing maximum regret (i.e., minimax regret). Regret for a policy is defined as

the expected profit loss due to not always playing the unknown ex-post optimal profit-maximizing fixed

price [Lai and Robbins, 1985]. The notion of regret is standard in the computer science and decision the-

ory literature [Lai and Robbins, 1985, Auer, 2002, Berger, 1985]. This was first proposed by Wald [1950]

and has been axiomatized in the economic literature [Milnor, 1954, Stoye, 2011]. This criterion has been

used to study pricing in economics [Bergemann and Schlag, 2008, 2011, Handel et al., 2013] and market-

ing [Handel and Misra, 2015]. The economic interpretation of regret is the “forgone profits” due to price

experimentation.

Formally, we represent regret as the distance to the optimal profits. We define the ex-post profit maxi-

mizing price to be p∗ for all t yielding an expected profit µ∗ = E [π(p)] = p∗D(p∗) each time period. The

8We note regret is appropriate because of the active learning setting. We need an “ex-ante” criteria to evaluate a pricing
policy. By “ex-ante” we mean, the objective function must be one that can be calculated without knowing the true demand curve.
Specifically we cannot consider a criteria such as total expected profits, as this cannot be used to evaluate a policy before the
probability of outcomes are realized.
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regret of a policy φ through time t is

Regret(φ, t) = E

[
t∑

τ=1

π∗ − πτ

]
=

t∑
τ=1

(π∗ − πpτ ) = π∗t−
K∑
k=1

π(pk)E [nkt]

where πt is profit realized in time period t.

When considering analysis of regret, we does not observe true realizations of profits (π1, . . . , πK , and

therefore π∗). The analysis instead considers all possible realizations of π1, . . . , πK as this is know before

running the algorithm. Next we consider the possible realization that generates the “worst case” or maximum

regret for give policy φ. The economic interpretation of this is to consider a feasible demand curve (D(p))

that results in the maximum regret given a pricing policy φ. The best algorithm is one that can minimize the

maximum regret.

In the MAB literature, the minimax regret optimal solution for this non-parametric problem is a policy

involving an index rule scoring each action with its UCB of expected rewards [Agrawal, 1955, Auer, 2002,

Lai and Robbins, 1985, Lai, 1987]. This policy is proven to be the asymptotically best possible performance

in terms of achieving the lowest maximum regret.

The structure of the index assigned to each action in the UCB algorithm is the sum of expected reward

and an exploration bonus. For instance, in the focal algorithm in Auer [2002], UCB1, the index for action

k at time T is based on only the sample mean reward of the arm and an exportation bonus. In our notation

this translates to

UCB1kt = π̄kt +

√
α log t

nkt

then the arm with the highest UCB value is selected to be played in the next round. The parameter α > 0

can be tuned to the particular scenario, but a choice of α = 2 suffices to obtain a quite general bound on

regret. We will discuss the details of UCB in greater detail in Section 3.

The amount by which UCB exceeds the expected reward is called the exploration bonus, representing

the value of information. The particular structure inside the exploration bonus, 2 log(t)/nkt, follows from

the structure of proof of the algorithm’s optimality. To prove that it is asymptotically optimal, the value of

information (exploration bonus) is defined to ensure that cumulative regret (the difference between the cu-

mulative reward and the optimal cumulative reward) grows slowly at logarithmic rate in time, with arbitrarily
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high probability. We illustrate this in our proof for our algorithm later in the theoretical analysis.

Auer [2002] notes that the UCB1 algorithm only considers the number of times each action is played

and does not account for the variance in outcomes from the trial of each arm. They provide an additional al-

gorithm called UCB-Tuned which they report better performance, however without analytical regret bounds.

For this algorithm they define

Vkt =

(
1

nkt

nkt∑
τ=1

π2
kτ

)
− π̄2

kt +

√
2 log t

nkt

UCB-TUNEDkt = π̄kt +

√
log t

nkt
min

(
1

4
,Vkt

)

An assumption in non-parametric multi-armed bandit algorithms, including the UCB algorithms, is that

the profit outcomes in any two actions are uncorrelated. That is, the realized profits when action k is

played does not inform us of the possible profits with another action j is played. While in many marketing

applications, this is a valid assumption depending on the design of the experiment, such as, website design

[Hauser et al., 2009]. In other marketing applications with correlated actions, parametric assumptions are

required to capture those correlations, as shown in online advertising [Schwartz et al., 2017].

Pricing is different. But it typically enters into a parametric demand model. In our application to pricing,

however, we can add non-parametric demand learning [Handel et al., 2013] to MAB algorithms. We will

prove the regret convergence rates with adding demand learning for the UCB1 algorithm and will then adapt

the UCB-Tuned algorithm to account for variance in observed profits. In the next section we discuss how

we can add non-parametric demand learning and then will discuss an updated model.

We note that while we account for demand learning, our model is different to dynamic minimax regret

problem discussed in Handel and Misra [2015]. In our model we account for the fact that observed outcomes

of a prior price experiment can impact expected demand for all other price points. However we do not

consider endogenous learning when considering the exploration bonus for current price experiments. We

note we consider a very different context to Handel and Misra [2015] who consider a context where all

consumers to be exposed to every price experiment. Instead we consider online prices that can change

rapidly and only a few consumers are exposed to prices. The benefit of not including endogenous learning

is analytical tractability, and therefore we have a 10-order-of-magnitude improvement in speed.
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2.3 Learning demand curve from price experiments

In this section we will discuss how we the researcher can learn preferences across different price exper-

iments. In this section our key parameter of interest is the demand for each product at each price level, or

D(pk) ∀k ∈ [1,K]. This section is based on the demand side assumptions we make in section 2.1. The

implication of these assumptions is that if a consumer is willing to purchase a product a price p1, she will be

willing to purchase the product for a price pk < p1. Similarly, if the consumer does not purchase the product

at p2, she will not be willing to purchase the product for any price pk > p2. 9 Formally we can define a

set of possible consumer preference as Θ ≡ {θ1, ..., θK}, where θk refers to a preference that satisfies: (a)

θk − pk > 0 and (b) θk − pk+1 < 0. Here, θk represents a preference under which the highest amount the

consumer will purchase this good for is pk

If we consider products that are purchased repeatedly, this we can use this information to identify bounds

for each consumers valuations. Consider an example where we observe the following price experiments for

a consumer i. She purchases at $3, does not purchase at $8, purchases at $2 and does not purchase at $6. We

can say that the true preference for this consumer (vi) must be between $3 and $6. We can then aggregate

this non-parametrically across all consumers to identify the set to all feasible demand curves (see Handel

et al. [2013] Section 2 for details).

Requiring many repeat-purchase data for each customer may be overly restrictive or not suited for most

products. In particular, we believe the assumption of stable preferences is likely to be violated when a

consumer is exposed to multiple prices for the same product [Kalyanaram and Winer, 1995]. Instead, we

focus cross sectional learning across consumers.

2.3.1 Estimating segment level demand

The firm has data on ns,t price experiments for segment s through time t. In each experiment a consumer

i in segment s is exposed to a price pk and makes a purchase decision. In this section we will first describe

how one can estimate vs (segment valuations) and δ (intra-segment heterogeneity) from observed price

experiments.

For any price pk we can define the set of valuations (defined as H[D(pk)s,t]) that is consistent with that

price as follows: (a) D(pk)s,t = 0 is consistent with consumers being of types {θ1, ..., θpk−1}, or types

9In the treatment choice literature [Manski, 2005] this corresponds to monotone treatment response
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where consumers will not purchase at price pk; (b) D(pk)s,t = 1 is consistent with consumers being of

types {θk, ..., θpK}, or types where consumers will purchase for sure at price pk; (c) D(pk)s,t ∈ (0, 1) is

consistent with a mixture of consumer types {θ1...θpk−1} and {θk, ..., θpK}, or types where some consumers

will purchase and other consumers will not purchase.

For any segment we can define pmins as the highest price where all consumer in segment s purchase.

Mathematically, pmins,t ≡ max{pk|D(pk)s,t = 1}. And define pmaxs as the lowest price where no consumer

from segment s purchased. Mathematically, pmaxs,t ≡ min{pk|D(pk)s,t = 0}.

Consider the following example to describe our estimation. Suppose we have data for a segment with

the following observations:

• At a price $1, 100% of consumers purchased

• At a price $2, 100% of consumers purchased

• At a price $3, 20% of consumers purchased

• At a price $4, 0% of consumers purchased

• At a price $5, 0% of consumers purchased

Given these data we would define pmin1 = $2 and pmax1 = $4 as given our data for this segment we

know for sure all consumers purchase at prices $2 or lower and no consumers will purchase as a price at a

price higher than $4. (We refer to this segment again in the next section.)

We know that given the information so far ∀i ∈ s, vi,s ∈ [pmins,t , p
max
s,t ]. We can define an estimated

mid-point of the segment valuations (vs) and the segment level δs,t as

v̂s,t =
pmaxs,t + pmins,t

2

δ̂s,t =
pmaxs,t − pmins,t

2

The interpretation of δs,t here is that it is the smallest δ that can rationalize the observed decisions for

consumers in segment s after t observed price experiments. We note that this estimate will be consistent,

that is in the limit as t→∞ (and there is enough price variation, we identify the true δ (call this δ∗ for each

segment. Formally, we have limt→∞ P (δ̂st = δ∗) = 1. However these will be biased for any finite t, δs,t
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will be biased downwards. In order to correct for this bias we use the assumption that δs = δ, that is all

segments have the same δ. Our methodology to estimate the small sample bias follows Handel et al. [2013].

In any time period t, consider the set {δ̂1t, ..., δ̂St}. We then estimate the maximum of that set,

δ̂t = max{δ̂st, s ∈ S}.

This will be also be biased downwards relative to δ∗. Again, δ̂t would be consistent for δ∗, we follow

the econometric literature on estimating boundaries to correct for this bias in our estimator (see Karunamuni

and Alberts [2005] for a review). Denote the bias as γ. Our estimator is similar to that used in Handel

et al. [2013], which is an adaption of the Hall and Park [2002] estimator. 10 Define f(.) as the empirical

distribution of δ̂st (controlling for segment size) across S for fixed t. Formally f(x) =
∑

s∈S ψs1 (δ̂st = x).

Note incorporating ψs in our estimate for f allows us to account for the fact that different segments are of

different sizes.

Our estimator for γ is:

γ̂t =
∑
δ̂st∈∆t

(δ̂t − δst)f(δ̂st)

This estimator is consistent as limt→∞ γ̂t = 0, by our assumption of a common δ∗ across segments.

Handel et al. [2013] show that δ̂t + γ̂t provides a reliable and conservative estimate for the true δ∗.

Define v̂min
s,t = v̂s,t − (δ̂t + γ̂t) and v̂max

s,t = v̂s,t + (δ̂t + γ̂t) to represent the lowest and highest possible

consumer valuations within segment s. The key output from this analysis is for each segment of consumers

s, we can identify the identified set of consumer preference Ht[vi,s] as follow:

Ht[vi,s] = [v̂min
s,t , v̂

max
s,t ] = [v̂s,t − (δ̂t + γ̂t), v̂s,t + (δ̂t + γ̂t)]

2.4 Learning demand curve at population level

Using distribution-free partial identification, aggregated to the population-level, we gain information to

narrow the set of possible demand curves. As we accumulate data of demand for different prices, we aim
10Formally Hall and Park [2002] boundary estimator considers a setup where the econometrician observes N draws from a

continuous univariate distribution F with a unknown and finite upper boundary. The Handel et al. [2013] estimator is a discrete
analog to these methods, since the distribution of δ̂st is discrete.
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to bound expected demand (and expected profit) more tightly. After gaining new data, we can update the

bounds. For each price pk, the true demand is D(pk). Without any data we can define the identification

region H[(pk)] as H[D(pk)] = [0, 1]. Here we will use the identified set of valuations within each segment

to estimate the bounds on aggregate demand and profits.

The aggregate demand at a price pk is the number of consumers in each segment that have valuations

vi,s ≥ pk. Define Fs(.) to be the true cumulative density of all valuation with a segment s. Then, we can

rewrite aggregate demand as,

D(pk) =
∑
s∈S

ψs(1− Fs(pk))

where ψs is the (known) proportion of consumers in segment s.

However, we do not observe Fs(pk). Therefore we can consider bounds of this distribution. From our

estimation in the previous section, we know that Fs(pk) = 0 if pk is less than the lower bound of valuations

for segment s, v̂min
s,t . Similarly Fs(pk) = 1 if pk is greater than the upper bound of valuations for segment s,

v̂max
s,t . Therefore, we can define the identified region for demand at price pk as

H[D(pk)|t] = [
∑
s∈S

ψs1 (v̂min
s,t ≥ pk),

∑
s∈S

ψs1 (v̂max
s,t ≥ pk)].

This aggregation is best described in an example illustrated in Figure 2. Suppose we have two segments

of equal sizes. For segment A say have identified preferences to be between [$1, $3] and for segment B we

have identified preference to be between [$2, $4]. We can identify the feasible demand sets as follows:

• H[D(p ≤ $1)] = [1, 1] (point identified), as consumers in segments A and B will purchase for sure.

• H[D(p ∈ ($1, $2])] = [0.5, 1], as consumers in segment A may or may not purchase and consumers

in segment B will purchase for sure.

• H[D(p ∈ ($2, $3])] = [0, 1], as consumers in segment A and segment B may or may not purchase

purchase.

• H[D(p ∈ ($3, $4])] = [0, 0.5], as consumers in segment A will not purchase and consumers in

segment B may or may not purchase.

• H[D(p > $4)] = [0, 0] (point identified), as consumers in segments A and B will not purchase.
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[Figure 2 about here.]

Using the identified demand bounds, we define profit bounds for each price as,H[π(pk)|t] = pkH[D(pk)|t].

This gives us the lower and upper bound of true profit after t observations, which we define as LB(π(pk), t)

and UB(π(pk), t). In summary, we have

H[π(pk)|t] =[LB(π(pk), t), UB(π(pk), t)]

LB(π(pk), t) =pk
∑
s∈S

ψs1 (v̂min
s,t ≥ pk)

UB(π(pk), t) =pk
∑
s∈S

ψs1 (v̂max
s,t ≥ pk)

3 Upper confidence bound with learning partially identified demand (UCB-PI)

In this section, we extend the UCB1 algorithm to accommodate profit maximization by incorporating

learning demand with partial identification. We define this upper confidence bound bandit algorithm incor-

porating learning partially identified demand (UCB-PI).

The UCB-PI (untuned) index is,

UCB-PI-untunedkt =

 π̄kt + pk

√
2 log t
nkt

if UB(π(pk), t) > maxl(LB(π(pl), t))

0 if UB(π(pk), t) ≤ maxl(LB(π(pl), t))
(1)

There are two key differences between our proposed algorithm and the UCB1 algorithm described Auer

[2002]. First, we assign an action a non-zero value only if the upper bound of potential returns are higher

than the highest lower bound across all action. In an partial identification sense, we only consider a an action

if it is not dominated by another action. From an economic sense, there is no reason to explore an action, if

we know an alternative action will lead to higher profits with certainty. Empirically, we will examine how

the set of active prices varies over time, eliminating dominated prices and focusing on a set including the

true optimal price.

Second, we scale the exploration bonus by price pk. This is because we know D(pk) ∈ [0, 1], and

therefore π(pk) ∈ [0, pk]. But the original UCB1 algorithm was defined where each action’s reward had

the same potential range, e.g., [0, 1], regardless of action. By restricting demand, we impose a natural upper

bound of profit that depends on price.

19



In following section, we first prove properties of the UCB-PI and show that regret is lower than UCB1.

Then, we define a tuned version of the UCB-PI algorithm analogous to the UCB-tuned algorithm in Audibert

et al. [2009].

3.1 Theoretical performance

In this section, we provide the key result of the theoretical analysis, the performance guarantees for the

UCB-PI algorithm, and we provide the complete proof in the Appendix A1.

We give the intuition of the proof here. To derive a UCB-style algorithm and prove that it is asymptot-

ically optimal, the value of information (exploration bonus) is reverse engineered to ensure that cumulative

regret grows slowly, i.e. at rate logarithmic in the time T , that holds with arbitrarily high probability. This

log-regret bound was first shown by Lai and Robbins [1985] for a particular stylized multi-armed bandit

problem.

Our proof is based on an alternative view of the original UCB analysis. It differs from the standard UCB

proof from Auer et al. [2002] because we use an argument based on potential function, which we define in

the proof. This argument in the proof is a novel application of these tools for formally analysis of algorithms.

We use this alternative approach, in part, because it permits a more general description of the exploration

bonus.

Given arms defined by prices p1, ..., pK , the expected regret through time T in terms of profit is bounded

from above by

8
K∑
k=2

pi log(T )

µ1 − µi
+O(1)

where µi is each arm’s expected reward and µ1 is the optimal arm’s expected reward. Since pi are scaled to

be in [0, 1], this regret is guaranteed to be lower than that in the UCB algorithm, standard in the computer

science literature.

3.2 The UCB-PI-tuned algorithm

We will present a version of our algorithm where we tune the exploration bonus by considering both the

variance out observed outcomes and the size of the bound. This is analogous to the UCB1-tuned algorithm

presented in Auer et al. [2002]. The Vkt represents an upper bound on the reward variance (as opposed to
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mean). It is also equal to its empirical variance plus an exploration bonus,

Vkt =

(
1

nkt

nkt∑
τ=1

π2
kτ

)
− π̄2

kt +

√
2 log t

nkt
.

The upper bound on variance enters the UCB of the mean to control the size of the exploration bonus. We

add an additional tuning factor, 2δ̂, since it is the size of the range for our partially identified intervals. When

δ is large, there is more uncertainty; when it is small, the intervals shrink and so does the exploration bonus.

UCB-PI-tunedkt =

 π̄kt + 2pkδ̂
√

log t
nkt

min
(

1
4 ,Vkt

)
if UB(π(pk), t) > maxl(LB(π(pl), t))

0 if UB(π(pk), t) ≤ maxl(LB(π(pl), t))

The final novel aspect of the proposed algorithm is “shutting off” prices that are dominated. Dominated

prices have an upper bound that is still worse than at least some other price’s lower lower bound,UB(π(pk), t) ≤

maxl(LB(π(pl), t)).

4 Empirical performance: Simulation study

We test our proposed algorithm in a series of simulation experiments. These show its robust performance

across unknown true distributions of consumer valuations. Each simulation has the same structure of the

data-generating process. Customers arrive, observe the price, and purchase if and only if their valuation is

greater than the price. After the customers decide, the firm observes which customers arrived (in particular

the consumer’s segment) and their choices. Then the firm sets the price for the next period.

In our simulation we consider a firm with K = 100 potential prices from $0 to $1 in 0.01 increments.

The firm can change prices after every 10 consumers visit. Each consumer belongs to one of S = 1, 000

segments. We draw the segment probabilities (true ψs) from a simplex on the uniform distribution.

Each segment’s valuation (true vs) are draw from a a parametric distribution. We consider five (5) pos-

sible distribution of valuations. Importantly, this distribution is the data generating process and is unknown

to the researcher, so it is not assumed in the estimation method.

1. Right-skewed beta distribution given by beta(2,9)

2. Symmetric beta distribution given by beta(2,2)

3. Left-skewed beta distribution given by beta(9,2)
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4. Bimodal continuous given by beta(0.2,0.3)

5. Discontinuous finite mixture model with each vs equal to either $0.2 (with 70% chance) or $0.9 (30%)

The purpose of these settings is to consider a range of different possible distributions of consumer prefer-

ences, leading to range of aggregate demand and profit curves. The first three simulation settings involve

unimodal continuous distributions of valuations. The last two have bimodal continuous and bimodal discon-

tinuous distributions leading to bimodal profit functions, [Aghion et al., 1991] show that Bayesian learning

leads to insufficient learning in these settings. The distribution of the valuations, aggregate demand curve,

and the aggregate profit curve for each simulation setting are all shown in Appendix section A2.

Within each segment, consumers’ valuations can be 10c (δ = 0.1) above or below the segment valuation.

Alternatively, the range of within-segment heterogeneity is 20% of range of across segment heterogeneity

(between 0 and 1).

4.1 Estimating the Demand Model: Comparing untuned algorithms

To show the advantage of adding partial identification to UCB algorithms we run simulations of prices

and consumer decisions over 200,000 decision rounds. We note that the computer science literature has

noted that tuned algorithms outperform untuned algorithms [Auer, 2002], however feel this is an important

comparison to show the relative benefit of adding partial identification.

The results for the first simulation (segment valuations right skewed) are shown in Figure 3. In Panel A

we plot the prices charged in each of 200,000 rounds, for UCB1 untuned (left) and UCB-PI untuned (right).

We can see the set of prices tested each period by UCB-PI narrows, showing that partial identification allows

us to reduce the number of prices experimented. The algorithm narrows to focus only on prices near the

true optimal price. This is summarized in Panel B (left) shows the number of times each possible price

is charged by UCB and UCB-PI. While UCB’s modal price is near the true optimal price, the UCB-PI

algorithm concentrates nearly all of its observations on prices at or close to optimal.

To show the reason for the differences in price experimentation between the algorithms is partial identi-

fication. We illustrate the bounds of the aggregate demand for UCB-PI in Figure 3, Panel B, right. Here at

each price the shaded areas represent the partially identified bounds for the demand curve after 1, 100, 1,000,

and 10,000 rounds (later rounds are shown in darker shades). The true demand is shown by the dashed line,

this is always within the partially identified bounds. Notice after only one round, we have very wide demand
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bounds, as we get more data the partially identified bounds get narrower. Further after 10,000 rounds we

know that the demand above a price of $0.7 is point identified at 0. As a result the UCB-PI algorithm no

longer experiments with prices above $0.7(see Panel A, right chart). In Appendix A3, we explicitly show

the prices ”turned off” by round. Due to this demand learning, the UCB-PI algorithm results in higher

ex-post profits than the UCB algorithm (Panel C). Overall the the UCB-PI attains 90% of ex-post optimal

profits, while the UCB1 attains 50% of ex-post optimal profits. We note that we will focus on profits when

comparing the tuned algorithms in the next section.

[Figure 3 about here.]

We show this demand learning for the other four simulations in figure 4. Each panel of this figure

represents a simulation. The left column is the histogram of prices charged across 200,000 rounds. Here we

see that in each of our simulations the the histogram for prices played under UCB-PI (blue) is tighter around

the true optimal profit (vertical left line) than the prices played under UCB (gray). Therefore with partial

identification the algorithm spends more rounds earning and fewer rounds learning.

The right column of figure 4 represents demand learning over time. In all our simulations the demand

bounds get narrower around the true demand curve as we get more data. This is the advantage of partial

identification that with any data generating process (that satisfies the assumptions in section 2.1) we can

bound the true demand curve. Most importantly consider panel D, where demand is discontinuous. This is

a case where Aghion et al. [1991] find Bayesian learning almost surely leads to insufficient learning. With

partial identification we do correctly learn the demand curve, moreover after 10,000 rounds (the darkest

shade) the model recovers with certainty that true demand curve must be discontinuous.

[Figure 4 about here.]

4.2 Profit implications of adding PI: Comparison of tuned algorithms

In this section section we will consider the UCB-tuned and the UCB-PI tuned algorithms. In this section

we will run our simulation for 20,000 rounds (as opposed to 200,000 rounds in the previous section) as

learning is faster in the tuned algorithms. Figure 5 plots the prices played and profit earned in each of these

five (5) simulation settings based on different true demand curves. Each row of this figure corresponds to

each simulation setting.
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[Figure 5 about here.]

We will first focus on the the prices charged. In Panel A of Figure 5, we plot the price played each round

for UCB-tuned (left column) and UCB-PI-tuned (middle column) algorithms. Across all simulations we

find that adding partial identification results in the algorithm setting prices at the optimal levels more often,

with more focused experimentation. This is consistent with our results from the untuned algorithms were

we found that partial identification leads to faster learning of demand.

Turning our attention to profit achieved, Figure 5, Panel A (right column) shows UCB-PI’s relative profit

improvement over UCB over time. We find that the UCB-PI outperforms UCB consistently. The maximum

increase in profitability is between 15% and 90% across the different simulations. As the number of rounds

goes to infinity, the UCB is guaranteed to achieve optimal profits [Auer, 2002] and therefore the relative

benefit is guaranteed to asymptote to zero. However we find that adding partial identification increases the

profits gained in smaller rounds with the maximum benefit achieved in between 1 and 5,000 rounds.

In an absolute sense, the algorithms can be compared to ex-post optimal profit. The ex-post optimal

profit is the profit achieved assuming the firm had perfect demand information, and set the optimal price in

every period. Figure 5, Panel B, shows the ex-post profits across all five settings. Again we find the UCB-PI

tuned achieves higher profit that the UCB tuned algorithm in each simulation. In particular, the UCB-PI

algorithm achieves above 95% of ex-post optimal profit in four (4) of the five (5) settings. The finite mixture

setting where learning is difficult [Aghion et al., 1991], the algorithm achieves 89% of ex-post profits.

4.3 Monte Carlo comparisons to alternative algorithms

While we have illustrated UCB-PI’s superior performance over UCB in five settings. Since the algo-

rithm performance is stochastic, we provide a large Monte Carlo simulation across algorithms and problem

settings. Here we now consider a broader set of algorithms, we consider the Learn then Earn algorithm, or

a balanced field experiment. In these algorithms the researcher has to ex-ante set how long the algorithm

should learn (experimental time), and how long the algorithms should use that learning in order to earn. In

our simulation experiments, we consider 5 versions of the Learn and then Earn algorithm where learning is

set for 0.1%, 1%, 5%, 10% and 25% of experiments. We also include the case where the learning period is

100% because it is exactly a balanced experiment, which matches typical research-driven field experiments

and A/B or multivariate testing in industry. The performance of a balanced experiment is not optimizing
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since it only earns the average profit of all its arms.

In all, we consider ten (10) different algorithms: UCB untuned and tuned, UCB-PI untuned and tuned,

learn and then earn with six (6) different settings. We test each algorithm across each of our 5 different simu-

lation settings. We run each algorithm and setting pair for 1,000 independent Monte Carlo (MC) simulations.

In each, we run each algorithm for 20,000 rounds, simulating time, with 10 consumers in time period. In all

we simulate 1 billion prices in this Monte Carlo, this simulation take about 5 hours of computation time.

Our key measure of performance is profits as a percentage of optimal, which a summary of ex-post

achieved profits for each setting and algorithm appears in Figure 6. In Panel A, we display the distribution

of performance for each algorithm across all 5 settings and 1,000 MC simulations. We display the mean

and range (in brackets) of profits achieved. The bar charts represent the 100th (full range), 90th, and 75th

percentiles of the profits achieved. Looking across all settings, the UCB-PI algorithm stands out, with the

average of 96% of ex-post optimal profit, and a narrow range from 91% to 99%. The ex-post optimal profit

is the highest across all algorithms and the range is the most narrow across all algorithms.

Learn and Earn algorithms, with learning periods between 0.5% and 25% achieve an average between

89% and 95% of ex-post optimal profits depending on the time to learn. We find that in this setting, the

highest mean profit is for the 5% learning period. However a researcher cannot know ex-ante (when setting

the learning time), that 5% would be have been best in this setting. Consistent with the empirical bandit

literature [Kuleshov and Precup, 2014], we find that heuristic based algorithms (Learn Then Earn) can

achieve higher ex-post profits than UCB tuned. We find that when we add economic theory to the UCB

algorithm, the UCB-PI tuned algorithm outperforms the heuristic based algorithms across a wide range of

settings.

The outcomes of Learn then Earn experiments have a large range of ex-post profit outcome. A key

advantage of the theory-based algorithms (such as UCB-PI) is that they have a lower range of outcome, this

is consistent with the objective of minimax regret. To show the difference in variability within and between

algorithms in Figure 6 panel B, we plot a histogram of the outcomes across all simulations for the UCB-

PI algorithm and the Learn and Earn 5% (which had the highest ex-post average profit among alternative

algorithms). This variability is not desirable since, for a given setting, a researcher could not predictably

know (ex-ante) when the Learn then Earn algorithm will perform well. In Appendix section A4, we show

that this pattern holds if we consider each simulation setting separately.
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[Figure 6 about here.]

5 Conclusion and Future Research

With the emergence of big data, we see an increase in machine learning applications in marketing [Chin-

tagunta et al., 2016]. We study a realistic dynamic pricing problem for an online retailer. The goal is a pricing

experimentation policy that can apply to many types products (robust) and run in real-time (fast).

We propose a novel combination of economic theory with machine learning. To marketing and eco-

nomics, we bring these scalable reinforcement learning methods to expand the types of dynamic optimiza-

tion problems. We consider a multi-period dynamic pricing problem, when a firm faces ambiguity. To the

machine learning literature, we introduce distribution-free theory of demand to improve existing algorithms

theoretically and empirically.

We provide strong evidence for the benefit of partial identification of demand in non-parametric bandit

problems. We derive theoretically the rate of convergence for our algorithm. This shows that for any

data generating process our model is guaranteed to converge faster that current algorithms. In a series of

simulation settings we show that our proposed algorithm achieves higher (a) ex-post profit than current

algorithms and (b) has a lower range of outcomes. Therefore our algorithm can be used for a variety of

products and will predictably lead to higher profits.

A limitation of our current work is that we consider a simple demand system. In our model each

consumer has a stable valuation. Further research can consider setting where consumer valuation can change

over time. This could be in the form of prior prices creating reference prices, or consumer with dynamic

preferences. Further research could also consider demand systems that consider more that one product, this

includes both category management and competition.
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Appendix A1: Theoretical performance of UCB-PI algorithm

We provide theoretical guarantees for the UCB-PI index. The log-regret bound was first shown by

Lai and Robbins [1985] for a particular stylized multi-armed bandit problem. Our proof is based on an

alternative view of the original UCB analysis. The proof we present here differs from the standard UCB

proof from Auer et al. [2002] because we use an argument based on potential function, which we define in

the proof. This argument in the proof is a novel application of these tools for formally analysis of algorithms.

We use this alternative approach, in part, because it permits a more general description of the exploration

bonus.

Problem definition and preliminaries

We use more general notation beyond price and profit to describe actions and rewards. Price pk played

at time t is the action described by At. Let πk at price k is described a random variable Rti of reward for

i ∈ 1, ...,K.

LetQi be a distribution on the rewardRti, with support on [0, pi]. Then let the rewardsR1
i , . . . , R

T
i

iid∼ Qi,

where mean E [Rti] = µi. We assume that the largest µi is unique and, without loss of generality, assume

that the coordinates are permuted in order that µ1 is the largest ex-post mean reward. Define ∆i := µ1 − µi

for i = 2, . . . ,K.

The bandit algorithm is a procedure that chooses an action At on round t as a function of the set of past

observed action/reward pairs, (A1, R1
A1), . . . , (At−1, Rt−1

At−1).

On round t, the past data are summarized by the count, N t
i :=

∑t−1
τ=1 I[Aτ = i], and the empirical mean

estimator, µ̂ti :=
∑t−1
τ=1 I[Aτ=i]RτAτ

Nt
i

.

Analysis techniques: concentration inequalities and potential function

Much of the literature and techniques used to analyze finite time multi-armed bandit problems rely on

a standard set of tools known as deviation bounds or concentration inequalities. Deviation bounds are

used to reason about tail probabilities of averages of iid random variables and martingales, for instance.
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Perhaps the most basic deviation bound is Chebyshev’s Inequality, which says that for any random variable

X with mean µ and variance σ2 we have Pr (|X − µ| > kσ) ≤ 1
k2 . More advanced results are based

on the Chernoff bounds, which provide much sharper guarantees on the decay of the tail probability. For

example, the Hoeffding-Azuma Inequality [Cesa-Bianchi and Lugosi, 2006], which we present below, gives

a probability bound on the order of exp(−k2), which is much faster than 1/k2.

Let us assume we are given a particular deviation bound that provides the following guarantee,

Pr
(
|µi − µ̂ti| > piε

∣∣ N t
i ≥ N

)
≤ f(N, ε), (2)

where f(·, ·) is a function, continuous in ε > 0 and monotonically decreasing in both parameters, that con-

trols the probability of a large deviation. While UCB relies specifically on the Hoeffding-Azuma inequality,

for now we leave the deviation bound in a generic form.

We define a pair of functions that allow us to convert between values of ε and N in order to guarantee

that f(N, ε) ≤ ν for a given ν > 0. To this end define

Λ(ε, ν) := min{N ≥ 1 : f(N, ε/2) ≤ ν},

ρ(N, ν) :=

 inf{ε : f(N, ε) ≤ ν} if N > 0;

1 otherwise,

We omit the ν in the argument to Λ(·), ρ(·). Note the property that ρ(N, ν) ≤ ε/2 for any N ≥ Λ(ε, ν).

Note that δ̂, which plays a role in the lower and upper bounds on reward, does not enter this proof, yet

we can conclude the proof applies to our proposed algorithm. Indeed, δ is not known to the researcher and

must be estimated. Consider the worst case (in the sense that this will lead to the maximum regret), where

segmentation is useless, then δ = 1. Then the credible intervals for every segment’s feasible profit still are

the entire possible range. This is the case presented in the proof here. But in practice, 0 ≤ δ ≤ 1, and δ

can be smaller than its maximum value, making segmentation useful, and narrowing the partially identified

intervals. Therefore, the proposed UCB-PI algorithm does no worse than the performance described here.
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Bounds for the UCB-PI algorithm

Recall that the UCB-PI index is defined in Equation 1 by taking the mean estimated reward plus an

exploration bonus for each price pi. The precise form of the exploration bonus derives from the deviation

bound, particularly from the form of ρ(·). In other words, for a fixed choice of ν > 0, we can redefine the

algorithm as follows:

UCB-PI Algorithm: on round t play At = arg max
i

{
µ̂ti + piρ(N t

i , ν)
}

(3)

A central piece of the analysis relies on the following potential function, which depends on the current

number of plays of each arm i = 2, . . . ,K.

Φ(N t
2, . . . , N

t
K) := 2

K∑
i=2

Nt
i−1∑
N=0

piρ(N, ν)

With our notation, the expected regret can be expressed as

E [RegretT (UCB)] =
τ∑
t=1

µ1 − µAt

Lemma 1. The expected regret of UCB is bounded as

E [RegretT (UCB)] ≤ E [Φ(NT+1
2 , . . . , NT+1

K )] +O(Tν)

Proof. The additional (statistical) regret suffered on round t of UCB is exactly µ1−µAt . From our deviation

bound (Equation 2), we can consider two inequalities 11

µ1 ≤ µ̂t1 + piρ(N t
1, ν) and µ̂tAt ≤ µAt + pAtρ(N t

At , ν).

To analyze the two inequalities above, we let ξt be the indicator variable that one of the above two

inequalities fails to hold. Note we chose ρ(·) so that P [ξt = 1] ≤ 2ν.

11Here we can see that if δ were less than its maximum value, the partially identified intervals shrink, and the above probabilities
are smaller.
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Since the algorithms choose arm At, we have

µ̂t1 + p1ρ(N t
1, ν) ≤ µ̂tAt + pAtρ(N t

At , ν)

If we combine the above two equations, and consider the event that ξt = 0, then we obtain

µ1 ≤ µ̂t1 + p1ρ(N t
1, ν) ≤ µ̂tAt + pAtρ(N t

At , ν) ≤ µAt + 2pAtρ(N t
At , ν).

Even in the event that ξt = 1 we have that µ1 − µAt ≤ 1. Hence, µ1 − µAt ≤ 2pAtρ(N t
At , ν) + ξt.

Finally, we observe that the potential function was chosen so that Φ(N t+1
2 , . . . , N t+1

K )−Φ(N t
2, . . . , N

t
K) =

2pAtρ(N t
At , ν). Recalling that Φ(0, . . . , 0) = 0,

E [RegretT (UCB)] ≤ E

[
Φ(NT+1

2 , . . . , NT+1
K ) +

T∑
t=1

ξt

]
= E [Φ(NT+1

2 , . . . , NT+1
K )] + 2Tν.

The final piece we need to establish is that the number of pullsN t
i of arm i, for i = 2, . . . ,K, is unlikely

to exceed Λ(∆i, ν).

Lemma 2. For any T > 0 we have E [Φ(NT+1
2 , . . . , NT+1

K )] ≤ Φ(Λ(∆2
p2
, ν), . . . ,Λ(∆K

pk
, ν)) +O(T 2ν).

Proof of Lemma 2. To obtain the inequality of the lemma, define for every t = 1, . . . , T and i = 2, . . . the

indicator variable ζti which returns 1 when At = i given that N t
i ≥ Λ(∆i

pi
, ν), and returns 0 otherwise. We

can show that ζti = 1 with probability smaller than 2ν.

Note that if At = i then the upper confidence estimate for i was larger than that of action 1. More

precisely, it must be that µ̂ti + piρ(N t
i ) ≥ µ̂t1 + p1ρ(N t

1). For this to occur, either we had (a) a large

underestimate on µ1, that is µ̂t1 + p1ρ(N t
1) ≤ µ1. Or, (b) we had a large overestimate on µi, that is,

µ̂ti + piρ(N t
i ) ≥ µ1. It is clear that (a) occurs with probability less than ν by construction of ρ.

To analyze (b), note that µ1 = µi + ∆i, and we are also given that N t
i ≥ Λ(∆i

pi
, ν) which implies that

piρ(N t
i ) ≤ ∆i/2.

µ̂ti + piρ(N t
i ) ≥ µ1 =⇒ µ̂ti ≥ µi + piρ(N t

i )
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which happens with probability no more than ν. Therefore,

E [Φ(NT+1
2 , . . . , NT+1

K )] ≤Φ(Λ(
∆2

p2
, ν), . . . ,Λ(

∆K

pk
, ν)) + E [

K∑
i=2

T∑
t=1

ζti ]

≤Φ(Λ(
∆2

p2
, ν), . . . ,Λ(

∆K

pk
, ν)) + 2T 2ν

We are now able to combine the above results for the final bound.

Theorem 3. If we set ν = T−2/2, the expected regret of UCB is bounded as

E [RegretT (UCB)] ≤ 8
K∑
i=2

pi log(T )

∆i
+O(1).

Proof. A standard deviation bound that holds for all distributions supported on [0, pi] is the Hoeffding-

Azuma inequality [Cesa-Bianchi and Lugosi, 2006], where the bound is given by f(N, ε) = 2 exp(−2Nε2).

Utilizing Hoeffding-Azuma we have Λ(ε, ν) =
⌈

2 log 2/ν
ε2

⌉
and ρ(N, ν) =

√
log(2/ν)

2N forN > 0. If we utilize

the fact that
∑Y

y=1
1√
y ≤ 2

√
Y , then we see that

Φ(Λ(
∆2

p2
, ν), . . . ,Λ(

∆K

pk
, ν)) = 2

K∑
i=2

Λ(
∆i
pi
,ν)∑

N=1

ρ(N, ν)

= 2
K∑
i=2

Λ(
∆i
pi
,ν)∑

N=1

√
log(2/ν)

2N

≤ 2

K∑
i=2

2

√
log(2/ν)Λ(∆i

pi
, ν)

2

= 4
K∑
i=2

pi log(2/ν)

∆i
.

Combining the Lemma 1 and Lemma 2, setting ν = T−2/2, we conclude the theorem.

Setting ρ(N, ν) =

√
log(2/ν)

2N into the UCB algorithm in Equation 3 we get the exploration bonus in

our proposed algorithm (see equation 1). The bound for regret for this algorithm is strictly lower than Auer

[2002] as all pis are scaled to be lower than 1. Further adding the additional partial identification implies that

an arm is played weakly less than Λ(ε, ν) derived by the Hoeffding-Azuma inequality. Consider the proofs
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for Lemmas 1 and 2, as arms are “turned off”, we get lower deviation bounds. As we discussed above, the

number of arms turned off in an empirical application depends on the value of δ. The bounds derived are

for δ at its maximum value, where no arms are turned off, and segmentation is not useful. However the

empirical performance of our algorithm should improve for any lower values of δ. The theoretical argument

holds true as a worst case analysis.

Appendix A2: Data generating process for the simulations

[Figure 7 about here.]

Appendix A3: Estimating δ and Active Arms in UCB-PI

In Figure 8, Panel A, we illustrate how UCB-PI drops arms and only keeps certain arms active when

they are near the ex-post true optimal prices.

In Panel B, we plot the estimated δ, which represents the heterogeneity of preferences within a segment.

In our simulation the true value is 10c, we show that we do recover this true valuation and consistent with

Handel et al. [2013] we find that in early simulation we estimate a value of δ that is biased upward. This

implies that our learning is not biased, however is slower than if we knew the true δ. We plot the percentage

of arms that are active (right column), the other “turned off” due to partial identification. In our simulation

we estimate that about 45% of arms are active, this allows the algorithm to focus the exploration of demand.

[Figure 8 about here.]

Appendix A4: Histogram of UCB-tuned, UCB-PI tuned and Learn then Earn (5%) profits by simula-

tion setting

[Figure 9 about here.]
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Figure 1: Balanced field experiment (left) versus multi-armed bandit experiment (right). The bandit experi-
ment is adaptive, ε-greedy(ε = 10%).

Panel A. Balanced experiment (left) plays all prices equally and the bandit (right) almost always plays the 
truly optimal price ($0.50) with some variation. When was each price played (top) and how often was each 
was played (middle row). 

Balanced Experiment   Multi-Armed Bandit Experiment 

 
 

 
 
Panel B. The profit curves are estimated (bottom row) using the observed average profit from each price 
(mean and 95% percentiles). The standard errors for the balanced experiment are all equal. 

  
Panel C. Total profit earned through experiment, expressed relatively, from worst (0) to optimal profit (100). 

 

38



Figure 2: Partial identification of valuations by segments and aggregated estimated demand bounds.

Panel A. Segment valuations are partially identified over four rounds of prices. 
The dashed regions reflect ambiguity within a range of valuations. 

	
  	
  
 
Panel B. Estimated demand bounds (thick lines around dashed areas) come 
from aggregating segment-specific identified sets of valuations. Solid colored 
areas represent prices where a segment would purchase certainly, and dashed 
regions reflect uncertainty. For instance, when the price is $1.50, all of Segment 
B will purchase, but some of Segment A may purchase (hence, feasible demand 
is between 50% and 100%). 	
  

	
  
Figure 2. Partial identification of valuations by segments and aggregated 
estimated demand bounds. 
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Figure 3: Value from Partial Identification: Comparison of the UCB1 and UCB-PI untuned algorithm for
the simulation with true segment valuations from right-skewed distribution, beta(2, 9) and within-segment
heterogeneity set to δ = 0.1.

Panel	
  A:	
  The	
  prices	
  experimented	
  under	
  UCB	
  (left)	
  and	
  UCB-­‐PI	
  (right)	
  to	
  learn	
  the	
  true	
  ex-­‐post	
  optimal	
  price	
  (red	
  line).	
  	
  

	
  

Panel	
  B:	
  The	
  left	
  histogram	
  of	
  prices	
  charged	
  under	
  UCB	
  (gray)	
  and	
  UCB-­‐PI	
  (blue),	
  with	
  truly	
  optimal	
  price	
  (vertical	
  red	
  line).	
  
The	
  right	
  figure	
  shows	
  the	
  partially	
  identified	
  demand	
  learning	
  under	
  UCB-­‐PI.	
  The	
  shaded	
  gray	
  regions	
  show	
  the	
  partially	
  
identified	
  demand	
  bounds	
  after	
  1	
  round	
  (start;	
  lightest),	
  100	
  rounds,	
  1,000	
  rounds	
  and	
  10,000	
  rounds	
  (darkest).	
  

	
  

Panel	
  C:	
  Implication	
  of	
  price	
  learning	
  on	
  profits	
  earned	
  by	
  round.	
  The	
  left	
  chart	
  consider	
  profits	
  relative	
  to	
  optimal	
  profits,	
  
and	
  the	
  right	
  chart	
  shows	
  the	
  relative	
  performance	
  of	
  the	
  algorithms	
  [Defined	
  as:	
  (UCB-­‐PI	
  profits/UCB	
  profits)	
  –	
  1]	
  

	
  

Figure	
  1:	
  Comparision	
  of	
  the	
  UCB-­‐1	
  and	
  UCB-­‐PI	
  untuned	
  algorithm	
  for	
  the	
  simulation	
  with	
  true	
  segment	
  
valuations	
  from	
  right-­‐skewed	
  distribution,	
  beta(2,9)	
  with	
  delta	
  (within	
  segment	
  heterogeniety)	
  set	
  at	
  0.1.	
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Figure 4: Value from Partial Identification: Demand learning for the UCB-PI untuned algorithm. The
left histogram of prices charged under UCB (gray) and UCB-PI (blue), with truly optimal price (vertical
red line). The right figure shows the partially identified demand learning under UCB-PI. The shaded gray
regions show the partially identified demand bounds after 1 round (start; lightest), 100 rounds, 1,000 rounds
and 10,000 rounds (darkest). For all settings, the within-segment heterogeneity set to δ = 0.1.
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  A:	
  Setting:	
  Symmetric	
  	
  

	
  

Panel	
  B:	
  Setting:	
  Left-­‐Skewed	
  

	
  

Panel	
  C:	
  Setting:	
  Bimodal	
  Continuous	
  

	
  

Panel	
  D:	
  Setting:	
  Finite	
  Mixture	
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Figure 5: UCB-tuned and UCB-PI-tuned algorithms across five (5) simulation settings.

Panel A: Each row represents a simulation setting. The first (second) column contains the UCB Tuned (UCB-PI Tuned) prices 

by round. The third column considers the percentage difference in profits.  

 

Panel B: Ex-Post Profits achieved across the five (5) simulation settings  
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Figure 6: Monte Carlo Experiment: Comparison of the UCB, UCB-PI, and Learn Then Earn algorithms
across 1,000 MC simulations and 5 settings. We consider the ex-post profits achieved. Specifically, we
examine the algorithms’ variability summarizing the full distributions of their performance.

Panel	
  A:	
  Summary	
  across	
  all	
  simulations.	
  In	
  this	
  figure	
  we	
  consider	
  the	
  ex-­‐post	
  profits	
  achieved	
  by	
  UCB,	
  UCB-­‐PI	
  and	
  
Learn	
  Then	
  Earn	
  (balanced	
  experiments)	
  across	
  all	
  5	
  simulations	
  and	
  1,000	
  Monte	
  Carlo	
  Simulations.	
  The	
  bars	
  represent	
  
the	
  range	
  of	
  100%	
  (lightest	
  gray,	
  and	
  the	
  numerical	
  values	
  are	
  shown	
  below	
  the	
  bars),	
  90%	
  (middle	
  gray	
  shading)	
  and	
  
75%	
  (darkest	
  gray)	
  of	
  the	
  profit	
  estimates.	
  The	
  red	
  dots	
  represent	
  the	
  mean	
  profit	
  achievied	
  (the	
  numerical	
  values	
  are	
  
shown	
  above	
  the	
  bars).	
  

Panel	
  B:	
  Histogram	
  of	
  profits	
  In	
  this	
  figure,	
  we	
  plot	
  the	
  histogram	
  of	
  ex-­‐post	
  profits	
  achieved	
  by	
  the	
  UCB-­‐PI	
  tuned	
  and	
  
the	
  Learn	
  then	
  Earn	
  (5%)	
  algorithms	
  across	
  all	
  5	
  simulation	
  settings	
  and	
  1,000	
  Monte	
  Carlo	
  Simulations.
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Figure 7: True demand for simulation unknown to the researcher. The data-generating process of the five (5)
simulations settings differ by true unobserved heterogeneity of valuations (left column), which determine
the aggregate true demand curve (middle). The true ex-post profit function (right) is the product of price and
demand.
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Figure 8: Inside UCB-PI: dropping dominated arms and estimating heterogeneity

Panel A. Active arms. UCB-PI drops arms and keeps certain arms active. Which 
arms are active at each round? (left) How many arms are active at each round? 
(right) 

	
  
Panel B. Within-segment heterogeneity estimates. The estimated delta (δ) at 
each round approaches the true data-generating process within-segment 
heterogeneity. 
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Figure 9: In this figure we plot the histogram of ex-post profits achieved by the UCB-PI tuned and the
Learn then Earn (5%) algorithms 1,000 Monte Carlo Simulations for each of the 5 simulation settings. The
UCB-PI has both a higher mean and a lower variation in profits compared to Learn then Earn.
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