

Deploying the openPDC
on POSIX Platforms

Grid Protection Alliance, Inc.
www.gridprotectionalliance.org

Last Updated: March 2015

Contents

Introduction ... 3

Installation Prerequisite: Mono ... 4

Installing the openPDC ... 5

Troubleshooting ... 5

Running the openPDC .. 6

Execution as Terminal Application .. 6

Execution as Daemon .. 6

Controlling the Daemon .. 7

Running the Remote Console .. 7

Testing the Default Configuration ... 8

IEEE C37.118 Output Stream ... 8

Gateway Exchange Protocol .. 8

Configuring the openPDC ... 9

Manual SQL Configuration ... 9

Using the openPDC Manager... 9

Install ... 9

Enable Folder Share... 9

Configure ... 10

Using Other Databases .. 10

Enabling the openHistorian ... 11

Completing Security Configuration .. 11

Managing User Accounts ... 12

Adding New Users ... 12

Authenticating Cross Platform Users .. 13

Disabling Pass-Through Authentication .. 14

Updating Transport Layer Security .. 14

Manually Creating a Certificate ... 14

Using an Existing Certificate .. 15

Changing the TLS Version .. 16

Running the openPDC with Elevated Rights .. 17

Securing the Configuration Database .. 17

Running on a Raspberry Pi ... 18

Deploying the openPDC on POSIX Platforms

© Grid Protection Alliance, 2015 Page 3

Introduction
With the release of version 2.1 of the openPDC, GPA has implemented features that allow the openPDC
to easily be used in deployments running a POSIX1 compatible operating system such as Linux and
Apple OS X. GPA has tested several common distributions and hardware combinations that include:

 Debian on x86 style hardware (64-bit)
 Ubuntu on HyperV (64-bit)
 Ubuntu on SEL-3354 hardware (32-bit)
 Rasbian on Raspberry Pi and Pi 2 hardware (32-bit)
 Apple OS X on MacBook Air hardware (32-bit)

This document describes the process to install, configure and operate the openPDC on a POSIX
compatible operating system. The directions that follow focus on Linux deployments of the openPDC;
however, where necessary, there are exceptions noted that may be needed for Mac OS X deployments.

1 POSIX, Portable Operating System Interface, is a family of IEEE standards to assure compatibility among operating
systems. Most distributions of Linux, Apple’s OS X and iOS as well as Android are POSIX compatible.

Deploying the openPDC on POSIX Platforms

© Grid Protection Alliance, 2015 Page 4

Installation Prerequisite: Mono
The openPDC is a .NET application and as such it requires a Common Language Runtime (CLR) engine to
execute. For use in POSIX compatible environments, the openPDC uses Mono as its runtime engine.
Mono is a cross platform implementation of the .NET framework that is widely available on various
hardware and software architectures. For the openPDC version 2.1, Mono version 3.12 is required2.

To install Mono, follow the installation guide using Xamarin packages for your distribution:

http://www.mono-project.com/download/

Once Mono is installed, validate that the system is running the proper version of Mono using the mono
application with the version parameter, -V, from a terminal session. The reported version should be
“version 3.12” (or later) as shown below.

$ mono –V

Mono JIT compiler version 3.12.0 (tarball Mon Jan 19 15:40:05 UTC 2015)
Copyright (C) 2002-2014 Novell, Inc, Xamarin Inc and Contributors. www.mono-project.com
 TLS: __thread
 SIGSEGV: altstack
 Notifications: epoll
 Architecture: x86
 Disabled: none
 Misc: softdebug
 LLVM: supported, not enabled.
 GC: sgen

If after installation of the latest version of Mono the mono application reports an older version3, modify
the system path so that version 3.12 of Mono is found first.

If there are no Mono version 3.12 packages available for your distribution, then Mono must be compiled
manually. In this case, follow these instructions:

http://www.mono-project.com/docs/compiling-mono/

2 It is possible that an older version of Mono may work, but the openPDC version 2.1 incorporates many features of
.NET 4.5 that are only available in later versions of Mono. The openPDC has not been fully tested with earlier
versions of Mono; therefore, use of Mono version 3.12 (or later) is strongly recommended.
3 It is possible to have multiple versions of Mono simultaneously installed on a system.

Deploying the openPDC on POSIX Platforms

© Grid Protection Alliance, 2015 Page 5

Installing the openPDC
Due to the vast number of POSIX operating systems and hardware combinations, there are currently no
precompiled deployment packages for the openPDC4. To begin the process of installing the openPDC,
download the following script file5:

http://www.gridprotectionalliance.org/Products/openPDC/Scripts/install-openPDC.sh

 Mac OSX Note:

The wget application must be available before running this script. To install wget, install
Brew from http://brew.sh and then run:

brew install wget

Note that X11/XQuartz is not required for openPDC.

For a default installation and configuration, the script can be executed right away to get things started.
However, to customize the installation or complete the security configuration, review the following
installation options.

Below are the available script parameters to allow customization of the installation:
-n: Use nightly builds
-p: Preserve source code
-d: Install destination (defaults to /opt/openPDC/)
-u: Uninstall the openPDC

To fully enable security for this installation, as detailed later, preserve the local source code by using the
-p parameter. To install the openPDC using the latest source code instead of the published stable
release, use the -n parameter to install the latest nightly build.

The script should be run using the bash6 shell with root access, for example, to install the openPDC and
preserve the source code after installation run the following:

sudo bash install-openPDC.sh -p

Troubleshooting
If there are issues with the script during the installation process, validate that the Mono build system,
XBuild, is working properly. To do this, execute the xbuild application with a version parameter,
/version, from a terminal session and verify that the application reports version 12.0 of the XBuild
Engine, similar to the following:

4 As time allows, GPA will add deployment packages for common POSIX distributions, e.g., Debian and Ubuntu on
Linux and Apple OS X. Third-parties are welcomed to assist with maintaining up-to-date deployment packages for
the openPDC on various distributions.
5 During execution the script will require internet access to download files to be installed. Since other scripts and
source code files will be downloaded as part of the installation, it is best to run the script from its own folder.
6 The bash shell command is required over the normal sh command to be able to properly test for Mac OS X
platforms. Most all scripts to be executed in this document will require bash for this reason.

Deploying the openPDC on POSIX Platforms

© Grid Protection Alliance, 2015 Page 6

$ xbuild /version
XBuild Engine Version 12.0
Mono, Version 3.4.1.0
Copyright (C) 2005-2013 Various Mono authors

If the version of XBuild is not the same as reported above or the application fails to run, verify the path
to the xbuild command is correct.

If the installation script needs to be run again, clear out the temporary files in the installation folder (i.e.,
the folder where script was run) and delete the destination folder (e.g., /opt/openPDC) before then next
attempt.

Running the openPDC
The installation script will automatically deploy the openPDC with a default configuration, as such the
application can be run immediately. The openPDC can be started as a terminal application or registered
as a daemon that will run in the background and startup automatically.

EExecution as Terminal Application
To test the openPDC or validate its current configuration, it can simply be run as a terminal application.
To run the openPDC as a terminal application, execute the openPDC.exe application using the Mono
runtime and the RunAsConsole parameter:

sudo mono /opt/openPDC/openPDC.exe -RunAsConsole

This will start the openPDC as a console style application with feedback reported directly to the current
session. When running in this mode, input can be accepted just by typing. Note that keyboard input is
being logged even if any user input is visually interrupted by a new status update from the openPDC. As
an example to start issuing commands, just type Help and press enter for a list of possible commands.

To exit the application and stop the openPDC, just type the command Exit and press enter.

Execution as Daemon
To run the openPDC automatically at startup, the application must be deployed to run as daemon in the
background. To configure the daemon to run automatically startup, execute the registration script7:

sudo bash register-openPDC.sh

If the openPDC needs to be unregistered later, use the -u parameter with this script to unregister the
service. Note that uninstalling the openPDC will also automatically unregister the service.

When running the openPDC as a background service, input and output from the application must be
handled by another application, such as the openPDC Remote Console. See the Running the Remote
Console section for more details.

7 Note that needed scripts are downloaded as part of the install process. In order to run properly both the
openPDC.sh and register-openPDC.sh scripts are required to be in the same folder during execution; for Mac OSX,
this also includes the openPDC.plist file.

Deploying the openPDC on POSIX Platforms

© Grid Protection Alliance, 2015 Page 7

Controlling the Daemon
To manually control the openPDC service running as a daemon, use the following commands:

Start Service
sudo /opt/openPDC/openPDC start

Restart Service
sudo /opt/openPDC/openPDC restart

Pause Service
sudo /opt/openPDC/openPDC pause

Resume Service
sudo /opt/openPDC/openPDC resume

Stop Service
sudo /opt/openPDC/openPDC stop

Running the Remote Console
To view the current activity and issue commands to the openPDC while it is running as a daemon, run
the openPDC Remote Console.

Run Locally
The remote console is already preconfigured to properly connect to the locally running openPDC when
executed from the same machine. To start the remote console, execute the following command from a
terminal session8:

mono /opt/openPDC/openPDCConsole.exe

Run Remotely
The openPDC can be accessed from a remote machine by running the remote console application on
another machine, including from a Windows installation9. In order for the remote console application to
properly connect to the machine running the openPDC, the machine’s IP address or DNS name will be
required. To make these changes on the remote machine, make sure the remote console application is
not running then edit the openPDCConsole.exe.config file and change the following settings:

8 The remote console application does not require being run as the root user, i.e., no sudo required.
9 Run the Windows installer for the openPDC to get the openPDC Remote Console running in a Windows
environment; download from here: https://openpdc.codeplex.com/releases/. The installed components can be
reduced to only tools during the installation process by deselecting the openPDC Service option.

Deploying the openPDC on POSIX Platforms

© Grid Protection Alliance, 2015 Page 8

<?xml version="1.0"?>
<configuration>
 <categorizedSettings>
 <remotingClient>
 <add name="ConnectionString" value="server=openPDC:8500; interface=0.0.0.0 />
 <add name="IntegratedSecurity" value="False />
 </remotingClient>
</configuration>

Replace the openPDC text, as shown in the ConnectionString above, with the machine name or IP that is
running the openPDC. Do not forget to include “; interface=0.0.0.0” in the changes as this forces the
connection to be IPv410. If the openPDC Remote Console application is being used on a Windows
machine to connect to the openPDC service running in a POSIX environment, also set IntegratedSecurity
to False11. Integrated security allows an application to login as the currently authenticated user without
reentering credentials, but this is only available on Windows.

Exit Console
The remote console application can be closed by issuing an Exit command and pressing enter. Note that
unlike when running the openPDC as a terminal application, issuing the Exit command from a remote
console session will not terminate the remotely running openPDC application, it will only close the
remote console session.

TTesting the Default Configuration
When the openPDC is installed and running with its default configuration it includes a sample PMU
(repeating file based input), an IEEE C37.118 output stream and a Gateway Exchange Protocol data
publisher. The openPDC can be verified to be operating as expected by exercising its outputs.

IEEE C37.118 Output Stream
The openPDC’s IEEE C7.118 output stream can be easily tested by running the PMU Connection Tester12.
Also, if there is another PDC or application available that can interpret IEEE C37.118, then that system
can be connected to the openPDC output stream as well.

The default configuration defines a test output stream that will be listening on TCP port 8900. The
output stream is configured with a TCP channel only, so both commands and data will be handled
through the same channel.

Gateway Exchange Protocol
The Gateway Exchange Protocol, or GEP, is an open source measurement-based publish/subscribe
transport protocol used for exchanging time-series data and automatically synchronizing meta-data

10 The default configuration is setup as IPv4 to support as many possible distributions as possible. If the system
running the openPDC supports IPv6, the server and client connections can be configured to use IPv6 by specifying
“; interface=::0” in the relevant configuration settings and connection strings. The interface setting is used to
specify the IP of the network interface controller (NIC) to use for the connection – an IP of zero means that the
default NIC should be used for the connection; the format of the interface IP setting determines the IP stack
version, i.e., IPv4 or IPv6, to use for the connection.
11 The IntegratedSecurity setting is ignored in POSIX environments.
12 Currently the PMU Connection Tester application is still only available from a Windows machine.

Deploying the openPDC on POSIX Platforms

© Grid Protection Alliance, 2015 Page 9

between two applications. The protocol supports sending real-time and historical data at full or down-
sampled resolutions. When sending historical data the replay speed can be controlled dynamically to
provide data as quickly as possible, e.g., a data download, or slowed for visualization streaming.

Included with the openPDC POSIX installation is a program that can verify that the GEP publication
server is working properly called the GEP Subscription Tester. This application will trend received data
from the openPDC in real-time and replay historical data if the local openPDC archive is enabled (see
section Enabling the openHistorian). The GEP Subscription Tester can be run on the same machine as the
openPDC as long as the POSIX environment has a UI13.

The GEP Subscription Tester application can be found in the /opt/openPDC/GEPTester folder.

The GEP Subscription Tester can also be run from another machine and connected to the openPDC
remotely. The GEP Subscription Tester can run on Linux, Windows, Apple OS X and Android devices. See
the following link to download the tool for use on other platforms:

http://openpdc.codeplex.com/wikipage?title=GEP%20Subscription%20Tester

Configuring the openPDC
ccc

MManual SQL Configuration
Use SQL statements to configure openPDC…

See the following link for a complete reference on how to manually configure the openPDC by updating
the configuration database:

https://openpdc.codeplex.com/wikipage?title=Manual%20Configuration

Using the openPDC Manager
The openPDC Manager application can be used to simplify configuration of the openPDC. Currently the
openPDC Manager is written as a WPF application and not available to run on Mono. However, an
instance of the openPDC Manager running on a Windows machine can be used to remotely configure
and monitor a Linux or Apple OS X based openPDC service.

Install
Install from here…

Enable Folder Share
Since the openPDC will need access to the default SQLite database to make configuration changes, a file
share on the machine running the openPDC will need to be established that is accessible from the
Windows machine running the openPDC Manager.

To enable a share on a POSIX system, the net usershare command can be used, for example:

13 The GEP Subscription Tester is a visualization application built using the Unity 3D gaming platform. This
application will only run properly from within an actual UI environment; attempting to use the application from
VNC or other virtualized UI environments may not work.

Deploying the openPDC on POSIX Platforms

© Grid Protection Alliance, 2015 Page 10

sudo net usershare add openPDC /opt/openPDC "openPDC" everyone:F guest_ok=y

Note that the net command requires that Samba already be installed, for example:

sudo apt-get install samba samba-common-bin

For more information on installing Samba, see the following:

https://www.samba.org/samba/docs/man/Samba-HOWTO-Collection/install.html#id2551914

Once the share exists, a Windows network drive must be mapped to the folder so that the openPDC
Manager will be able to successfully access the SQLite configuration database.

Configure
Run configuration setup utility and follow these steps…

UUsing Other Databases
The default openPDC installation configuration comes with a preconfigured SQLite database. SQLite is
convenient because it is self-contained and requires no additional installation components. However,
several other database types are natively supported by the openPDC, including: SQL Server, MySQL and
Oracle.

Database configurations can be installed remotely or locally (as supported) with the openPDC service
configured to connect to the database for its primary configuration. This can often optimize and simplify
interaction with the openPDC Manager since a file share will not need to be established for the SQLite
database.

The simplest way to setup a new database configuration for an openPDC instance is to run the
Configuration Setup Utility that is installed along with the openPDC Manager. This utility is currently only
available on a Windows environment, however, it can create a new configuration for a database system
running in a POSIX environment. If the Configuration Setup Utility is being used to convert from one
database to another, the DatabaseMigrationUtility will be run at the end of the process to migrate the
data in the old database to the new one14.

Without access to the Configuration Setup Utility, a new configuration database can still be manually
created. Schemas for all supported database types are installed with the openPDC and can be found in
the /opt/openPDC/Database Scripts folder.

Once a new database has been created, the openPDC.exe.config file systemSettings category properties
called ConnectionString and DataProviderString have to be updated15 with connection information for
the new database. If the Configuration Setup Utility was used to create the new database, the
systemSettings category property values applied to the openPDCManager.exe.config file by the can
often be copied and used as-is16 in the openPDC.exe.config file.

14 This UI based utility is also installed with the openPDC in POSIX environments to allow for data migration.
15 Changes to the openPDC.exe.config file should only be made while the openPDC service is not running.
16 One exception is the DataProviderString for SQLite. Under POSIX systems, the SQLite data provider string is:
AssemblyName={Mono.Data.Sqlite, Version=4.0.0.0, Culture=neutral, PublicKeyToken=0738eb9f132ed756};
ConnectionType=Mono.Data.Sqlite.SqliteConnection; AdapterType=Mono.Data.Sqlite.SqliteDataAdapter

Deploying the openPDC on POSIX Platforms

© Grid Protection Alliance, 2015 Page 11

See the following links for more information:

http://openpdc.codeplex.com/wikipage?title=Getting%20Started#set_up_database

http://www.connectionstrings.com/

EEnabling the openHistorian
The openHistorian 1.0 built into the openPDC also works on POSIX platforms. From a fresh install of the
openPDC17, download an updated openPDC.exe.config and openPDC.db configuration database that
have the historian enabled by default:

http://www.gridprotectionalliance.org/NightlyBuilds/openPDC/Scripts/POSIXConfigHistorian.zip

To deploy, unzip the files from the download then, with the openPDC is stopped, copy the
openPDC.exe.config into the /opt/openPDC folder and copy the openPDC.db SQLite configuration
database into the /opt/openPDC/ConfigurationCache folder – overwriting the existing files. Restart the
openPDC and the local historian will now be archiving data. If the POSIX distribution running the
openPDC service also has a UI, the HistorianPlaybackUtility.exe found in the openPDC installation folder
can be executed to extract data from the archive.

Completing Security Configuration
Although security is fully enabled by default when installing the openPDC on Windows platforms,
completely enabling security on Linux and Apple OS X platforms is a multi-step process that includes
building the shared Grid Solutions Framework (GSF) POSIX library that requires distribution specific
libraries18. As a result, the default configuration that gets installed on a POSIX platform has some
security features initially turned off to simplify deployment. The following sections describe how to fully
enable all the security features of the openPDC when running on a POSIX environment. The example
steps shown below are for Ubuntu, but this may be different for any given distribution:

1) Get the GNU Compiler Collection (gcc) for your distribution, e.g., for Ubuntu:
sudo apt-get install build-essential

2) Get the Pluggable Authentication Module (PAM) libraries for your distribution, e.g., for Ubuntu:
sudo apt-get install libpam0g-dev

3) With the openPDC is stopped, execute the security setup script19:

sudo bash enable-security.sh

17 If the openPDC system is already installed and configured and the current configuration needs to be preserved,
the historian must be enabled manually in the configuration or by using the openPDC Manager.
18 In order to enable user authentication and validation on a POSIX platform, the GSF POSIX functions library must
be compiled locally using libraries, such as PAM, specific to the distribution running the openPDC.
19 This script is downloaded as part of the installation process and can be found in the original installation folder
along with install-openPDC.sh. The script depends on the source code being preserved during the installation, i.e.,
make sure to use the -p parameter when installing the openPDC.

Deploying the openPDC on POSIX Platforms

© Grid Protection Alliance, 2015 Page 12

The enable-security.sh script will compile and deploy20 the shared GSF POSIX library and update the
openPDC configuration to require secured remote interactions, i.e., commands can only be issued by
authenticated users meeting a minimum role-based permission (e.g., the Administrator role).

For reference, the script is modifying the openPDC.exe.config file and changing the following setting:

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <categorizedSettings>
 <serviceHelper>
 <add name="SecureRemoteInteractions" value="True" />
 </serviceHelper>
 </categorizedSettings>
</configuration>

Once the GSF POSIX library has been compiled and the security updates have been applied, restart the
openPDC. At this point the openPDC will be essentially locked-out; i.e., until a user with a valid role
assignment is added to the system, no remote command access to the openPDC will be allowed without
user verification21. Once a user is authenticated by the openPDC with a valid role assignment, all
commands issued to through remote sessions require a minimum role-based permission for the issued
command. For more information on role-based security in the openPDC, see the following
documentation:

http://openpdc.codeplex.com/wikipage?title=Remote%20Console%20Security

MManaging User Accounts
The openPDC supports two kinds of users: (1) system authenticated users and, (2) database
authenticated users. As their name suggests, system authenticated users will be authenticated by the
local operating system according to configured authentication policies, e.g., the PAM configuration. This
can be local accounts or domain accounts, if enabled. Database authenticated users will be
authenticated by matching a user name and a hash of the password as defined in the openPDC
configuration database. Generally, system authenticated users are the ideal choice since the user
credentials and account information is maintained by the operating system.

Groups, both for system and database, are also supported. Groups allow easy management of role
assignments to any set of users that exist within a group. Note that explicitly defined role assignments
for a user will always take precedence over implicitly acquired role assignments that are derived from a
group that contains the user as a member.

Adding New Users
xxx

<Need to mention installing sqlite3>

20 Once compiled, the shared object library, GSF.POSIX.so, will be deployed into the openPDC installation folder.
21 Note that the openPDC primary functions, e.g., PMU data acquisition, IEEE C37.118 output streams and GEP data
publishers, will continue to function as normal as configured, but no runtime commands or configuration changes
will be accepted without proper user authentication and role validation.

Deploying the openPDC on POSIX Platforms

© Grid Protection Alliance, 2015 Page 13

Authenticating Cross Platform Users
The openPDC can be configured to allow authentication from both POSIX and Windows environments
simultaneously. Cross platform authentication comes into play when using the openPDC Manager
running on Windows to manage the configuration of an openPDC service running in a POSIX
environment.

Since the openPDC Manager application can directly manage a configuration database even without
access to a running openPDC service, it has to independently authenticate a user. Also, since the
openPDC Manager currently only runs on Windows, its user authentication will always be Windows
based. However, when connected to a remote openPDC, the openPDC Manager also has to authenticate
the user with the remote openPDC service, which can be running in a POSIX environment.

To allow cross platform authentication, a user entry must exist in the openPDC configuration database
for each platform for which a user needs to be authenticated. To prevent user configuration duplication,
system users and groups added to the openPDC configuration are converted to a corresponding system
identifier (SID) as provided by the operating system. Duplication is prevented because different
operating systems provide different system identifiers22, allowing the same user to be added the
security configuration for different platforms.

Cross Platform Domain Users
When both the POSIX and Windows environments are configured to authenticate against the same
domain, a domain user or group can be added for both environments effectively.

When adding a domain user to the database configuration the domain name prefix must be specified.
For example, if the domain name is “GPA” and the user name is “openPDCUser”, the username to be
added to the database configuration should look like “GPA\openPDCUser”23.

When a system user is added to the database as a domain prefixed username and is subsequently
recognized as a system user during the next openPDC service configuration load, e.g., issuing the
reloadconfig command, the system user will be changed to an operating system specific SID in the
database. When adding a recognized domain user from the openPDC Manager, it automatically writes
the Windows SID to the database. Accordingly, the domain user will need to be added from the
openPDC Manager for proper authentication on Windows and added to the configuration database
from within the POSIX environment for proper authentication by the openPDC service running there.

Cross Platform Local Users
The only current way to manage a cross platform local user is to create a user with the same name and
password on both the POSIX and Windows environments. However, this does not have to be a local

22 Helping with uniqueness, POSIX platform user and group SIDs for the openPDC will also be prefixed with “user:”
and “group:” respectively. This is needed to create a unique SID that spans both user and group namespaces
because in POSIX environments users and groups are managed separately and their IDs often overlap.
23 Use of the backslash delimiter for the openPDC configuration usernames is required even if the PAM
configuration on the POSIX configuration commonly uses another symbol to delimit the domain and user name.
Consequently, if the openPDC configuration database being used is sensitive to characters escaped with a
backslash, it may be necessary to format the username like “GPA\\openPDCUser”.

Deploying the openPDC on POSIX Platforms

© Grid Protection Alliance, 2015 Page 14

system account on both systems – one option is use a database user in one environment with the same
credentials as the local system user in the other environment24.

Disabling Pass-Through Authentication
There is no functionality in a POSIX environment to impersonate a user’s security context, so openPDC
pass through authentication and integrated security need to be disabled. In practice this means
credentials will be required to login to the openPDC Manager on Windows when connecting to an
openPDC running on Linux or Apple OS X. As a result, if the Windows based openPDC Manager is being
used to maintain a POSIX openPDC configuration, the openPDC Manager configuration must be
modified to require login credentials25. To make this change, stop the openPDC Manager, edit the
openPDCManager.exe.config file and change the following setting:

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <userSettings>
 <openPDCManager.Properties.Settings>
 <setting name="ForceLoginDisplay" serializeAs="String">
 <value>True</value>
 </setting>
 </openPDCManager.Properties.Settings>
 </userSettings>
</configuration>

UUpdating Transport Layer Security
The follow documentation describes how to manually update Transport Layer Security (TLS) settings.
The openPDC TLS configuration is automatically enabled in the installation script along with a newly
created self-signed certificate, as a result, steps to update TLS are generally not required. However, this
section is provided in case the TLS configuration needs to be updated or customized.

For high level information related to using TLS/SSL with Mono, be sure to review the following:

http://www.mono-project.com/docs/faq/security/

Manually Creating a Certificate
Using the MonoGenCert tool that gets deployed with the openPDC will be the simplest way to generate
a new certificate, for example, change directory into the openPDC installation folder (typically
/opt/openPDC) and execute the following:

sudo mono MonoGenCert.exe openPDC

24 When adding a database user to the openPDC configuration database, only the password’s hash will be stored,
not the actual password.
25 Technically with a properly defined Windows account in the configuration database, the openPDC Manager can
still login with pass-through authentication. However, in order to also successfully connect to the openPDC service
running in a POSIX environment and issue commands, valid user credentials must be collected.

Deploying the openPDC on POSIX Platforms

© Grid Protection Alliance, 2015 Page 15

Internally this command calls makecert with the proper parameters to create all the needed keys and
certificate files. The tool also automatically generates a list of all known common names for the
machine.

For more control of the certificate creation process, the makecert command can be used directly, for
example:

makecert -r -n "CN=openPDC,CN=linux.domain.com,CN=192.168.1.149,CN=..." -p12 openPDC.p12
"" -sv openPDC.pvk openPDC.cer

When creating certificates using the makecert command, note carefully the list of common names after
the -n flag. If the list does not contain an entry matching that which was used to connect to this server,
then the client configurations, e.g., console and manager applications, will have to add
RemoteCertificateNameMismatch to the list of ValidPolicyErrors. Note that the only exception is
localhost, which the local client applications will trust regardless.

If the makecert command completes successfully, the result will be two new files. The first file is
openPDC.p12 which contains the public key, certificate information and the private key – this file is
required by Mono in order to properly secure network traffic. The second file is openPDC.pvk which is
the standalone private key file26. If needed, call the makecert command again without the -p12
parameter to create a public key certificate file, i.e., openPDC.cer27.

To protect generated private keys, make sure to restrict access to the files28:

chmod 600 openPDC.p12 openPDC.pvk

Using an Existing Certificate
Existing certificates, such as one obtained from a public certificate authority, can be used by updating
the needed openPDC.exe.config file settings:

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <categorizedSettings>
 <remotingServer>
 <add name="LocalCertificate" value="openPDC.p12" />
 </remotingServer>
</configuration>

26 If the private key file openPDC.pvk already exists before the call to makecert, a new file will not be created – the
tool will instead use the existing private key.
27 Using the MonoGenCert tool automatically creates all three files.
28 This step happens automatically when using the installation script.

Deploying the openPDC on POSIX Platforms

© Grid Protection Alliance, 2015 Page 16

As always, when making modifications to the openPDC configuration, stop the openPDC, make the
needed changes, and then restart the openPDC. Additionally, as mentioned in the Manually Creating a
Certificate section, always make sure to protect the private key files.

Changing the TLS Version
As of version 3.12 of Mono, only TLS 1.0 and older protocols, e.g., SSL versions 1.0 to 3.0, are currently
supported29. The default configuration of the openPDC installation enables the highest level security
available for the environment. To change the supported transport protocols, stop the openPDC, edit the
openPDC.exe.config file and update the following setting:

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <categorizedSettings>
 <remotingServer>
 <add name="EnabledSslProtocols" value="Tls" />
 </remotingServer>
</configuration>
As newer versions of Mono are released that enable updated versions of the TLS protocols, just update
the setting with the latest protocol version, e.g., Tls12 – see table below. Note that client application
configuration settings, e.g., the console and manager, should be updated to match the minimum
specified server protocol in order to properly connect.

29 With the recent open sourcing of Microsoft’s .NET framework, Mono is making improvements on many fronts,
including security. As of the writing of this document, TLS1.2 has been enabled in the latest Mono source code but
has not yet been made available in a release build. When Mono gets a new release that contains updates that the
openPDC can use for improvements related to security, e.g., TLS 1.2, these updates will be tested with the
openPDC so that improved security features can be enabled as soon as they are available.

Deploying the openPDC on POSIX Platforms

© Grid Protection Alliance, 2015 Page 17

Multiple transport protocols can be specified separated by a comma. The possible options are as
follows:

Protocol Description

None No SSL protocol is specified. Cannot be combined with other protocols.

Ssl2 Specifies the SSL 2.0 protocol. SSL 2.0 has been superseded by the TLS protocol and is
provided for backward compatibility only.

Ssl3 Specifies the SSL 3.0 protocol. SSL 3.0 has been superseded by the TLS protocol and is
provided for backward compatibility only.

Tls Specifies the TLS 1.0 security protocol. The TLS protocol is defined in IETF RFC 2246.

Tls11 Specifies the TLS 1.1 security protocol. The TLS protocol is defined in IETF RFC 4346.

Tls12 Specifies the TLS 1.2 security protocol. The TLS protocol is defined in IETF RFC 5246.

Running the openPDC with Elevated Rights
In POSIX compatible applications, security for an application starts high then is reduced to a user’s
permission level upon access. The openPDC is no exception. To make sure the openPDC has access to
needed security information for user authentication and validation, it must be started with elevated
privileges30.

When running the openPDC as a daemon, the service application registration script already makes sure
the openPDC is running with needed elevated privileges such that security functions can be accessed as
needed.

Securing the Configuration Database
The default configuration deployed during installation includes a simple SQLite database for its
configuration. To continue using the SQLite database, the Samba share (if enabled in prior steps for use
with the openPDC Manager) should be reconfigured to require security and the access rights of the
/opt/openPDC/ConfigurationCache folder should be reduced to a specific set of users.

For optimal configuration security, migrating to another type of database and using its security
mechanisms is highly recommended. SQL Server31, MySQL and Oracle can all be used with the openPDC.
See the Using Other Databases section for more information.

30 If the openPDC was installed using sudo, folder rights will already require the openPDC to run with elevated
privileges; however, elevated privileges will still be required by the openPDC when security is fully enabled even if
folder rights are changed not to require root access. Without the needed run-time privileges with security fully
enabled, the openPDC will not be able to validate user credentials and remote command access into the openPDC
will be locked-out.
31 An openPDC running in a POSIX environment can connect to SQL Server running on Windows.

Deploying the openPDC on POSIX Platforms

© Grid Protection Alliance, 2015 Page 18

Running on a Raspberry Pi
At the time of writing there were no common distributions for the Raspberry Pi that contained Mono at
version 3.12; therefore, Mono must be compiled before openPDC installation. In our tests, it took about
8 hours to completely build the needed Mono components on an original Raspberry Pi system and less
than 3 hours on a Raspberry Pi 2 system.

To avoid needing to compile Mono and speed up the installation process, GPA has posted an image for
download with the needed version of Mono and the openPDC preinstalled for running on a Raspberry Pi
and Pi 2 with the Raspbian OS. See the following link for instructions:

https://openpdc.codeplex.com/wikipage?title=Running%20openPDC%20on%20a%20Raspberry%20Pi

For best openPDC performance, the Raspberry Pi 2 is recommended. The new Raspberry Pi 2 Model B
has 4 cores, 1 GB of RAM and better CPU performance all of which provide a very practical and
performant micro-environment for running the openPDC.

The openPDC also runs on the original Raspberry Pi. For optimal performance on this single core system
it is recommended that the configuration of the openPDC on the Raspberry Pi be reduced its primary
tasks.

