Geologic transect across the northern Sierra Madre Occidental volcanic field, Chihuahua and Sonora, Mexico

Fred W. McDowell

Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78712, USA

ABSTRACT

Eleven individual mapping projects by graduate students at The University of Texas at Austin have been compiled into a regional geologic map that comprises a 285-km-long east-west transect of the middle Tertiary Sierra Madre Occidental volcanic field at 28° to 28°30′ north latitude. The map area extends across the entire Sierra Madre Occidental plateau and eastward, to include faulted remnants of the volcanic field in central Chihuahua. In order to portray the timing and evolution of the middle Tertiary volcanism at regional scale, the original volcanic map units have been condensed into a set of nine major units by grouping conformable sequences that have similar K-Ar ages. More recently obtained ⁴⁰Ar-³⁹Ar ages were used to refine the groupings. Original mapped and inferred faults, and known and interpreted caldera margins are also shown.

During the mapping, suites of samples were collected for geochemistry and geochronology. A total of 223 such sample locations are plotted on the transect map. A link is provided between these locations and a master table that lists the type of data available for each sample. The original K-Ar geochronology and geochemistry (majorelements by wet chemistry and limited trace-element measurements) have been augmented subsequently by expanded trace-element concentration data, U-Pb, ⁴⁰Ar-³⁹Ar dating, and measurements of radiogenic and stable isotope ratios conducted on some of the original samples. All of the available data are given in a series of tables.

The field relations and analytical data reveal important spatial and temporal patterns of activity across a large felsic igneous province. These patterns and their implications will be explored in future papers. The primary purpose of this compilation has been to make the information available to those interested in pursuing further investigations within this seriously understudied volcanic field.

Keywords: Mexico; Sierra Madre Occidental; ignimbrite field; geology; geochronology; geochemistry.

McDowell, F.W., compiler, 2007, Geologic Transect across the Northern Sierra Madre Occidental volcanic field, Chihuahua and Sonora, Mexico: Geological Society of America Digital Map and Chart Series 6, 70 p., doi: 10.1130/2007.DMCH006.TXT. For permission to copy, contact editing@geosociety.org. ©2007 The Geological Society of America.

INTRODUCTION

The mid-Tertiary Sierra Madre Occidental volcanic field of western Mexico is the largest contiguous volcanic province in North America (McDowell and Clabaugh, 1979). Its uninterrupted central belt covers ~300,000 km² (Fig. 1), an area roughly equivalent to that of the state of Arizona. It is probable that the field originally extended well eastward into the Basin and Range province of Chihuahua to include perhaps 100,000 km² of additional area. It is possible that the volcanic cover originally was continuous with contemporary deposits in southwestern New Mexico-southeastern Arizona, west Texas, and the central plateau of Mexico.

Pyroclastic materials emplaced as thick ignimbrite sheets are the dominant lithology of the Sierra Madre Occidental volcanic field. These erupted primarily from calderas 20–30 km in diameter (Swanson and McDowell, 1984). Within the core area of the Sierra Madre Occidental, the base of the volcanic section is rarely exposed, because thick caldera-fill sequences are probably present beneath any location. Consequently, the total thickness is difficult to determine, but estimates of composite thickness range from 1 to 1.5 km (McDowell and Clabaugh, 1979). Outside of the central core, where caldera sources are more widely spaced, it is common to encounter the base of the volcanic section. Exposures in those areas are typically 500 m or less in thickness.

Location of the Sierra Madre Occidental volcanic field near and parallel to the western margin of the North American plate, the timing of emplacement during the mid-Tertiary, and the general calc-alkaline composition of the rocks all suggest a relationship of the volcanism to subduction of the Farallon Plate beneath North America (Ferrari et al., 2007). Nevertheless, the tectonic origin of the Sierra Madre Occidental remains an enigma because of the very large flux of magma emplaced over a short interval of time, the evolved composition (rhyodacitic to rhyolitic) of much of that material, and the overlap in timing with the end of Farallon plate subduction. Notwithstanding these uncertainties, a relative lack of published information is the major hindrance to understanding the Sierra Madre Occidental volcanic field

This publication attempts to mitigate this problem for the northern Sierra Madre Occidental volcanic field by summarizing major portions of a long-term project by students and faculty at the Department of Geological Sciences of The University of Texas at Austin (UT). The emphasis has been placed upon field relationships from a series of eleven contiguous mapped areas (Table 1) that cover most of the eastwest extent of the Sierra Madre Occidental volcanic field between 28° and 28°30' N latitude. The original maps have been compiled at a scale of 1:250,000 (see map), and local stratigraphic sections have been generalized into a regional stratigraphic scheme (Table 2; Fig. 2). Geochemical and/or geochronologic data for sample localities shown on the map are compiled in Tables 3–8.

Figure 1. The distribution of Eocene to early Miocene volcanic rocks in western Mexico and adjacent areas of the United States is shown in gray. The black rectangle encloses the area of this map transect. C.B.—location of the Cascada de Basaseachic.

HISTORY OF UT STUDIES IN THE SIERRA MADRE OCCIDENTAL VOLCANIC PROVINCE

Beginnings

Studies begun at UT in the late 1960s still comprise the only sustained investigation of the basic stratigraphy and chronology of volcanism in the Sierra Madre Occidental. Impetus for the project came from Professor J. Hoover Mackin, who obtained funding from NASA based upon the premise that manned Apollo missions could encounter ignimbrite plateaus as a prominent feature of the lunar surface. Mackin's interests included the geomorphic features developed upon the ignimbrite surfaces, as well as the distribution and nature of the ignimbrites themselves. He encouraged Richard Waitt (a student) to begin a master's project along the Durango-Mazatlán highway. They chose two study

					-	
No.	Reference	Degree	Area	Field Years	Base	Supervisor
1	Bockoven (1980)	Ph D.	Yecora-Ocampo	1977–1978	Air photos	McDowell
2	Wark (1989)	Ph D.	Tomochic	1984–1986	Topo 1:50000	McDowell/Smith
3	Kempter (1986)	M.A.	Tomochic	1984–1986	Topo 1:50000	McDowell
4	Swanson (1977)	Ph D.	Tomochic-Ocampo	1974–1976	Topo 1:250000	Clabaugh
5	Duex (1983)	Ph D.	Cuauhtemoc-La Junta	1978–1980	Air photos	McDowell
6	Stimac (1983)	M.A.	Cusihuiriachic-Cuauhtemoc	1982-1983	Topo 1;50000	McDowell
7	Wark (1983)	M.A.	Buenos Aires	1981–1982	Topo 1:50000	McDowell
8	lde (1986)	M.A.	Laboricita–General Trias	1983–1984	Topo 1:50000	McDowell
9	Conlon (1985)	M.A.	General Trias–Tutuaca	1983–1984	Topo 1:50000	McDowell
10	Cook (1990)	M.A.	Palomas	1983–1984	Topo 1:50000	McDowell
11	Megaw (1979)	M.A.	Sierra Pastorias	1977–1978	Topo 1:50000	Clabaugh
No	te: Numbers 1–11 corr	espond to tho	se on man inset			

TABLE 1. DESCRIPTION OF MAPPING PROJECTS

areas along the highway, for comparison of the gently tilted and featureless plateau surface to the deeply eroded canyons (barrancas) at the western plateau margins. Unfortunately,

Durango Phase

Mackin passed away while this project was still under way. Following this unexpected development, Professors Stephen Clabaugh and Daniel Barker stepped in to ensure completion of Waitt's work (Waitt, 1970). Being petrologists, they increased emphasis on the volcanic stratigraphy and petrology-geochemistry of the field. With the completion of a laboratory for K-Ar geochronology by McDowell at UT, determination of the timing of volcanism was also included in the study. One reconnaissance introduction to the vast Sierra Madre Occidental province was sufficient to convince McDowell to devote most of the K-Ar lab efforts to the timing of events there.

Clabaugh took the lead in administering the NASA funding, redirecting its scope, and recruiting graduate students to continue studies along the Durango-Mazatlán highway, which at that time was the only paved route across the Sierra Madre Occidental between Guadalajara and the U.S. border (Fig. 1). This phase of the project was hampered in the field by access limitations, lack of topographic maps at scales less than 1:250,000, and an absence of systematic aerial photography other than that obtained for special projects. The mapped areas were restricted, particularly along the western part of this transect (McDowell and Clabaugh, 1979), where the highway maintains elevation along an increasingly narrow ridge before plunging steeply

TABLE 2. EXPLANATION OF UNITS

Quaternary	-Late Tertiary
QTal	Alluvium. Unconsolidated to poorly consolidated.
Late Tertia	\underline{v}
Ts	Coarse, generally lithified clastic deposits, Associated with NW trending linear basins.
Oligocene-	Eocene
Tuml	Upper mafic lavas; generally of basaltic andesite composition, generally above or interlayered with Tfr and the uppermost units of Tv.
Tfr	Ferroaugite rhyolite (Cameron and others, 1980); distinctive rhyolitic ignimbrites characterized by Fe-rich pyroxene and/or fayalitic olivine; ca. 30 Ma.
Tvu	Felsic volcanic rocks undivided; predominantly pyroclastic.
Tv7	Felsic lava flows and ignimbrites, intercalated with Tuml in western part of transect; ca. 23 Ma.
Tv6	Major interval of felsic ignimbrites generally poorly welded, with related intermediate and felsic lavas; ca 30 Ma.
Tv5	Major interval of ignimbrites and associated units; 31.0–32.5 Ma.
Tv4	Major interval of ignimbrites and associated units; 33–35.5 Ma.
Tv4i	Small rhyolitic intrusions marking caldera structural boundaries in eastern portion of transect.
Tv3	Locally thick accumulations of felsic tuffs and felsic and intermediate lavas; mainly in eastern portion of transect; 36–37 Ma.
Tv2	Oldest felsic ignimbrites throughout transect area; in places intercalated with thick intermediate lava flows; 38–39 Ma.
Tv1	Extremely localized occurrences of intermediate and felsic lava flows in eastern part of transect; 40–43 Ma.
Early Tertia	iry and Late Cretaceous (?)
KTvs	Accumulations of intermediate to felsic lavas and pyroclastic deposits.
Mesozoic	
Ms	Mesozoic sedimentary rocks, undivided.
Intrusions	
Ti	Small intrusions of middle Tertiary age.
KTi	Small intrusions of Late Cretaceous and early Tertiary age, generally equigranular granodiorite.

The numbers above the columns and in the inset refer to the individual map areas (see Table 1 and inset of the transect map). The columns contain many of the names of major map units used in the original mapping. The colored flags to the left of the columns show their assignment to the units used to construct the transect map; these colors match those on the Figure 2 (continued on following pages). A series of time-stratigraphic charts portrays the general distribution of volcanic units across the transect from west to east in three panels. transect map. Also shown are the stratigraphic positions of dated samples; numbers in parentheses correspond to entries in column 1 of Tables 5-7. Numbers in bold are K-Ar and U-Pb ages used to assign local map units to the transect units; other ages are shown in normal font style. Numbers in red are ⁴⁰Ar-³⁹Ar ages for the same samples (see text). Note the time markers at the left side of each panel. Panel A includes the main Sierra Madre Occidental and panels B and C include mapped areas in central Chihuahua.

Figure 2 (continued).

C. Central Chihuahua east

Figure 2 (continued).

westward toward its termination at Mazatlán on the Gulf of California. Consequently, Waitt used a highway elevation map as his primary control; the western study area of his mapping was as much a cross section as a plan map. Subsequent mapping in the central part of the Sierra Madre Occidental volcanic field utilized a narrow band of aerial photography made for construction of the highway (Wahl, 1973).

Mapping efforts were more readily facilitated at the eastern end of this transect, in the vicinity of Durango City. A team of students (Keizer, 1973; Swanson, 1974; Lyons, 1975) working there was able to extend the stratigraphy of Waitt's eastern area into the surrounding area and to document the first caldera complex for the Sierra Madre Occidental volcanic field (Swanson et al., 1978). This effort also was the first to demonstrate that ignimbrite sources in the Sierra Madre Occidental volcanic field were likely to be quite similar in size and structure to those within classic ignimbrite provinces in the United States and elsewhere, including the San Juan volcanic province of southwestern Colorado (Lipman, 1984). Using a comparison by area with the San Juan province, Swanson and McDowell (1984) estimated that 350–400 such calderas are potentially present in the Sierra Madre Occidental province.

K-Ar dating associated with the Durango studies established the first estimates of timing for volcanism in the Sierra Madre Occidental volcanic field (McDowell and Keizer, 1977). The ages revealed two discrete pulses of activity, from 31 to 28 Ma in the Durango area, and a cluster of events at 23 Ma in the western portion of the transect. The Durango-Mazatlán studies also established that the ignimbrites mostly were true rhyolites in composition and follow a high-potassium calc-alkaline trend. All together, these studies provide a transect of the Sierra Madre Occidental volcanic field along the Durango-Mazatlán highway at 24° N latitude (McDowell and Clabaugh, 1979).

Studies in Chihuahua

In the middle 1970s, two developments facilitated expansion of our studies further to the north in the state of Chihuahua. The first of these was the initiation of a program by the Mexican government to begin aerial photography and to produce topographic maps at 1:250,000 and 1:50,000 scales for the entire country. The other development was construction to extend a second paved highway across the Sierra Madre Occidental connecting the cities of Chihuahua and Hermosillo (Sonora). However, both of these developments lagged behind the start of our mapping in Chihuahua, and the earliest studies failed to benefit fully from them.

The eleven studies compiled for this northern transect are listed in Table 1, where they are numbered by location from west to east. The pioneering project was by Swanson (1977) who continued his studies in Mexico for a Ph.D. dissertation. He chose the area around the town of Tomochic (Fig. 1) based upon satellite images that indicated the presence of a "caldera-like" feature. He mapped three areas in reconnaissance using aerial photos, but without the benefit of 1:50,000 scale topographic maps

(Swanson, 1977). Swanson documented a caldera complex from which two major ignimbrite units were erupted, at 34 and 31 Ma (Swanson and McDowell, 1985). The Tomochic area was thus shown to be of prime importance, and a "second generation" of studies was initiated there after better air photos and base maps had become available (Kempter, 1986-area 2; Wark, 1989area 3). Kempter and Wark refined much of Swanson's earlier mapping, except for a small portion of his easternmost map area. This portion of Swanson's original mapping includes important and easily accessible outcrops along the highway ascending the eastern flank of the Sierra Madre Occidental (area 4). It has been included in the compilation following revision to accommodate additional stratigraphic and structural detail, and expanded K-Ar geochronology provided by the subsequent studies (see next section). Together these studies have established the Tomochic caldera complex as a "type locality" for the northern Sierra Madre Occidental volcanic province (Wark et al., 1990; Wark 1991).

Two new projects were undertaken following Swanson's study (Table 1). One was located to the west, reaching across the Sierra Madre Occidental plateau as far as the town of Yécora in eastern Sonora (Bockoven, 1980—area 1). The second included a large area to the east, in the Chihuahua Basin and Range (Duex, 1983—area 5). Both of these should be considered reconnaissance as they also preceded the availability of 1:50,000 scale topographic maps for the areas. Also, the Chihuahua-Hermosillo national highway was still under construction west of Tomochic at the time of Bockoven's mapping. Because of the difficult access in the central part of the Sierra Madre Occidental, that project was originally begun as a two-person study. However, an unfortunate automobile accident claimed the life of one of the students (R.P. Keizer) and seriously injured Bockoven. Subsequently, the project was expeditiously curtailed.

Later UT studies in Chihuahua were facilitated by the availability of comprehensive aerial photography and topographic maps at 1:50,000 (Table 1). Aside from differences in scale and detail of mapping, all of the projects followed a similar pattern. A local volcanic stratigraphy was established and each major map unit was given an informal name (an exception was Bockoven's study for which most of the units were identified by lithology). In each area, the stratigraphy provided a sampling framework for K-Ar age determinations, major-element chemical analyses by wet chemistry, and a very limited array of trace-element analyses by X-ray fluorescence. As is explained later, these data subsequently have been supplemented by more comprehensive trace-element analyses and more precise geochronology.

These eleven projects comprise a transect that extends westward for 285 km from Chihuahua City to the town of Yécora, which is just to the west of the Chihuahua-Sonora state border (Fig. 1). At this latitude (between 28° and 28°30' N), the distribution of mid-Tertiary volcanic rocks is wider than in Durango, such that the eastern part is within the Chihuahua segment of the Mexican Basin and Range province (Henry and Aranda-Gómez, 1992; 2000). A broad valley located between map areas 4 and 5 (Table 1) that contains Late Tertiary to modern sediments is used here as a boundary between the relatively unfaulted Sierra Madre Occidental plateau and the basin and range of central Chihuahua.

This compilation does not include additional UT studies of Tertiary volcanic rocks in the Sierra Madre Occidental and eastern Chihuahua that are in isolated locations. Many of these have been published previously (e.g., Keller et al., 1982) or will be included in separate publications. The information compiled is limited to that in studies by UT graduate students, staff, and faculty. We hope that by providing a record of these basic studies, we will stimulate and focus future investigations aimed toward furthering our understanding of this vast volcanic province. Those interested in greater detail than shown on the compiled map and/or petrographic information about the samples analyzed, can access the theses and dissertations by interlibrary loan from The University of Texas at Austin library system.

CONSTRUCTION OF THE 1:250,000 SCALE MAP

The best available versions of the original maps, normally either a folded blueline print, a blackline print, or a mylar print, were scanned into a computer file. Intensity and contrast were adjusted and the maps were rotated to a north-south parallel using Adobe Photoshop. The transect area covers parts of three 1:250,000 topographic maps (UTM H12-12, H13-10 and H13-11; Instituto Nacional de Estadística Geografía y Informática of Mexico). These were obtained on a computer disk, and the east and west borders of the maps were trimmed using Photoshop so that they could be stitched into a seamless base map. This map was then imported to ArcGIS and georeferenced to the NAD 83 datum. Because the transect area crosses a major UTM grid boundary, the coordinate system chosen was decimal degrees.

The eleven geologic maps were georeferenced to the topographic base map using common reference points. For those maps with a topographic base, the UTM 10 km grid provided a convenient reference. Those without such a base were more of a challenge. Most streams within the transect area are ephemeral, and stream courses chosen from inspection of the aerial photos did not necessarily correspond to those printed on the published topographic maps. Streams were thus of dubious use as tie points. Intersections of paved roads, intersections of paved roads and railroad lines, and a few distinctive topographic features shown on both maps were the only reliable ties. The quantity of these ties was insufficient to remove all original distortion for some maps, and those distortions that remain are reflected in mismatches between geologic and topographic map.

Using ArcGIS, all geologic contacts, faults, and original map boundaries were digitized and attributed as originally drawn by the student mappers. Inferred caldera boundaries are shown as well. Great effort was made to remain faithful to the original maps, but some compromise was required in extending contacts to map boundaries or in designating areas within the map having minimal or uncertain information as "unmapped." Some units that were insignificant at final scale were ignored. Stratigraphy within the small but important area included from Swanson (1977—area 4) was refined through consultation with Swanson, Kempter, and Wark, in order to approximate the detail of later mapping in the Tomochic area. Original structural data were not plotted, because they represent foliation attitudes for individual units that have been grouped for this map (see below). Digitizing was performed for appearance at 1:250,000 and may look somewhat ragged at magnification. No attempt was made to fill in unmapped areas between the project maps, or to extend mapping outside of the original map boundaries.

TRANSECT MAP UNITS (TABLE 2)

Middle Tertiary Volcanic Units

As the major focus of this compilation, development of a stratigraphy to portray the middle Tertiary volcanic rocks consistently and at appropriate scale across the entire transect area has been of primary importance. The original map units are not suitable because they are too finely subdivided and because too few correlations across map boundaries have been established. Conversely, a designation as "Tertiary volcanic rocks, undivided" would represent no improvement over existing state and regional geologic maps, or even the early reconnaissance traverses of the last century (Hovey, 1905; 1907; King, 1939). The method developed was based upon the observation that nearly every mapped area contains coherent groups of volcanic units that have reasonably well-clustered K-Ar ages. This combination of stratigraphic coherence and age groupings was used to define the regional units portrayed in the transect map (Table 2). This scheme is not completely satisfactory, because the two-sigma uncertainty of 1-2 Ma for any single K-Ar age is too large for reliable assignment in some cases. Consequently, more precise ⁴⁰Ar-³⁹Ar ages obtained recently have been used to refine the groupings and their age limits. The three panels of Figure 2 along with Appendix Table 1, illustrate how the major original units have been grouped into the units used on the map, and show their general distribution across the transect area. The K-Ar, U-Pb, and ⁴⁰Ar-³⁹Ar ages are indicated in their relative stratigraphic positions (where known). Figure 2A covers the main Sierra Madre Occidental (map areas 1-4), and Figures 2B (areas 5-8) and 2C (areas 9-11) include the central Chihuahua portion of the map.

Throughout the transect area, the volcanic sequence is dominated by ignimbrites. Rhyolite lavas are prominent only locally and volcanogenic sediments are uncommon. Over most of the map area, this volcanism occurred between 43 and 28 Ma. Rocks of this interval have been divided into six map units, numbered Tv1 through Tv6 from oldest to youngest (Table 2). In the western part of area 1, the volcanism is significantly younger, ca. 23 Ma. Unit Tv7 is used to delineate these distinctly younger rocks. Each of these transect units was assigned a nominal time interval that encompasses most of the available ages for its dated components. There is no requirement or expectation, however, that the transect units are the same age everywhere. A general designation of Tvu is used for some exposures of Tertiary volcanic rocks that are uncorrelated and undated, primarily in the westernmost part of the map area. One subunit, Tv4i, denotes rhyolitic domes and necks that are arrayed in a circular pattern and appear to mark the caldera source for some of the ignimbrites of unit Tv4 in the eastern part of the map (area 11). Ti indicates small intrusives that are related to the middle Tertiary volcanism.

Two additional map units that are used for the middle Tertiary volcanic rocks have been based upon rock types described in previous regional studies of the northern Sierra Madre Occidental (Cameron et al., 1980; 1989). Unit Tfr comprises ferroaugite rhyolites that are characterized by Fe-rich clinopyroxenes and olivines (Cameron et al., 1980). These ignimbrites are found only in the central Chihuahua portion of the map (areas 5-10), but are more prominent between 50 and 100 km to the northnortheast of Chihuahua City in areas mapped by R.L. Mauger and students (Mauger, 1983a, 1983b, 1988; Mauger and Dayvault, 1983), where they have been dated by K-Ar at ca. 30 Ma (McDowell and Mauger, 1994). Unit Tuml, for "upper mafic lavas," is used for a mafic lava unit found at or near the top of volcanic sections throughout the map area. The rocks are mostly of basaltic andesite composition. They probably correspond to the Southern Cordilleran Basaltic Andesite suite of Cameron et al. (1989), who showed that such lavas are prominent elsewhere in the northern Sierra Madre Occidental and in the southwestern U.S. Cameron et al. (1989) suggested that the Southern Cordilleran Basaltic Andesite suite is related to extensional deformation that post-dates the tectonic environment that existed during ignimbrite emplacement. However, Wark (1991) demonstrated that similar mafic lavas are intercalated with, and probably genetically related to, the evolution of the rhyolitic ignimbrites at the Tomochic caldera complex. Throughout the map area, the upper mafic lavas are commonly found intercalated with the youngest rhyolite units (Tfr, Tv6 and Tv7).

Post-Tv Map Units

Throughout the Chihuahua Basin and Range and in the westernmost part of the Sierra Madre Occidental, sedimentary rocks that show varying degrees of induration overlie the Tertiary volcanic rocks. Unit Ts designates coarse clastic deposits that are nearly totally lithified and were deposited in linear basins generally oriented northwest and bounded by a normal fault on at least one flank. These deposits are similar to basin-fill deposits formed during extension that have been described from the basin and range of Sonora (McDowell et al., 1997, and references therein). A prominent exposure of Ts in the western part of area 1 marks the eastern extent of the Sonoran Basin and Range. Similar deposits are widespread in the Chihuahua Basin and Range (areas 5-11). However, in that region, they can be difficult to distinguish from the younger unit QTal, which is used for unlithified sediments deposited in modern valleys. This difficulty arises because, until recent times, central Chihuahua has been characterized by internal drainage.

The student mappers have made the distinction between units Ts and QTal arbitrarily in some cases, and they did not always agree in contiguous areas (see map). Study of clastic deposits in the basin and range area of Chihuahua is a topic awaiting further attention.

Pre-Tv Map Units

The volcanic belt of the Sierra Madre Occidental was emplaced over an older magmatic arc, at least on its western flank. Two map units (KTi and KTvs) have been used to delineate rocks related to this earlier (Laramide) arc. KTi consists of equigranular granodioritic plutons. One pluton in north-central area 1 has been dated at 63 Ma (sample 8). Another in central Chihuahua (area 9) is 60 Ma (sample 204). KTvs has been used for deposits of volcanic rocks and volcaniclastic sediments that also are associated with the Laramide arc. These are prominent in the eastern part of area 1. Older Mesozoic sedimentary units are designated by Ms. These are mostly middle Cretaceous limestones, but they include sedimentary rocks of Jurassic and Triassic age in the southwestern-most part of the map and adjacent to the pluton in the Sierra Magistral (area 9 on map). No exposures of older rocks are documented in the transect area. However, tuffs deposited near the Cascada de Basaseachic (easternmost part of area 1) contain lithic fragments of granitic gneiss that are as old as 1.6 Ga by U-Pb on zircon (Housh et al., 2003).

STRUCTURE

Calderas

Swanson and McDowell (1984) summarized existing evidence for calderas as sources for the ignimbrites within the Sierra Madre Occidental volcanic province. Although they adopted a liberal approach, including features identified only from satellite imagery, they could point to only twelve locations documented to be, or suggestive of, caldera features. In contrast, using the San Juan volcanic field as a scale, ~350 calderas would be necessary to produce a volcanic field of the dimensions of the Sierra Madre Occidental. Since that publication, there has been some progress in identifying caldera structures and other vent features that have produced ignimbrites, particularly in the southern Sierra Madre Occidental volcanic field (Ferrari et al., 2007). In the Copper Canyon region to the south and east of Tomochic, Swanson et al. (2006) have identified or suggested the existence of four additional caldera features.

Within the transect area, no evidence of caldera sources has been suggested since the 1984 publication. The caldera margins shown on the map represent a more conservative interpretation than that used by Swanson and McDowell (1984). They are drawn to indicate structural rather than topographic margins, and, with the exception of the Basaseachic caldera, retain the interpretations from the original student maps.

The well-described Tomochic caldera complex (Swanson and McDowell, 1985; Wark et al., 1990) can be considered a type locality for ignimbrite sources in the Sierra Madre Occidental volcanic field. The younger of the two structures (Tomochic caldera) is obvious in satellite imagery, and the moat fill, resurgent dome, and rhyolite domes and flows that mark the ring fracture are well preserved. However, the caldera structural boundary is concealed and can only be projected beneath the caldera fill. In addition, the erupted ignimbrite is not exposed anywhere within the caldera structure, so that the assignment of the erupted ignimbrite must be made by inference. Swanson and McDowell (1985) assigned the Rio Verde ignimbrite (Fig. 2A) to this caldera, although they noted that it comprises numerous (as many as 15) individual ashflows, and that there seems to be an unusually long gap in time (ca. 1.5 Ma) between the dated Rio Verde eruption and K-Ar ages for the post-eruption caldera resurgence and fill. More recent and more precise chronology (Tables 5 and 6) has widened this gap to 2 Ma. It appears that the Tomochic caldera must be re-evaluated as a source for the Rio Verde ignimbrite.

The older component of the Tomochic caldera complex is the Las Varas caldera, source of the Vista ignimbrite (Fig. 2A; originally called the Aeropista ignimbrite by Swanson, 1977). This feature is centered to the north of the Tomochic caldera and is exposed at a deeper structural level, at which the interior is completely occupied by the intracaldera facies of the Vista ignimbrite (Wark et al., 1990). Although this fill may have lapped over the original structural margin, Wark et al. (1990) placed the caldera margin at the contact between intracaldera Vista and older units. Specific caldera-margin features are absent. Outside of this margin exposures of the outflow Vista ignimbrite are considerably thinner (Swanson, 1977; Kempter, 1986; Wark, 1989).

At the eastern margin of area 1, there is a clear fragment of a caldera boundary to the east of the falls (cascada) at Basaseachic (Fig. 1, locality C.B.). At the falls, a 300-m-thick section of the 28 Ma Cascada tuff dips gently eastward toward the unmapped area between area 1 and areas 2 and 3. That gap contains numerous domes and flows of rhyolite, some of which are also 28-29 Ma. At Basaseachic, the tuff is clearly intracaldera in nature and contains abundant fragments of older rocks, which include basement gneisses with ages of 1.6 Ga (Housh et al., 2003). Bockoven (1980) projected this caldera boundary using numerous exposures of small rhyolitic domes and small flows to mark the caldera margin. Exposures of volcanoclastic sediments interpreted as caldera-fill material occur within the south and southwest margins of this feature. Bockoven's (1980) interpretation proposed a resurgent caldera at least 40 km in diameter. On satellite images and regional-scale topographic maps the steep canyons of the Rios Condamena and Concheno appear to mark ~80% of the circular feature. On the other hand, much of the interior (and poorly accessible) "resurgent portion" is occupied by exposures assigned by Bockoven to the Late Cretaceous-early Tertiary lower volcanic complex, following earlier reconnaissance by Hovey (1905; 1907) and King (1939). Clearly, extensive exposures of older rock within a caldera structure present a problem for interpretation. Because distinction between "Laramide" and middle Tertiary intermediate composition volcanic rocks is lacking in this area, only the more obvious eastern portion of a caldera margin has been traced on the map. It is possible that rather than a single large structure, a number of smaller calderas are located within the southern and eastern portions of area 1.

Within the central Chihuahua area, complex post-volcanic faulting has made identification of caldera features difficult, even in areas of relatively detailed mapping. The Sierra Pastorias area (area 11) contains the most coherent volcanic exposures, and Megaw (1979) documented two calderas there. The Pastorias caldera (~20 km in diameter) is the northern and larger of the two. Although the northeastern third of its margin is buried by younger rocks, the remainder is well marked by a ring of small intrusive rhyolite exposures (unit Tv4i) that have erupted along the marginal fault(s), and by large blocks of middle Cretaceous limestone that have foundered into the caldera. Both of these features are shown on the map. Megaw assigned the Carretas tuff (Fig. 2C) to this caldera. To the south, Megaw mapped a smaller (10 km diameter) caldera that apparently was the source for his Nuevo tuff. Again, small intrusive rhyolite exposures mark part of the caldera margin.

Other Features

The Sierra Madre Occidental volcanic field was apparently emplaced in a neutral tectonic setting. The volcanic strata lack compressional deformation, which indicates emplacement after the completion of Laramide shortening. The timing of volcanism is older than that of regional extensional deformation. Within the central Sierra Madre Occidental, the rocks are essentially flat lying and little deformed. There are no major intervals of coarse gravels that would indicate the formation of graben structures related to extension. The only tectonic disruption in the central Sierra Madre Occidental is local sedimentation and deformation associated with the formation of calderas.

Late Tertiary deformation has infringed upon the original extent of the Sierra Madre Occidental volcanic field on both its east and west margins. East of Yécora (Fig. 1), a linear basin filled with clastic sediments (unit Ts) marks the eastern limit of the Sonoran Basin and Range province. A broad valley to the east of the Tomochic area (area 4) marks the separation of the unfaulted central Sierra Madre Occidental from the Chihuahua segment of the Mexican Basin and Range (Henry, and Aranda-Gómez, 1992). The volcanic rocks in the central Chihuahua portion of the map have been profoundly affected by this later tectonism. A grain of northwest-trending horsts is apparent throughout central Chihuahua (see map). However, the corresponding grabens have been partially filled with syn-tectonic coarse clastic material of unit Ts, and then flooded by debris of Late Tertiary (?) and Quaternary age (unit QTal). This post-faulting debris was deposited via internal drainage systems, and it remains unexcavated in much of central Chihuahua. Hence, the master range-bounding faults remain almost entirely concealed. Because volcanic strata in the horst blocks dip consistently and gently (10° to 20°) to the northeast and east, these master faults should be present along the southwest margins of the blocks. However, only where exposures of unit Ts adjoin the older rocks can the exact location of these faults be reasonably inferred. In many places the volcanic strata have been considerably disrupted by secondary structures related to these faults.

SAMPLES

There are 223 samples for which analytical data have been obtained that are located on the transect map. They are plotted using consecutive numbers sorted by longitude from west to east. A master table (Appendix Table 2) lists the samples consecutively, and includes the original sample numbers, their coordinates in decimal degrees, and the type of analytical data available for each. The consecutive numbers are provided to facilitate inspection of the tables that contain the analytical data (Tables 3–8).

Most of the samples were collected from major units during the field studies for concurrent age and chemical measurements. Initially, locations were plotted on aerial photos or directly on 1:50000 topographic maps if available at that time. GPS measurements are not available for them, and the locations typically can be considered precise only to within 10s of meters. However, the original map unit and its stratigraphic position are well documented for each, and brief petrographic descriptions are given in the original theses and dissertations. The distribution of samples throughout the map is very uneven, primarily because extensive additional sampling has been undertaken in the Tomochic area. Sample groups were collected during all of the studies there, and Wark later collected another suite (those samples having a 90-XX notation) for an expanded investigation of the geochemistry of mafic lavas.

The analytical results are presented in subsequent sections with a minimum of discussion and interpretation. A more "in depth" treatment of the data is reserved for later publications.

GEOCHEMISTRY

Major-Element Analyses

Table 3 lists major-element oxide data for 175 samples. They are again ordered by longitude from west to east. Most of the sample powders were pulverized in tungsten carbide containers. Analyses completed concurrently with the mapping projects were made by wet chemical procedures at UT (method M1; see Table 3 footnotes), and include separate determinations of H_2O^+ , H_2O^- , and CO_2 , as well as Fe⁺² and Fe⁺³ oxides. Later analyses were made by X-ray fluorescence (XRF), either at the Geoanalytical lab of Washington State University (WSU), or at University of Massachusetts, Amherst (methods M2 and M3). Because some samples were resubmitted for comprehensive trace element analyses by XRF, there is some duplication of the major-element determinations.

Normalized major-element compositions are shown on a plot of total alkalis against silica (Fig. 3A). This plot shows the dominance of both true rhyolites and basaltic andesites in the analyzed suite. There are only a sprinkling of intermediate composition rocks, and no true basalts. Samples from both the main Sierra Madre Occidental (in red) and from central Chihuahua (in green) are subalkaline for the most part. The latter group appears to have slightly higher alkali concentrations at a given silica value, but this distinction is made difficult for rhyolites because oxide totals are constrained to sum to 100%. A plot of total alkalis minus CaO versus silica (modified alkali-lime index of Frost et al., 2001) better emphasizes the contrast (Fig. 3B). Rhyolites from central Chihuahua (in green) are mostly alkali-calcic, whereas those from the Sierra Madre Occidental (in red) are mostly calc-alkalic. The regression lines calculated for the separate data sets are statistically different. Three analyses of ferroaugite rhyolites from central Chihuahua are included on this plot, but are not distinct from the others. However, the ferroaugite rhyolites are characterized by high FeO*/MgO (>40) relative to the other rhyolites from central Chihuahua (<22, with one exception).

Trace-Element Chemistry

Table 4 lists trace-element data for 164 samples in order from west to east. A total of five combinations of lab and technique were used to obtain these data, which has resulted in duplication of some data for many of the samples. The table is organized so that the XRF data appear on the first three pages, followed by ICP and neutron activation results. During the course of the UT mapping projects, Bramson (1984) established XRF procedures for analyses of Rb, Sr, Y, Zr, and Nb concentrations (method T1). These data were acquired for all the samples analyzed at UT by wet chemistry. Method T2 refers to trace element determinations obtained from the WSU Geoanalytical lab by XRF and/or ICP-MS (in most cases XRF analyses were not requested for the samples analyzed previously by method T1). The investigation of Wark (1989) in the Tomochic area included expanded traceelement analyses obtained from Los Alamos National Laboratories (T5). For his subsequent examination of mafic lavas from the Tomochic region, he obtained XRF analyses from the University of Massachusetts, Amherst, (method T3) and neutron activation analyses from Oregon State University (method T4).

Figures 4A and 4B are trace-element variation diagrams for the rhyolites and basaltic andesites respectively, for which sufficiently complete analyses are available. In each plot, the profiles for main Sierra Madre Occidental and central Chihuahua samples are indicated by separate colors. Both compositional types from both areas display arc-type signatures. Further, the rhyolites show depletion of Ba and Sr, an expected result of feldspar fractionation. This is evident as well from prominent europium anomalies on REE plots (not shown).

GEOCHRONOLOGY

K-Ar Ages

There are 136 K-Ar ages listed in Table 5; these come from 113 samples, which are listed by longitude from west to east. Thirty of the samples are from the Tomochic area (areas 2, 3, and 4). Ninety of the ages have been published previously in the four

maine lit method sit mode mode </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>TABLE</th> <th>3. MAJOR</th> <th>ELEMEN</th> <th>UT CHEMI</th> <th>STRY</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>									TABLE	3. MAJOR	ELEMEN	UT CHEMI	STRY									
10 10<	Sal	mple	Unit	Method	SiO_2	TiO ₂	AI_20_3	Fe ₂ O ₃	FeO	FeO*	MnO	MgO	CaO	Na ₂ O	K ₂ 0	P_2O_5	H₂O⁺	H_2O^-	CO_2	Total	LOI	Ref.
10.1 10.1 0.01 0.21 0.32 0.33 0.31 0.31 0.32 0.33 <th< td=""><td>с, с,</td><td>21-3</td><td>Tuml</td><td>M1</td><td>51.02</td><td>1.93</td><td>16.46</td><td>4.41</td><td>5.73</td><td></td><td>0.14</td><td>4.61</td><td>7.14</td><td>3.39</td><td>2.13</td><td>0.64</td><td>1.18</td><td>0.32</td><td>0.02</td><td>99.12</td><td></td><td></td></th<>	с, с,	21-3	Tuml	M1	51.02	1.93	16.46	4.41	5.73		0.14	4.61	7.14	3.39	2.13	0.64	1.18	0.32	0.02	99.12		
31 1mi M Sig 1mi M Sig 1mi M Sig 1mi M M Sig 1mi M M Sig 1mi M <td>ų</td> <td>21-2</td> <td>Tv7</td> <td>M1</td> <td>70.10</td> <td>0.27</td> <td>13.57</td> <td>0.96</td> <td>0.38</td> <td></td> <td>0.05</td> <td>0.32</td> <td>0.98</td> <td>3.15</td> <td>5.12</td> <td>0.04</td> <td>4.07</td> <td>0.61</td> <td>00.0</td> <td>99.62</td> <td></td> <td></td>	ų	21-2	Tv7	M1	70.10	0.27	13.57	0.96	0.38		0.05	0.32	0.98	3.15	5.12	0.04	4.07	0.61	00.0	99.62		
01 101 000 104 107 010 107 010	ξ	20-3	Tuml	M1	58.32	1.20	16.51	2.93	3.97		0.11	2.62	5.45	3.67	2.54	0.42	0.52	0.76	0.08	99.10		
1 1 1 3 1 2 3 3 1 1 1 3 1 1 3 1	Ϋ	20-1	Tuml	M1	50.09	1.64	16.75	6.06	4.19		0.14	4.59	8.68	3.20	1.55	0.70	0.94	0.74	0.02	99.29		
11.11101011.0<	2	Aa-1	КТі	M1	58.71	0.82	16.41	2.38	3.78		0.09	3.01	5.98	3.16	2.71	0.17	1.13	0.23	1.01	99.59		
1+1 1va 1va <td>12.</td> <td>-11-13</td> <td>Tvu</td> <td>M1</td> <td>55.11</td> <td>1.18</td> <td>17.05</td> <td>4.09</td> <td>3.27</td> <td></td> <td>0.10</td> <td>3.75</td> <td>6.83</td> <td>3.27</td> <td>2.14</td> <td>0.46</td> <td>1.35</td> <td>0.33</td> <td>0.01</td> <td>98.96</td> <td></td> <td></td>	12.	-11-13	Tvu	M1	55.11	1.18	17.05	4.09	3.27		0.10	3.75	6.83	3.27	2.14	0.46	1.35	0.33	0.01	98.96		
71011012000111244035034034037034036036036036231110111150213303703703703903903903923111411502133039163037036039039039039231114114153024153039159037039103039039039231114117021132039132039132039132039039039039039114114117124031132039132039132039039039039039114114114114124031031039039039039039039114 <td>÷</td> <td>-14-1</td> <td>Tvu</td> <td>M1</td> <td>63.09</td> <td>0.61</td> <td>15.23</td> <td>4.42</td> <td>0.26</td> <td></td> <td>0.07</td> <td>1.62</td> <td>4.31</td> <td>3.98</td> <td>2.11</td> <td>0.17</td> <td>2.30</td> <td>1.66</td> <td>0.01</td> <td>99.84</td> <td></td> <td></td>	÷	-14-1	Tvu	M1	63.09	0.61	15.23	4.42	0.26		0.07	1.62	4.31	3.98	2.11	0.17	2.30	1.66	0.01	99.84		
No. No. Tage Ord Ord <td>ę</td> <td>)-23-5</td> <td>Tvu</td> <td>M1</td> <td>74.00</td> <td>0.11</td> <td>12.44</td> <td>0.35</td> <td>0.34</td> <td></td> <td>0.04</td> <td>0.13</td> <td>0.73</td> <td>3.64</td> <td>3.47</td> <td>0.01</td> <td>4.17</td> <td>0.17</td> <td>0.02</td> <td>99.62</td> <td></td> <td></td>	ę)-23-5	Tvu	M1	74.00	0.11	12.44	0.35	0.34		0.04	0.13	0.73	3.64	3.47	0.01	4.17	0.17	0.02	99.62		
2311mimi1mi		BV5	Tvu	M1	73.60	0.15	13.03	0.71	0.35		0.04	0.24	0.98	3.45	3.90	0.03	2.33	0.21	0.02	99.04		
25214M15770.21350.890.200.290.290.290.200.030.030.000.0230.2014040404040404040404040404171417040414714601404501401404004404171414130401504014014014014014014<	ო	-23-1	Tuml	M1	61.55	0.92	16.46	2.87	2.35		0.04	1.68	4.83	4.00	2.79	0.34	1.69	0.30	0.03	99.85		
0000 110 010 613 510 <td>÷</td> <td>0-25-2</td> <td>Tv4</td> <td>M1</td> <td>75.77</td> <td>0.22</td> <td>13.35</td> <td>0.88</td> <td>0.20</td> <td></td> <td>0.02</td> <td>0.27</td> <td>1.00</td> <td>3.54</td> <td>4.22</td> <td>0.02</td> <td>0.35</td> <td>0.27</td> <td>0.08</td> <td>100.23</td> <td></td> <td></td>	÷	0-25-2	Tv4	M1	75.77	0.22	13.35	0.88	0.20		0.02	0.27	1.00	3.54	4.22	0.02	0.35	0.27	0.08	100.23		
W11 Tw M1 70.7 0.29 447 2.14 0.14 0.14 0.14 0.01 0.03 0.03 0.04 0.03 0.04 0.04 0.04 0.04 W01 Tw W1 7.36 0.44 1.32 0.14	-	90-29	Tv2	M3	61.81	0.81	16.59			5.69	0.11	2.65	5.50	3.79	2.54	0.19				99.68		
W01 T4 M1 736 0.33 139 140 131 0.34 0.35 139 131 0.01 0.014 0.00 100.43 W01 T4 M1 736 0.14 1320 0.55 0.16 0.05 0.16 0.05 0.16 0.05 0.16 0.01		NV11	Тv4	M1	70.72	0.28	14.67	2.14	0.14		0.04	0.54	1.85	3.44	3.89	0.05	1.15	0.43	0.00	99.34		-
WOVTu4MI73660.1413200.550.160.160.160.160.160.100.01 </td <td></td> <td>NV01</td> <td>Tv4</td> <td>M1</td> <td>73.64</td> <td>0.33</td> <td>13.89</td> <td>1.91</td> <td>0.12</td> <td></td> <td>0.07</td> <td>0.33</td> <td>1.09</td> <td>3.99</td> <td>4.04</td> <td>0.06</td> <td>0.94</td> <td>0.07</td> <td>0.00</td> <td>100.48</td> <td></td> <td>-</td>		NV01	Tv4	M1	73.64	0.33	13.89	1.91	0.12		0.07	0.33	1.09	3.99	4.04	0.06	0.94	0.07	0.00	100.48		-
000 1/2 M0 6056 0.73 687 - 497 00 11 00 907 - 9091 017 1/2 M1 6047 088 1660 5.4 0.56 0.10 217 1.4 201 216 219 219 0.27 1.45 0.90 9977 1 036 1/1 167 0.30 1.47 1.43 216 1.43 219 0.75 0.90 0.75 0.90 9977 1 036 1/11 1650 0.76 0.10 1743 233 439 0.75 0.75 0.75 0.76 0.77 0.77 0.76 0.77 1 0101 M1 1650 0.71 1.94 241 1.93 1.94 1		NV07	Tv4	M1	73.86	0.14	13.20	0.55	0.16		0.05	0.23	1.38	3.53	4.51	0.01	2.23	0.27	0.00	100.12		-
07 1/2 M1 60.47 0.88 16.60 5.34 0.95 0.10 201 1.15 0.55 0.00 99.77 1 0.88 T/2 M1 56.76 0.87 1.83 4.18 2.57 0.11 2.86 7.95 0.75 0.17 0.17 0.11 2.86 0.87 0.87 0.87 0.87 0.97	0,	90-30	Tv2	M3	60.56	0.75	18.87			4.97	0.08	1.31	6.39	4.55	2.13	0.20				99.81		
05 1/2 M1 57.06 0.87 1.85 4.16 5.77 0.11 2.86 0.82 0.82 0.81 0.87 0.8		057	Tv2	M1	60.47	0.88	16.60	5.34	0.95		0.10	2.01	5.14	4.29	2.04	0.27	1.15	0.53	0.00	99.77		~
OIM MI 56.7 107 17.43 4.21 3.32 0.11 7.5 0.49 0.03 100.17 1 OIV MI 75.53 0.14 1260 0.75 0.10 20.6 0.75 0.10 97.6 10.17 1 OIV MI 75.53 0.14 1260 0.75 0.14 2.04 0.75 0.70 97.6 0.07 97.6 1 1 1 1 0.00 97.6 1		058	Tv2	M1	57.06	0.87	18.35	4.18	2.57		0.11	2.58	7.25	3.98	0.62	0.23	1.39	0.51	0.02	99.72		-
		054	Tuml	M1	56.75	1.07	17.43	4.21	3.32		0.11	3.18	6.62	3.26	1.66	0.29	1.75	0.49	0.03	100.17		~
O53TumiM165.59 0.67 $1.5.13$ 1.94 2.41 0.08 1.46 3.15 3.71 0.21 1.70 0.01 0.001 100.13 11 0.22 1.04 16.99 4.63 3.23 0.24 3.29 5.91 3.17 0.21 1.11 0.48 0.001 9.40 11 0.22 1.04 10.26 0.24 1.62 2.39 0.34 0.27 0.27 0.27 0.00 9.40 11 0.24 1.01 0.01 0.02 2.26 1.47 0.14 0.14 2.12 0.14 0.22 0.02 9.40 11 0.24 1.01 0.01 0.02 2.26 0.24 0.14 2.21 0.14 0.21 0.24 9.26 0.24 0.22 0.24 0.24 0.24 0.24 0.22 0.24 </td <td></td> <td>072</td> <td>Tvu</td> <td>M1</td> <td>72.53</td> <td>0.14</td> <td>12.60</td> <td>0.75</td> <td>0.10</td> <td></td> <td>0.06</td> <td>0.13</td> <td>0.78</td> <td>3.33</td> <td>4.93</td> <td>0.02</td> <td>4.13</td> <td>0.26</td> <td>0.00</td> <td>99.76</td> <td></td> <td>-</td>		072	Tvu	M1	72.53	0.14	12.60	0.75	0.10		0.06	0.13	0.78	3.33	4.93	0.02	4.13	0.26	0.00	99.76		-
052TuniM1 55.82 1.04 16.99 463 3.23 0.12 3.89 6.90 3.19 1.69 0.31 1.11 0.48 0.00 9.40 1 2.21 TuniM1 70.58 0.41 15.20 2.85 0.34 0.04 0.62 2.93 3.97 2.72 0.12 0.72 0.00 9.940 10.20 0.48 TuniM1 64.87 0.64 16.06 2.25 1.47 0.19 1.43 3.37 4.20 2.72 0.17 0.27 0.00 9.940 10.20 0.48 TuniM1 66.98 0.53 15.86 2.25 0.56 2.47 0.19 2.47 0.17 9.955 1 0.20 W1S6.940.01 16.16 3.53 2.52 0.27 0.17 2.78 0.79 0.79 9.955 1 0.70 W1S6.940.10 16.16 3.53 2.52 0.27 0.17 0.74 0.27 0.00 99.55 1 0.70 W1S6.940.10 0.79 15.34 1.02 0.01 2.52 0.02 0.02 0.02 0.02 0.02 0.70 W1S6.94 0.96 1.57 0.79 2.52 0.77 0.74 0.22 0.02 0.02 0.02 0.70 W1S6.94W1 2.14 0.14 2.16 0.16 1.74 0.22 0		053	Tuml	M1	65.59	0.67	15.13	1.94	2.41		0.08	1.46	3.91	3.15	3.77	0.21	1.70	0.17	0.00	100.19		-
7.21TvdM170.580.4115.202.850.340.040.622.393.372.720.710.270.00100.200.48TumiM164.870.6416.062.251.470.191.433.374.202.510.012.009.010.38TumiM166.980.5315.862.520.560.570.090.652.424.073.450.142.180.370.0099.010.39TumiM166.9410.216.163.632.520.112.115.083.451.610.370.0099.010.46Tv4M158.680.9116.824.032.530.112.115.083.421.610.170.4599.250.74M158.680.9116.824.032.530.112.195.643.421.610.170.142.900.74M158.680.9116.824.032.530.112.195.673.421.610.170.120.000.74M158.680.9116.8215.341.733.190.010.160.010.020.74M158.680.1916.8219.7519.162.7919.160.112.1999.5510.74M158.680.1916.53112.1910.662.462.45 <th< td=""><td></td><td>052</td><td>Tuml</td><td>M1</td><td>55.82</td><td>1.04</td><td>16.99</td><td>4.63</td><td>3.23</td><td></td><td>0.12</td><td>3.89</td><td>6.90</td><td>3.19</td><td>1.69</td><td>0.31</td><td>1.11</td><td>0.48</td><td>0.00</td><td>99.40</td><td></td><td>~</td></th<>		052	Tuml	M1	55.82	1.04	16.99	4.63	3.23		0.12	3.89	6.90	3.19	1.69	0.31	1.11	0.48	0.00	99.40		~
O48 Tuni M1 64.87 0.64 16.06 2.25 1.47 0.19 1.57 0.37 0.00 99.01 O38 Tuni M1 66.98 0.53 15.86 2.25 0.56 0.11 2.11 2.42 2.61 0.03 1.57 0.37 0.00 99.55 1 O39 Tuni M1 66.98 0.53 15.86 2.52 0.56 0.11 2.11 5.08 3.55 2.52 0.27 1.74 0.37 0.00 99.55 O46 Tv2 M3 69.34 1.68 3.53 2.53 0.11 2.11 2.13 2.14 2.14 2.14 0.17 0.17 0.27	-	C-21	Tv4	M1	70.58	0.41	15.20	2.85	0.34		0.04	0.62	2.39	3.97	2.72	0.12	0.74	0.22	00.0	100.20		
038TurilM166.980.5315.862.250.560.900.652.424.073.450.142.180.370.009.551039TurilM160.471.0216.163.632.520.112.115.083.552.520.271.740.329.5211046Tv4M158.680.9116.824.032.530.112.145.460.170.170.179.94110-25Tv2M369.340.6519.342.530.113.486.873.421.610.170.4599.5210-78Tv2M369.340.6519.342.160.070.642.790.741.610.1799.550-79Tv2M361.640.7916.5313.190.070.661.136.873.210.187199.560-79Tv2M361.640.7916.5274.810.062.644.960.197199.560-70Tv2M361.640.7916.5274.912.790.790.7999.560-71Tv2M361.640.7916.5274.912.760.790.7999.560-72M177.110.1910.511.953.260.790.790.7099.560-73Tv6		048	Tuml	M1	64.87	0.64	16.06	2.25	1.47		0.19	1.43	3.37	4.20	2.51	0.08	1.57	0.37	0.00	99.01		
039TumiM1 60.47 1.02 16.16 3.63 2.52 0.11 5.16 3.55 2.52 0.27 1.74 0.32 0.02 99.52 1 0.02 86.8 0.91 16.82 4.03 2.53 0.11 3.48 6.87 3.42 1.61 0.17 0.45 0.33 0.02 99.41 0.76 17.2 19.75 15.34 0.56 15.34 0.56 15.34 0.17 0.78 0.79 0.79 0.74 0.70 17.2 19.75 19.75 19.75 1.13 0.07 1.13 0.87 4.46 3.21 0.18 1.2 99.66 0.70 172 19.75 19.75 19.75 1.14 2.79 5.67 4.46 3.21 0.18 1.2 99.66 0.70 170 10.79 16.26 1.13 0.60 2.64 4.46 3.21 0.18 1.67 99.56 0.70 170 10.79 16.77 12.7 12.7 12.8 0.16 1.14 2.16 1.16 1.16 1.16 1.14 2.16 1.16 0.10 0.20 0.00 99.41 0.10 110 110 110 110 110 110 110 110 110 110 110 110 110 0.10 110 110 110 110 110 110 110 110 110 110 110 <		038	Tuml	M1	66.98	0.53	15.86	2.25	0.56		0.09	0.65	2.42	4.07	3.45	0.14	2.18	0.37	0.00	99.55		~
Ode Tvd M1 58.68 0.91 16.82 4.03 2.53 0.11 3.48 6.87 3.42 1.61 0.17 0.45 0.33 0.00 99.41 90-25 Tv2 M3 69.34 0.65 15.34 3.19 0.07 0.60 2.64 4.46 3.21 0.18 3.21 99.69 90-79 Tv2 M3 69.49 0.75 19.75 4.81 0.06 1.13 6.87 4.56 2.00 0.20 99.69 00-79 Tv2 M3 61.64 0.79 16.52 1.13 6.87 4.56 2.00 0.20 99.16 00-80 Tv2 M3 61.39 0.79 16.57 2.14 2.70 0.20 0.19 9.56 00-80 Tv2 M1 7.11 0.10 1191 2.67 0.14 2.76 5.64 3.57 2.60 0.19 9.56 01/6 M1 7.6 <t< td=""><td></td><td>039</td><td>Tuml</td><td>M1</td><td>60.47</td><td>1.02</td><td>16.16</td><td>3.63</td><td>2.52</td><td></td><td>0.11</td><td>2.11</td><td>5.08</td><td>3.55</td><td>2.52</td><td>0.27</td><td>1.74</td><td>0.32</td><td>0.02</td><td>99.52</td><td></td><td>~</td></t<>		039	Tuml	M1	60.47	1.02	16.16	3.63	2.52		0.11	2.11	5.08	3.55	2.52	0.27	1.74	0.32	0.02	99.52		~
00-25 Tv2 M3 69.34 0.65 15.34 3.19 0.07 0.60 2.64 4.46 3.21 0.18 99.68 00-78 Tv2 M3 59.49 0.72 19.75 4.81 0.06 1.13 6.87 4.56 2.00 0.20 99.68 00-79 Tv2 M3 61.64 0.79 16.52 5.67 0.14 2.79 5.76 4.30 1.36 0.19 99.68 00-70 Tv2 M3 61.39 0.79 16.52 0.14 2.79 5.64 3.57 2.60 0.19 99.68 00-80 Tv2 M1 77.11 0.10 11.91 0.69 0.10 2.56 5.64 3.50 1.36 0.70 99.16 016 M1 77.11 0.10 11.91 0.69 0.10 2.56 5.64 3.50 1.66 0.70 0.20 0.70 0.20 99.16 105 M1		046	Tv4	M1	58.68	0.91	16.82	4.03	2.53		0.11	3.48	6.87	3.42	1.61	0.17	0.45	0.33	0.00	99.41		
00-78 Tv2 M3 59.49 0.72 19.75 4.81 0.06 1.13 6.87 4.56 2.00 0.20 3.05 39.59 90-79 Tv2 M3 61.64 0.79 16.52 5.67 0.14 2.79 5.76 4.30 1.36 0.19 39.59 90-60 Tv2 M3 61.64 0.79 16.28 5.67 0.14 2.79 5.64 3.57 2.60 0.19 39.56 90-80 Tv2 M1 77.11 0.10 11.91 0.69 0.11 2.50 5.64 3.57 2.60 0.18 39.56 018 M1 77.11 0.10 11.91 0.69 0.10 0.47 3.06 4.86 0.02 0.70 99.35 1 018 M1 63.80 0.64 1.35 3.26 4.96 0.22 0.00 99.35 1 018 M1 58.97 0.18 4.25	0,	90-25	Tv2	M3	69.34	0.65	15.34			3.19	0.07	0.60	2.64	4.46	3.21	0.18				99.68		
00-79 Tv2 M3 61.64 0.79 16.52 5.67 0.14 2.79 5.76 4.30 1.36 0.19 39.16 00-80 Tv2 M3 61.39 0.79 16.28 5.89 0.11 2.50 5.64 3.57 2.60 0.18 99.16 023 Tv6 M1 77.11 0.10 11.91 0.60 0.10 0.47 3.06 4.86 0.02 0.00 99.35 1 718 Tv6 M1 63.80 0.64 1.35 3.28 0.09 1.14 2.48 4.25 4.90 0.22 0.00 99.35 718 Tv6 M1 63.80 0.64 1.35 3.28 0.09 1.14 2.48 4.25 4.90 0.22 0.00 99.36 718 Tv6 M1 58.97 0.80 1.14 2.14 2.48 4.25 4.90 0.22 0.00 99.36	0,	90-78	Tv2	M3	59.49	0.72	19.75			4.81	0.06	1.13	6.87	4.56	2.00	0.20				99.59		
00-80 Tv2 M3 61.39 0.79 16.28 5.89 0.11 2.50 5.64 3.57 2.60 0.18 98.95 023 Tv6 M1 77.11 0.10 11.91 0.69 0.10 0.07 0.47 3.06 4.86 0.02 0.00 99.35 1 >18A Tv6 M1 63.80 0.64 17.05 2.15 1.35 3.28 0.09 1.14 2.48 4.25 4.90 0.22 0.00 99.35 1 N5 Tv2 N1 58.97 0.82 16.77 2.72 4.20 0.14 3.10 6.03 3.68 1.37 0.18 1.15 0.29 0.09 99.47	0,	62-06	Tv2	M3	61.64	0.79	16.52			5.67	0.14	2.79	5.76	4.30	1.36	0.19				99.16		
O23 Tv6 M1 77.11 0.10 11.91 0.69 0.10 0.07 0.47 3.06 4.86 0.02 0.00 99.35 1 P18A Tv6 M1 63.80 0.64 17.05 2.15 1.35 3.28 0.09 1.14 2.48 4.25 4.90 0.22 0.00 99.35 1 N45 Tv2 M1 58.97 0.82 16.77 2.72 4.20 0.14 3.10 6.03 3.68 1.37 0.18 1.15 0.29 0.05 99.47	0,	90-80	Tv2	M3	61.39	0.79	16.28			5.89	0.11	2.50	5.64	3.57	2.60	0.18				98.95		
-18A Tv6 M1 63.80 0.64 17.05 2.15 1.35 3.28 0.09 1.14 2.48 4.25 4.90 0.22 0.00 99.38 N45 Tv2 M1 58.97 0.82 16.77 2.72 4.20 0.14 3.10 6.03 3.68 1.37 0.18 1.15 0.05 99.47		023	Tv6	M1	77.11	0.10	11.91	0.69	0.10		0.06	0.07	0.47	3.06	4.86	0.02	0.70	0.20	0.00	99.35		~
N45 Tv2 M1 58.97 0.82 16.77 2.72 4.20 0.14 3.10 6.03 3.68 1.37 0.18 1.15 0.29 0.05 99.47	-	18A	Tv6	M1	63.80	0.64	17.05	2.15	1.35	3.28	0.09	1.14	2.48	4.25	4.90	0.22	1.09	0.22	0.00	99.38		
		N45	Tv2	M1	58.97	0.82	16.77	2.72	4.20		0.14	3.10	6.03	3.68	1.37	0.18	1.15	0.29	0.05	99.47		

	Ref.																					-					-									ntinued)
	LOI											0.61																						5.06		(00
	Total	100.82	99.10	99.04	99.76	99.21	99.20	99.93	99.05	99.63	60.66	97.77	99.53	99.32	99.47	99.26	99.43	99.30	99.31	99.28	99.50	99.85	99.75	99.38	100.33	99.71	100.11	99.28	<u>99.60</u>	99.25	99.41	99.22	99.48	94.47	99.76	
	CO_2	0.29	0.02	0.00	0.00			0.02	0.00	0.00	0.12					0.04						0.04	0.00		00.0		00.0									
	H_2O^-	0.64	0.40	1.41	0.26			0.39	0.26	0.83	1.06					1.13						0.68	0.39		0.79		0.15									
	$\rm H_2O^{^+}$	0.92	1.42	1.65	1.31			0.65	0.42	1.10	0.92					7.22						0.66	4.73		1.19		0.60									
	P_2O_5	0.06	0.28	0.46	0.56	0.37	0.28	0.16	0.10	0.43	0.05	0.135	0.18	0.18	0.18	00.00	0.15	0.14	0.14	0.28	0.17	0.14	0.02	0.16	0.13	0.14	0.39	0.18	0.15	0.18	0.15	0.26	0.20	0.044	0.20	
	K_2O	3.76	3.77	4.30	3.34	3.31	2.12	2.15	6.74	2.41	5.96	4.95	1.51	1.29	1.53	2.71	1.26	1.32	1.17	1.01	1.49	1.37	3.65	2.22	2.03	2.28	1.71	1.52	1.46	1.45	1.34	1.06	1.70	3.38	3.33	
d)	Na_2O	3.42	3.95	3.73	3.57	4.15	4.32	3.33	2.99	3.84	3.01	2.79	3.43	3.30	3.43	3.53	2.99	3.61	3.43	3.23	3.63	3.15	3.82	3.57	3.24	3.77	3.46	3.43	3.61	3.43	3.67	3.31	3.48	4.29	4.48	
(continue	CaO	1.83	3.91	3.79	5.18	3.68	6.04	5.93	1.79	6.75	1.03	1.07	8.53	9.11	8.38	1.25	10.07	8.30	8.58	8.92	7.87	7.98	0.91	7.15	5.66	5.33	6.67	8.55	8.31	7.80	8.39	9.12	8.09	1.03	2.46	
EMISTRY	MgO	0.56	1.78	1.79	2.49	1.68	2.63	3.42	0.83	3.45	2.10	0.26	4.16	4.11	4.26	0.24	5.65	4.05	4.40	5.71	4.01	4.23	0.35	3.54	3.05	2.63	3.56	4.14	3.87	4.11	3.68	5.84	4.03	0.45	0.65	
IENT CHE	MnO	0.05	0.09	0.11	0.11	0.14	0.11	0.10	0.08	0.08	0.04	0.066	0.12	0.14	0.12	0.06	0.11	0.12	0.12	0.15	0.11	0.12	0.07	0.10	0.10	0.13	0.12	0.12	0.11	0.12	0.11	0.13	0.12	0.083	0.10	
OR ELEM	FeO*					5.48	7.12					3.11	7.14	7.54	7.30		7.65	7.55	7.60	9.04	6.78			6.55		4.96		7.14	7.55	7.24	7.72	8.54	7.31	1.29	3.17	
E 3. MAJ	FeO	0.25	1.72	1.42	3.20			3.02	0.51	2.32	0.24					0.25						2.20	0.26		1.00		4.41									
TABL	Fe ₂ O ₃	1.66	2.77	3.64	3.99			3.01	2.03	4.59	1.42					0.29						5.87	1.17		4.71		2.68									
	AI_20_3	13.77	16.16	16.00	16.01	15.95	17.36	16.15	14.27	17.13	13.10	12.53	18.73	19.38	18.39	13.49	16.73	17.77	17.87	17.25	18.02	17.70	13.26	17.42	16.58	16.25	18.33	18.64	18.04	17.84	18.07	17.87	17.35	13.13	15.39	
	TiO ₂	0.31	0.81	1.04	1.28	1.02	1.12	0.82	0.69	1.24	0.47	0.411	0.88	06.0	0.86	0.20	0.76	1.17	1.17	1.27	1.07	1.13	0.24	1.04	0.69	0.67	1.16	0.88	1.20	1.18	1.20	1.26	1.04	0.273	0.59	
	SiO ₂	73.30	52.02	59.70	58.46	53.43	58.10	30.78	58.34	55.47	39.57	72.45	54.85	53.37	55.02	38.85	54.06	55.27	54.83	52.42	56.35	54.58	70.88	57.63	31.16	33.55	56.87	54.68	55.30	55.90	55.08	51.83	56.16	70.50	<u> 59.39</u>	
	poq	,	4	1	1	e e	e e	1	4	+	1	N	с С	3	3	1	3	3	3	3	3	+	~	3	1	е С	4	3	3	3	3	3	3	2	9 8	
	Met	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	
	Unit	Tv4	Tv6	Tv6	Tv6	Tv2	Tv2	Tv4	Tv6	Tv6	Tv6	Tv2	Tv2	Tv2	Tv2	Tv6	Tv2	Тv4	Tv4	Tv4	Tv4	Tv4	Tv3	Tv3	Tv4	Тv4	Tuml	Tuml	Tv4	Tv4	Tv4	Tuml	Tv4	Tv3	Tv2	
	Sample	C-19	018	015	013	69-06	90-73	033	0-06	N-07	60-N	S-22	90-54	90-53	90-56	S-7	90-52	90-15	90-14	90-93	90-12	N68	O-04	90-11	N53	6-06	N70	20-97	90-19	90-85	90-18	09-06	9-06	S-3	90-46	
	#	54	55	56	59	60	62	63	64	65	66	67	68	69	70	72	74	75	76	77	78	79	82	83	84	85	88	89	06	91	92	93	94	95	96	

Ref.														-	-		-				-													ntiniad
												2.92						0.47				4.78												(5)
Total	99.55	98.80	99.52	99.58	99.76	60.66	99.42	99.27	98.57	99.28	99.33	95.54	99.34	99.53	99.89	99.39	99.23	98.70	96.72	99.16	100.04	94.40	99.13	99.41	99.11	100.32	99.51	99.92	100.39	99.94	99.92	99.45	100.07	
CO2					0.08								00.0	00.0	00.0		0.02			00.00	0.17					0.01	0.02	00.00	00.00	2.43	00.0	0.01	0.02	
H ₂ 0 ⁻					0.12								0.20	0.71	0.52		0.48			0.18	0.22					0.21	0.17	0.49	0.17	0.22	0.18	0.36	0.47	
H ₂ O ⁺					2.73								2.63	4.69	5.07		3.88			0.26	1.01					0.71	0.35	0.63	0.35	3.12	3.52	4.64	3.69	
P ₂ O ₅	0.38	0.38	0.14	0.38	0.11	0.38	0.19	0.38	0.28	0.20	0.16	0.136	0.07	0.12	0.04	0.39	0.02	0.042	0.11	0.01	0.31	0.291	0.32	0.38	0.31	0.37	0.04	0.09	0.04	0.36	0.07	0.09	1.08	
K ₂ 0	2.49	2.48	2.01	1.52	4.73	1.53	2.63	1.57	1.00	1.42	0.81	4.19	4.07	2.98	2.85	1.60	4.25	5.08	4.73	5.01	1.81	3.03	1.41	1.54	1.33	1.30	4.27	3.12	4.77	1.51	3.85	2.80	4.11	
Na ₂ O	4.06	3.90	3.61	4.01	3.21	3.88	3.59	4.03	3.31	3.42	3.09	3.49	3.69	3.96	4.61	3.65	3.95	3.40	3.21	3.28	3.35	3.77	3.58	3.86	3.81	3.51	4.33	3.78	3.65	3.50	4.34	4.35	3.79	
CaO	5.50	5.44	5.62	6.94	09.0	6.90	5.67	6.84	9.15	7.90	8.14	1.94	2.72	2.38	1.31	7.49	0.81	1.14	09.0	1.08	7.45	2.99	7.70	7.48	7.59	8.22	0.67	2.11	0.46	6.52	1.02	1.33	0.93	
MgO	2.54	2.47	3.60	3.30	0.14	3.29	2.49	3.20	5.51	4.02	3.96	06.0	0.52	0.83	0.46	4.08	0.40	0.27	0.14	0.17	3.55	0.99	3.57	3.52	3.60	4.50	0.23	0.68	0.18	3.99	0.37	0.47	0.27	
MnO	0.16	0.15	0.14	0.12	0.06	0.12	0.11	0.11	0.20	0.13	0.13	0.088	0.05	0.09	0.07	0.11	0.07	0.064	0.06	0.04	0.12	0.098	0.12	0.11	0.09	0.11	0.06	0.04	0.04	0.11	0.07	0.07	0.06	
Fe0*	7.76	7.69	5.42	6.82		6.71	5.91	6.68	9.81	7.17	7.70	2.38				7.24		1.70	1.03			3.37	7.20	7.23	7.35									
FeO					0.10								0.48	1.04	0.63		0.26			0.43	3.57					3.25	1.76	2.22	0.20	4.05	0.69	0.72	0.45	
Fe ₂ O ₃					1.04								1.01	2.00	1.26		1.39			0.09	3.96					4.41	0.20	0.16	0.62	2.95	1.20	1.52	1.01	
Al ₂ 0 ₃	15.56	15.37	16.54	18.02	12.52	17.89	16.40	17.86	17.21	17.80	18.80	13.61	14.31	14.14	13.65	17.92	13.31	13.26	12.52	12.96	18.38	14.95	18.70	18.22	18.80	18.09	14.47	15.07	12.69	16.12	13.62	13.20	12.86	
TiO2	1.33	1.32	0.73	1.17	0.13	1.16	0.80	1.15	1.39	1.17	1.28	0.484	0.33	0.62	0.38	1.17	0.28	0.249	0.13	0.21	0.96	0.704	0.99	1.14	1.07	1.08	0.41	0.31	0.15	1.13	0.49	0.49	0.32	
SiO2	59.77	59.60	61.71	57.30	74.19	57.23	61.63	57.45	50.71	56.05	55.26	68.31	69.26	65.97	69.04	55.74	70.11	73.49	74.19	75.44	55.18	64.20	55.54	55.93	55.16	54.55	72.53	71.22	77.07	53.52	70.50	69.40	72.01	
Method	M3	M3	M3	M3	M1	M3	M3	M3	M3	M3	M3	M2	M1	M1	M1	M3	M1	M2	M3	M1	M1	M2	M3	M3	M3	M1	M1	M1	M1	M1	M1	M1	M1	
Unit	Tuml	Tuml	Tv4	Tuml	Tv4	Tuml	Tuml	Tuml	Tuml	Tv4	Tv4	Tv3	Tv3	Tv5	Tv5	Tuml	Tv5	Tv6	Tv6	Tv6	Tuml	Tv6	Tuml	Tuml	Tuml	Tuml?	Tv5	Tv4	КТІ	КТі	Tv5	Tv4	Tv5	
Sample	90-63	90-64	90-4	66-06	86-40	90-101	90-21	90-100	90-20	90-2	90-106	S-6	S-6	N55	N57	90-110	N60	S-32	S-32	S-32	N71	S-23	90-112	90-115	90-117	C-13	C-17B	C-14B	D77A	D86A	D69C	D70B	D84A	
#	97	98	66	100	101	105	106	107	108	110	111	113	113	114	115	116	118	120	120	120	121	122	123	124	126	128	129	130	135	136	140	142	145	

TABLE 3. MAJOR ELEMENT CHEMISTRY (continued)

Ref.																																			
LOI																																			
Total	99.07	98.25	99.70	99.51	99.56	90.06	99.40	97.84	99.39	99.80	99.78	94.49	100.07	92.47	99.70	96.96	98.02	99.04	98.24	99.21	99.15	99.21	96.90	100.73	97.16	99.60	94.70	98.56	99.50	97.35	60.66	97.46	99.53	99.07	
$\rm CO_2$	0.02		0.01	0.00	0.00	0.24	0.00		0.02	0.02	0.00		0.00		00.00	0.00		00.0		0.00	0.00	00.00		0.00		0.00		00.0	0.05		0.10		0.13	00.00	
H ₂ 0 ⁻	0.15		0.14	0.23	0.09	0.41	0.09		0.15	0.21	0.26		0.70		0.16	0.18		0.19		0.19	0.75	0.40		0.63		0.10		0.53	0.13		0.48		0.24	0.16	
H_2O^{\dagger}	0.51		0.22	0.69	3.15	0.71	0.29		0.47	0.53	3.48		5.27		3.67	0.36		0.63		0.78	1.10	0.50		0.85		3.97		1.64	1.17		1.36		0.57	0.28	010
P_2O_5	0.56	0.466	0.02	0.44	0.09	0.23	0.02	0.025	0.33	0.11	0.02	0.035	0.02	0.015	0.03	0.02	0.018	0.14	0.142	0.07	0:30	0.03	0.045	0.33	0.342	0.03	0.017	0.22	0.04	0.026	0.51	0.498	0.07	0.08	100
K₂O	1.59	1.62	4.68	1.32	3.64	3.37	5.23	5.12	1.53	4.66	4.81	4.78	2.78	2.75	5.32	4.86	4.82	1.36	1.40	5.60	2.50	4.23	4.76	2.37	2.42	5.32	5.40	3.84	4.41	4.40	1.39	1.42	5.14	4.12	55.0
Na_2O	3.44	3.59	3.46	3.47	4.30	4.33	3.71	3.74	3.11	5.02	3.34	3.32	4.82	4.75	2.80	3.84	3.76	2.68	2.71	3.22	3.69	3.89	3.91	5.08	3.89	3.33	3.23	4.42	4.70	4.52	3.22	3.12	3.73	4.56	
CaO	8.00	8.05	0.28	8.05	2.16	3.09	0.04	0.09	8.33	0.96	0.84	0.92	0.70	0.70	0.84	0.07	0.13	8.55	9.07	0.42	4.89	0.15	0.16	5.19	5.11	0.39	0.41	1.65	0.76	0.77	7.98	8.37	0.81	0.48	
MgO	4.28	4.25	0.05	4.62	0.49	1.00	0.05	0.03	5.35	0.36	0.23	0.22	0.26	0.11	0.12	0.09	0.07	6.84	6.97	0.17	2.59	0.15	0.13	2.63	2.65	0.10	0.07	0.50	0.20	0.18	5.49	5.44	0.17	0.09	
MnO	0.12	0.133	0.01	0.10	0.04	0.09	0.03	0:030	0.13	0.08	0.04	0.047	0.06	0.071	0.12	0.05	0.064	0.12	0.148	0.07	0.07	0.03	0.033	0.09	0.096	0.07	0.070	0.07	0.12	0.125	0.14	0.143	0.06	0.03	000
FeO*		7.95						1.91				1.15		0.91			0.97		7.40				1.56		5.44		1.52			1.66		8.56			
FeO	4.14		0.10	4.98	0.72	0.35	0.15		4.22	0.16	0.37		0.35		0.40	0.10		3.28		0.15	0.52	0.09		1.61		0.63		0.18	0.12		3.99		0.08	0.16	
Fe_2O_3	3.95		1.74	3.67	1.44	2.67	1.94		3.66	3.27	0.87		0.74		0.87	1.04		4.43		1.76	4.82	1.65		4.23		0.97		2.83	1.74		5.14		1.87	1.05	5
AI_2O_3	17.40	17.25	11.37	17.69	15.41	15.12	11.85	11.55	16.55	14.51	12.85	12.59	12.61	12.31	12.90	12.12	11.71	14.59	14.36	13.55	15.86	12.97	12.35	16.09	15.86	12.35	12.15	15.51	14.51	14.28	16.97	16.87	13.72	13.75	10 01
TIO_2	1.31	1.351	0.12	1.45	0.43	0.56	0.16	0.156	0.94	0.56	0.24	0.237	0.19	0.179	0.23	0.18	0.168	0.70	0.671	0.38	0.86	0.16	0.162	0.98	0.974	0.18	0.160	0.57	0.31	0.333	1.38	1.436	0.32	0.22	200
SiO_2	53.60	53.59	77.50	52.80	67.60	66.89	75.84	75.18	54.60	69.36	72.42	71.19	71.71	70.66	72.18	77.05	76.31	55.12	55.37	72.85	61.20	74.96	73.79	60.65	60.38	72.16	71.68	66.60	71.24	71.05	50.94	51.60	72.62	74.09	20 22
Method	M1	M2	M1	M1	M1	M1	M1	M2	M1	M1	M1	M2	M1	M2	M1	M1	M2	M1	M2	M1	M1	M1	M2	M1	M2	M1	M2	M1	M1	M2	M1	M2	M1	M1	N 1 4
Unit	Tuml	Tuml	Tfr	Tuml	Tv4	Tv5	Tfr	Tfr	Tuml	Tv5	Tv5	Tv5	Tv3	Tv3	Tv6	Tv5	Tv5	Tuml	Tuml	Tv4	Tv4	Tv4	Tv4	Tuml	Tuml	Tv4	Tv4	Tv6	Tv6	Tv6	Tuml	Tuml	Tv4	Tv4	TT
Sample	D70D	D70D	D76B	D76A	D75A	D85B	J-140	J-140	D53D	J-256	J-369	J-369	J-375	J-375	J-399	W-200	W-200	W-176	W-176	I-151	I-112	I-521	I-521	I-532	I-532	-44	I-44	DZ-29	DZ-2	DZ-2	I-133	I-133	-478	-164	11
#	146	146	149	150	152	154	155	155	157	159	160	160	163	163	168	170	170	172	172	173	174	175	175	176	176	177	177	178	179	179	181	181	184	185	100

							TABI	E 3. MAJ	IOR ELEN	JENT CHE	EMISTRY	(continue	<u>J</u>)								
#	Sample	Unit	Method	SiO ₂	TiO ₂	AI_20_3	Fe_2O_3	FeO	FeO*	MnO	MgO	CaO	Na₂O	K₂O	P_2O_5	H_2O^{\downarrow}	H ₂ 0 ⁻	CO_2	Total	LOI	Ref.
187	VG-7B	Tv4	M1	77.59	0.16	12.07	06.0	0.30		0.09	0.06	0.14	3.55	5.07	0.04	0.31	0.08	0.00	100.36		
187	VG-7B	Tv4	M2	76.66	0.172	11.72			1.06	0.086	0.03	0.15	3.41	5.01	0.022				98.33		
190	PLM	Tuml	M1	54.90	1.66	17.16	3.01	5.26		0.14	2.49	6.29	4.70	2.59	0.70	0.92	0.37	0.00	100.19		
190	PLM	Tuml	M2	54.51	1.678	16.79			7.91	0.148	2.47	6.19	3.90	2.65	0.703				96.95		
191	HW-1	Tuml	M1	56.91	1.18	17.69	5.93	0.82		0.18	1.05	3.91	5.82	3.31	0.71	1.10	0.47	0.00	99.08		
192	Ni-102	Tv6	M1	69.69	0.50	15.01	2.36	0.20		0.08	0.30	1.47	5.28	3.95	0.13	0.37	0.10	0.02	99.46		
192	Ni-102	Tv6	M2	68.66	0.539	14.64			2.33	0.079	0.29	1.51	5.01	3.85	0.122				97.03		
193	J-CH	Tv4	M1	76.65	0.17	11.79	2.13	0.07		0.05	0.05	0.15	3.33	5.06	0.03	0.24	0.16	0.00	99.86		
194	PC-1	Tuml	M1	56.14	1.21	17.58	6.51	0.30		0.20	0.93	3.87	5.75	3.52	0.65	1.21	0.47	0.00	98.34		
194	PC-1	Tuml	M2	56.73	1.261	17.68			6.30	0.199	0.96	3.79	5.64	3.51	0.632				96.70		
195	Ni-30	Tv6	M1	72.93	0.32	14.23	1.53	0.22		0.06	0.20	0.81	3.93	5.24	0.06	0.35	0.09	0.00	99.97		
199	ER-51	Tv4	M1	67.82	0.24	13.62	0.95	0.36		0.08	0.52	0.78	4.94	3.03	0.03	5.97	0.97	0.00	99.31		
200	ER-13B	Tv4	M1	67.60	0.24	13.72	0.88	0.40		0.08	0.71	0.92	4.99	2.89	0.04	6.02	1.14	0.00	99.63		
201	CG-BL	Tv2	M1	74.18	0.18	12.93	1.03	0.13		0.03	0.36	0.48	3.10	5.09	0.05	0.91	1.06	0.00	99.53		
202	NJ-5	Tv4	M1	73.55	0.14	11.92	0.98	0.28		0.07	0.25	0.61	4.18	3.12	0.03	3.88	0.43	0.00	99.44		
202	NJ-5	Tv4	M2	73.49	0.166	11.54			1.15	0.076	0.24	0.63	4.17	3.08	0.020				94.55		
203	Monz	KTI	M1	65.05	0.48	16.41	2.04	1.07		0.05	2.05	4.70	4.29	2.37	0.14	0.56	0.19	0.02	99.42		
205	Z-VIT	Tv4	M1	65.20	0.11	11.67	1.00	0.21		0.09	0.38	5.23	2.81	3.03	0.04	5.66	1.67	2.50	09.60		
207	RED	Tv1	M1	71.32	0.48	14.55	1.91	0.58		0.02	0.47	1.40	3.26	5.54	0.13	0.45	0.15	0.00	100.26		
207	RED	Tv1	M2	70.24	0.469	14.27			2.20	0.021	0.46	1.52	3.24	5.56	0.117				98.10		
208	RP	Tv4	M1	74.78	0.18	12.90	1.09	0.24		0.05	0.17	0.68	3.44	4.92	0.13	0.58	0.15	0.00	99.31		
211	ECI	Tv4	M1	76.60	0.11	11.70	1.28	00.00		0.11	0.18	0.13	3.26	5.02	0.01	0.49	0.77	0.21	99.67		2
212	ECD	Tuml	M1	53.90	1.63	15.61	2.87	6.09		0.13	4.59	7.00	3.39	2.11	0.94	0.62	0.46	0.10	99.44		7
213	4RSRB	Tuml	M1	55.39	1.21	16.64	3.17	4.43		0.11	4.39	7.22	3.58	1.92	0.42	0.61	0.13	0.05	99.26		2
213	4RSRB	Tuml	M2	55.76	1.228	16.89			7.26	0.120	4.44	7.69	3.67	1.95	0.361				99.37		
214	RND1	Tv4	M1	73.04	0.34	13.77	1.68	0.10		0.04	0.29	0.53	4.01	4.90	0.08	0.34	0.77	0.00	99.89		2
215	VTT	Tv4	M1	69.68	0.34	13.96	1.18	0.52		0.09	0.33	0.97	4.85	3.38	0.07	3.69	0.35	0.00	99.41		2
217	4EN-1	Tv4	M1	74.03	0.16	13.12	1.10	0.16		0.06	0.36	0.30	3.69	4.82	0.05	0.83	1.05	0.00	99.73		2
218	4MPB	Tuml	M1	54.20	1.62	17.43	3.73	4.26		0.11	3.91	7.65	3.72	1.30	0.49	0.49	0.11	0.10	99.12		2
219	PMES1	Tv4	M1	77.31	0.19	12.33	1.08	0.10		0.04	0.13	0.54	3.28	5.21	0.04	0.10	0.14	0.02	100.51		2
220	CLLD	Tv4	M1	76.25	0.04	12.73	1.22	0.05		0.14	0.14	0.55	3.61	4.98	0.01	0.41	0.35	0.01	100.49		2
221	OWLD	Tv4	M1	60.69	0.50	15.50	2.39	0.15		0.04	0.35	1.23	4.61	4.75	0.14	0.42	0.38	0.00	99.55		2
222	4BASI	Tuml	M1	54.94	1.26	15.70	6.50	1.79		0.14	5.46	6.89	3.38	1.61	0.73	0.45	0.65	0.10	09.66		2
223	XYZB	Tuml	M1	55.48	1.20	15.70	4.70	3.12		0.12	5.49	6.77	3.52	2.04	0.62	0.69	0.43	0.03	99.91		2
Note:	: References	(Ref.): 1	/ark (1991); 2	2-Megaw a	at I Iniver	vell (1983). city of Mass	M1-anal	yses at Ur Amherst	hv X-rav	f Texas, A	vustin, usir	ng standar	d wet che	mical tech	niniques. N	12—analy	ses at W	ashington	State Unive	rsity	

Figure 3. (A) Plot of total alkalis against silica (LeBas et al., 1986) for analyzed rocks from the Sierra Madre Occidental (in red) and central Chihuahua (in green). The alkaline-subalkaline boundary is after MacDonald (1968). (B) A plot of total alkalis minus CaO against silica, including the classification boundaries proposed by Frost et al. (2001) as thin black lines. Analyses from the Sierra Madre Occidental are in red and those from central Chihuahua are in green. Linear regression lines calculated separately through the Sierra Madre Occidental data (yellow line) and the central Chihuahua data (green line) are shown with their statistical parameters.

	Ce									43			46										59	207	20						73	41				91	48 35	34	34.		29 25	23	29	31	Na
	La									15			20										32	<u>6</u>	22						39	15				61	15	5 4	15		തറ	20	12	16	,
	Γ									-			-										с ч	n u	n n						4	S				ωı	<u>م</u> م	10	10		~ ~	- 0	-	0	
	ΡN																																			60	23								
	Th									4			5										10	4	<u>+ (</u>						14	7				4 4	<u>5</u> 4	ى د	5		4 0	20	ი	4	
	ŗ									7			5										⊲ ;		- rc						0	0				109	2437	3.5 15	26		306	34 0	138	30	
	Sc																																			, ⊐	-								
	Ga									20			20										16		- 6						17	20				18	14	20	19		17	<u>, 1</u>	19	20	
	Pb									6			10										17	<u>, </u>	14						16	6				18	0 <u>0</u> «)	, 1		ωu	~ ~	9	7	
	CL																	_				_								_						20	8/								
TA	Zn									82	40	2 X	61	126		:	62 108			152	87	160	77		69	4			84	150	85	89	45	123		84	ር/ 08	06	29		84 78	83	67	83	
ENT DA	Ba									804			840										1125	755	714						955	712				1052	635 525	574	514		450 521	513	620	577	
ELEM	>									97			95										48	211	120						65	146				36	123	194	167		215	182	180	154	
TRACE	Ni									7			œ										~ *	7	<u>+</u> 4						с С	9				9 6	32	- 0	9 9		36	: 4	62	12	
ABLE 4.	Νb	30 21	26	28 20	40	<i></i> б;	4 0	25	14	9	10	27 -		12	11	13	1 1	71	to)	14	16	90	ກດ	ກດ	12	10	14	1 <u>3</u>	19	2 4	ω ζ	₽ ₩	14	10	12.1	ي 00) (O	9	13	4 0	აო	4	C1 8	?
F	Zr	253 223	264	183 158	288	142	89 87	272	83	158	109	244 81	172	207	163	181	115 225	187	152	-	259	200	295	901	199	115	175	113	317	364	303	170	- 34 548	276	599	249	199	129	123	195	106 88	91	117	102	22
	Y	26 21	24	25 24	52	16	<u>ი</u> ი	26	21	21	19		23	27	19	20	27 36	5 6	16	2	32	29	32	17	27	35	30	18	о с	62	41	25	26 26	23	22	52	202	24	23	55	20	14	20	14 22	1
	Sr	664 148	583	765 481	660	584	145 172	463	102	542	212	152	504	468	590	605	287 71	200	275	ī	358	522	296 227	33/ 252	345	7	392	162	370	496	326	444	010 148	572	102	284	128	592	554	246	490 700	812	567	865 816	2
	Rb	34 213	64	23 103	43	53	100	133	187	58	146	140 228	63 63	73	57	09	193 156	90	104	-	112	89	102	711	118	225	107	143	158	110	122	75	د، 162	61	239	178	180	31	42	529	35	19	14	20 30	3
	Ref.										. .		-	-	-	, -	. .		-		-	-				-																		÷	-
	ech.	1,T2 1,T2	Т1	1,T2 T1	드	T1	1, I Z	1,T2	T1	Т3	1,T5	1, Г5 1 ТБ	T3	1,T5	71	T1	1,Т5 1 ТБ			T5	1,T5	1,T5	3,T4	α,−4 0 ⊤1	0,-4 3 T4	1,T5	T1	11	1,T5 T1	1 T5	3,T4	3,T4 74	1.T5	1,T5	1,T5	T2 T2	Z 2	3.T4	3,T4	T1	Т3 2 тл	3, 14 3, 14	T3	3,T4 1 T5	2
	Ť	⊢⊢ _	_	⊢ [.]		. 1	- i	- <u>⊢</u>			⊢ı	- È	-	È		. I	÷ ŕ	- '	_	_	÷	È	Ύŀ	- ì	- F	Ĥ			÷.	È	· ⊬́	μ	È	÷	È			Ϋ́	Ϋ́		È	: 11		Ύ⊢́	
	Unit	Tum Tv7	Tum	Tum KTi	Tvu	Tvu Ŧ	Tvi T	Tum	Tv4	Tv2	T 4	1 V4	Tv2	Tv2	Tv2	Tum	TVU	Tum	Tv4	Tum	Tum	Tum	TV2	7 / T	1 v 2 7 v 7	Tv6	Tv2	Tv4	Tv6 Tv6	Tv6	Tv2	TV2	тv6 Тv6	Tv6	Tv6	T 72	T V2	Tv2	Tv2	Tv6	TV2	Tv4	Tv4	Tv4 Tv4	:
	Sample	3-21-3 3-21-2	3-20-3	3-20-1 Ma-1	12-11-3	11-14-1	10-23-5 BV5	3-23-1	10-25-2	90-29	NV11	NV01	90-30	057	058	054	072	050	25 10-10	048	038	039	90-25 00-70	87-08 00 70	67-06 60-80	023	N45	C-19	018	013	69-06	90-73 022	0-06	N-07	00-N	S-22	8-27 80-54	90-53	90-56	S-7	90-52 90-15	90-14	90-93	90-12 N68	>>>
	#	- 0	ი	ယထ	10	13	10 19	21	22	25	28	29	32	33	34	35	36	38	500	40	41	42	44	4/	40	50	53	54	55 EE	00	60	62	64 03	65	99	67	68 68	20 00	202	72	74 75	76	77	79 79	2

Ce		30	39		1	58	35	22	27	28	81 82	55	54	36	40			47	40	33 4 4 33	31	29	77		42			82	38	33.0												128	(ned)
La		16	21		1	7 29	16	2 12	14	12	95 95	24	25	13	18			18	16	15	15	17	38		22			39	6	5 T												63	(contin
		-	2			~ ~	- ~		-	- 1	<u>~</u> и	94	4	0.	-			-	~ ~		-	5	9		-			11	. .													<u>,</u>	-
PN										3	41											1	35					31														60	8
ЧĻ		4	ø			ოი	4 4	- 0	ო	υ,	18	- o	თ	- č	N			2	~ ~	n 0	4	en j	16		2			27	ოი	0 0	I											35	8
ŗ		26	38			64	24		88	103	103	5	-	42	29			32	29	12 6	26	30	226		48			1718	ററ	29 18	2											~	1
Sc										ι	Ω											1	10					4														~	1
Ga		20	18		1	19	- 00	20	18	20	15 5 5	18	19	17	20			19	20	20	20	21	17		21			14	5 5	22												26	2
Pb		10	10		1	» 10	0 1	2	7	10	57 ¥	12	16	о (ວ			10	თი	טימ	ø	2	22		6			24	10	<u>0</u> ∞	•											42	2
Cu										1	27												39					102														ć	
Zu	140 118	76	20	1	148	111	10	76	92	82	68 7 7	66	102	74	100 33	137	96	102	00	95 92	81	75	5 5	83	107	122 36	121	53	94	501 83												127	17
Ba		648	769			798 503	531	524	492	650	1052 971	866	842	703	/61			759	743	450	630	602	1057		641			903	482	1 24 484	2											55	8
>		148	146			175	154	165	191	272) 26	158	153	122	127			129	130	120	153	154	37		143			73	154	145												33	S
ī		16	18		1	32	14	15	54	15 1	о с	9 0	7	21	16			17	16	19	16	13	∞		25			25	15	24 16	2											ć	
qN	10	4 (0 9		17	იი	N 07	2	4	4	13.1 1	, 1	11	ı Ω	~ α	12 0		7	~ ~	~ 00	4	က်	14.7	2 = =	9	10	16	11.6	4 4	04	· ∞	19	0 C	16	23	24	17	19	20 13	25	1	55 44 0	
Zr	227	104	119		164	192	92 102	- 06 - 06	102	106	246 195	211	209	114	136 03	264		140	139	13/ 142	100	66	297 245	299	137	260 133	132	175	95 175	68	128	332	121 00	33 165	337	264	222	203	429	343	199	500 466	
≻	45	14	19		20	24	- 7 - 4	4	18	16	38	37	37	16	18 20	38		19	0 0	27	15	15	38	4	16	45 34	t 8	28	16	0 (1	17	46	17	19	53	35	33	28	88 18	27	24	70	-
S	157	748	509 509		802	619 706	1008	793	646	545	122 262	391	389	549	791 32	136 136		788	798	509	1012	1385	245 335	125	942	68 74	955	124	987	944 970	923	105	247 50	611 611	118	172	106	636 S	6 762	234	305	15 9	>
Rb	141	56	74		41	40 26	45	29	18	45	151 20	92 92	92	63	29	45		29	33	- 14 14	30	18	75 N6	16	26	87	40	28	21	18	24	78	27	35	86	06	21	27	20	83	17	142 135	2
ef.					~					,		-			(* +		.						- 0 -				 -					- ·	- ·	N	-	-		,	.,	Ţ	~	er e.	
																										L L	2													_			,
Tech.	T5 T1,T5	T3,T4	тз,та	T5 T5	T1,T5	T3,T4 T2 T4	тэ, т4 ТЗ Т4	T3,T4	T3,T4	T3,T4	12 T3 T4	T3,T4	ТЗ,Т4	T3,T4	13,14 т1 т5	T1,T5	T5	ТЗ,Т4	T3,T4 T2 T4	T3,T4	T3,T4	T3,T4	Т2 T1 Т5	T1,T5	T3,T4	T1,T5 T1 T2 T	T1.T5	Т2	T3,T4	тэ, т4 Т3, Т4	Τ	ΞÌ	Ξ÷	- 1	т1,т2	Т1	T1	T1,T2	T1, L2	T1.T2	T1	11	4
Unit	Tv4 Tv3	Tv3	Tv4	Tv4 Tv4	Tuml	Tuml	Tv4	Tv4	Tuml	Tv4 5 0	1 13	Tuml	Tuml	T _ T	I uml	Tv5	Tv5	Tuml	Tuml Tuml	Tuml	Tv4	Tv4	Тv3 Тv5	Tv5	Tuml	Tv5 Tvê	Tuml	Tv6	Tuml	Tuml	Tuml?	Tv5 -	4 I 1 4	Į	Tv5	Tv4	Tv5 -	Tuml	Timl	Tv4	Tv5	ᄟ	=
Sample	N66 0-04	90-11	6-06	N65 W-60	N70	90-97	90-19 90-85	90-18 90-18	09-06	90-6 9 0	S-3 90-46	90-63	90-64	90-4	90-99 86-40	N58	N62	90-101	90-21	90-20	90-2	90-106	S-6 N55	N57	90-110	N60	N71	S-23	90-112	90-117 90-117	C-13	C-17B	C-14B	D86A	D69C	D70B	D84A	D70D	D76A	D75A	D85B	J-140	
#	81 82	83	04 85	86 87	88	68	90 10	92	93	94	95 06	97	98	66	100	102	103	105	106	10/ 108	110	111	113	115	116	118	121	122	123	126	128	129	130 135	136	140	142	145	146	149 150	152	154	155 155	2

Ce				28	8	<u>8</u>			,	64		29				0	80		53	1		06			001		22	2			71	-	0	92			75	2			79						69			84																	ued)
La				32	10	38			90	30		6					44		26	1		46					77	71			33	8		44			10	5			43						31			44																	(contin
∣⊳				7	-	10			Ċ	٥		2				¢	ω		ŝ	>	I	2			4		ç	J			ſ	0	(n			~	-			2						4			11																	
PN				21	ī	39			00	28		16					44		26	1		43		5	/0		77	7			30	2	c L	09			10	5			44						34			31																	
H ۲				20	2	20			00	20		2					71		е С	>		2		5	7		¢	S			17	:	ſ	_			α	c			7						16			36																	
ບັ				~	-	~			c	2		307					<u> </u>		69	8		2		c	7		ВО	00			0	1	í	1/			ç	۷			ę						4			184																	
Sc				~	1	ŝ			c	n		29				1	_		11	-	I	~		L	c		00	70			4	r		14			7	-			9						4			ŝ	,																
Ga				15	2	17			0	ЯI.		16				į	1/		19	2		00		5	<u>ה</u>		00	707			17	2	ä	71			10	2			23						21			19																	
PP R				18	2	26			5	18		9				2	17		13	2		2		Ċ	70		10	2			19	2	į	11			10	2			18						25			26	ì																
G				4	-	~			c	7		39				c	2		14	-		-		*	-		30	5			~	1	00	26			c	J			2						-			7																	
Zu				33	5	61			C L	79		77				r 1	2		75	2	i	7		ò	Ω.		0G	50			56	8	001	123			16	5			127						73			36	2																
Ba				999		211			0	40		424				C L C	929		974	5		636		1021	1/31		778	071			231	- 04	1001	1267			1007	1001			1478						42			814																	
>				10	2	~			L	Q		197				•	-		120	2		.		c	٥		000	2002			7	-		13/			33	22			09						4			39																	
Ī				LC.	þ	4			Ċ	٥		31				L	Ω		28	1		2		c	Ø		99	8			ç	0	ļ	1/			ц	C			7						9			12	!																
qN	ი	22	7	10.6	σ	19.2	77	3 6	007	19.9	0	3.1	12	19	4	2 9	16.4	16	6 2	2	מ	16.7	15		19.3	191	0 2	0.	24	19	14.2	1.50	S i	17.6	26	15	15.1		0	24	13.2	16	2 7	1	21	13	14.9	38	38	16.0	00		40	29	16	2 6	4 L	35	40	14	22	25	200	04 0	4	34	
Zr	144	386	176	170	183	200	217	222	777	G77	06	110	255	184	270	117	682	179	178		202	288	325		309	178	167		192	346	223	356		364	202	422	121		220	483	464	232	101	209	165	225	243	253	253	258	150	100	325	351	228	242	040	205	433	124	178	157	171		117	289	
≻	23	40	18	0 0	<u> </u>	38 - 22	39	37	20	35	13	20	37	23	10	t (33	18	20	1 0	2	42	34		43./	0	VC	t i	/4	31	30	8 6	2 2	41	35	41	12	5 0	70	40	45	77	10	40	36	39	35	48	48	20	30	1 0	0	37	23	0	0 0 0	54	99	20	46	38	11	- 0	07	29	
ري ال	379	141	124	132	103	131	126	7		4	171	487	74	560		7 7	10	580	005		7	ი	314		130	322	818	2	84	316	13			196	306	181	201	3	74	591	307	124	1 1	71	48	130	133	126	126	707	10	1 1	14	352	742	1 11		207	35	767	38	37	191		200	525	
R P	8	00		, , ,				2 2	1 4	2	200	34	60	33	a	2.	44	35	55		3	0	80	2.2	_	31	5	4 9	5	2	0	22	4 9	<u>9</u>	95 6	. 40	à	2 0	2	90	92	7	1 2	v	15	15	91	37 4	37			2 9	D :	1	99		2.2	14	с,	7	33	90			2 2	44	
	×	4	50	10	1 4	2	5	í č	N C		,		25	u		2	22	0	1-		2	50	-		-				51	-	50	1	- (0,	-	.	- 2	V	0,	0,	17	- 6	7	5	5	2,	28	32		iò	4 6	ñ	7	4,	4		<u>~</u>	-		30	50	i ÷	<u>-</u>	., .		
Re																																																																			
Tech.	T1,T2	Ţ	Ţ	. T	: F	- 1	Ţ	Ē	- c - F	7	F	T2	Ţ	Ţ	Ļ	- (-	2	F	T3	- +	= i	Τ2	Ţ	+	7	Ţ	L 2			11	τ,	1 F	- i	2	Ţ	Ţ	Ę	4 F	= i	F	Т2	Ţ	Ē	-	Ţ	F	Т2	F	Ţ	T.	Ë	- F - F	11,12	F	Ţ	т 1 Т Т 1 Т 2		11,12	_	Ţ	T1	T1 T2		1 1 1	= 7	=	
Unit	Tuml	Tv5	Tv5	Tv5	Tv3	Tv3	Tv6	T./5	C	CV I	Tum	Tuml	Tv4	Tv4	T.,1	- + -	144	Tuml	Tuml	E F	1 \4	Tv4	Tv6	- F	971	Tuml	T		144	Tuml	Tv4	T min		m	Tuml	Tv6	Tve	- +	1 \4	Tuml	Tuml	Tv6	- +	1 \4	Tv2	Tv4	Tv4	КТІ	Tv4	Tv1	T _{V/} T	- +	1 44	Tuml	Tuml	T _{1,1}	+ +	1 \4	1 44	Tuml	Tv4	Tv4				Imu	
Sample	D53D	J-256	9696-1.	1-369	1-375	J-375	995-I.	V/-200	002-00	NV-200	W-176	W-176	I-151	I-112	1 501	1 20-1	126-	I-532	1-532	100	+++	-44	DZ-29		7-70	-133	123	00	-4/8	HF-1	VG-7B			PLM	HW-1	Ni-102	Ni-102			PC-1	PC-1	Ni-30		П С- ХП	CG-BL	NJ-5	NJ-5	Monz	7-VIT	RFD			EC1	ECD	4RSRB			>	4EN1	4MPB	PMFS1				4BAU	XYZB	
#	157	159	160	160	163	163	168	170	0/1	0/1	172	172	173	174	175		c/l	176	176		///	177	178	0-1	67 L	181	181	101	184	186	187	100	001	190	191	192	102	761	193	194	194	195		661	201	202	202	203	205	207	208	2002	211	212	213	0.10	4 I 4	GLZ	712	218	219	220	224	- 44	777	223	

∩	0.85 3.67	1.04		2.97 2.98	2.30	3.85 3.55	9.6	1.1	3.8 3.13	1.84	2.03 1.44			5.7		3.00	2.65		3.78 1 02	6.63	5.06 4.00							0.71
Та	1.78 1.45	0.88		1.54 1.34	1.11	0.88 0.88	1.21	0.53	1.06 1.08	0.76	0.79 0.66			1.35		0./3	0.91		0.97	1.00	1.26 0.96	0						0.26
Hf	5.68 5.96	4.17		2.73 2.74	6.65	3.85 7.53	3.63	5.23	4.30 6.44	6.56	7.20 4.80			5.01	0 0 1	0.0	8.74		13.40 6.06	17.40	7.35 4 95							2.25
Y	35.50 27.26	32.22		10.51 11.60	31.33																60.71 22 36	000						
Nb	25.71 14.23	12.03		8.32 8.37	11.83																15.14 10.40							
Th	2.83 13.21	4.60		11.56 11.14 0	8.54	17.6 17.0	30.0	6.5	15.5 14.1	9.3	10.6 6.8			20.3		0.7	9.5		13.7 6.2	25.2	15.59 15.08	2						2.4
Ba	912 1339	913		1225 1204	1032	928 1460	379	778	1160 992	1200	1320 1030			89		Z 190	1690		2970 1660	586	1099 643	5						492
Lu	0.44 0.44	0.39		0.17 0.18	0.41	0.36 0.51	0.42	0.40	0.34 0.44	0.51	0.46 0.40			0.47	L C	0.40	0.49		0.43	0.38	0.85 0.33	0						0.20
γb	2.81 2.71	2.50		1.03 1.09	2.63	2.31 3.32	2.48	2.83	2.38 3.00	3.47	3.27 2.65			3.39		2.93	3.48		2.79 2.30	2.62	5.52 2.08	1						1.40
Tm	0.47 0.41	0.42		0.15 0.16	0.43																0.87	0						
Er	3.30 2.66	3.03		0.95 1.06	2.99																6.07 2.16	2						
Но	1.27 0.93	1.17		0.33	1.13																2.29 0.82	10.0						
Dy	6.50 4.63	6.22		1.73 1.94	5.93																11.68 4 03	2						
Tb	1.12 0.76	1.09		0.30	1.04	0.60 0.94	0.37	0.74	0.67 0.97	1.09	0.92 0.92			0.82		0.33	1.10		0.79	0.66	1.98 0.67	5						0.41
Gd	7.31 4.65	7.62		1.95 2.13	6.92																12.12 4 09							
Eu	2.39 1.02	2.65		0.49 0.53	1.88	0.94 1.51	0.36	1.58	0.90 1.52	2.13	2.05 1.87			0.60		3.UZ	2.93		1.61 2 83	0.86	2.73 0.91	-						1.09
Sm	7.93 5.80	8.71		2.66 2.75	7.93	4.29 7.58	2.74	5.72	6.18 8.31	9.52	9.36 7.66			5.40		9.01	11.00		6.79 7 81	7.40	13.28 4.63							3.05
Nd	34.82 29.66	39.36		15.24 14.98	35.01																57.46 21.80	2001						
Pr	8.24 8.30	9.19		4.58 4.39	8.53																14.23 5 05	0						
Се	67.91 74.05	73.80		46.90 44.32	72.17	57.0 85 1	53.8	59.8	84.8 82.5	85.6	89.4 63.7			53.3	201	101	120		88.6 76.6	87.9	90.61 49.36							22.3
La	35.26 44.82	38.06		27.68 25.60	36.88	41.7 45.8	33.8	27.5	46.3 42.8	43.1	46.8 35.0			29.1		4.7C	56.6		40.3 11 8	46.5	64.54 20 76							11.5
UNIT	Tuml Tv7 Tuml	IIIn Lun L	Tvu Tvu	Tvu Tvu	Tv4 Tv5	Tv4 Tv4	T v4	T 72	Lum Tum Tum Tum	Tv4 Tuml	Tuml Tuml	1 7 7 1 7 7	Tv2	Tv6 Tv2	T v4	Tv6	Tv6 Tv2	Tv2 Tv4	Tv6 Tv6	Tv6	T 72	1 7 7 7 7	T 42	1 V6	Tv2 Tv4	Tv4	Tv4 Tv4	Tv4
SAMPLE	3-21-3 3-21-2 2 20 2	3-20-3 3-20-1 Ma-1	12-11-3 11-14-1	10-23-5 BV5	3-23-1 10-25-2 an-29	NV11 NV01	NV07 90-30	057 058	054 072 053 052	C-21 048	038 039	90-25 90-78	90-80 90-80	023 N45	C-19	015 015	013 90-69	90-73 033	0-06 0-07	N-09	S-22 S-22	90-54	90-53 90-56	S-7	90-52 90-15	90-14 90-14	90-93 90-12	N68
	- 2 6	າບແ	13 0	15	12 22 52	28	31 32	33 34	35 36 37 38	39 40	41 42	44 47	49	50 53	54 57	56 56	59 60	62 63	64 65	66	67 67	. 89	69 70	22	75 75	76	77 78	79

∍	1.47 5.6	0 01	17.7	1.22	0.755	0./40					556	22.2					11.8	5	6.8						5.38	5.99	0.0	6.5	12.5	0.942	10.48							5 05	22.2			9.43	<i>к</i> 10	2		10.31
Ta	0.34 1.07	77 0	t t	0.30	0	0.4Z					1 13	2					1.55	06.0	1.10						1.38	0.98	0.30	1 10	1.40	0.29	1.28							1 70	2			4.71	1 52	10.1		4.61
Ŧ	3.01 7.47	367	20.0	2.80	2.37	3.23					7 16	2					3.72	8.00	9.70						7.13	7.23	0.93	8 80	5.59	2.60	5.17							833	20.0			14.22	с р я	10.0		15.42
≻											45,69)))))													42.90						31.90							53 17				88.05	36 53	00.00		82.24
Νb											14 RU	2 2 1													15.97						13.16							11 61				42.09	13 97	0.0	;	47.37
Th	5.4 18.8	7 5	0.7	5.0	2.7	2.2					18 17						34.4	16.0	20.0						17.73	16.0	C. / I	19.2	32.4	2.8	28.25							17 15				32.90	16 46			36.38
Ba	657 1160	716	017	687	495 750	00.7					1106	2					192	1240	1380						1090	1010	0071	1160	684	590	919							1111	<u>+</u>			16	1158	200	9	40
Lu	0.19 0.68	030	00.00	0.21	0.20	0.23					0.68	2.2					0.45	0.68	0.78						0.65	0.94	0.03	0 84	0.52	0.23	0.51							080	00.0			1.23	0 67	0.0		1.28
γb	1.40 4.87	2 03	00.7	1.42	1.33	77.1					4 76	7.1.5					2.75	4.60	5.20						4.01	6.41	4.03	5.55	3.53	1.45	3.21							7 07	10.1			8.17	3 56	0000		8.39
Tm											0.68	22.2													0.62						0.49							0 78	2.2			1.30	0 55	0.00		1.32
ц											4 54	г 5 г													4.14						3.13							л 10	2			8.26	3 50	0.0		8.64
РH											168	2													1.47						1.11							1 83	2			2.73	1 27	1	;	3.07
<u>م</u>											808	22.2													7.05						5.29							8 03	2000			12.00	6 74	1.0		14.73
Tb	0.39 1.31	062	20.0	0.36	0.45	00.0					1 33	22					0.33	1.10	1.20						1.15	2.13	cl .I	1 26	0.76	0.48	0.87							1 15) -			1.64	1 01	-		2.28
Gd											7 00	00.1													6.87						5.13							8 5,8	22.2			7.66	R 07	0.0		12.54
Eu	1.15 1.59	1 23	07.1	1.21	1.17	77.1					1 57	5					0.21	1.90	1.70						1.20	3.34	1.00	168	0.64	1.40	0.85							1 85	22.			0.10	1 33	00		0.18
Sm	3.73 10.50	Б 10	<u>.</u>	3.83	2.68	67.C					8 60	2.0					2.46	8.80	8.20						7.38	19.10	0.30	696	6.31	3.97	6.05							0 15	0.0			6.70	с 08	0.0	!	13.47
ΡN											36 83	22.20													32.88						28.83							38.63	00.00			25.51	31 37	0.10		55.60
Pr											0 24	5.57													8.45						7.93							0 57	10.0			6.68	а 18	0	Î	14.59
Ce	40.1 96.0	V 2V	t. T	37.7	24.9	40.0					80 77						49.6	80.0	82.0						73.35	82.5	01.J	85 4	75.6	35.6	72.64							75 03	00.01			46.29	70 61	10.4		119.51
La	18.9 46.2	31 E	0.10	17.7	10.9	6.22					41 24						30.6	40	42						40.22	105.0	4 I i Z	45.0	38.1	16.7	39.17							10 GR	10.14			35.69	38 31	- 0.00		64.97
UNIT	Tv4 Tv3	Tv3	Tv4	Тv4	T v4	Tuml	Tv4	Tv4	1 V4	I umi	T / 4	- 1 22	Timl	Tuml	Tv4	Tuml	Tv4	Tv5	Tv5 -	I umi	Tuml	Tum	Tv4	Tv4	Tv3	Tv5 T		Tv5	Tv6	Tuml	Tv6	Tuml Tuml	Lun Lan	Tuml?	Tv5	Tv4	¥	T/T	Tv4	Tv5	Tuml	Tfr Tfr	1 umi	Tv5	Tfr I	
SAMPLE	N66 O-04	90-11 N53	6-06	N65	W-60	0.97 90-97	90-19	90-85 00 40	90-18 00.60	90-60 ^^ 6	90-0 S-3	00 00-46	90-63	90-64	90-4	66-06	86-40	N58	N62	90-101	90-21 00 100	90-100 90-20	90-2 90-2	90-106	S-6	N55	90-110	NGO	S-32	N71	S-23	90-112 00-115	90-115 00 117	50-113 C-13	C-17B	C-14B	D77A	D86A		D84A	D70D	D76B	U/0A N75A	D85B	J-140	J-140
	31 32	33	ťΰ	36	37	000	06	5	Z S	5 2	t ۲	ڊ بر	2.5	86	96	00	101	102	103	c01	90 L	080	110	11	113	114	19	18	120	121	122	123	47	28	129	130	135	40	42	145	146	149 ج	201	154	155	55

	_	0.80	6.92	7.99		6.03	1.10			6.37	2.74	7.32	0	J. 4J	1.11		4.74	3.06		3.26		3.44			5.26		11.19	6.49		3.10 3.05	0.00		4.61	3.20	Van	23
	Ta	0.84	1.66	2.48		2.63	0.58			2.56	0.85	1.80		z.04	06.0		2.19	1.45		1.72		1.13			2.72		2.29 1	3.51		2.19 2.56	2007		2.49	2.51	(contin	
	₹	.42 (.03	.93		.52	.98			.46	.38	49		۰ ۵.00	.14		.70	.76		0.40		. 76			.06		.30	1.14		.87	2		40	1.13		
	~	£.	3 68.	.20		.65 7	.12			.54	.10 4	93			.67 4		.41 6	.10 8		.08		8 09.			.71 7		.12 6	.18 1		.95 98 98	20.00		.20	.25 1		
		00 27	80 21	28 45		81 40	0 21			07 38	35 22	08 47	L		25 26		82 43	39 45		84 48		15 50			42 42		17 23	50 75		29 55 34 47	ř 5		07 39	83 44		
	z	0 5.0	33 11.	3 22.		96 21.	1 3.7			'9 18.	0 8.8	3 18.	2	. 7	4 8.2		i7 15.	2 18.		8 16.		6 14.			0 17.		32 18.	1 33.		0 22. 7 24	-		0 24.	9 19.		
i	님	3.10	20.8	20.9		21.0	3.4			21.7	7.6	21.8			3.9		18.4	9.0		9.4		7.6			15.9		37.5	29.5		13.9	Ē		21.9	12.5		
	Ba	747	1036	217		39	418			654	977	651	ļ	141	722		236	1242		1109		1479			45		810	43		722	2		260	2256		
	Lu	0.42	0.39	0.65		0.72	0.32			0.60	0.32	0.75		0.73	0.33		0.67	0.63		0.73		0.73			0.61		0.34	1.10		0.83	2		0.65	0.65		
	٩	2.60	2.30	4.17		4.44	1.97			3.85	1.98	4.73		00.0	2.16		4.20	4.00		4.53		4.56			3.86		2.12	6.98		5.28 4 70	> - f		4.14	3.97		
∋d)	Е	0.41	0.34	0.66		0.66	0.31			0.60	0.32	0.73	1	0.73	0.36		0.65	0.64		0.72		0.72			0.62		0.33	1.10		0.84 0.74			0.63	0.63		
continue	ш	2.76	2.10	4.40		4.13	2.18			3.98	2.13	4.87	C L	CZ.C	2.60		4.26	4.47		4.76		4.91			4.29		2.18	7.10		5.64 4 81	- - -		3.96	4.19		
DATA	£	1.00	0.72	1.62		1.39	0.79			1.47	0.79	1.74		1.92	1.00		1.51	1.69		1.72		1.81			1.59		0.80	2.44		2.06 1 73			1.38	1.51		
LEMEN	2	4.84	3.39	7.97		6.49	3.81			7.31	4.09	8.37	1	9.73	5.06		7.21	8.39		8.31		8.86			8.05		4.03	11.46		10.19 8.43			6.61	7.29		
RACEE	Tb	0.78	0.55	1.31		1.01	0.62			1.24	0.70	1.37		CO.1	0.88		1.16	1.43		1.38		1.48			1.33		0.72	1.72		1.66 1.35	2		1.05	1.17		
3LE 4. T	B	4.72	3.17	7.71		5.48	3.78			7.42	4.57	8.03		10.23	5.88		6.33	9.20		8.22		9.45			7.78		4.50	8.70		10.15 8.03	222		5.96	7.20		
TAF	п	1.51	0.56	1.05		0.47	1.08			1.02	1.47	1.01	L	2.90	1.95		0.76	2.68		2.10		2.96			0.43		1.04	0.35		1.45 1.58	2		0.49	2.04		
	Sm	.87	.74	.51		.20	.86			.92	.25	.87	1	2.31	.35		.93	0.07		.93		0.16			.56		.79	.16		1.72	-		.19	.87		
	p	.49	.16	.50 8		.71 6	.94 3			.19	.02	.55 8	L		.77 6		.10 6	.93 1		.52 8		.39 1			.73 8		50 5	.76 8		1 1.	202		.01 7	68.		
	2	3 19	6 19	0 35		0 26	5 14			17 40	1 24	1 39	c L	50 51	9 27		7 28	3 43		4 38		8 43			3 33		5 29	1 27		6 54	5		3 35	36		
	μŢ	4.4	5.5	9.1		7.4	3.4			10.3	5.9	10.1	0	13.0	6.4		7.2	10.4		9.3		10.1			8.4		8.3	6.5		13.9	-		6.6	9.5		
	ő	35.80	55.30	80.04		63.76	27.31			83.31	50.05	89.03		80.00	52.28		63.91	84.82		74.54		77.24			69.87		79.30	53.64		123.14 99.31			93.56	87.23		
	La	17.92	32.92	t0.70		34.25	13.94			47.13	27.52	17.79		22.20	26.60		32.52	14.64		t0.86		t3.13			33.00		15.69	28.72		54.63 52.86	20.40		52.32	19.54		
	LIN	_v5 کرچ	s s S S S	- 23 - 23 - 2	rv6 -v5	_v5	rml rml	7 4 7 7	-44	7 d Iml	Imn	4 4 7	9^		nml 2	t Im	74 m	nml z	-v6	7 6 Z	uml	ז ע nml	- 7	72	4	<u>F 7</u>	12	47	nml um	7 44		uml _v4	47	v4 Imu	ILIN	
	Э	⊢⊢⊦				Ηř			F		Ĩ				. – ۲	- 1	ΗĘ	- – -	<u> </u>	⊢ ŀ	- 1	Ę,				<u>-</u> ⊢			ΞΞ ~		· –	 -	+		-	
	SAMP	D53D J-256 I 360	J-309 J-369	J-375	J-399 W-200	W-200	W-176 W-176	l-151 l-112	I-521	I-521 I-532	I-532	-44 -44	DZ-29	UZ-2 1.133	I-133	HF-1	VG-7B PI M	PLM	Ni-102	Ni-102	РО-Ч	PC-1	NI-30 ER-51	CG-BL	NJ-5	Monz Z-VIT	RED	EC1	ECU 4RSRE	RND1	4EN1	4MPB PMES	CLLD	4BAS1	ХҮ2Б	
		157 159 160	160 160	163	168 170	170	172	173 174	175	175 176	176	177	178	181	181 184	186	187 190	190	192	192	194	194	061 199	201	202	203 205	207 208	211	212 213	214 215	217	218 219	220	222	622	

ō	ō											143	430				0000	600	351		315	010	285								169	312																	
ā	Sb										۲ ۲	2.1	2.2					0.4	0.4		0.0	7.0						1.8		4	0.3	0.3																	
	As										67	13.2	7.8				1	9.7 7.7	2.8		r +	<u>t</u>					1	9.5									- - -												
2	>										37	13	11		125			č	84		48	0 1	110							:	93	150	2		1	40	701	0											196
	ő										8 6	1.3	1.2		15.1		0	0.0 2.1	9.5		99	0.0	11.3					0.3			10.1	19.0			1	5.2	20.3 1 E	4.U											25.8
	N	30.4 47.7		22.5			94.1 - 1 0	14.3	42.0																													ר ע	, c - c										
(continued)	Zr	236 206		164			72	9/0	240																													250	158	22									
INT DATA	Sc	20.7 3.2		29.5			1.4	2.0	0.21		4 9	5.6	3.2		15.4		0	2 0	9./		0 1	1. U	15.0					4.0		1	12.5	16.1				6.7	C.81	0.4 11 4	t.α Ξ «	0.0									19.6
CE ELEME	Sr	677 152		790			146	1/6	400																													284	104	171									
ABLE 4. TRA	Cs	1.07 5.56		1.10			2.53	3.32	2.40		25	5.8	9.7		5.5		L C	3.5 0.0	3.3		и И	0.0 10	1.5					3.3			3.0	1.9)			1.8	0.7 7	0.0 6 25	0.2.0 R 22	77.0									14.0
	Rb	41.3 208.2		33.6			100.0	108./	0.021																													175 S	170.4	1.0.1									
ā	Pb	8.24 25.78		7.77			15.98	15.79	13.13																													18 22	15.47	14.01									
	UNIT	Tuml Tv7	Tuml	Tuml	Tvu	Tvu	Tvu Ŧ	Tvu T	Tv4	+ c - +	7 1 V2	Tv4	Tv4	Tv2	Tv2	Tv2 -	IumI T		I uml	1 uml	Tuml	Timl	Tuml	Tv2	Tv2	Tv2	Tv2	Tv6	172	1 V4	TV6 T, 6	Tv6	Tv2	Tv2	Tv4	Tv6 + 0	۹۸ – ۲	0/T	- V2 TV2	- ve Tv2	1 2 2	1 V2 Tv3	- ve Tv6	TV2	- ve Tv4	Tv4	Tv4	Tv4	Tv4
-	Sample	3-21-3 3-21-2	3-20-3	3-20-1	12-11-3	11-14-1	10-23-5	673 272	3-23-1 10-25-2		30-23 NV11	NV01	NV07	90-30	057	058	054	0/2	053	052 0	- 7-7 - 748	040	039	90-25	90-78	62-06	90-80	023	N45	<u>1</u> 9	018	013	69-06	90-73	033	0-00		60-N	0-27 0-27	90-54	00 F2	90-56	S-7	90-52	90-15	90-12 90-14	90-14 90-93	90-12	N68
=	#	- 0	с	9	10	13	15	19	20	2F 2F	280	29	31	32	33	34	35	36	37	200		41	42	44	47	48	49	50	53	54 	55 Ee	20	60	62	63	64	00 00	00 67	67	68 68	20	20 70	72	74	75	76	0/	78	79

	C	741																506		165								576	010	816	202	484																		intinued)
	Sb	0.2 3.0		0.4	0.2													3.0	2.0	1.4							0	0.0 7		16	0.0	1																		(00)
	As	12.0		3.0														14.3	7.6	5.7							5 1	о.4 7 Л	0.01	77	9.6	2																		
	^	143		122	158	170	140												23	7							EO.	00	2		σ	159																		
	Co	21.6 0.5	5	19.6	22.2	26.1	31.8											1.0	1.9	0.7							5	7.0	0.	0 0		23.4																		
	M											1 0	7.7													c	6.2						3.4								L L F	c.c/			177.4		59.5		125.0	
(continued)	Zr												234													000	230						149									311			396		319		441	
ENT DATA	Sc	16.0 4.6		14.6	16.2	20.0	12.1					C	7.0					2.4	7.6	5.8						č	- c	ה מ ה	0.0	с С	0.0	14.0	4.4								1	1.4			0.6		5.4		0.9	
VCE ELEME	Sr												011													000	239						117									121			9		239		0	
ABLE 4. TR/	Cs	2.0 13.8		9.8	1.2	14.9	0.4						14.41					11.8	2.3	4.8							27.0	1.2	42.4	13 5	12.4		13.03									11.14			10.52		6.84		6.59	
	Rb											0.010	243.3														1.001						216.8									185.7			310.5		178.1		318.0	
	Pb												NC.22													2.20	10.12						23.45									33.02			38.50		24.04		40.30	
	UNIT	Тv4 Тv3	TV3	Тv4 Тv4	Tv4	Tv4 -	Tuml	Tv4	Tv4	Tv4	Tuml	1v4 5	T v3	Tuml	Tuml	Tv4	Tuml	Tv4	Tv5	Tv5	Tuml	Tuml	Tuml	Iumi	Tv4	1v4	T \\5	cv ا		T VE	Tv6	Tuml	Tv6	Tuml	Tuml	Tuml	Tuml?	Tv5	Tv4	Ĕ	 	57 F	1 V4 T _{1/5}	Timl	Tfr	Tuml	Тv4	Tv5 Tfr	ш <u>1</u> Ц	
	Sample	N66 0-04	90-11	N53 90-0	20-5 N65	09-M	0/N 90-97	90-19 90-19	90-85	90-18	09-06	90-6 0 0	0-3 90-46	90-63	90-64	90-4	66-06	86-40	N58	N62	90-101	90-21	90-100 33 33	90-20	90-2 56 150	90-106	0-0 NEE	CCN 73N		NED NED	S-32	N71	S-23	90-112	90-115	90-117	C-13	C-17B	C-14B	D77A	D86A	D69C			D76B	D76A	D75A	D85B	J-140 J-140	
	#	81 82	83	84 85	86 86	87	88 08	06	91	92	93	94 01	66 06	97	98	66	100	101	102	103	105	106	107	108	110	111	110		0 1 1	110	120	121	122	123	124	126	128	129	130	135	136	140	142	146	149	150	152	154 156	155	

					TABLE 4. TR	ACE ELEME	NT DATA	(continued)					
#	Sample	UNIT	Pb	Rb	Cs	Sr	Sc	Zr	M	Co Co	As	Sb	G
157	D53D	Tuml	9.14	24.3	0.74	684	27.1	124	65.1				
160	962-L	671 2VT											
160	J-369	Tv5	18.27	224.8	7.84	128	2.6	168	69.69				
163	J-375	Tv3											
163	J-375	TV3	26.93	203.0	46.27	128	5.3	198	114.0				
170 170	1-399 00-700	0/1 Tv5											
170	W-200	Tv5	17.42	203.8	4.04	5	2.8	201	148.1				
172	W-176	Tuml											
172	W-176	Tuml T	6.01	32.7	0.74	485	34.8	102	47.3				
1/3	1-151	1 v4											
175	I-112 I-521	1 V4 T v4											
175	1-521	Tv4	20.10	183.8	5.30	12	76	579	144 2				
176	- 52	Tuml	2	0.00	0	1	2	2	1				
176	1-532	Tuml	11.56	70.7	2.48	586	12.8	163	30.5				
177	I-44	Tv4											
177	I-44	Тv4	20.81	194.1	7.46	6	7.5	280	40.2				
178	DZ-29	Tv6											
179	DZ-2	Tv6	18.81	115.1	3.85	130	5.7	356	102.8				
181	1-133	Tuml											
181	1-133	luml T	8.40	31.9	0.74	/ 48	23.6	163	57.1				
184	1-478	T v4											
100				1 001		C T	c	000	1077				
18/	NG-/B	T \\	19.35	180.4	07.6	13	3.2	203	140.7				
190		Tuml	15 17	0	2 60	503	0 4 4	264	16.1				
190		Tum	14.01	0.00	5.03	c00	0.11	100	+0				
192	Ni-102	Tv6											
192	Ni-102	Tv6	15 29	111 0	3.61	176	7 4	404	76.8				
103	70- I-	Tv4	04.01		-	2	<u>t</u>		0.0				
194		Tuml											
104		Timi	16 57	88.3	2 21	ROR	с С	454	38.7				
101	NI:-20	Tve	10.01	0.00	1 7 . 7	000	0.0	r 7	1.00				
100		1,10											
100		t ^/											
202	NLA	Tv.4											
202	N.I-5	Tv4	24 44	206.8	19.05	124	44	239	182 7				
203	Monz	КТі	1	2	0000	-		201					
205		Tv4											
207	RED	Tv1	25.24	267.4	13.82	212	4.7	220	60.0				
208	RP	Tv4											
211	EC1	Tv4	34.23	315.3	8.11	14	3.5	281	108.9				
212	ECD	Tuml											
213	4RSRB	Tuml											
214	RND1	Tv4	28.48	144.3	2.31	49	6.7	344	101.7				
215		Tv4	27.27	188.2	44.27	206	4.8	352	114.9				
217	4EN1	Tv4											
218	4MPB	Tuml											
219	PMES1	Tv4											
220	CLLD	T v4	28.02	201.4	4.98	37	3.0	150	59.3				
221		1 \4	19.99	131.4	2.71	157	6.9	461	153.7				
		TT											
223	XY2B			1 y				CF AT	1		Ċ	11	
Y-rav Ellin	ecriniques (Tec	or ICD-MS T	/ses at Univer 3analyses	sliy ol TeXas at Enjversitv	s, Austin, by 7 of Massachiu	KAL (HD, Sr, sette Amberi	r, zr, ND 0 et hv Y-rav	riiy). Iz—a	Inalyses at v	vasriirigiori ola le Ur	liversity Ge tota Liniviare	oanaiyucai La	au uy
Activation	urescence and T5analyses	at Los Alami	o aniaiyaca a	at University aboratory by	Neutron Activ	aetion All val	ou, uy A-lay Iles are in I	nnm Refer	ence (Ref.).	laiyses at Olegoli U 1—Wark (1991)	ומום חוווגבוס	אווא שא ואפמווס	-
עמווא		מו דעס אמווו		abulatury by		מווחוי או עמו			בווהם לו ובוילי				

Figure 4. (A) Element variation diagrams are plotted for individual analyses of rhyolites from the Sierra Madre Occidental proper (yellow lines) and central Chihuahua (green lines). (B) Equivalent plot for analyzed rocks of basalt or basaltic andesite composition. All analyses in A and B have been normalized to the values in Sun and McDonough (1989).

				IADLE :	5. K-ALAGES					
#	Sample	Unit	Mineral	%K	%40*Ar	40*Ar ×10 ⁻⁶ scc/gm	Age (Ma)		±1σ	Ref.
1	3-21-3	Tuml	whole rock	1.669 1.680	40 52	1.174 1.226	18.4	±	0.4	
2	3-21-2	Tv7	biotite	6.882 6.776	66 69	6.345 6.49	24.0	±	0.4	
2	3-21-2	Tv7	plagioclase	0.635 0.636	55 54	0.5646 0.5479	22.4	±	0.5	
4	3-20-4	Tv7	plagioclase	0.628 0.695 0.670 0.663	52 56	0.5962 0.6129	23.3	±	1.1	
5	12-13-3	Tuml	plagioclase	0.441 0.439	36 33	0.4219 0.455	25.5	±	1.4	
7	11-16-2	Tuml	whole rock	1.318 1.303	61 72	1.225 1.249	24.1	±	0.5	
8	Ma-1	KTi	biotite	7.218 7.111	82 90	17.56 17.99	62.8	±	1.0	
11	11-15-1	Tv4	biotite	7.198 7.143	82 80	9.513 9.652	34.1	±	0.5	
11	11-15-1	Tv4	k-felds	9.033 9.088	96 96	11.92 11.75	33.3	±	0.7	
12	11-16-4	Tv4	biotite	6.941 6.980	61 65	8.937 9.082	33.0	±	0.5	
12	11-16-4	Tv4	k-felds	9.278 9.191	94 95	11.87 11.51	32.3	±	0.7	
13	11-14-1	Tvu	plagioclase	0.315 0.318	29 30	0.4138 0.3808	32.0	±	1.9	
14	C-2	Tvu	whole rock	1.166 1.161	63 65	1.36 1.33	29.5	±	0.6	
14	C-2	Tvu	plagioclase	0.146 0.152 0.161	19 13	0.213 0.186	33.2	±	3.6	
16	C-1	Tv6	plagioclase	0.554 0.551	48 45	0.642 0.627	29.3	±	0.7	
16	C-1	Tv6	biotite	6.46 6.46	77 75	7.67 7.62	30.2	±	0.5	
17	3-25-4	Tv6	biotite	6.611 6.636	49 60	7.451 7.582	29.0	±	0.5	1
18	10-20-1	Tv4	biotite	6.852 6.873	61 70	9.088 9.173	33.9	±	0.5	
18	10-20-1	Tv4	plagioclase	0.641 0.639	40 45	0.7516 0.7045	29.0	±	1.4	
19	BV5	Tvu	biotite	7.183 7.250	73 81	8.529 8.596	30.3	±	0.5	

0.392 0.390 40 48 0.5073 0.4652

31.8

±

2.0

TABLE 5. K-Ar AGES

28

20

3-25-3

Tvu

plagioclase

# Sample Unit Mineral %K %40*Ar 40*Ar ×10 ⁻⁶ Age 21 3-23-1 Tuml plagioclase 0.376 19 0.3853 26.4	e l) 3 +	±1σ	Ref.
21 3-23-1 Tuml plagioclase 0.376 19 0.3853 26.	<u>9</u> 3 +		
21 3-23-1 Tumi plagioclase 0.376 19 0.3853 26.	< <u> </u>	0.0	
0.371 27 0.3841	5 <u></u>	0.9	
23 O59 Tv6 plagioclase 0.603 52 0.653 28.	0 ±	0.7	1
0.590			
24 C-4 Tv6 plagioclase 0.344 17 0.424 30.	2 +	1.7	
0.368 16 0.418			
24 C-4 Iv6 biotite 6.59 70 8.08 31.	4 ±	0.5	
6.68 75 8.26			
26 C-6 Tv6 plagioclase 0.301 19 0.368 30.	8 ±	0.9	
0.301 21 0.358			
06 C.C. Tu6 emphihele 0.491 01 0.540 00	n.	0.6	
26 C-6 TV6 amphibole 0.481 31 0.540 28.	8 ±	0.6	
0.478 56 0.541			
26 C-6 Tv6 biotite 6.13 71 7.71 31.	8 ±	0.5	
6.25 68 7.59			
81 7.84			
97 199P Tv9 plagiaglaga 0.160 16 0.015 97	e ,	6.0	4
27 J22B 1V2 plaglociase 0.169 16 0.215 37.	0 ±	6.8	I
0.165 22 0.277			
30 J22A Tv2 plagioclase 0.159 8 0.200 32.	2 ±	1.8	1
00 0.04 T.4 allocitation 0.075 50 0.540 0.4	7		4.0
39 C-21 IV4 plagioclase 0.375 52 0.519 34.	/ ±	0.8	1,3
0.379 46 0.507			
45 J18 Tv2 plagioclase 0.259 31 0.404 39.	7 ±	1.7	
46 J23 Tv6 plagioclase 1.317 44 1.381 27.	4 ±	0.6	1
1.299 60 1.422			
51 C-20 Tv6 plagioclase 0.628 70 0.731 28.	8 ±	0.7	1.3
0.643 56 0.703			, -
	0	0.0	1.0
52 P18A 1V6 K-Telos 4.29 75 5.15 30.	2 ±	0.6	1,3
4.26 82 4.97			
54 C-19 Tv4 plagioclase 0.323 30 0.481 34.	4 ±	0.8	1,3
0.318 44 0.432			
	F .	0.7	4
55 U18 IV6 K-felds 3.785 81 4.374 30.	b ±	0.7	I
5.020 75 4.401			
57 S-27 Tv4 k-felds 6.424 90 9.219 35.	8 ±	0.8	1
6.494 92 8.940			
	•		
58 S-14 IV6 K-felds 5.283 85 5.967 29.	2 ±	0.6	
5.332 86 6.193			
61 S-17 Tv3 biotite 6.897 71 9.226 33	9 +	05	1
6.967	J -	0.0	
61 S-17 Tv3 plagioclase 0.512 44 0.747 36.	8 ±	1.3	1
0.500 31 0.716			
66 N-09 Tv6 k-felds 5.752 91 6.384 28	8 ±	0.6	1
5.566		-	

			Т	ABLE 5. K-Ar	AGES (continu	ed)				
#	Sample	Unit	Mineral	%K	%40*Ar	40*Ar ×10 ⁻⁶ scc/gm	Age (Ma)		±1σ	Ref.
67	S-22	Tv2	biotite	6.605 6.493 6.553	54 58	9.930 9.708	38.2	±	0.6	1
71	M11	Tuml	whole rock	0.267 0.235	29 28	0.297 0.300	30.4	±	2.8	1
72	S-7	Tv6	k-felds	4.917 4.948	59 86	5.696 5.639	29.3	±	0.6	1
72	S-7	Tv6	biotite	6.712	70 62	7.772 7.465	29.0	±	0.9	1
73	S-19	Tv3	biotite	6.052 6.128	70 67	9.155 9.240	38.5	±	0.6	1
73	S-19	Tv3	plagioclase	0.636 0.630 0.637	49 44	0.867 0.992	37.3	±	3.6	1
80	S-9	Tv3	biotite	6.976 6.909	79 88	9.887 9.950	36.4	±	0.6	1
80	S-9	Tv3	plagioclase	0.750 0.734	64 52	1.049 1.024	35.6	±	0.8	1
95	S-3	Tv3	biotite	6.307 6.119	76 77	8.907 9.021	36.8	±	0.6	1
95	S-3	Tv3	plagioclase	0.606 0.624	34 32	0.866 0.851	35.6	±	1.5	1
104	S-8	Tv4	biotite	6.785 6.967	68	8.740	32.4	±	0.5	1
104	S-8	Tv4	k-felds	5.605 5.611	75 84	7.656 7.498	34.4	±	0.7	1
109	S-4	Tv5	k-felds	2.117 2.112	76 77	2.600 2.542	31.0	±	0.7	1
112	S-5	Tv3	biotite	7.124 7.075	81 81	10.019 9.925	35.8	±	0.6	1
112	S-5	Tv3	plagioclase	0.978 1.019 1.011	62 64	1.226 1.331	32.5	±	2.0	1
113	S-6	Tv3	biotite	7.062 7.097	83 87	9.911 9.925	35.7	±	0.6	1
119	S-31	Tv5	k-felds	2.212 2.220	83 68	2.760 2.749	31.7	±	0.7	1
120	S-32	Tv6	plagioclase	0.492 0.496	43 47	0.591 0.593	30.6	±	0.7	
120	S-32	Tv6	biotite	6.859 6.929	69 65	8.533 8.678	31.8	±	0.5	
122	S-23	Tv6	plagioclase	0.499 0.496	39 41	0.614 0.609	31.4	±	0.7	

			-	TABLE 5. K-Ar	AGES (continue	ed)				
#	Sample	Unit	Mineral	%K	%40*Ar	40*Ar ×10 ⁻⁶ scc/gm	Age (Ma)		±1σ	Ref.
125	S-28	Tv5	plagioclase	0.748 0.755	61 49	0.958 0.913	31.8	±	1.2	1
127	C-18	Tv6	plagioclase	0.600 0.608	62 66	0.695 0.723	30.0	±	0.7	1,3
131	C-12	Tv5	plagioclase	0.768 0.770	69 68	0.985 0.926	31.7	±	0.7	1,3
132	C-7	Tv4	k-felds	8.69 8.60 8.81 8.63	90 92	11.42 11.09	33.1	±	0.7	1,3
132	C-7	Tv4	biotite	6.93 6.93	76 73	9.30 9.20	34.0	±	0.5	1,3
133	S-25	Tv4	biotite	7.270 7.397	80 90	9.702 9.886	34.1	±	0.5	1
133	S-25	Tv4	plagioclase	0.447 0.452	48 49	0.568 0.605	33.3	±	1.5	1
134	S-24	Tv4	k-felds	3.969 3.962	82 78	5.282 5.065	33.3	±	0.7	1
137	D66B	Tv4	plagioclase	0.5051 0.5090	40 40	0.5438 0.6401	29.8	±	3.4	
138	D66A	Tv4	plagioclase	0.6246 0.6221	64 64	0.7972 0.8216	33.1	±	0.8	
139	D48B	Tv5	plagioclase	0.8493 0.8182	64 60	1.000 1.039	31.2	±	0.7	
140	D69C	Tv5	plagioclase	0.8109 0.8322	64 61	1.032 1.001	31.6	±	0.7	
141	D48A	Tv5	plagioclase	0.5218 0.5150	52 51	0.6993 0.6961	34.3	±	0.8	
141	D48A®	Tv5	plagioclase	0.5499 0.5490	56 38	0.6569 0.6913	31.3	±	0.7	
142	D70B	Tv4	plagioclase	0.5651 0.5554 0.5689	42 46	0.7279 0.7165	32.7	±	0.8	
143	D89B	Tfr	k-felds	6.590 6.541	93 92	7.360 7.219	28.4	±	0.6	
144	D89A	Tuml	whole rock	1.097 1.072	47 38	1.085 1.050	25.2	±	0.5	
146	D70D	Tuml	whole rock	1.357 1.360	59 57	1.524 1.498	28.4	±	0.6	
147	D73H	Tv4	plagioclase	0.2967 0.3045	25 40	0.3066 0.4123	30.5	±	0.8	
148	D85A	Tuml	plagioclase	0.3456 0.3493	3 2 5	0.4882 0.2664 0.7518	36.8	±	17.8	
				-					(0	continued)

			Г	ABLE 5. K-Ar	AGES (<i>continue</i>	d)				
#	Sample	Unit	Mineral	%K	%40*Ar	40*Ar ×10 ⁻⁶ scc/gm	Age (Ma)		±1σ	Ref.
149	D76B	Tfr	k-felds	6.126 6.160	91 93	6.664 6.716	27.8	±	0.6	2
150	D76A	Tuml	whole rock	1.224 1.193	54 53	1.242 1.231	26.1	±	0.5	
151	D78B	Tfr	k-felds	6.558 6.598	93	7.076	27.5	±	0.6	2
152	D75A	Tv4	plagioclase	0.5836 0.5966	52 44 37	0.7659 0.6938 0.7639	32.0	±	1.8	
153	D75B	Tv4	plagioclase	0.7325 0.7430	55 45	0.8160 0.8234	28.4	±	0.7	
155	J-140	Tfr	k-felds	7.203 7.182 7.132	93 88 97	7.696 7.802 7.617	27.4	±	0.6	2
157	D53D	Tuml	whole rock	1.258 1.268	41 41	1.368 1.316	27.1	±	0.5	2
158	J-212	Tv4	k-felds	6.053 6.018	95 91	7.807 7.629	32.6	±	0.7	2
160	J-369	Tv5	plagioclase	0.9264 0.9072	46 45 54	1.124 1.073 1.104	30.6	±	0.8	2
161	D62A	Tv5	plagioclase	0.3583 0.3688 0.3623	25 30	0.4555 0.4675	32.4	±	0.9	2
162	D62B	Tv5	plagioclase	0.5073 0.5152	25 29	0.6385 0.6254	31.5	±	0.9	2
163	J-375	Tv3	plagioclase	1.858 1.807 1.822	84 72	2.675 2.573	36.6	±	1.1	2
164	W-300	Tv3	plagioclase	0.3394 0.3382	27 33 25	0.4404 0.4997 0.4662	35.3	±	2.2	2
166	W-204	Tuml	plagioclase	0.2172 0.2168	10 17 24 11	0.1756 0.2018 0.2489 0.2578	26.0	±	4.6	
167	W-173	Ti	biotite	6.081 5.977	77 75	8.821 8.792	37.2	±	0.6	2
169	WD-8	Tv5	plagioclase	1.070 1.059	60 56	1.243 1.263	30.0	±	0.7	2
170	W-200	Tv5	k-felds	5.371 5.376	92 89	6.274 6.245	29.7	±	0.6	2
171	WF-1	Tv5	k-felds	5.796 5.822	94 79 93	7.024 7.340 6.826	31.0	±	1.2	2

#	Sample	Unit	Mineral	%K	%40*Ar	40*Ar ×10 ⁻⁶	Age		±1σ	Ref.
	•					scc/gm	(Ma)			
175	I-521	Tv4	k-felds	3.742 3.770	83 85	4.715 4.523	31.4	±	0.7	2
176	I-532	Tuml	plagioclase	1.248 1.282 1.289	44 49 47	1.583 1.409 1.555	30.4	±	1.9	2
180	I-470	Tv4	k-felds	5.571 5.699	89 92	7.783 7.732	35.1	±	0.8	2
182	DZ 31	Tv6	k-felds	3.315 3.347	85 76	3.983 3.763	29.7	±	1.2	2
183	I-494	Tv4	biotite	7.180 7.176	83 85	9.493 9.503	33.7	±	0.5	2
183	I-494	Tv4	plagioclase	0.8973	36 31	1.350 1.151	35.5	±	4.0	2
184	I-478	Tv4	k-felds	6.440 6.605	90 91 92	8.244 7.819 8.105	31.5	±	1.0	2
185	I-164	Tv4	k-felds	3.194 3.257	83 79	4.035 3.989	31.7	±	0.7	2
186	HF-1	Tuml	plagioclase	0.4904 0.4979	52 36 37	0.5936 0.6572 0.6549	32.8	±	1.9	2
187	VG-7B	Tv4	k-felds	4.517 4.510	83 85	5.722 5.964	33.0	±	1.0	2
188	CM634	Tv4?	k-felds	2.593 2.530 2.437	71 67	3.095 3.159	31.7	±	1.2	2
189	CM449	Tuml	whole rock	2.025 2.027	77 77	2.389 2.347	29.8	±	0.6	2
190	PLM	Tuml	plagioclase	0.7055 0.7200	60 50 44	0.9655 0.8049 0.8504	31.3	±	3.0	2
194	PC-1	Tuml	whole rock	2.595	74 77	3.232 3.235	31.8	±	0.6	2
195	Ni 30	Tv6	plagioclase	0.7223 0.7295	73 59	0.8855 0.8746	30.9	±	0.7	2
196	BTVbl	Tv1	plagioclase	1.003 1.017	58 65	1.648 1.654	41.6	±	1.0	2
197	PER	Tv1	plagioclase	0.5086 0.5070	48 45 40	0.7975 0.8424 0.8907	42.3	±	2.4	2
198	J-ER	Tv4	k-felds	5.008 5.026	88 83 80	6.751 6.459 6.590	33.5	±	0.8	2

TABLE 5. K-Ar AGES (continued)

			17	ADLE D. K-ALA	GES (Continued	u)				
#	Sample	Unit	Mineral	%K	%40*Ar	40*Ar ×10 ⁻⁶ scc/gm	Age (Ma)		±1σ	Ref.
201	CG-BL	Tv2	k-felds	6.479 6.409	94 93 95	9.146 9.667 9.390	37.2	±	1.1	2
204	CH88-16	KTi	hornblende	0.2798 0.2871	77 61	0.6702 0.6579	59.3	±	1.2	2
207	RED	Tv1	biotite	7.137 7.088	86 89	11.27 11.42	40.6	±	0.6	2
207	RED	Tv1	k-felds	7.388 7.317	95 96	11.37 11.56	39.7	±	0.9	2
208	RP	Tv4	k-felds	5.653 5.682	91 90	7.484 7.220	33.1	±	0.7	2
209	SC11-9	Tv4	k-felds	5.570 5.657	94 86 89	7.617 6.882 7.500	33.3	±	1.8	2
210	SC11-10	Tv4	k-felds	5.164 5.077	93 89	6.707 6.661	33.3	±	0.7	2
211	EC1	Tv4	k-felds	5.594 5.645	88 86 89	7.396 7.846 7.783	34.8	±	1.1	2,4
212	ECD	Tuml	whole rock	1.642 1.628	67 68	1.917 1.995	30.5	±	0.6	2,4
214	RND1	Tv4	k-felds	6.111 6.196	94 89	8.201 8.454	34.5	±	0.7	2,4
215	TTV	Tv4	biotite	6.752 6.665	84 78	9.033 9.046	34.4	±	0.5	2.4
215	ΤΤV	Tv4	k-felds	2.483 2.472	65 86 72	3.544 3.302 3.339	34.9	±	1.4	2,4
216	TTD	Tv4	k-felds	6.212 6.281	95 93 96	8.276 9.018 8.165	34.6	±	1.9	2,4
217	4EN1	Tv4	k-felds	4.804 4.703	87 83	6.232 6.059	33.0	±	0.7	2,4
218	4MPB	Tuml	whole rock	1.053 1.048	59 59	1.340 1.374	32.9	±	0.7	2,4
220	CLLD	Tv4	plagioclase	1.013 1.007	66 65	1.245 1.249	31.5	±	0.7	2,4
221	OWLD	Tv4	k-felds	5.844 5.834	89 73 95	7.551 8.067 7.629	33.8	±	1.2	2,4
223	XYZB	Tuml	whole rock	1.586 1.583	57 58	1.911 1.964	31.2	±	0.6	2,4

TABLE 5. K-Ar AGES (continued)

Note: References (Ref.): 1—Wark et al. (1990); 2—McDowell and Mauger (1994); 3—Swanson and McDowell (1985); 4—Megaw and McDowell (1983). k-felds—sanidine-anorthoclase. Decay constants are from Steiger and Jäger (1977).

references listed. The analytical techniques used have remained essentially identical to those described in McDowell and Keizer (1977). Analytical uncertainties are stated at one sigma. On Figures 2A–2C, the ages are shown without error bars in stratigraphic order for each column.

Within the main Sierra Madre Occidental (Fig. 2A), the K-Ar ages for the major ignimbrites range from 38 to 28 Ma, with a younger group at ca. 23 Ma (Tv7) that is limited to the western part of area 1. Ignimbrites belonging to transect units Tv4, Tv5, and Tv6 appear to be the most prominent across the entire main Sierra Madre Occidental. The older units (Tv1–3) are present but effectively blanketed by younger ignimbrites. Ages published recently in Swanson et al. (2006) suggest that rocks belonging to Tv6 become more prominent toward the south of Tomochic in the Copper Canyon area. For the upper mafic lavas (Tuml), there is one age of 30 Ma (columns 3 and 4), and ages from 25 to 18 Ma in column 1W, where the lavas are intercalated with felsic units of Tv7.

Within central Chihuahua (Figs. 2B and 2C) K-Ar ages for the major ignimbrites range from 41 Ma to 30 Ma. Age group Tv4 is prominent across the entire area, whereas group Tv5 appears to be represented irregularly. Units belonging to Tv6 appear to be present only locally. Although the older groups are distinct locally, their importance at regional scale is difficult to evaluate because of the extensive cover of ignimbrites of unit Tv4. Ignimbrites between 40 and 45 Ma in age are more prominent east and north of Chihuahua City (McDowell and Mauger, 1994). The ferroaugite rhyolites (Tfr) are distinctly younger (K-Ar ages ca. 27.5 Ma) and are intercalated with the upper mafic lavas (Tuml), for which measured ages are generally from 32 to 30 Ma (eastern side) and 28 to 26 Ma on the west.

Uranium-Lead Zircon Ages

Table 6 lists data for four U-Pb zircon age determinations that have been previously published and discussed (McDowell

and Mauger, 1994). The concordia diagrams and interpretations are given in that reference. The results provided an age of 60 Ma for one intrusive from the KTi unit, 43 Ma for each of two samples from unit Tv1, and 36 Ma for a sample from unit Tv3. These ages provide important data for the older portions of the volcanic sections, from which samples suitable for K-Ar dating have been difficult to obtain.

⁴⁰Ar-³⁹Ar Ages

Table 7 lists (from west to east) forty-four ⁴⁰Ar-³⁹Ar age determinations of sanidine and anorthoclase from samples within the map area. These ages were obtained well after the field investigations had been completed either from the archive of samples prepared for K-Ar dating, or from new mineral separations from coarser crush fractions of those samples. The measurements were made at the New Mexico Geochronology Research Laboratory in Socorro. Two separate modes of laserfusion analyses were performed. The original K-Ar mineral separates were too fine for single grain fusions. In such cases, each fusion aliquot typically consisted of ~50 grains. These multiple grain measurements are indicated by M in Table 7. More recent measurements were made by fusion of single grains (S) isolated from the coarser fractions. In both types of experiment, individual laser-fusion results that were statistically different, older (suggesting the presence of xenocrysts) and younger (suggesting the presence of altered grains), were excluded from the age calculations. Some samples contained appreciable plagioclase as phenocrysts; results from individual fusions with calculated K/Ca < 1 were excluded as well. Appendix Tables 3A and 3B, and Appendix Figures 1A and 1B provide more complete results. Further information on analytical procedures and a discussion of the superiority of the singlegrain measurements for ignimbrites are given in McDowell et al. (2005). All ages are normalized to an age of 28.02 Ma for sanidine from the Fish Canyon Tuff.

ABLE 6	U-Pb	ZIRCON	AGES
--------	------	--------	------

т

				IADI					
щ	Sampla	Unit	Fraction	Wt.		Ages (Ma) and	l 2o uncertaintie:	3	Interpreted
#	Sample	Unit	Fraction	(mg)	²⁰⁶ Pb/ ²⁰⁴ Pb	206 Pb/238 U	²⁰⁷ Pb/ ²³⁵ U	207Pb/206Pb	age
156	J-406	Tv1	nm6,m2,c.	13.9	817.3	43.0 ± 0.2	43.7 ± 0.4	85 ± 18.5	43 ± 1 Ma
			nm6,m2,f.	4.7	665.7	43.3 ± 0.2	43.8 ± 0.3	71.5 ± 8	
			nm2,c.	15.3	750.2	42.8 ± 0.2	43.0 ± 0.3	50 ± 9	
165	CUSI	Tv3	nm2,f.	15.4	165.2	36.0 ± 0.2	35.9 ± 0.6	31 ± 37	36 ± 1 Ma
			m2,nm5,c.	14.1	172.1	36.3 ± 0.2	36.2 ± 0.5	29.5 ± 34	
			nm2,c.	22.4	144.3	37.0 ± 0.2	38.7 ± 0.7	143.5 ± 40	
204	CH88-16	KTi	nm10,m5	4.9	363.7	78.0 ± 0.4	94.6 ± 0.5	537 ± 4	60 ± 3 Ma
			nm5,m3	6.8	1595	68.9 ± 0.3	77.4 ± 0.5	348 ± 8.5	
			nm3,c.	17.4	764.4	79.7 ± 0.4	95.8 ± 1.1	510 ± 23	
			nm-2.5,c.	9.1	2095	68.7 ± 0.3	75.7 ± 0.4	305 ± 3	
206	CH88-13	Tv1	m6	3.6	674.0	45.5 ± 0.2	45.5 ± 0.3	66 ± 10.5	43 ± 2.5 Ma
			nm4,m2.5	4.3	498.8	41.1 ± 0.2	42.2 ± 0.4	103.5 ± 18.5	
A.L	O → → → 1 → 1 → → 1 → 1 → 1		unite uniere euro estru-	M D .		(4004)			

Note: Complete data and concordia plots are given in McDowell and Mauger (1994); m—magnetic; nm—nonmagnetic; f—fine; c—coarse; mg—milligram. Decay constants are from Steiger and Jäger (1977).

TABLE 7. Ar-Ar AGES

#	Sample	LInit	Technique	N/Nt	K/Ca + 2g	MSWD	Δαρ + 2σ
# 11	11-15-1	Tv4	S	14/14	76.4 ± 9.8	2.9	33.33 ± 0.07
17	3-25-4	Tv6	S	8/11	1.8 ± 2.2	2.8	28.09 ± 0.31
18	10-20-1	Tv4	S	14/15	71.7 ± 17.9	2.2	33.42 ± 0.06
52	P18A	Tv6	М	8/8	8.1 ± 1.7	1.5	28.89 ± 0.08
57	S-27	Tv4	S	13/15	76.6 ± 13.4	0.7	33.41 ± 0.04
58	S-14	Tv6	S	26/15	17.5 ± 15.8	2.6	28.74 ± 0.07
66	N-09	Tv6	S	29/30	11.6 ± 3.8	2.3	28.73 ± 0.05
67	S-22	Tv2	S	10/15	47.5 ± 19.6	2.9	39.23 ± 0.11
109	S-4	Tv5	S	7/51	36.0 ± 65.1	1.1	32.01 ± 0.13
109	S-4	Tv5	М	6/6	1.3 ± 0.2	0.7	32.55 ± 0.10
113	S-6	Tv3	S	9/30	45.7 ± 9.6	1.6	35.06 ± 0.08
119	S-31	Tv5	М	6/6	1.1 ± 0.2	0.4	31.91 ± 0.09
120	S-32	Tv6	S	26/27	45.3 ± 9.1	1.8	31.38 ± 0.05
131	C-12	Tv5	S	2/30	71.9 ± 24.1	0.8	33.22 ± 0.18
132	C-7	Tv4	S	15/15	77.8 ± 12.2	1.7	33.33 ± 0.05
143	D89B	Tfr	S	14/15	107.0 ± 21.4	0.5	29.76 ± 0.05
149	D76B	Tfr	М	9/9	104.4 ± 30.1	0.8	29.87 ± 0.08
151	D78B	Tfr	S	15/15	109.7 ± 23.3	1.5	29.78 ± 0.05
155	J-140	Tfr	М	10/11	70.8 ± 20.3	0.8	29.86 ± 0.08
158	J-212	Tv4	S	14/15	177.2 ± 53.7	1.6	35.09 ± 0.07
158	J-212	Tv4	М	10/10	140.8 ± 84.0	6	35.09 ± 0.16
163	J-375	Tv3	S	15/15	2.4 ± 1.5	0.6	36.04 ± 0.24
169	WD-8	Tv5	S	7/18	20.5 ± 10.3	0.8	32.42 ± 0.09
170	W-200	Tv5	М	10/10	29.8 ± 5.3	1.2	32.79 ± 0.09
171	WF-1	Tv5	М	10/10	30.5 ± 4.5	2.5	32.70 ±0.12
175	I-521	Tv4	М	8/8	6.5 ± 1.5	2.4	33.19 ± 0.14
180	I-470	Tv4	М	7/8	680.2 ± 537.2	4.5	34.7 ± 0.2
182	DZ-31	Tv6	М	7/10	4.5 ± 0.5	4.8	29.91 ± 0.17
184	I-478	Tv4	Μ	9/9	21.3 ± 5.0	0.3	33.92 ± 0.09
185	I-164	Tv4	Μ	10/10	4.9 ± 1.2	2	33.14 ± 0.10
187	VG-7B	Tv4	Μ	10/10	19.8 ± 3.4	0.8	35.43 ± 0.09
188	CM634	Tv4?	М	8/10	4.6 ± 0.4	3.3	33.59 ± 0.22
198	J-ER	Tv4	Μ	6/6	42.2 ± 6.1	0.7	35.19 ± 0.10
201	CG-BL	Tv2	Μ	7/8	22.4 ± 4.8	1.4	37.71 ± 0.12
207	RED	Tv1	Μ	9/9	11.3 ± 18.5	1.1	40.85 ± 0.13
208	RP	Tv4	М	10/10	8.7 ± 4.6	0.5	34.05 ± 0.09
209	SC11-9	Tv4	М	10/10	43.9 ± 7.5	1.8	35.29 ± 0.10
210	SC11-10	Tv4	М	8/8	14.4 ± 1.7	2.8	35.59 ± 0.19
211	EC1	Tv4	Μ	9/9	97.3 ± 46.3	0.6	35.15 ± 0.09
214	RND1	Tv4	М	10/10	18.5 ± 2.0	0.9	34.87 ± 0.09
215	TTV	Tv4	М	10/10	2.5 ± 0.6	1.6	34.26 ± 0.12
217	4EN1	Tv4	S	15/15	21.0 ± 4.9	0.8	33.10 ± 0.08
220	CLLD	Tv4	S	15/15	28.0 ± 4.8	2.1	33.71 ± 0.08
221	OWLD	Tv4	S	10/16	15.1 ± 6.4	0.5	33.74 ± 0.07

Note: N—number of extractions used for age calculation; Nt—total number of extractions. M—multigrain analysis, S—single grain analysis. Results normalized to an age of 28.02 Ma for Fish Canyon sanidine. MSWD—mean square of weighted deviate.

The improved precision of the 40Ar-39Ar ages reveals a significantly refined picture of the history of activity across the Sierra Madre Occidental volcanic field. It is apparent that the intervals from 32.5 to 34.25 Ma and 35.0 to 35.5 Ma were very active episodes of ignimbrite volcanism within the map area. Although it cannot be argued that the sample distribution is uniform or representative, ignimbrites with ages from 33 to 34 Ma occur across the entire width of the map, and are not restricted to a single or closely related group of sources. Another aspect of the data is the comparison of ⁴⁰Ar-³⁹Ar ages with K-Ar ages for feldspars from the same samples. In almost all cases, uncertainties of the K-Ar measurements at two sigma overlap with the corresponding ⁴⁰Ar-³⁹Ar ages. Nevertheless, there appears to be a distinct bias toward younger K-Ar ages. The most extreme case for this effect is with comparison of the ages for the ferroaugite rhyolites (unit Tfr). The four available 40 Ar- 39 Ar ages cluster very tightly at 29.82 ± 0.05 Ma, which is more than 2 Ma higher than the corresponding K-Ar ages (27.5-28.4 Ma). This bias illustrates a problem first raised by Webb and McDougall (1967) and documented by McDowell (1983). Those authors showed that it is very difficult to obtain experimental conditions adequate to completely extract radiogenic argon from high-temperature feldspars or their melts. The superior results of ⁴⁰Ar-³⁹Ar dating have been used to refine the assignment of the original map units to transect unit groupings in some cases. Further discussion of this ⁴⁰Ar-³⁹Ar data set is reserved for future publications.

ISOTOPIC DATA

A small amount of radiogenic and oxygen isotope data has been obtained for samples from within the transect (Table 8). Virtually all of these data have been published (Wark, 1991; McDowell et al., 1999; Housh and McDowell, 2005). Analytical techniques and discussion of the data are given fully in those references. Generally, the radiogenic isotope results indicate that a variable degree of (lower) crustal input was involved in generating all of the measured rocks. Housh and McDowell (2005) used a geographically wider data set to examine the nature of the basement contribution and to propose crustal domains for the largely concealed basement of northwestern Mexico.

DISCUSSION

It should be evident that this map covers a very small portion of the area of the Sierra Madre Occidental volcanic field. Even after adding all of the isolated and scattered projects completed at UT and by other groups, probably less than 10% of the field has been surveyed. Progress toward better field coverage is likely to be slow for several reasons. Access has improved greatly, yet many parts of the Sierra Madre Occidental remain inaccessible and somewhat inhospitable. The cadre of Mexican geoscientists trained in volcanology has increased immensely since this project began, but mostly they are drawn toward the younger Trans-Mexican volcanic belt, where volcanic hazards and population concentrations are greater, and funding opportunities are better. Given these circumstances it is vital that substantial field efforts within the Sierra Madre Occidental volcanic field be published. This attempt will be successful if it promotes enhanced interest in field-based research, and enables those interested to identify critical locations and approaches that will more rapidly expand our knowledge of this tectonically important, yet understudied province. It should therefore be regarded as a "benchmark" for future investigations in the Sierra Madre Occidental volcanic field..

In order to portray field relationships at regional scale, it was necessary to group the map units into an arbitrary scheme. The current version is the third such attempt, but it is the first that has held together across the entire length of the transect area. These groupings are merely units of convenience, even more so than the original map units. The sole criterion for evaluation of the scheme is whether it is useful in portraying the history and patterns of activity across this portion of the Sierra Madre Occidental volcanic field

Inclusion of the voluminous analytical data in this report is critical so that they can be examined in geologic and geographic context. Much has been made of the eastward trend in majorelement compositions across the Sierra Madre Occidental, central and eastern Chihuahua, with an implied continuation to the more alkaline volcanic province in Trans-Pecos Texas (McDowell and Clabaugh, 1979; Bramson, 1984). It is clear from the plots included here that the mid-Tertiary volcanic rocks across the Sierra Madre Occidental and central Chihuahua retain a distinct arc signature, and that regional major-element variations are subtle. Detailed scrutiny of trace-element variations (yet to come) should provide a sharper test of regional variations and of the continuity of trends with contemporary rocks in eastern Chihuahua and Texas.

The rapid recurrence of major eruptions in the Sierra Madre Occidental volcanic field relative to the inherent analytical uncertainty and limitations of K-Ar dating of middle Tertiary volcanic rocks dictates that a K-Ar age compilation can only provide an overall range of timing and a statistical peak of maximum activity. It will require high precision ⁴⁰Ar-³⁹Ar dating to identify periods of peak intensity within the overall life of the Sierra Madre Occidental volcanic field, to examine the geographic variation of these outbursts throughout the field, and to examine the degree of resonance of the pattern of activity within the Sierra Madre Occidental volcanic field and with broadly contemporary volcanic fields in adjacent areas. The data presented here are just the beginning of the era of application of high-precision geochronology in the Sierra Madre Occidental volcanic field.

2	0
5	0

Strontium Lead isotopes Neodymium δ¹⁸Ο # Sample εNdi Ref. 206/204i 207/204i 208/204i 87/86i 143/144i 2 3-21-2 18.728 38.597 15.609 1 8 Ma-1 18.608 15.600 38.615 1 11-14-1 18.636 15.579 38.506 13 1 14 C-2 18.645 15.583 38.543 1 C-1 18.664 38.558 16 15.583 1 20 3-25-3 18.638 15.596 38.607 1 23 O59 0.7064 3 30 J22A 0.7061 3 **NV07** 0.7064 -2.7 31 18.631 15.621 38.693 7.7 2,3 0.51246 33 O57 0.7060 0.51247 -2.3 3 O58 -2.3 34 0.7061 0.51247 3 35 O54 18.613 15.592 38.714 0.7070 0.51245 -2.9 2,3 37 O53 3 0.7066 41 O38 18.493 15.581 38.788 0.7089 0.51233 -5.2 2,3 44 90-25 18.631 15.594 -2.5 2 38.675 0.70632 46 J23 0.51249 -2.1 8.0 3 47 90-78 18,757 15.591 38,700 0.70584 -1.92 49 90-80 0.70554 0.51252 -1.4 55 O18 18.579 15.581 38.537 0.7056 -3.02 60 90-69 18.795 15.588 38.689 0.70578 -1.12 3 61 S-17 0.7066 70 90-56 18.688 15.585 38.626 0.70572 -2.1 2 7.5 71 3 M11 72 S-7 18.485 15.579 38.513 0.7063 -2.1 2,3 8.4 75 90-15 18.625 15.571 38.450 0.70524 0.7 2 76 90-14 18.618 15.568 38.449 0.70526 0.5 2 79 N68 0.51265 3 0.7053 1.0 82 O-04 0.51255 -0.9 З 3 88 N70 0.7051 0.51262 0.3 89 90-97 18.695 15.584 38.540 0.70519 -0.7 2 92 90-18 0.70526 0.51273 0.6 95 S-3 8.5 3 15.609 38.700 0.70667 -2.2 2 96 90-46 18.705 97 90-63 18.754 15.593 38.633 0.70554 -0.2 2 18.734 2 100 90-99 15.588 38.533 0.70490 -0.5101 86-40 7.0 3 0.0 2 105 90-101 18.741 15.598 38.563 0.70453 108 90-20 18.647 15.573 38.522 0.70434 2.0 2 18.752 0.5 2,3 15.618 38.592 0.7055 109 S-4 N55 18.726 15.599 38.525 0.7053 0.51252 7.7,7.3 2,3 114 -1.5 116 90-110 18.684 15.596 38.501 0.70481 1.0 2 N60 3 118 0.51262 0.5 7.6 S-32 0.7058 7.7 3 120 121 N71 0.7044 0.51259 -0.1 3 18.641 2 123 90-112 15.590 38,449 0.70443 2.2 124 90-115 18.664 15.572 38.412 0.70477 0.9 2 126 90-117 18.622 15.563 38.345 0.70461 2.3 2 127 C-18 0.7059 3 146 D70D 18.701 15.604 38.516 0.70517 0.51251 -1.71 150 D76A 18.682 15.594 38.527 0.70520 0.51262 0.3 1 152 D75A 18.843 15.650 38.716 1 D53D 18.772 15.619 38.547 0.70465 0.51265 1.0 157 1 J-369 38.530 160 18.769 15.597 1 164 W-300 18.367 15.571 38.240 1 W-200 18.877 15.714 170 38.912 1 W-176 18.718 15.593 38.415 0.70393 172 1 18.810 38.700 175 I-521 15.644 1 176 I-532 18.818 15.670 38.772 1 18.498 15.577 181 I-133 38.325 0.70419 0.51264 0.8 1 DZ-31 18.891 15.683 38.801 182 1 190 PLM 18.764 15.636 38.648 1 194 PC-1 18.801 15.628 38.586 0.70562 1 15.644 PER 197 18.728 38.628 1 212 ECD 18.249 15.541 38.167 0.70518 0.51250 -2.0 1 4RSRB 18.577 15.583 38.458 0.70515 0.51252 213 -1.41 214 RND1 18.544 15.594 38.402 1

TABLE	8.	ISO ⁻	TOF	٥I	DA	ГA
-------	----	------------------	-----	----	----	----

Note: References (Ref.): 1-Housh and McDowell (2005); 2-McDowell et al. (1999); 3-Wark (1991). i-initial isotopic ratio.

Appendix Figure 1 (*continued on following pages*). (A) Probability plots for single-grain ${}^{40}\text{Ar-}{}^{39}\text{Ar}$ measurements. From bottom to top, the plots include: age spectra (in units of relative probability); calculated K/Ca (note log scale); % radiogenic ${}^{40}\text{Ar}$ contents; and, ${}^{39}\text{Ar}$ concentrations (units are 10⁻¹⁴ moles). Individual analyses that were not included in the cumulative age calculations are shown with unfilled symbols. The diamond symbol with error bar gives the weighted mean and 2σ error limits. (B) Same as A for multi-grain ${}^{40}\text{Ar-}{}^{39}\text{Ar}$ measurements.

Appendix Figure 1 (continued).

А

Appendix Figure 1 (continued).

А

Ar-Ar single-grain probability plots - page 5

#169 sample WD-8

#217 sample 4EN1

Appendix Figure 1 (continued).

В

Ar-Ar multi-grain probability plots - page 1

Ar-Ar multi-grain probability plots - page 2

Appendix Figure 1 (continued).

В

Ar-Ar multi-grain probability plots - page 3

Ar-Ar multi-grain probability plots - page 4

В

Ar-Ar multi-grain probability plots - page 5

		APPENDIX TABLE 1. RELATIONSHIP OF LO	ICAL UNITS TO REGIONAL UNITS	
		Loca	I Units	
Unit	Area 1 (Bockoven, 1980)	Area 2 (Wark, 1989)	Area 3 (Kempter: 1986)	Area 4 (Swanson, 1977)
Tuml	Upper andesite; basalt flows	Magdalena mafic lavas; Lagunitas mafic		
Tfr		24440		
Tvu	Rhyolite flows and tuffs undivided	rhyolite, undifferentiated		
Tv7	Rhyolite tuffs and flows			
Tv6	Atravesado tuff, Cascada tuff, intrusive rhyolites	Cascada tuff; Pinto lavas and tuffs	El Portrero tuff; Mofo lavas; Cueva tuff: Tomochic Formation; Pinto lava; Heredia tuff	Cueva Formation
Tv5		Rio Verde tuff	mafic lava flows; Rio Verde tuff	Rio Verde tuff
Tv4	Aeropista (Vista) tuff	Rancho Viejo hybrid lavas; Vista tuff	Rancho Viejo hybrid lavas; Vista tuff	Vista tuff
Tv3		San Filipe tuff	Agueachic lavas: San Filipe tuff	
TV2	Andesite agglomerate	Cascabel tuff; Carrizo andesitic lavas	Cascabel tuff	
Tv1				
Unit	Area 5 (Duex, 1983)	Area 6 (Stimac, 1983)	Area 7 (Wark, 1983)	Area 8 (Ide, 1986)
Tuml	50W, 50C, 30C, 50E lavas	Rancho Viejo Formation	Frijol mafic flows	Trias flow; Buena Vista flow; Ojo Blanco
Tfr	40C tuff	Frijol tuff	Frijol tuff	flows; minor flows Frijol tuff
1 T V	10E altered mafic lava			unidentified felsic and mafic flows
1//		Councilia chundita: Councilita:	Dimension triffic: Dilence floring	
9 <u>7</u>		Coyachic rnyolite; Carpa rnyolite; Corcobado flows and tuffs	Durazno tums; Pilares flows	
Tv5	10C,20C tuffs; 20E,30E tuffs; 40E lava	Caballos flows and tuffs; Chen-Chen flows; Yomama tuffs	Pilares tuffs	Eche tuffs; Bustillo rhyolite dome; Tambor unit; Buena Vista rhyolite flows; Alamo tuff
Tv4	20W,30W,40W tuffs			Flores tuff; Laboricita flow; Abajo tuff
Tv3	10W flows and tuffs	Divisidero Formation; Loma del Toro Formation	Divisadero flows and tuffs; Loma del Toro flows and tuffs	
Tv2				
Tv1	5C silicified rhyolite	Bufa tuffs		
	Area 9	Area 10	Area 11	
- Onit	(Conton, 1985)	Cic Blance floure: San Barnan floure	(Megaw, 1979)	
Tfr		Prind tuff		
Tvu				
Tv7				
Tv6	Durazno rhyolite flows; Santa Rosalia tuff			
Tv5	Tambor tuff	Tambor tuff		
Tv4	Rancho de Pena tuff; Los Fierros tuff; Jacales tuff; Vicente Guerero unit	Palomas tuff	Moncayo unit; East Side unit; Cerro Grande unit; Nuevo tuff; Sierra Pastorias caldera units; Soto unit; Santa Eulalia capping unit	
Tv3				
TV2	Cerro Grande tuff; Lajas flow; basal flows			
Tv1		Perales flows; Canada de Gato flows; Sepulveda unit; Cuervo unit; Chivato tuff		
Note: I	Units dated in specific areas are shown in boldf.	ace.	-	

	Isotopes		ач					Pb				i	d 4	07	ċ	0 J			ЧЧ	-		Sr						ŭ	Ph.Sr Nd O	0,00,00,0	Sr.Nd	Sr,Nd	Pb,Sr,Nd		Ś			Ph.Sr.Nd			Pb,Sr,Nd		Dh Cr Nid		Sr.Nd						PD, Sr, Nd				Pb,Sr,Nd
	Ar-Ar									,	ഗ					G	0 0	o																														Σ				S	o ا	I	
	K-Ar	Wr Let al	DI, DI	2		-	wr	bi			bi,san	bi,san	Ъ	wr, pi		n,pi		id'in			Ĺ	١d	bi,pl		bi,pl,am	Ы		2	ž							-	đ					d	Ы				١d	san	1	Ы	san	san	san	1	
	Trace elements	T1,T2 71 T2	11,1Z T1	-		T1,T2		H		11		i	E	CH F	11,12			T1 T0	11,15	T1.T2	T1			Т3		54 F	11,15 T1 TE	11,13	T1 T5	T3	T1.T5	T1	11	T1,T5	T1,T5	Ē	- T	T1.T5	T1,T5		T3,T4		T0 T1	10,14 Т2 Т1	T3.T4	T1,T5			F 7		11,15 T1	-		T1,T5	T3,T4
IATION	Major elements	E S	M			M1		M1		M1			M1		M			111		M1	M1			M3		4 A 4			M1	M3	M1	M1	M1	M1	M1	TN 3	N N	M	M1	M1	M3		CIVI	SM SM	M3	M1		M1	E M		L M			M1	M3
2. SAMPLE INFORM	Longitude	-108.86954	-108.80108	-108.70936	-108.69108	-108.68580	-108.65523	-108.64767	-108.62801	-108.60556	-108.60551	-108.59197	-108.56550	0002779.001	-106.35149	-108.32299	00707001-	-108.2601	-108.25994	-108.24769	-108.21755	-108.20935	-108.18396	-108.13312	-108.13236	-108.12790	-108.12/4/	-108.12699	-108 12597	-108.12593	-108.10584	-108.10115	-108.07473	-108.07267	-108.06713	-108.06668	-108.03963	-108.04480	-108.04364	-108.03250	-108.03165	-108.02025	C4410.001-	-108.00423	-108.00354	-107.98503	-107.96925	-107.96763	-107.96299	-10/.96260	-107.96216 -107.95071	-107.94857	-107.94700	-107.94262	-107.93536
PENDIX TABLE	Latitude	28.35537	28.33727	28.33034	28.23810	28.41057	28.38537	28.38694	28.20602	28.15054	28.39933	28.40262	28.43426	28.19779	28.438/1	28.19318	20.244413	20.34403	28.27785	28.35499	28.45895	28.16867	28.21867	28.20709	28.20325	28.21136	28.51525	28 21210	28 50766	28,21182	28.20820	28.20155	28.18860	28.29676	28.19609	28.19441	71001 80	28.22744	28.22641	28.21546	28.34201	28.35618	20.33329	20.13033	28,14011	28.26647	28.35214	28.31800	28.17012	28.44111	28.27973 28.27862	28.46482	28.28773	28.28250	28.11018
AP	Local unit	mafic lava flow	Telsic lava IIOW intermed lava flow	ash-flow tuff	mafic lava flow	mafic lava flow	mafic dike	Maicova granodiorite	mafic lava flow	intermed. lava flow	ash-flow tuff	ash-flow tuff	intermed. agglomerate	Intermed. lava riow	Telsic flow-dome		Vioto tuff*	VISIA (UII faleio intrueiva	intermediate lava flow	intermediate lava flow	Vista tuff*	Cascada tuff	felsic flow-dome	intermediate lava flow	felsic flow-dome?	Intermediate lava flow	VISTA TUIT	vista turi intermediate lava flow	Vista tuff	visia turi intermediate lava flow	intermediate lava flow	intermediate lava flow	Magdalena lava flow	felsic lava flow	Magdalena lava flow	Magdalena lava flow	VISTA TUIT" Maadalana lava flow	Maddalena lava flow	Magdalena lava flow	Rancho Viejo lava flow	felsic lava flow	intermediate lava flow	intermodiate lave flow	intermediate lava 10W	intermediate lava flow	moat rhyolite flow	Cascada tuff*	Pinto lava flow	intermediate lava flow		Pinto lava flow	Vista tuff	Pinto lava flow	Pinto lava flow	intermediate lava flow
	Unit	Tuml Tuml	Tuml	Tv7	Tuml	Tuml	Tuml	КТІ	Tuml	Tvu	Tv4	T v4	Tvu			1 V0 T	1 V0	+ v4	Tvii	Tuml	Tv4	Tv6	Tv6	Tv2	Tv6 Tv6		1 V4	- v4 T v9	Tv4	t 0/1	Tv2	Tv2	Tuml	Tvu	Tuml	Tum T	T 1 74	Tuml	Tuml	Tv4	Tv2	1 42	0 () T	201 201	TV2	Tv6	Tv6	Tv6	Tv2	+ V + 4 0	Tv6	Tv4	Tv6	Tv6	Tv2
	Collector	Bockoven	Bockoven	Bockoven	Bockoven	Bockoven	Bockoven	Bockoven	Bockoven	Bockoven	Bockoven	Bockoven	Bockoven	Swanson	Bockoven	Doctorion	Bookoven	Bockovell	Bockoven	Bockoven	Bockoven	Wark (PhD)	Swanson	Wark (PhD)	Swanson	Wark (PhD)	Wark (PhD)	Wark (PhD)	Wark (PhD)	Wark (PhD)	Wark (PhD)	Wark (PhD)	Wark (PhD)	Wark (PhD)	Wark (PhD)	Wark (PhD)		Wark (PhD)	Wark (PhD)	Wark (PhD)	Wark (PhD)	Wark (PhD)	Wark (PhD)	Wark (PhD)	Wark (PhD)	Wark (PhD)	Swanson	Swanson	Wark (PhD)	Swanson Michology	Wark (PhD)	Kempter	Kempter	Wark (PhD)	Wark (PhD)
	Sample	3-21-3	3-20-2	3-20-4	12-13-3	3-20-1	11-16-2	Ma-1	12-11-4	12-11-13	11-15-1	11-16-4	11-14-1		C-52-01		4-02-0	BV6	3-25-3	3-23-1	10-25-2	059	0-4	90-29	မိုပ်	122B		D V V	NV07	90-30	057	058	054	072	053	052		038	039	046	90-25	J18	07 70	90-70 00-70	08-06	023	C-20	P18A	N45	C-19	0.18 7.18	S-27	S-14	013	69-06
	#	c	N C	04	S D	9	7	8	თ	10	÷ :	2	<u></u>	4 L	<u>0</u>	9 <u>†</u>	- f	0 0	00	25	22	23	24	25	26 21	72	80 00	200	9 6	5 %	88	34	35	36	37	88	99	4 1 1	42	43	4	45	0 1	4	64	20	51	52	53	2 L	20 20	22	58	59	60

311 Weiger Distribution Distribution <thdistribution< th=""> <th< th=""><th></th><th></th><th>:</th><th>APPENUI</th><th>X IABLE Z. SAN</th><th></th><th>v (continuea)</th><th></th><th></th><th></th><th></th></th<></thdistribution<>			:	APPENUI	X IABLE Z. SAN		v (continuea)				
0.01 Norm Norm <th< th=""><th>Sample</th><th>Collector</th><th>- Onit</th><th>Local unit</th><th>Latitude</th><th>Longitude</th><th>Major elements</th><th>I race elements</th><th>K-Ar</th><th>Ar-Ar</th><th>Isotopes</th></th<>	Sample	Collector	- Onit	Local unit	Latitude	Longitude	Major elements	I race elements	K-Ar	Ar-Ar	Isotopes
0.000 0.0000 0.000 0.000 <t< td=""><td>0-73 00-73</td><td>Wark (PhD)</td><td>1 V3</td><td>San Filipe turi intermediate lava flow</td><td>28.18212</td><td>-107.93051</td><td>M3</td><td>T3 T4</td><td>01, DI</td><td></td><td>ดี</td></t<>	0-73 00-73	Wark (PhD)	1 V3	San Filipe turi intermediate lava flow	28.18212	-107.93051	M3	T3 T4	01, DI		ดี
Old Wate (PHO) Total	033	Wark (PhD)	Tv4	Rancho Viejo lava flow	28.56392	-107.89421	M1	T1			
NUM Num (PID) Total Distance Di	0-0	Wark (PhD)	Tv6	Pinto lava flow	28.31271	-107.88684	M1	T1,T5			
Constraint Constraint <thconstraint< th=""> Constraint Constrai</thconstraint<>	70-N	Wark (PhD)	Tv6	Pinto lava flow	28.31687	-107.88400	M1	T1,T5			
0.000 0.0000 <th0.00000< th=""> <th0.00000< th=""> <th0.000000<< td=""><td>60-N</td><td>Wark (PhD)</td><td>Tv6</td><td>Pinto lava flow</td><td>28.31484</td><td>-107.88296</td><td>1 1 2 2</td><td>T1,T5 T0</td><td>san hi</td><td>იი</td><td></td></th0.000000<<></th0.00000<></th0.00000<>	60-N	Wark (PhD)	Tv6	Pinto lava flow	28.31484	-107.88296	1 1 2 2	T1,T5 T0	san hi	იი	
00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 00000000 000000000000000000000000000000000000	90-54	Mark (PhD)	2 CVT	Cascabel turi mafic lava flow	28.06912	0//00./01-	NIZ M3	12 T3	ā	n	
09-05 Number Name Number Name <th< td=""><td>90-53</td><td>Wark (PhD)</td><td>Tv2</td><td>mafic lava flow</td><td>28.22234</td><td>-107.85417</td><td>M3</td><td>T3.T4</td><td></td><td></td><td></td></th<>	90-53	Wark (PhD)	Tv2	mafic lava flow	28.22234	-107.85417	M3	T3.T4			
W11 Kentler Tag Magnetis marking Z22-X11 1/1/2 Kentler Tag Magnetis Public 0.21 Kentler Tag Markingelia kink Z22-X11 1/1/2 Kentler Tag Dpl	90-56	Wark (PhD)	Tv2	mafic lava flow	28.21352	-107.85320	M3	T3,T4			Pb,Sr,Nd
5.9.7 Kenther 10.5 Control 10.5 Listen Listen <thlisten< th=""> Listen</thlisten<>	M11	Kempter	Tuml	Magdalena lava flow	28.24171	-107.84906		i	wr		0
57-10 Work (PD) T/2 T/2 <th< td=""><td>S-7</td><td>Kempter</td><td>Tv6</td><td>moat rhyolite flow</td><td>28.25496</td><td>-107.84782</td><td>M1</td><td>I1</td><td>bi,san</td><td></td><td>Pb,Sr,Nd,O</td></th<>	S-7	Kempter	Tv6	moat rhyolite flow	28.25496	-107.84782	M1	I1	bi,san		Pb,Sr,Nd,O
0.11 Mark PDI 111 12 PBS-PAR PBS-PAR </td <td>S-19</td> <td>Kempter</td> <td>T V3</td> <td>San Filipe tuff</td> <td>28.13296</td> <td>-107.84664</td> <td></td> <td>c F</td> <td>bi,pl</td> <td></td> <td></td>	S-19	Kempter	T V3	San Filipe tuff	28.13296	-107.84664		c F	bi,pl		
0011 WMM (PD) 11 12		Wark (PhD)	22	matic lava flow	28.21352	-10/.84615	M3	5			
0001 Ware (FM) War	90-17 90	Wark (PhD)	1 V4	Bencho Vicio lava flow	28.39668	-107.82243	SIM	13,14 To TA			PD,ST,Nd
60:7: Wate (Prio) Wate (Prio) <th< td=""><td>90-03</td><td>Wark (PhD)</td><td>1 v4 Tv4</td><td>Rancho Viejo lava ilow</td><td>10/00/02</td><td>-107.82141</td><td>em BM</td><td>T3</td><td></td><td></td><td></td></th<>	90-03	Wark (PhD)	1 v4 Tv4	Rancho Viejo lava ilow	10/00/02	-107.82141	em BM	T3			
With With Production of the interview 253725 -10731827 Mit Titte Mat 596 Warrishin T Titte Agreent (state (mot) resp) (state (mot) (sp)) 233557 -10731137 Titte Mat 0.011 Warrishin T Titte Agreent (state (mot) (sp)) 233557 -10731102 Mit Titte Mat 0.011 Warrishin T Titte San flipeut fin 233445 -10731102 Mit Titte SnM 0.021 Warrishin T Titte San flipeut fin 233445 -10730102 Mit Titte SnM 0.031 Warrishin T Titte Titte 233445 -10730012 Mit Titte SnM 0.041 Materiol Vago lead flow 233744 -10730012 Mit Titte SnM 0.041 Tatteriol Vago lead flow 233744 -10730012 Mit Titte SnM 0.041 Tatteriol Vago lead flow 233744 -10730012 Mit Titte SnM 0.041	90-12	Wark (PhD)	Tv4	Bancho Viejo lava ilow	28.39785	-107 82027	M3	T3 T4			
59 Kentleri (mark) Tig Augustication (mark) 28.28895 - 107.8100 Tig Dup 00-14 Wark (Pi0) 14 Rancho Vajo Iska (Pio) 11.15 5.04 00-11 Wark (Pi0) 14 Rancho Vajo Iska (Pio) 13.14 17.15 5.04 00-11 Wark (Pi0) 14 Rancho Vajo Iska (Pio) 28.33734 -107.80722 M3 13.14 5.04 00-13 Wark (Pi0) 144 Rancho Vajo Iska (Pio) 28.3774 -107.80722 M3 13.14 5.04 00-31 Wark (Pi0) 11.44 Rancho Vajo Iska (Pio) 28.3774 -107.80720 M3 13.14 5.04 00-31 Wark (Pi0) 11.44 Rancho Vajo Iska (Pio) 28.3774 -107.8002 M3 13.14 5.04 00-31 Wark (Pi0) 11.41 Rancho Vajo Iska (Pio) 28.3774 -107.3002 M3 13.14 5.04 00-31 Wark (Pi0) 11.41 Rancho Vajo Iska (Pio) 28.3774 107.7302 M3	N68	Wark (PhD)	Tv4	Rancho Viejo lava flow	28.39732	-107.81927	M1	T1.T5			Sr.Nd
Nills Wate (PiD) Tid Rain Only (PiD) Tid Rain Only (PiD) Tid Strukt	0-S	Kempter	Tv3	Agueachic lava flow	28.28895	-107.81809			bi,pl		
O-04 Wask (PhD) T/3 San Filtpe Luff 28.33713 -1075 ft021 M1 11.15 S./Md 87.3 Wask (PhD) T/4 Runcho Weis is an Filtpe Luff 28.33748 -1075 6022 M1 11.15 S./Md 87.3 Wask (PhD) T/4 Runcho Weis is an Filtpe Luff 28.33748 -1075 6022 M1 11.15 S./Md 90.91 Wask (PhD) Tuni Lagnotis lave how 28.33758 -1075 6020 M1 11.15 S./Md 90.91 Wask (PhD) Tuni Lagnotis lave how 28.33758 -1075 6020 M1 11.15 S./Md 90.91 Wask (PhD) Tuni Lagnotis lave how 28.33674 -1077 8003 M3 13.14 S./Md 90.90 Wask (PhD) Tuni Lagnotis lave how 28.33674 -1077 9003 M3 13.14 S./Md 90.91 Wask (PhD) Tuni Lagnotis lave how 28.33674 -1077 9003 M3 13.14 S./Md 90.91 Wask (P	N66	Wark (PhD)	Tv4	Rancho Viejo lava flow	28.39557	-107.81493		T5	-		
00-11 Watk (PhD) T-3 San Tight (PhD) T-3 T-3 <tht-3< th=""> <tht-3< th=""> T-3</tht-3<></tht-3<>	O-04	Wark (PhD)	Tv3	San Filipe tuff	28.33713	-107.81021	M1	T1,T5			Sr,Nd
Water Meter M	90-11	Wark (PhD)	Tv3	San Filipe tuff	28.39465	-107.81016	M3	ТЗ,Т4			
999 Wark (PhD) Trd Rench Weig bare (low 2337334 -107/8050 Mil T3,14 W00 Wark (PhD) Trd Rench Weig bare (low 2337334 -107/8050 Mil T3,14 W10 Wark (PhD) Trd Rench Weig bare (low 2333734 -107/8062 Mil T3,14 P5/Mil 90-19 Wark (PhD) Trd Rench Weig bare (low 2333734 -107/8002 Mil T3,14 P5/Mil 90-16 Wark (PD) Trd Rench Weig bare (low 2333754 -107/8002 Mil T3,14 P5/Mil 90-16 Wark (PD) Trd Rench Weig bare (low 2333754 -107/8002 Mil T3,14 Sr/Mil 90-16 Wark (PD) Trd Rench Weig bare (low 2333754 -107/78038 Mil T3,14 Sr/Mil 90-16 Wark (PD) Trd Rench Weig bare (low 23332160 -107/78038 Mil T3,14 Sr/Mil 90-4 Wark (PD) Trd Rench Weig bare	N53	Wark (PhD)	Tv4	Rancho Viejo lava flow	28.37342	-107.80822	M1	T1,T5			
With Wate (PhD) Train and (PhD)	6-06	Wark (PhD)	Tv4	Rancho Viejo lava flow	28.37394	-107.80762	M3	T3,T4			
WO Wark (PID) Unit Handro Vapio frant (IN) 23.372 bit (1) 11.0 bit (1)	N65	Wark (PhD)	T < 4	Rancho Viejo lava flow	28.39526	-107.80719		15 71			
0.07 Wark (PhD) Turil Laggintes are flow 25:373 -107:8005 MI T11,13 PD PD 0.01 Wark (PhD) Trid Eggintes are flow 25:3974 -107:8005 MI 71,14 PD PD 0.018 Wark (PhD) Trid Eggintes are flow 25:3974 -107:8005 MI 71,14 PD PD 0.056 Wark (PhD) Trid Eggintes are flow 25:3974 -107:8005 MI 71,14 PD PD 0.056 Wark (PhD) Trid Eggintes are flow 25:3005 -107:79805 MI 71,14 PD PD 0.056 Wark (PhD) Trid Eggintes are flow 25:3005 -107:79805 MI 71,14 PD	09-02	Wark (Phu)	+ I V4	Hancho Viejo lava riow	28.39/98	-107.80630	144	10 11 11			0 × 10 4
90:0 Wark (Ph) Trial Random Majo late flow 25:357.4 -10778005 M3 73:14 -10.0004 M3 73:14 -10.0004 M3 73:14 -10.0004 M3 73:14 S.Md 90:60 Wark (Ph) Turin Lagunities lave flow 25:357.5 -10778003 M3 73:14 S.Md S.Md 90:60 Wark (Ph) Turin Lagunities lave flow 25:357.5 -10778003 M3 73:14 S.Md 90:64 Wark (Ph) Turin Lagunities lave flow 25:357.5 -10779603 M3 73:14 S.Md 90:45 Wark (Ph) Turin Lagunities lave flow 25:357.5 -10779603 M3 73:14 S.Md 90:4 Wark (Ph) Turin Lagunities lave flow 28:3584 -10779457 M3 73:14 S.Md 90:4 Wark (Ph) Turin Lagunities lave flow 28:3584 -10779457 M3 73:14 S.Md 90:4 Wark (Ph) Turin	0/N	Wark (PhD)	Tuml	Layuriitas iava iiow Lagunitas lava flow	20/02/02	-107.00200	1M	1,13 141			DN Sr Nd
00:00 Wark (PhD) Tvi Rancho Visio lavation 23:3373 107:3000 Mid 137:14 Mid	90-19	Wark (PhD)	Tv4	Bancho Vieio lava flow	28.39174	-107 80057	M3	T3 T4			DN1000
90:18 Wark (PhD) Twi Bancho Visio lava (low 28.38603 10.773900 M33 13.14 S./Md 90:6 Wark (PhD) Twi Bancho Visio lava (low 28.365.1 -10773903 M33 13.14 S./Md 90:6 Wark (PhD) Twi Bancho Visio lava (low 28.365.2 -10773903 M3 13.14 P.S./Md 90:6 Wark (PhD) Twi Lagonitas lava (low 28.356.5 -10773903 M3 13.14 P.S./Md 90:6 Wark (PhD) Twi Lagonitas lava (low 28.356.4 -10773903 M3 13.14 P.S./Md 90:6 Wark (PhD) Twi Lagonitas lava (low 28.356.4 -10777900 M3 13.14 P.S./Md 90:0 Wark (PhD) Twi Lagonitas lava (low 28.354.4 -10777900 M3 13.14 P.S./Md 90:0 Wark (PhD) Twi Lagonitas lava (low 28.324.5 -10777900 M3 11.15 P.S./Md P.S./Md 86:0 </td <td>90-85</td> <td>Wark (PhD)</td> <td>Tv4</td> <td>Rancho Viejo lava flow</td> <td>28.39736</td> <td>-107.80046</td> <td>M3</td> <td>T3,T4</td> <td></td> <td></td> <td></td>	90-85	Wark (PhD)	Tv4	Rancho Viejo lava flow	28.39736	-107.80046	M3	T3,T4			
90-60 Wark (Ph) Turil Leguntas lave flow 23.515/51 107.7882 M3 13.14 0.0 5.3 Kempler T/3 Barrbio Viejo lave flow 28.3654 -107.7863 M3 13.14 Pb.5r,Md 5.3 Kempler T/3 Barrbio Viejo lave flow 28.3206 -107.7963 M3 13.14 Pb.5r,Md 90-64 Wark (Ph) Turil Laguntas lave flow 28.3206 -107.7963 M3 13.14 Pb.5r,Md 90-64 Wark (Ph) Turil Laguntas lave flow 28.3245 -107.7963 M3 13.14 Pb.5r,Md 90-64 Wark (Ph) Turil Laguntas lave flow 28.3245 -107.7960 M3 13.14 Pb.5r,Md 90-91 Wark (Ph) Turil Laguntas lave flow 28.3245 -107.7800 M3 13.14 Pb.5r,Md 86-40 Wark (Ph) Turil Laguntas lave flow 28.3245 -107.7800 M3 13.14 Pb.5r,Md 86-40 Wark (Ph)	90-18	Wark (PhD)	Tv4	Rancho Viejo lava flow	28.38803	-107.79990	M3	T3,T4			Sr,Nd
90-6 Wark (PhD) Tv4 Rancho Valo laser flow 28:3542 -107.79603 M3 73,14 bipl 0.0 0.45 Wark (PhD) Tv4 Rancho Valo laser flow 28:3244 -107.73457 M3 73,14 Pb,5r,Nd 0.45 Wark (PhD) Tvr1 Lagunitas lave flow 28:2057 -107.73457 M3 73,14 Pb,5r,Nd 0.90-5 Wark (PhD) Tvr1 Lagunitas lave flow 28:1602 -107.73457 M3 73,14 Pb,5r,Nd 0.90-90 Wark (PhD) Tvr4 Rancho Varie furt 28:22354 -107.73900 M3 73,14 Pb,5r,Nd 0.910 Wark (PhD) Tvr4 Lagunitas lave flow 28:3254 -107.73900 M3 73,14 Pb,5r,Nd 0.92.1 Wark (PhD) Tvr4 Lagunitas lave flow 28:3254 -107.73900 M3 73,14 Pb,5r,Nd 0.101 Wark (PhD) Tvr4 Varia lave flow 28:3257 -107.73200 M3 73,14 Pb,5r,Nd <t< td=""><td>09-06</td><td>Wark (PhD)</td><td>Tuml</td><td>Lagunitas lava flow</td><td>28.11517</td><td>-107.79828</td><td>M3</td><td>T3,T4</td><td></td><td></td><td></td></t<>	09-06	Wark (PhD)	Tuml	Lagunitas lava flow	28.11517	-107.79828	M3	T3,T4			
3-3 Kempter (Mark (PhD) T/2 Titmediate flow 23.37.10 10.7.7343 Mill 1.2 Diplication P.O. 00-65 Wark (PhD) Tumi Lagunities lava flow 28.3.1148 -107.73437 Mill 13.1.4 Diplication P.S.INd 00-65 Wark (PhD) Tumi Lagunities lava flow 28.3.1148 -107.73437 Mill 13.1.4 P.S.INd 00-64 Wark (PhD) Tumi Lagunities lava flow 28.3.160 -107.73437 Mill Tit P.S.INd 00-64 Wark (PhD) Tumi Lagunities lava flow 28.3.164 -107.73438 Mill Tit P.S.INd 00-101 Wark (PhD) Tumi Lagunities lava flow 28.3.3444 -107.73458 Mill Tit P.S.INd 050-101 Wark (PhD) Tumi Lagunities lava flow 28.3.3444 -107.73659 Mill Tit P.S.INd 050-101 Wark (PhD) Tumi Lagunities lava flow 28.3.32444 -107.73659 Mill	90-6 0 0	Wark (PhD)	1 / 4	Rancho Viejo lava flow	28.36542	-107.79603	M3	13,14 3 0			C
0-45 Wark (PD) TVL Immendate Rear flow 28.2.005 10.7.3457 M3 13.1.4 PDS.fNd 0-64 Wark (PD) Tum Lagunitas lava flow 28.2.005 10.7.3457 M3 13.1.4 PDS.fNd 0-64 Wark (PD) Tum Lagunitas lava flow 28.11460 -107.73465 M3 13.1.4 PDS.fNd 0-63 Wark (PD) Tum Lagunitas lava flow 28.3344 -107.73465 M3 13.1.4 PDS.fNd 06-39 Wark (PD) Tv4 Vista lava flow 28.3344 -107.73465 M3 13.1.4 PDS.fNd 05-30 Wark (PD) Tv4 Vista lava flow 28.33454 -107.73656 M3 13.1.4 PDS.fNd 05-10 Wark (PD) Tum Lagunitas lava flow 28.33778 -107.73856 M3 13.1.4 PDS.fNd 00-10 Wark (PD) Tum Lagunitas lava flow 28.33758 -107.78859 M3 13.1.4 PDS.fNd 00-10 Wark (PD)	ς, α α		5 N	San Filipe tuff	28.32160	-10/./9593	M/2	70 - 17	DI,DI		
Occur Wark (PhD) Turni Lagunities lava flow 28:11:00 10:17:345 10:17:35 10:1	90-40 00-63	Wark (PhD)		Intermediate lava now Lacrupitas lava flow	1 CUU2.02	-101./9555 701-	5M M	13,14 T3 TA			PD, SF, NG
0.0.1 Wark (PhD) Turi Rancho Vielo lave flow 28.35341 -107.79408 M3 T3,74 Pb,Sr,Nd 0.0.30 Wark (PhD) Turi Laguntas lava flow 28.34075 -107.79408 M3 T3,74 Pb,Sr,Nd 86-40 Wark (PhD) Turi Laguntas lava flow 28.34075 -107.79080 M3 T3,74 Pb,Sr,Nd N62 Wark (PhD) Turi Laguntas lava flow 28.3253 -107.79696 M3 T3,74 Pb,Sr,Nd S-8 Kempler) Tv5 Rio Verde tuff 28.3253 -107.78696 M3 T3,74 Pb,Sr,Nd 0101 Wark (PhD) Turi Laguntas lava flow 28.3375 -107.78205 M3 T3,74 Bb,San 0200 Wark (PhD) Turi Laguntas lava flow 28.3375 -107.78205 M3 T3,74 Bb,San Pb,Sr,Nd 0200 Wark (PhD) Turi Laguntas lava flow 28.33757 -107.778205 M3 T3,74 San SA, SA	90-64 90-64	Wark (PhD)	Tuml	Laguintas lava now	28.11602	-107.79457	M3	T3.T4			1 ,0,0
90-99 Wark (PhD) Tuni Lagunitas lava flow 28.4735 -107.79080 M3 T3,T4 Pb,Sr,Nd 86-40 Wark (PhD) Tv4 Vistal avar flow 28.32415 -107.78066 M1 T1,T5 0 N62 Wark (PhD) Tv4 Vistal avar flow 28.32563 -107.78056 M1 T1,T5 0 S-8 Kempter Tv4 Vistal avar flow 28.31578 -107.78059 M3 T3,T4 0 0 S-8 Kempter Tv4 Vistal avar flow 28.31578 -107.78059 M3 T3,T4 0 0 90-210 Wark (PhD) Tumi Lagunitas lava flow 28.33757 -107.78029 M3 T3,T4 0 0 90-20 Wark (PhD) Tumi Lagunitas lava flow 28.33757 -107.77802 M3 T3,T4 0 0 0 90-20 Wark (PhD) Tumi Lagunitas lava flow 28.33757 -107.77802 M3 T3,T4 0 0	90-4	Wark (PhD)	Tv4	Rancho Viejo lava flow	28.35844	-107.79408	M3	T3,T4			
86-40 Wark (PhD) Tv4 Vista lave flow 28.32415 -107.78906 M1 T1,T5 D N65 Wark (PhD) Tv5 Flo Verde tuff 28.3243 -107.78956 T1,T5 T1,T5 T1,T5 D S-8 Kempler Tv4 Vista lave flow 28.3243 -107.78956 T1,T5 D	66-06	Wark (PhD)	Tuml	Lagunitas lava flow	28.40795	-107.79080	M3	T3,T4			Pb,Sr,Nd
NBS Wark (PhD) TV5 Filo Verde tuff 28.32404 -107.78756 T1,T5 S.8 Wark (PhD) Tv5 Filo Verde tuff 28.3278 -107.78699 T3 T3 Filo Visio Nerde tuff 28.3278 -107.78699 T3 Filo Visio Nerde tuff 28.3278 -107.78205 M3 T3,T4 bisan Pb,Sr,Nd 90-210 Wark (PhD) Tumi Lagunitas lava flow 28.3375 -107.78205 M3 T3,T4 bisan Pb,Sr,Nd 90-210 Wark (PhD) Tumi Lagunitas lava flow 28.3375 -107.78205 M3 T3,T4 bisan Pb,Sr,Nd 90-200 Wark (PhD) Tumi Lagunitas lava flow 28.3375 -107.7802 M3 T3,T4 san SM Pb,Sr,Nd 90-20 Wark (PhD) Tumi Lagunitas lava flow 28.33764 -107.77805 M3 T3,T4 san SM Pb,Sr,Nd 90-205 Wark (PhD) Tumi Lagunitas lava flow 28.33764 -107.776501 M3	86-40	Wark (PhD)	Tv4	Vista lava flow	28.32415	-107.78906	M1	T1,T5			0
No.2 Wark (P1D) IV3 Ho Verde tur 28.32503 -107.78693 ID ID No.2 Nark (P1D) IV3 Ho Verde tur 28.3357 -107.7829 M3 T3,T4 bisan Pb,Sr,Nd 90-101 Wark (P1D) Turni Lagunitas lava flow 28.31578 -107.78205 M3 T3,T4 bisan Pb,Sr,Nd 90-101 Wark (P1D) Turni Lagunitas lava flow 28.30755 -107.78205 M3 T3,T4 bisan Pb,Sr,Nd 90-20 Wark (P1D) Turni Lagunitas lava flow 28.30757 -107.78205 M3 T3,T4 san S,M Pb,Sr,Nd 90-20 Wark (P1D) Turni Lagunitas lava flow 28.337557 -107.78202 M3 T3,T4 san S,M Pb,Sr,Nd 90-20 Wark (P1D) Turni Lagunitas lava flow 28.33296 -107.76501 M3 T3,T4 san S,M Pb,Sr,Nd 90-20 Wark (P1D) TV4 Rancho Viejo lava flow 28.332796 <td>N58</td> <td>Wark (PhD)</td> <td>T \5</td> <td>Rio Verde tuff</td> <td>28.32404</td> <td>-107.78756</td> <td></td> <td>T1,T5</td> <td></td> <td></td> <td></td>	N58	Wark (PhD)	T \5	Rio Verde tuff	28.32404	-107.78756		T1,T5			
0.01 Wark (PhD) Turn Lagunitas lava flow 26.007.0000 M3 T3.14 Diam Pb,Sr,Nd 90-100 Wark (PhD) Turn Lagunitas lava flow 28.39785 -107.78205 M3 T3.14 Pb,Sr,Nd 90-100 Wark (PhD) Turn Lagunitas lava flow 28.39757 -107.78205 M3 T3.14 Pb,Sr,Nd 90-20 Wark (PhD) Turn Lagunitas lava flow 28.39757 -107.77805 M3 T3.14 Pb,Sr,Nd 90-20 Wark (PhD) Turn Lagunitas lava flow 28.39754 -107.77805 M3 T3.14 Sn Pb,Sr,Nd 90-20 Wark (PhD) Turn Lagunitas lava flow 28.39296 -107.77605 M3 T3.14 Sn Pb,Sr,Nd 90-106 Wark (PhD) Tv4 Rancho Viejo lava flow 28.39296 -107.77630 M3 T3.14 Sn Pb,Sr,Nd 90-105 Wark (PhD) Tv4 Rancho Viejo lava flow 28.39296 -107.77630 M3 T3.14 Sn Sn Sn Sn Sn Sn Sn Sn	201	Vark (Pnu) Komotor	671 571	Niota lava flavu	28.32303	-107.70464		C	iq		
00-21 Wark (PhD) Turni Lagunitas lava flow 28.3976 -107.7802 M3 T3,14 Pb,Sr,Nd 00-100 Wark (PhD) Turni Lagunitas lava flow 28.39757 -107.77802 M3 T3,14 Pb,Sr,Nd 00-20 Wark (PhD) Turni Lagunitas lava flow 28.39757 -107.77802 M3 T3,14 Pb,Sr,Nd 90-20 Wark (PhD) Turni Lagunitas lava flow 28.39757 -107.77802 M3 T3,14 San S,M Pb,Sr,Nd 90-20 Wark (PhD) Tv4 Rancho Viejo lava flow 28.39756 -107.776201 M3 T3,14 San S,M Pb,Sr,Nd 90-106 Wark (PhD) Tv4 Rancho Viejo lava flow 28.39296 -107.76201 M3 T3,14 San S,M Pb,Sr,Nd 90-106 Wark (PhD) Tv4 Rancho Viejo lava flow 28.39296 -107.76201 M1 M1 T1,15 Di,Sr,Nd 5-5 Kempter Tv3 Agueachic lava flow 28.39293 -107.77530 M3 T3,14 Di,Sr,Nd Di,Sr,Nd	90-101	Wark (PhD)	Timl	vista lava ilow Ladrinitas lava flow	28 40357	-107.78329	MB	T3 T4	11,2011		Ph.Sr Nd
90-100 Wark (PhD) Tuml Lagunitas lava flow 28.40010 -107.778073 M3 T3,T4 Pb,Sr,Nd 90-20 Wark (PhD) Tuml Lagunitas lava flow 28.39757 -107.77802 M3 T3,T4 Pb,Sr,Nd S-4 Kempter Tv5 Rio Verde tuff 28.39757 -107.77802 M3 T3,T4 san S,M Pb,Sr,Nd 90-22 Wark (PhD) Tv4 Rancho Viejo lava flow 28.39296 -107.776501 M3 T3,T4 san S,M Pb,Sr,Nd 90-106 Wark (PhD) Tv4 Rancho Viejo lava flow 28.39296 -107.776201 M3 T3,T4 san S,M Pb,Sr,Nd 90-106 Wark (PhD) Tv4 Rancho Viejo lava flow 28.39296 -107.776200 M3 T3,T4 san S,M Pb,Sr,Nd 90-106 Tv3 Agueachic lava flow 28.39296 -107.776200 M1 M1 T1,T5 bi,pl S Pb,Sr,Nd 8.5 Kempter Tv3 Agueachic lava flow 28.22792 -107.776300 M1 T1,T5 bi,pl<	90-21	Wark (PhD)	Tuml	Lagunitas lava now	28.39785	-107.78205	M3	T3.T4			2011010
90-20 Wark (PhD) Tuml Lagunitas lava flow 28.39757 -107.77802 M3 T3,T4 Pb,Sr,Nd S-4 Kempter Tv5 Rio Verde tuff 28.34764 -107.77466 M3 T3,T4 san S,M Pb,Sr,Nd 90-22 Wark (PhD) Tv4 Rancho Viejo lava flow 28.34764 -107.77466 M3 T3,T4 san S,M Pb,Sr,Nd 90-106 Wark (PhD) Tv4 Rancho Viejo lava flow 28.39296 -107.776501 M3 T3,T4 san S,M Pb,Sr,Nd 90-16 Wark (PhD) Tv4 Rancho Viejo lava flow 28.39296 -107.776300 M3 T3,T4 san S,M Pb,Sr,Nd 90-16 Tv3 Agueachic lava flow 28.39296 -107.776300 M3 T1,T5 bi,pl S 5-6 Kempter Tv3 Agueachic lava flow 28.2792 -107.775460 M1,M2 T1,T5 bi,pl S S,N,H0 S,N,H0 S,N,H0 S,N,H1 S,N,H1 S,N,H1 S,N,H1 S,N,H1 S,N,H1 S,N,H1 S,N,H1 S,N,H	90-100	Wark (PhD)	Tuml	Lagunitas lava flow	28.40010	-107.78073	M3	T3.T4			
S-4 Kempter Tv5 Rio Verde tuff 28.34764 -107.77466 san S,M Pb,Sr,Nd 90-2 Wark (PhD) Tv4 Rancho Viejo lava flow 28.39296 -107.76501 M3 T3,T4 san S,M Pb,Sr,Nd 90-106 Wark (PhD) Tv4 Rancho Viejo lava flow 28.39296 -107.76501 M3 T3,T4 san S,M Pb,Sr,Nd 90-106 Wark (PhD) Tv4 Rancho Viejo lava flow 28.39293 -107.76500 M3 T3,T4 bi,pl S Kempter Tv3 Agueachic lava flow 28.39295 -107.75640 M1.M2 T2 bi,pl S Kempter Tv3 Agueachic lava flow 28.31915 -107.73321 M1 T1,T5 bi,pl S Pb,Sr,Nd,O NG/O NG/O <td< td=""><td>90-20</td><td>Wark (PhD)</td><td>Tuml</td><td>Lagunitas lava flow</td><td>28.39757</td><td>-107.77802</td><td>M3</td><td>T3,T4</td><td></td><td></td><td>Pb,Sr,Nd</td></td<>	90-20	Wark (PhD)	Tuml	Lagunitas lava flow	28.39757	-107.77802	M3	T3,T4			Pb,Sr,Nd
90-2 Wark (PhD) Tv4 Rancho Viejo lava flow 28.39296 -107.76501 M3 T3,T4 90-106 Wark (PhD) Tv4 Rancho Viejo lava flow 28.39293 -107.76501 M3 T3,T4 90-106 Wark (PhD) Tv4 Rancho Viejo lava flow 28.39293 -107.76500 M3 T3,T4 Di,pl 5-6 Kempter Tv3 Agueachic lava flow 28.23049 -107.75600 M1 M2 T2 Di,pl 5-6 Kempter Tv3 Agueachic lava flow 28.23045 -107.73321 M1 T1,T5 Di,pl Sn,A0 5-6 Kempter Tv3 Agueachic lava flow 28.23045 -107.73321 M1 T1,T5 Di,pl Sn,A0 5-7 Wark (PhD) Tv5 Rio Verde tuff 28.32274 -107.73126 M1 T1,T5 Di,Sr,Nd 90-110 Wark (PhD) Tv6 Rio Verde tuff 28.32279 -107.72996 M3 T3,T4 Pi,Sr,Nd N50 Wark (PhD) Tv5 Rio Verde tuff 28.32279 -107.72945 M1 T1,T5 <td>S-4</td> <td>Kempter</td> <td>Tv5</td> <td>Rio Verde tuff</td> <td>28.34764</td> <td>-107.77466</td> <td></td> <td></td> <td>san</td> <td>S,M</td> <td>Pb,Sr,Nd</td>	S-4	Kempter	Tv5	Rio Verde tuff	28.34764	-107.77466			san	S,M	Pb,Sr,Nd
90-106 Wark (PhD) Tv4 Rancho Viejo lava flow 28.39293 -107.76230 M3 T3,T4 bi,pl 5-5 Kempter Tv3 Agueachic lava flow 28.39248 -107.76040 M1,M2 T2 bi,pl 5-6 Kempter Tv3 Agueachic lava flow 28.23928 -107.75640 M1,M2 T2 bi,pl 5-6 Kempter Tv3 Agueachic lava flow 28.23792 -107.73321 M1 T1,T5 bi pi,pl 5-6 Kempter Tv3 Agueachic lava flow 28.2379 -107.73321 M1 T1,T5 bi pi,sr,Nd,O N57 Wark (PhD) Tv5 Rio Verde tuff 28.32274 -107.73126 M1 T1,T5 pi,sr,Nd 90-110 Wark (PhD) Tun Lagunitas lava flow 28.32279 -107.72896 M3 T3,T4 Pb,Sr,Nd N50 Wark (PhD) Tv5 Rio Verde tuff 28.32290 -107.72845 M1 T1,T5 Pb,Sr,Nd N60	90-2	Wark (PhD)	Tv4	Rancho Viejo lava flow	28.39296	-107.76501	M3	T3,T4			
S-5 Kempter Tv3 Agueachic lava flow 28.23048 -107.76040 bi,pl S-6 Kempter Tv3 Agueachic lava flow 28.23792 -107.75040 m1.M2 T2 bi,pl S-6 Kempter Tv3 Agueachic lava flow 28.23792 -107.75460 M1.M2 T2 bi, pl Sn,Nd,O N55 Wark (PhD) Tv5 Rio Verde tuff 28.3315 -107.73321 M1 T1,T5 Pb,Sr,Nd,O N57 Wark (PhD) Tv5 Rio Verde tuff 28.3277 -107.73126 M1 T1,T5 Pb,Sr,Nd,O 90-110 Wark (PhD) Tuml Lagunitas ratiow 28.38677 -107.72996 M3 T3,T4 Pb,Sr,Nd N60 Wark (PhD) Tv5 Rio Verde tuff 28.32279 -107.72945 M1 T1,T5 Pb,Sr,Nd N60 Wark (PhD) Tv5 Rio Verde tuff 28.32290 -107.72850 M1 T1,T5 Nd,O N60 Wark (PhD) Tv5 Rio Verde tuff 28.32290 -107.72850 M1 T1,T5 Nd,O <td>90-106</td> <td>Wark (PhD)</td> <td>1v4</td> <td>Rancho Viejo lava flow</td> <td>28.39293</td> <td>-107.76230</td> <td>M3</td> <td>13,14</td> <td></td> <td></td> <td></td>	90-106	Wark (PhD)	1v4	Rancho Viejo lava flow	28.39293	-107.76230	M3	13,14			
0-0 Neitipler 1v3 Agreactic taxa itow 26.24732 -107.73321 M1 T1,T5 U 0 Pb,Sr,Nd,O N57 Wark (PhD) Tv5 Rio Verde tuff 28.32374 -107.73326 M1 T1,T5 Pb,Sr,Nd,O N57 Wark (PhD) Tv5 Rio Verde tuff 28.32374 -107.73326 M1 T1,T5 Pb,Sr,Nd,O 00-110 Wark (PhD) Tum Lagunitas lave flow 28.32279 -107.72945 M3 T3,T4 Pb,Sr,Nd 050 Wark (PhD) Tv5 Rio Verde tuff 28.32279 -107.72945 M1 T1,T5 Nd,O N60 Wark (PhD) Tv5 Rio Verde tuff 28.32290 -107.72850 M1 T1,T5 Nd,O	ς Υ	Kempter	5 v 1 V3	Agueachic lava flow	28.23048	-107.76040		Ê	bi,pl	G	
Noso Wark (PhD) IVs Filo Verde tuli 28.31915 -107.73326 MI 11,15 PD,Sr,Nd,O N57 Wark (PhD) Tv5 Rio Verde tuli 28.32274 -107.73126 M1 T1,T5 PD,Sr,Nd,O 90-110 Wark (PhD) Tumi Lagunitas lava flow 28.38577 -107.73296 M3 T3,T4 Pb,Sr,Nd N59 Wark (PhD) Tv5 Rio Verde tuli 28.38279 -107.72996 M3 T3,T4 Pb,Sr,Nd N60 Wark (PhD) Tv5 Rio Verde tuli 28.32290 -107.72850 M1 T1,T5 Nd,O N60 Wark (PhD) Tv5 Rio Verde tuli 28.32290 -107.72850 M1 T1,T5 Nd,O			ο I - F	Agueacriic lava liow	28/22/92	-10/./01-	MI, MZ	71 17	ā	n	
No.y Wark (PID) Tum Laguntave un 20.527.4 -107.73296 Mill T,1,1 Pb,Sr,Nd 0-110 Wark (PD) Tum Laguntave un 26.3277 -107.72996 M3 T3,T4 Pb,Sr,Nd 0-110 Wark (PD) Tv5 Rio Verde tuff 28.3279 -107.72945 M3 T3,T4 Pb,Sr,Nd N60 Wark (PD) Tv5 Rio Verde tuff 28.32290 -107.72850 M1 T1,T5 Nd,O N60 Wark (PD) Tv5 Rio Verde tuff 28.32290 -107.72850 M1 T1,T5 Nd,O	CCN CSN	Wark (PhD)	571 277	HIO Verde tuff	C1915.82	-10/./3321		11,15 T1 TE			PD,Sr,Na,O
N59 Wark (PhD) Tv: Bio Verde tuff 28.32279 -107.72945 No. Nd. Nd. <t< td=""><td>90-110</td><td>Wark (PhD)</td><td></td><td>l adrintitas lava flow</td><td>28.38677</td><td>-107.72996</td><td>- M3</td><td>T3T4</td><td></td><td></td><td>Ph.Sr Nd</td></t<>	90-110	Wark (PhD)		l adrintitas lava flow	28.38677	-107.72996	- M3	T3T4			Ph.Sr Nd
Não Wark (PhD) Tv5 Rio Verde tuff 28.32290 -107.72850 M1 T1,T5 Nd,O (continued) Vark (PhD) Tv5 Rio Verde tuff 28.32290 -107.72850 M1 T1,T5 Nd,O	N59	Wark (PhD)	Tv5	Bio Verde tuff	28.32279	-107.72945	C M	+ - 5-			, io, i
(continued	N60	Wark (PhD)	Tv5	Rio Verde tuff	28.32290	-107.72850	M1	T1,T5			O'pN
											(continued

M1, M1, M1, M1, M1, M1, M1, M2, M3, M3, M3, M3, M3, M3, M3, M3, M3, M3	-107.70257 -107.70257 -107.70257 -107.70255 -107.689682 -107.689492 -107.689492 -107.689492 -107.682404 -107.682404 -107.559497 -107.559497 -107.559497 -107.559497 -107.559497 -107.55918 -107.33251 -107.33251 -107.33251 -107.33251 -107.33251 -107.33251 -107.33251 -107.33251 -107.33251 -107.33251 -107.33251 -107.33251 -107.33251 -107.25408 -107.252408 -107.252408 -107.252408 -107.252408 -107.252408 -107.252408 -107.252408 -107.25291 -107.25291 -107.25291 -107.25291 -107.25291 -107.25291 -107.25292 -107.2528291 -107.25291 -107.25291 -107.25291 -107.25291 -107.25291 -107.25291 -107.25291 -107.25291 -107.25291 -107.25292 -1	28.524283 28.524283 28.58266 28.382995 28.382995 28.38249 28.38249 28.38900 28.39781 28.39796 28.39796 28.39796 28.39796 28.39796 28.39796 28.39796 28.537120 28.5120 28.5120 28.5120 28.5120 28.5337 28.5120 28.5337 28.5120 28.53551 28.55551 28.555551 28.555551 28.555551 28.555551 28.555555555555555555555555555555555555	yio lava flow nitas lava flow leredia tuff nitas lava flow o verde tuff ninitas lava flow ascada tuff* o verde tuff vista tuff verde	адайа та 2000000000000000000000000000000000000
M2 M3 M3 M3 M3 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1	-107.70275 -107.68432 -107.68432 -107.68432 -107.68432 -107.68443 -107.68443 -107.68441 -107.68441 -107.68441 -107.68447 -107.68447 -107.68447 -107.68447 -107.68447 -107.58516 -107.38768 -107.38168 -107.38163 -107.38163 -107.38163 -107.25408 -107.25408 -107.25408 -107.25408 -107.25408 -107.25408 -107.2518 -107.25228 -107.2528 -107.2528 -1		28,20971 28,20971 28,33247 28,33249 28,33249 28,338249 28,338262 28,338269 28,338900 28,338900 28,339761 28,338900 28,339761 28,339761 28,339761 28,53907 28,33381 28,33445 28,33475 28,33445 28,33475 28,33475 28,334775 28,33755 28,47775 28,47775 28,4775775 28,4775775 28,47775 28,4775775 28,47775 28,47757775 28,47757775 28,47757775 28,47757775 28,47757777777777777777777777777777777777	Heredia tuff 28.20971 Lagunitas lava flow 28.29955 Lagunitas lava flow 28.38247 Lagunitas lava flow 28.38249 Lagunitas lava flow 28.38249 Cascada tuff 28.3956 Cascada tuff 28.38249 Cascada tuff 28.3827 Rio Verde tuff 28.38527 Rio Verde tuff 28.39766 Vista tuff 28.39796 Vista tuff 28.39796 Vista tuff 28.39761 Vista tuff 28.39761 Vista tuff 28.40185 Vista tuff 28.40185 Vista tuff 28.40185 Vista lava flow 28.5100 matic dlow 28.5100 intrusive 28.61807 10C—felsic tuff 28.34445 20W—felsic tuff 28.33381 20W—felsic tuff 28.33381 20W—felsic tuff 28.33364 20W—felsic tuff 28.33364 20W—felsic tuff 28.33364 <tr td=""> 28.53554</tr>
M3 T3,74 M1 T1 M1 T1 M1 T1 M1 T1,72 M1 T1,72 M1,M2 T1,72 M1 T1,72 M1 T1,72 M1 T1,72 M1 T1,72 M1 T1,72 M1 T1,72 M1 T1,72 M1 T1,72 M1 T1,72	-107.69682 -107.68432 -107.683492 -107.68341 -107.68341 -107.68210 -107.68210 -107.62210 -107.58516 -107.538516 -107.358516 -107.358516 -107.358516 -107.358516 -107.358516 -107.358516 -107.358516 -107.358516 -107.358516 -107.33251 -107.33251 -107.3379 -107.25408 -107.25408 -107.25408 -107.25408 -107.25408 -107.25408 -107.25218 -107.25218 -107.25218 -107.25218 -107.25229 -107.03379 -107.03379 -107.03379		28.38223 28.29995 28.38249 28.38426 28.38527 28.39796 28.39781 28.39781 28.39781 28.39781 28.39781 28.39781 28.33781 28.33781 28.33781 28.33781 28.53710 28.53371 28.33381 28.33445 28.333445 28.3334161 28.333445 28.3334161 28.333445 28.3334161 28.3336465 28.333775 28.337755 28.337755 28.337755 28.3377555 28.3377555 28.3377555 28.33775557 28.33775557 28.33775557 28.33775557 28.33775557 28.33775557 28.33775557 28.337757557 28.33775557 28.337757557 28.337757557 28.33775757 28.337757757757757757757757757775777577757	Laguritas lava flow 28.38223 Rio Verde tuff 28.38249 Laguritas lava flow 28.38249 Laguritas lava flow 28.38249 Cascada tuff* 28.38900 Vista tuff 28.39796 Rio Verde tuff 28.38900 Vista tuff 28.39796 Nista tuff 28.39796 Vista tuff 28.39796 Vista tuff 28.39790 Vista tuff 28.39790 Vista tuff 28.40185 Vista tuff 28.40185 Vista tuff 28.40185 Vista tuff 28.40185 OC—matic flow 28.61801 200W—felsic tuff 28.34455 200W—felsic tuff 28.33371 200W—felsic tuff 28.33371 200W—felsic tuff 28.33371 200W—felsic tuff 28.33367 200W—felsic tuff 28.33364 </td
M3 T3,74 M1 T1 M1 T1 M1 T1 M1 T1,72 M1 M1 T1,72 M1 M1 T1,72 M1 M1 T1,72 M1 T1,72 M1 M1 T1,72 M1 M1 T1,72 M1 T1,72 M1 T1,72 M1 T1,72 M1 T1,72	-107.03702 -107.683492 -107.683492 -107.683492 -107.68350 -107.68350 -107.58497 -107.58497 -107.58497 -107.58497 -107.38676 -107.38516 -107.33153 -107.33153 -107.33153 -107.25408 -107.252408 -107.252408 -107.252408 -107.252408 -107.252408 -107.252408 -107.252408 -107.252408 -107.252408 -107.252408 -107.252408 -107.252408 -107.252408 -107.252408 -107.25291 -107.252920		28.32393 28.38249 28.38527 28.38527 28.38900 28.38900 28.339796 28.339796 28.339796 28.339796 28.339796 28.34101 28.53381 28.34145 28.3414	Lagunitas bara flow 20.2292 Lagunitas bara flow 28.3827 Rio Verde tuff 28.3827 Rio Verde tuff 28.3827 Rio Verde tuff 28.38900 Vista tuff 28.39761 Vista tuff 28.40185 Vista tuff 28.33720 Vista tuff 28.40185 Vista lava flow 28.5100 mafic tike 28.51120 10C—mafic flow 28.51405 20W—felsic tuff 28.3331 20W—felsic tuff 28.33361 20W—felsic tuff 28.33361 20W—felsic tuff 28.33361 20W—felsic tuff 28.33361 20W—felsic tuff 28.53551 20W—felsic tuff 28.53551 <
Mi Mi Mi Mi Mi Mi Mi Mi Mi Mi Mi Mi Mi M	-107.85241 -107.62424 -107.62424 -107.624949 -107.62497 -107.58516 -107.58516 -107.3876 -107.3876 -107.3876 -107.3876 -107.3876 -107.33251 -107.33251 -107.33251 -107.25408 -107.25408 -107.25218 -107.25218 -107.25218 -107.25218 -107.25218 -107.25218 -107.25218 -107.25218 -107.25229 -107		28.33627 28.339796 28.339796 28.39796 28.39781 28.39781 28.39781 28.39781 28.339781 28.53120 28.53120 28.33381 28.33381 28.33381 28.33381 28.33381 28.33381 28.33381 28.33381 28.33381 28.33381 28.33551 28.33551 28.33551 28.33551 28.53756 28.53551 28.535577 28.535577 28.535577 28.535777 28.535777 28.535777 28.5357775777 28.535777577757775777577757775777577757775	Custoka uni 20.00420 Mista tuff 28.38527 Rio Verde tuff 28.38527 Rio Verde tuff 28.38500 Vista tuff 28.38500 Vista tuff 28.38501 Vista tuff 28.38501 Vista tuff 28.38900 Vista tuff 28.39781 Vista tuff 28.40185 Vista lava flow 28.40180 Mista tuff 28.40180 Nista lava flow 28.51807 IOC—mafic flow 28.61807 30W—felsic tuff 28.33381 30W—felsic tuff 28.333333 20W—felsic tuff 28.333333 20W—felsic tuff 28.33333 20W—felsic tuff 28.33333 20W—felsic tuff 28.333411 20W—felsic tuff 28.3336545 20W—felsic tuff 28.3336545 20W—felsic tuff 28.35515 20W—felsic tuff 28.35515 20W—felsic tuff 28.35515 20W—felsic tuff 28.53551 20C—felsic tuff 28
M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M	-107.62424 -107.62350 -107.62350 -107.65210 -107.55497 -107.55816 -107.33758 -107.33186 -107.33186 -107.33153 -107.33153 -107.33153 -107.25408 -107.25408 -107.25218 -107.25218 -107.25218 -107.25218 -107.25218 -107.25218 -107.25218 -107.25218 -107.25221 -107.252218 -107.		28.38900 28.39796 28.39796 28.39796 28.33120 28.33120 28.53120 28.53120 28.53371 28.33551 28.33551 28.33551 28.33551 28.33551 28.33551 28.33551 28.33551 28.53577 28.53577 28.53577 28.53577 28.537777 28.537777 28.53777777 28.53777777777777777777777777777777777777	Rio Verde tuff 28.38900 Vista tuff 28.38900 Vista tuff 28.39786 Nista tuff 28.39786 Vista tuff 28.39780 Vista tuff 28.39796 Vista tuff 28.39781 Vista tuff 28.39781 Vista tuff 28.39710 Intrusive 28.5120 matic dike 28.5307 10C—felsic flow 28.61891 30W—felsic tuff 28.3445 20W—felsic tuff 28.3445 20W—felsic tuff 28.3445 20W—felsic tuff 28.3337 20W—felsic tuff 28.3337 20W—felsic tuff 28.33381 20W—felsic tuff 28.33367 20W—felsic tuff 28.33367 20W—felsic tuff 28.33367 20W—felsic tuff 28.3557 20W—felsic tuff 28.53557 50W—matic flow 28.53551 50W—matic flow 28.53551 30G 28.55556 50G 28.57548 30G
M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M	-107.62200 -107.60949 -107.58497 -107.58497 -107.584616 -107.337078 -107.337078 -107.33153 -107.33153 -107.33251 -107.33251 -107.33153 -107.25408 -107.25408 -107.252408 -107.252408 -107.252418 -107.25291 -107.		28.33900 28.339781 28.39781 28.59100 28.53120 28.5307 28.53307 28.61807 28.34445 28.34445 28.34445 28.34445 28.333811 28.333811 28.333811 28.33551 28.33551 28.53577 28.53551 28.53577 28.535777 28.535777 28.535777 28.535777 28.535777 28.535777 28.53577777777 28.53577777777777777777777777777777777777	Filo Verde turf 28.30780 Vista tuff 28.39781 Vista tuff 28.39781 Vista tuff 28.39781 Vista tuff 28.39781 Vista tuff 28.39100 Nista tuff 28.39100 Intrusive 28.59100 matic dike 28.58307 10C-matic flow 28.61801 30W-felsic flow 28.61891 30W-felsic tuff 28.61891 30W-felsic tuff 28.33381 50W-matic flow 28.61891 20W-felsic tuff 28.33381 50W-matic flow 28.33381 50W-matic flow 28.33381 50W-matic flow 28.33381 50W-matic flow 28.33361 20C-felsic tuff 28.33361 50W-matic flow 28.35551 50W-matic flow 28.57548 50C-matic flow 28.57548
M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M	-107.6949 -107.59497 -107.59497 -107.59816 -107.3708876 -107.338876 -107.338876 -107.33836 -107.33251 -107.33251 -107.33251 -107.33251 -107.25408 -107.25408 -107.25291 -107.25291 -107.25291 -107.25291 -107.25291 -107.25291 -107.25291 -107.25291 -107.25291 -107.25291 -107.25291 -107.03379 -107.03379 -107.03379		28.39781 28.59100 28.59100 28.59100 28.53100 28.58307 28.61807 28.61807 28.34445 28.34445 28.34445 28.333811 28.333811 28.33551 28.33551 28.53577 28.535775 28.5357775 28.5357775 28.5357775 28.5357775 28.5357775 28.537775 28.537775 28.537775 28.537775 28.537775 28.53777777777777777777777777777777777777	Vista tuff 28.39781 Vista tuff 28.40185 Vista tuff 28.40185 Vista tuff 28.40185 Vista tuff 28.59100 intrusive 28.59100 matic dike 28.58307 10C—mafic dike 28.61801 30W—felsic tuff 28.61891 30W—felsic tuff 28.61891 30W—felsic tuff 28.33381 20W—felsic tuff 28.33381 50W—felsic tuff 28.33381 50W—mafic flow 28.33361 20W—felsic tuff 28.33361 20W—felsic tuff 28.37322 50W—mafic flow 28.51750 50W—mafic flow 28.51760 30G—felsic tuff 28.57548 30G—felsic tuff 28.57548
M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M	-107.58497 -107.58416 -107.38078 -107.38078 -107.38168 -107.38186 -107.38153 -107.38153 -107.38153 -107.38153 -107.38153 -107.25408 -107.25408 -107.25291 -107.2529292 -107.25291 -107.25292 -107.2529		28.40185 28.23120 28.53100 28.58307 28.61891 28.61891 28.61891 28.61891 28.33381 28.33381 28.33381 28.33551 28.33551 28.33551 28.53551 28.53551 28.57548 28.57775 28.57777 28.577777 28.577777 28.577777 28.5777777777777777777777777777777777777	Vista tuff 28.40185 Vista tuff 28.40185 Vista tuff 28.59100 intrusive 28.59100 matic dike 28.59100 matic dike 28.59100 matic dike 28.58307 10C—mafic flow 28.61801 30W—felsic flow 28.61891 30W—felsic tuff 28.61891 30W—felsic tuff 28.3445 20W—felsic tuff 28.33381 50W—felsic tuff 28.33381 50W—felsic tuff 28.33381 50W—mafic flow 28.33381 50W—mafic flow 28.33381 50W—mafic flow 28.33381 50W—mafic flow 28.3555 50W—mafic flow 28.53551 50C—felsic tuff 28.53551 50C—felsic tuff 28.57548 30C—mafic flow 28.51760 30C—felsic tuff 28.57548
M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M	-107.33778 -107.38768 -107.35186 -107.35186 -107.35186 -107.35185 -107.33251 -107.33251 -107.252408 -107.25291 -107.25518 -107.255218 -107.255218 -107.255291 -107.25520		28.553100 28.553100 28.55307 28.61807 28.61807 28.34445 28.34445 28.34445 28.33387 28.33387 28.33387 28.333646 28.33551 28.33551 28.61760 28.53551 28.677375 28.677375 28.677375 28.677375 28.677375	nsur and any anow 20.50100 intrusive 28.59100 mafic dike 28.59100 10C—mafic dike 28.61807 10C—felsic flow 28.61807 10C—felsic flow 28.61807 30W—felsic tuff 28.3341 20W—felsic tuff 28.3445 50W—mafic flow 28.33381 50W—mafic flow 28.3445 20W—felsic tuff 28.3445 50W—mafic flow 28.33381 50W—mafic flow 28.33361 20W—felsic tuff 28.37322 50W—mafic flow 28.57322 50W—mafic flow 28.57322 50W—mafic flow 28.57548 30C—felsic tuff 28.57548 30C—mafic flow 28.57548
M1 T1,T2 M1 T1,T2 M1 T1,T2 M1,M2 T1,T2 M1 T1,T2 M1,M2 T1,T2 M1,M2 T1,T2 M1 T1,T2 M1 T1,T2	-107.38876 -107.35186 -107.34724 -107.34724 -107.33251 -107.33255 -107.33255 -107.33251 -107.25218 -107.2528 -107.2528 -107.2528 -107.2528 -107.2528 -107.2528 -107.0527 -107.2528 -107.0527 -107.2528 -107.0528 -		28.58307 28.61807 28.61807 28.61891 28.34445 28.34445 28.3381 28.3381 28.3381 28.3381 28.3381 28.3381 28.33646 28.3551 28.35551 28.61760 28.67548 28.677548 28.677548 28.67757 28.67776	matric disc 28.58307 10C — matric flow 28.61807 10C — felsic flow 28.61807 10C — felsic flow 28.61807 30W — felsic tuff 28.3445 20W — felsic tuff 28.33381 50W — matic flow 28.33381 50W — matic flow 28.33381 50W — matic flow 28.33381 20W — felsic tuff 28.33381 50W — matic flow 28.33551 50W — matic flow 28.35551 50W — matic flow 28.53551 50C — matic flow 28.53551 30C — felsic tuff 28.53551 50C — felsic tuff 28.57548 30C — matic flow 28.57548
M1 T1,T2 M1 T1,T2 M1,M2 T1,T2 M1,M2 T1,T2 M1 T1,T2 M1,M2 T1,T2 M1,M2 T1,T2 M1,M2 T1,T2 M1,M2 T1,T2	-107.35186 -107.34724 -107.34251 -107.33255 -107.33205 -107.33205 -107.325408 -107.25291 -107.255408 -107.05729 -		28.61807 28.61891 28.61891 28.34445 28.34445 28.3381 28.3381 28.3381 28.3381 28.3381 28.3381 28.3381 28.33551 28.57548 28.57748 28.57548 28.57748 28.57548 28.57748 28.57748 28.5777777 28.5777777777777777777777777777777777777	10C — matic flow 28.61807 10C — felsic flow 28.61807 30W — felsic tuff 28.34327 30W — felsic tuff 28.34327 20W — felsic tuff 28.34327 20W — felsic tuff 28.34327 20W — felsic tuff 28.33381 50W — felsic tuff 28.33381 50W — felsic tuff 28.33381 50W — matic flow 28.336646 20W — felsic tuff 28.336545 50W — matic flow 28.53551 50W — matic flow 28.53551 20C — felsic tuff 28.53551 30G — matic flow 28.53551
M1 T1,T2 M1 T1,T2 M1,M2 T1,T2 M1,M2 T1,T2 M1 T1,T2 M1,M2 T1,T2 M1,M2 T1,T2 M1,M2 T1,T2 M1,M2 T1,T2	-107.34724 -107.33251 -107.33205 -107.33205 -107.325408 -107.255408 -107.25291 -107.22291 -107.22291 -107.22291 -107.22291 -107.22291 -107.22291 -107.22291 -107.22291 -107.22291 -107.22291 -107.22292		28.61891 28.61891 28.34445 28.34327 28.33811 28.33811 28.33811 28.33551 28.57548 28.61760 28.57548 28.57548 28.57548 28.5776	10C – felsic flow 28,61891 30W – felsic flow 28,61891 30W – felsic tuff 28,3445 20W – felsic tuff 28,3445 20W – felsic tuff 28,3445 20W – felsic tuff 28,3331 50W – felsic tuff 28,3331 50W – felsic tuff 28,3331 50W – felsic tuff 28,3361 50W – felsic tuff 28,3364 50W – felsic tuff 28,3646 20C – felsic tuff 28,5351 50W – matic flow 28,5351 20C – felsic tuff 28,5351 30G – felsic tuff 28,5351
M1 T1,T2 M1 T1,T2 M1,M2 T1,T2 M1,M2 T1,T2 M1 T1,T2 M1 T1,T2 M1 T1,T2 M1 T1,T2 M1 T1,T2 M1 T1,T2	-107.33251 -107.33205 -107.33205 -107.25408 -107.25408 -107.25291 -107.25291 -107.25291 -107.25291 -107.22318 -107.22319 -107.03379 -107.03379 -107.03379 -107.03379		28.34203 28.34445 28.34445 28.33811 28.30161 28.30161 28.33551 28.6464 28.65646 28.657548 28.67760 28.57548 28.57748 28.57776	30W—felsic tuff 28.3445 20W—felsic tuff 28.3445 20W—felsic tuff 28.34327 50W—felsic tuff 28.34321 50W—felsic tuff 28.37311 50W—matic flow 28.30411 20W—felsic tuff 28.27322 50W—matic flow 28.36646 20C—felsic tuff 28.57548 30C—matic flow 28.57548
MI T1,12 MM T1 M1,M2 M1,M2 M1 T1,T2 M1 T1,T2 M1 M1 T1,T2 M1 M1 T1,T2 M1 M1 T1,T2 M1 T1,T2	-107.33153 -107.33153 -107.23169 -107.25408 -107.25291 -107.25291 -107.12112 -107.03379 -107.03379 -107.03379 -107.03379 -107.03379 -107.03379		28.34445 28.34327 28.30411 28.30161 28.30161 28.3551 28.53551 28.57548 28.57548 28.57548 28.57548	40W—felsic tuff 28.34327 20W—felsic tuff 28.34327 10W—felsic tuff 28.33381 50W—felsic tuff 28.30411 50W—felsic flow 28.30411 50W—felsic flow 28.30411 50W—felsic flow 28.30411 50W—felsic flow 28.3646 50W—mafic flow 28.36646 20C—felsic tuff 28.53551 50C—mafic flow 28.53551 30C—mafic flow 28.51548 30C—mafic flow 28.51760
M1 T1 M1,M2 T1,T2 M1,M2 T1,T2 M1 T1,T2 M1 T1,T2 M1 T1,T2 M1 T1,T2 M1 T1,T2 M1 T1,T2 M1 T1,T2	-107.25709 -107.25408 -107.25291 -107.25291 -107.16694 -107.1012 -107.03379 -107.03379 -107.03379 -107.03022 -107.03928		28.33381 28.30411 28.30411 28.30161 28.33551 28.53551 28.61760 28.57548 28.57548 28.57548 28.57748	10W -felsic tuff 28.33381 50W -felsic tuff 28.33381 50W -felsic tuff 28.33381 50W -felsic tuff 28.33381 50W -felsic flow 28.33381 50W -felsic flow 28.3364 50W -felsic flow 28.3364 20M -felsic tuff 28.3646 20C -felsic tuff 28.53554 50C -matic flow 28.51548 30C -matic flow 28.51760 40C -felsic tuff 28.51768
M1 M1,M2 M1,M2 M1 M1 M1 M1 M1,M2 M1,M2 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1	-107.25408 -107.25218 -107.22291 -107.15694 -107.15112 -107.03379 -107.03379 -107.03022 -107.03928		28.30411 28.30161 28.27322 28.36646 28.53551 28.53551 28.57548 28.577648 28.577648	50W—felsic flow 28.30411 50W—mafic flow 28.30161 50W—mafic flow 28.37322 50W—mafic flow 28.27322 50W—mafic flow 28.3551 50W—mafic flow 28.3551 50C—mafic flow 28.55548 20C—felsic tuff 28.57548 30G—mafic flow 28.57548
M1 M1,M2 M1,M2 M1 M1 M1 M1 M1 M1,M2 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1	-107.25218 -107.22291 -107.16694 -107.12112 -107.03379 -107.03329 -107.03022 -107.03100		28.30161 28.27322 28.36646 28.53551 28.53551 28.61760 28.61760 28.47376	50W—mafic flow 28.30161 20W—felsic tuff 28.27322 50W—mafic flow 28.27322 50W—mafic flow 28.3551 50W—mafic flow 28.3551 20C—felsic tuff 28.55748 50C—mafic flow 28.57548 30G—mafic flow 28.57548
M1 M1,M2 M1 M1 M1 M1 M1 M1,M2 M1,T2 M1,T2 M1,T2 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1	-107.22291 -107.16694 -107.12112 -107.03379 -107.03022 -106.99286		28.27322 28.36646 28.53551 28.61760 28.57548 28.57548 28.47376	20W—felsic tuff 28.27322 50W—matic flow 28.35646 20C—felsic tuff 28.53551 50C—matic flow 28.67548 40C—felsic tuff 28.57548 30G—matic flow 28.57548
M1 T1,T2 M1 T1,T2 M1 T1,T2 M1 T1,T2 M1 T1,T2 M1 T1,T2 M1,M2 T1,T2 M1,M2 T1,T2 M1,M1 T1,T2 M1	-107.15694 -107.12112 -107.03379 -107.03022 -107.02100 -106.99286		28.36646 28.53551 28.61760 28.57548 28.47376 28.47376	50W-main: 10W 28.5964 20C-felsic tuff 28.53551 50C-maric flow 28.61760 40C-felsic tuff 28.57548 30C-maric flow 28.57548
M1 T1,T2 M1 T1,T2 M1 T1,T2 M1 T1,T2 M1,M2 T1,T2 M1 T1,T2	-107.03379 -107.03379 -107.03022 -106.99286		28.61760 28.57548 28.47376	50C matic flow 28.61760 40C felsic tuff 28.57548 30C matic flow 28.57548
M1 T1,T2 M1 T1,T2 M1 T1,T2 M1,M2 T1,T2 M1,M2 T1,T2 M1 T1,T2	-107.03022 -107.02100 -106.99286		28.57548 28.47376	40C—felsic tuff 28.57548 30C—maric flow 28.47376
M1 T1 M1 T1,T2 M1,M2 T1,T2 M1,M2 T1,T2 M1 T1,T2	-107.02100 -106.99286		28.47376	30Cmafic flow 28 / 7278
M1 T1,T2 M1 T1 M1,M2 T1,T2 M1 T1,T2	-106.99286			
M1 11,12 M1 M1,M2 T1,T2 M1 T1,T2			20.3891/	40C—felsic tuff 28.38917
M1 T1 M1,M2 T1,T2 M1 T1,T2	-106.98793		28.27738	10C—felsic flow 28.27738
M1,M2 T1,T2 M1,M2 T1,T2 M1 T1,T2	-106.98008		28.27857	10C—felsic flow 28.2/85/
M1 T1,T2 T1,T2	-106.85/04		28.37064	40E
M1 T1,T2	-100.64140 -106 83550		20.30443	Frijol tuli 26.30443 Buifa hiffe 28.30735
	-106.83232		28.36608	50E-matic flow 28.36608
	-106.83214		28.25176	Yomama tuffs 28.25176
M1 T1	-106.82658		28.27697	Caballos tuff 28.27697
M1,M2 T1,T2	-106.81440		28.27336	Caballos felsic flow 28.27336
	-106.80128 -106.80074		28.35807	20ETelsic tuff 28.3580/ 20Efalkin tuff 28.3580/
M1.M2 T1.T2	-106.79784		28.24662	Divisadero felsic flow 28.24662
	-106.79619		28.20848	Loma del Toro int. flows 28.20848
	-106.79149		28.21386	Loma del Toro int. flows 28.21386
	-106.75965		28.19229	mafic dike 28.19229
i ::	-106.72964		28.20786	intrusive porphyry 28.20786
M1 T1	-106.71958		28.32892	Coyachic felsic flow 28.32892
	-106.71516		28.22856	Durazno tuff 28.22856
IVI 1, MIZ	- 100.70535		28.21082	Pliares reisic riow 28.21082
	G/G0/.001-		28.22540	Durazno turi 28.22540
	GI 9/ 9.901-		28.21339	Binitilise falsis downs 28.21339
	-100.000		20.43031	Laborinius relate durine 20.40001
	-106.61183		28 40184	Burena Vieta falsin flaw 28.41101 Burena Vieta falsin flaw 28.40184
1/1/1/1/	001-0001-	1	+0-0+04	20.40104 20.40104 C0.40104

				APPEN	DIX TABLE 2. S	AMPLE INFORMA	TION (continued)				
#	Sample	Collector	Unit	Local unit	Latitude	Longitude	Major elements	Trace elements	K-Ar	Ar-Ar	Isotopes
176	I-532	lde	Tuml	Buena Vista inter. flow	28.43537	-106.60757	M1,M2	T1,T2	þ		Pb
177	1-44 57 50	Oralia	T v4	Tambor tuff	28.41877	-106.59912	M1,M2	T1,T2 			
0/1	67-70	Conion	0 (- F	Duration folgio loures	20.03010	200/C.001-		- c - F			
180 180	7-70 1-470	Lonion	0/1 T//1	Durazrio reisic lavas Abaio tuff	200002 20027	-100.30129	INI I, INIZ	71	163	Μ	
181	1-133	lde	Tuml	Oio Blanco mafic flow	28.46158	-106.54904	M1.M2	T1.T2		Ē	Pb.Sr.Nd
182	DZ-31	Conlon	Tv6	Durazno felsic lavas	28.09154	-106.53578			san	Σ	Pb
183	I-494	Ide	Tv4	Flores tuff	28.40989	-106.53069			bi,pl		
184	I-478	lde	Tv4	Alamo tuff	28.40111	-106.52248	M1	11	san	Σ	
185	I-164	lde	Tv4	Tambor tuff	28.44569	-106.51908	M1		san	Σ	
186	HF-1	Ide	Tuml	trachyte flow	28.38635	-106.49677	M1	T1	р		
187	VG-7B	Conlon	Tv4	Vicente Guerrero tuffs	28.13274	-106.48129	M1,M2	Т2	san	Σ	
188	CM634	R.Mauger	Tv4?	Tambor tuff?	28.54110	-106.46527			san	Σ	
189	CM449	R.Mauger	Tuml	mafic lava flow	28.47909	-106.45849			Wr		
190	PLM	Ide	Tuml	Trias intermed. Flow	28.33775	-106.43381	M1.M2	T1,T2	р		Pb
191	HW-1	Conlon	Tuml	Sta. Rosa mafic flows	28.31771	-106.41046	M1	T1	-		
192	Ni-102	Conlon	Tv6	Sta. Rosalia tuff	28.07628	-106.40754	M1.M2	T1.T2			
193	HO-L	Conton	Tv4	Jacales tuff	28.27343	-106.40144	M1				
194	PC-1	Conlon	Tuml	Sta. Rosa mafic flows	28.29311	-106.39039	M1.M2	T1.T2	Wr		Pb.Sr
195	Ni-30	Conlon	Tv6	Sta. Rosalia tuffs	28.10329	-106.38735	M1	T 1			
196	Bvtbl	Cook	Tv1	Sepulveda flows	28.45945	-106.38120					
197	PER	Cook	Tv1	Perales flow	28.40145	-106.36257					Ph
108		Conton	Tv4		28 33023	-106 34095			La S	M	-
100		Conton	1 v 1	Jacales tuff	28 30077	-100.04000	M1	T1	2011		
		Conlon			01000000	106.2250		-			
500		Conton	+ ^+	Corro Grando tutt	01020.02	106.22333	11/1	1.	203	M	
- 07		Conton	1 1 2		40/27.02	106 20245		T1 T2	2011	IVI	
		Conton	+ - 7	Moziotrol intrusio	20.004 14	04776.001-		- 1, I A			
202			2 Y	Magistral Intrusive	20.14309	-100.31/70	IMI	_			
402 704	CH88-10 3 \iit		= <u>-</u> ∠ F		20.00143	-100.314/0		Ļ	noi, (u-ro,zr.)		
907 907		Conion	4 V 4		28.235//	-106.30933	LW	-			
902	CH88-13	C00X	2		28.40838	-106.30078			(U-PD,ZL.)	:	
207		C00K		Canada de Gato flows	28.42484	-106.29098		<u></u> .	bi,san	Σ	
208	RP	Conlon	1v4	Rancho de Pena tuff	28.33623	-106.27246	M1	H	san	Σ	
209	SC11-9	Cook	Tv4	Palomas tuff	28.39311	-106.26480			san	Σ	
210	SC11-10	Cook	Tv4	Palomas tuff	28.38399	-106.26425			san	Σ	
211	EC1	Megaw	Tv4	Charco tuff	28.41730	-106.15376	M1	T1,T2	san	Σ	
212	ECD	Megaw	Tuml	San Ramon mafic flows	28.42299	-106.15086	M1	T1	Wr		Pb,Sr,Nd
213	4RSRB	Megaw	Tuml	San Ramon mafic flows	28.56567	-106.13313	M1,M2	T1			Pb,Sr,Nd
214	RND1	Megaw	Tv4	Soto unit	28.19081	-106.07370	M1	T1,T2	san		Pb
215	7 1 2	Megaw	Tv4	Toro rhyolite	28.44347	-106.03549	M1	T1,T2	bi,san	Σ	
216	QLL	Megaw	Tv4	Toro rhyolite	28.47746	-106.02566			san		
217	4EN1	Megaw	Tv4	Soto unit	28.23555	-105.99134	M1	Fi	san	თ	
218	4MPB	Megaw	Tum	San Ramon matic flows	28.51325	-105.97291	M1	H	wr		
219	PMES1	Megaw	Tv4	East Side unit	28.48116	-105.94576	M1	F		(
220	CLLD	Megaw	Tv4	Sta. Eulalia tuff	28.54469	-105.93821	M1	T1,T2	d	S	
221	OWLD	Megaw	Tv4	Carretas tuff	28.33163	-105.90426	M1	T1,T2	san	S	
222	4BAS1	Megaw	Ium	San Ramon matic flows	28.37868	-105.88217	M1	Ei			
223	XYZB	Megaw	Tum	San Ramon mafic flows	28.31917	-105.85082	M1	F	wr		
Note: O	riginal stratigr	raphic nomencl	ature revise	d in Wark et al. (1990). Major e	ements: M1a	nalyses at Universit	y of Texas, Austin, usi	ng standard wet chemic	al techiniques; M2-	-analyses	at
Washingto	on State Univ	ersity Geoanaly	vtical Lab b)	y X-ray fluorescence; M3-anal	/ses at Universi	ty of Massachusett	s, Amherst by X-ray flu	orescence. Trace eleme	ents: T1—analyses	at Universit	/ of Texas,
Austin, by	XHF (HD, Sr	, Υ, ∠r, Nb only); 12—anal	yses at Washington State Unive	rsity Geoanalyt	cal Lab by X-ray FI	Jorescence and/or ICF	-MS; 13—analyses at L	Iniversity of Massac	chusetts, Ar	nherst, by X-
Austin/. of	scence; 14	analyses al Ore	egon State (University by Neutron Activation	; I.D.—arialyses	at Los Alarnos Nati	Unal Laboratory by Ne Db page for ziroop Ar	utron Activation. N-Ar da Ar detina /all applyance c	uing (all analyses at Analyses at	t University	ur rexas, Lob by locor
Fusin's			01	lootectic cool: received * _ recticited to	e, wi—wilule iu •• ••• • I hei ••••	Ch. Includes tout O-	r la ages loi zilcoit. Al	-Ai uatiriy (ali arlalyses e	מן ואפעי ואופאונט ספטנ	ciliuliulugy	Lau ny Iasel
TUSION): S-	-single grain	n data; M—mult	igrain data.	Isotopic analyses:analyzed	at the Universit	y or Colorado; all ot	ners at University of 1	exas, Austin.			

APPENDIX TABLE 3A. Ar-Ar DATA SINGLE CRYSTAL EXPERIMENTS

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
#11 11-15-1, Sanicline, J = 0.0007398 ± 0.005%, D = 1.003 ± 0.001, NM-192A, Lab# = 55917 (ms) (ms) <td></td> <td>ID</td> <td>⁴⁰Ar/³⁹Ar</td> <td>³⁷Ar/³⁹Ar</td> <td>³⁶Ar/³⁹Ar</td> <td>³⁹Ar_k (× 10⁻¹⁵ mol)</td> <td>K/Ca</td> <td>⁴⁰Ar*</td> <td>Age (Ma)</td> <td>$\pm 1\sigma$</td>		ID	⁴⁰ Ar/ ³⁹ Ar	³⁷ Ar/ ³⁹ Ar	³⁶ Ar/ ³⁹ Ar	³⁹ Ar _k (× 10 ⁻¹⁵ mol)	K/Ca	⁴⁰ Ar*	Age (Ma)	$\pm 1\sigma$
		#11 11	-15-1 Sanidine	1 - 0 0007398	$(\times 10)$	$(\times 10 - 110)$ 003 + 0.001 NM-192	A Lah# - 5591	(/o) 7	(IVIA)	(IVIa)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		10	25.42	0.0072	1.538	3.660	70.9	98.2	33.02	0.10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		04	25.30	0.0072	0.9731	3.634	70.4	98.9	33.07	0.10
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		11	25.23	0.0072	0.5071	3.063	71.0	99.4	33.17	0.12
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		01	25.32	0.0071	0.5898	5.616	72.4	99.3	33.246	0.064
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		02	25.46	0.0060	1.075	3.117	85.4	98.8	33.25	0.12
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		15	25.29	0.0065	0.4188	2.916	78.9	99.5	33.28	0.11
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		06	25.64	0.0066	1.584	5.010	77.8	98.2	33.284	0.077
07 25.51 0.0062 1.084 3.896 62.8 9.7 33.307 0.094 03 25.56 0.0072 1.099 6.605 71.1 98.7 33.333 0.068 13 25.41 0.0066 0.5007 11.883 77.8 99.4 33.408 0.050 14 26.16 0.0067 2.973 5.982 76.3 96.6 33.311 0.053 Mean age ± 20 n = 14 MSWD = 2.86 76.4 ± 9.8 33.335 0.073 #17 3-25-4, Sanidine, J = 0.0007.4 ± 0.05%, D = 1.003 ± 0.001, NM-192A, Lab# = 55919 # 33.335 0.0073 #11 34.80 0.5739 48.02 1.136 0.89 59.4 27.38 0.30 14 47.07 0.5244 89.33 1.146 0.97 44.0 27.21 0.44 13 34.80 0.5739 48.02 1.136 0.89 59.4 27.38 0.30 14 47.07 0.5244 89.33 1.146 0.97 44.0 28.2 1.64 12 52.70		05	25.88	0.0066	2.370	6.294	77.7	97.3	33.292	0.062
03 25.71 0.0068 1.699 6.713 75.1 98.0 33.338 0.068 09 25.56 0.0072 1.099 6.605 71.1 98.7 33.373 0.062 13 25.41 0.0066 0.5007 11.883 77.8 99.4 33.408 0.050 14 26.16 0.0062 0.5211 9.534 82.6 99.4 33.335 0.073 Mean age ± 20 n = 14 MSWD = 2.86 76.4 ± 9.8 33.335 0.073 #17 3-25-4, Sanidine, J = 0.00074 ± 0.05%, D = 1.003 ± 0.001, NM-192A, Lab# = 55919 # # 0.4 49.85 0.4789 99.36 1.215 1.1 41.2 27.21 0.44 13 34.80 0.5739 48.02 1.136 0.89 59.4 27.38 0.30 14 47.07 0.5244 89.33 1.146 0.97 44.0 27.46 0.45 12 52.70 0.5405 107.8 1.527 0.94 39.6 27.67 0.41 13 42.94 0.1591 73.01 <t< td=""><td></td><td>07</td><td>25.51</td><td>0.0062</td><td>1.084</td><td>3.896</td><td>82.8</td><td>98.7</td><td>33.307</td><td>0.094</td></t<>		07	25.51	0.0062	1.084	3.896	82.8	98.7	33.307	0.094
09 25.56 0.0072 1.099 6.605 71.1 98.7 33.373 0.062 13 25.41 0.0066 0.5007 11.883 77.8 99.4 33.408 0.050 14 26.16 0.0067 2.973 5.982 76.3 96.6 33.437 0.071 12 25.50 0.0062 0.5211 9.534 82.6 99.4 33.511 0.053 #17 325-45 Sandine, J = 0.00074 ± 0.05%, D = 1.003 ± 0.001, NM-192A, Lab# = 55919 # # 0.2 83.07 0.8322 213.6 0.801 0.61 24.1 26.55 0.800 04 49.85 0.4789 99.36 1.215 1.1 41.2 27.21 0.44 11 34.80 0.5739 48.02 1.136 0.89 59.4 27.38 0.30 14 47.00 0.524 83.3 1.146 0.97 44.0 27.67 0.41 07 48.02 0.265 9.704 </td <td></td> <td>03</td> <td>25.71</td> <td>0.0068</td> <td>1.699</td> <td>6.713</td> <td>75.1</td> <td>98.0</td> <td>33.338</td> <td>0.058</td>		03	25.71	0.0068	1.699	6.713	75.1	98.0	33.338	0.058
13 25.41 0.0066 0.5007 11.883 77.8 99.4 33.408 0.0501 12 25.50 0.0062 0.5211 9.534 82.6 99.4 33.317 0.073 #17 3-25-4, Sanidine, J = 0.00074 ± 0.05%, D = 1.003 ± 0.001, NM-192A, Lab# = 55919 # 33.335 0.073 #17 3-25-4, Sanidine, J = 0.00074 ± 0.05%, D = 1.003 ± 0.001, NM-192A, Lab# = 55919 # 0.4 49.85 0.4739 99.36 1.215 1.1 41.2 26.55 0.800 04 49.85 0.4739 48.02 1.136 0.89 59.4 27.38 0.30 14 47.07 0.5244 89.33 1.146 0.97 4.0 27.64 0.450 12 52.70 0.54005 107.8 1.527 0.94 39.3 2.268 0.225 0.266 0.225 0.327 7.6 28.32 0.14 07 48.02 0.2666 91.23 3.178 1.9 43.9 27.93 0.266 0.8 27.76 0.54 0.205 0.74 3.77		09	25.56	0.0072	1.099	6.605	71.1	98.7	33.373	0.062
1426.160.00672.9735.98276.396.633.4370.0711225.500.00620.52119.53482.699.433.5110.053#173-25-4, Sanidine, J = 0.00074 ± 0.05%, D = 1.003 ± 0.001, NM-192A, Lab# = 55919#33.3350.073#0.283.070.8322213.60.8010.6124.126.550.800449.850.479899.361.2151.141.227.210.441134.800.573948.021.1360.8959.427.380.301447.070.524489.331.1460.9744.027.460.451252.700.5405107.81.5270.9439.627.670.411342.940.159173.012.8523.249.828.320.250597.470.286725.593.2961.822.428.970.52#1033.041.58137.450.3250.3266.929.310.79Mean age $\pm 2\sigma$ n = 8MSWD = 2.791.8 ± 2.2 28.090.311#1027.990.00077070.275.06564.454.733.130.200526.450.00654.6144.08878.294.833.2000.0911027.990.00779.8155.78766.689.633.2120.0881027.990.0077 <t< td=""><td></td><td>13</td><td>25.41</td><td>0.0066</td><td>0.5007</td><td>11.883</td><td>77.8</td><td>99.4</td><td>33.408</td><td>0.050</td></t<>		13	25.41	0.0066	0.5007	11.883	77.8	99.4	33.408	0.050
1225.500.00620.52119.53482.699.433.5110.053Mean age ± 20n = 14MSWD = 2.8676.4 ± 9.833.3350.073#17 3-25-4, Sanidine, J = 0.00074 ± 0.05%, D = 1.003 ± 0.001, NM-192A, Lab# = 55919#0283.070.8322213.60.8010.6124.126.550.801134.800.573948.021.1360.8959.427.380.301447.070.524489.331.1460.9744.027.460.451252.700.5405107.81.5270.9439.627.670.410748.020.265691.233.1781.943.927.930.260827.560.139120.953.7043.777.628.320.141342.940.159173.012.8523.224828.320.520597.470.2867255.93.2961.822.428.970.521342.940.159173.012.8520.3266.929.211.21030.041.58137.450.3250.3266.929.211.211102.9900.007970.275.06564.454.733.130.200526.450.00681.3223.7774.898.533.2900.0911027.990.00779.8155.78766.689.63		14	26.16	0.0067	2.973	5.982	76.3	96.6	33.437	0.071
Mean age ± 20 n = 14 MSWD = 2.8 76.4 ± 9.8 33.335 0.073 #17 3-25-4, Sanidine, J = 0.00074 ± 0.05%, D = 1.003 ± 0.001, NM-192A, Lab# = 55519		12	25.50	0.0062	0.5211	9.534	82.6	99.4	33.511	0.053
#17 3-25-4, Sanidine, J = 0.00074 ± 0.05%, D = 1.003 ± 0.001, NM-192A, Lab# = 55919 # 02 83.07 0.8322 213.6 0.801 0.61 24.1 26.55 0.80 04 49.85 0.4789 99.36 1.215 1.1 41.2 27.21 0.44 11 34.80 0.5739 48.02 1.136 0.89 59.4 27.38 0.30 14 47.07 0.5244 89.33 1.146 0.97 44.0 27.46 0.45 12 52.70 0.5405 107.8 1.527 0.94 39.6 27.67 0.41 07 48.02 0.2656 91.23 3.178 1.9 43.9 27.93 0.26 08 27.56 0.1391 20.95 3.704 3.7 77.6 28.22 0.25 05 97.47 0.2867 25.59 3.296 1.8 22.4 28.97 0.52 # 17 28.41 2.995 22.46 0.206 0.17 77.5 29.2 1.2 # 17		Mea	n age ± 2σ	n = 14	MSV	VD = 2.86	76.4 ±	9.8	33.335	0.073
#17 3-25-4, Sanidine, J = 0.00074 ± 0.05%, D = 1.003 ± 0.001, NM-192A, Lab# = 55919 # 02 83.07 0.8322 213.6 0.801 0.61 24.1 26.55 0.80 04 49.85 0.4789 99.36 1.215 1.1 41.2 27.21 0.44 11 34.80 0.5739 48.02 1.136 0.89 59.4 27.38 0.30 14 47.07 0.5244 89.33 1.146 0.97 44.0 27.46 0.45 12 52.70 0.5405 107.8 1.527 0.94 39.6 27.67 0.41 07 48.02 0.2656 91.23 3.178 1.9 43.9 27.93 0.26 08 27.56 0.1391 20.95 3.704 3.7 77.6 28.32 0.25 05 97.47 0.2867 255.9 3.296 1.8 2.2.4 28.97 0.52 # 10 3.04 1.581 37.45 0.322 0.32 66.9 29.31 0.79 Mean age ± 2o n = 8										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		#17 3-2	25-4, Sanidine,	$J = 0.00074 \pm 0$	0.05%, D = 1.003	3 ± 0.001, NM-192A, I	_ab# = 55919			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	#	02	83.07	0.8322	213.6	0.801	0.61	24.1	26.55	0.80
1134.800.573948.021.1360.8959.427.380.301447.070.524489.331.1460.9744.027.460.451252.700.5405107.81.5270.9439.627.670.410748.020.265691.233.1781.943.927.930.260827.560.139120.953.7043.777.628.320.141342.940.159173.012.8523.249.828.320.250597.470.2867255.93.2961.822.428.970.52#1033.041.58137.450.3250.3266.929.211.2#1033.041.58137.450.3250.3266.929.211.2#1033.041.58137.450.3250.3266.929.310.79Mean age ± 20n = 8MSWD = 2.791.8 ± 2.228.090.31#1027.990.007970.275.06564.454.733.130.200526.450.00654.6144.08878.294.833.2000.0911027.990.00779.8155.78766.689.633.2120.0850625.540.00681.3223.77574.898.533.2790.0990425.540.00681.3223.750 <td></td> <td>04</td> <td>49.85</td> <td>0.4789</td> <td>99.36</td> <td>1.215</td> <td>1.1</td> <td>41.2</td> <td>27.21</td> <td>0.44</td>		04	49.85	0.4789	99.36	1.215	1.1	41.2	27.21	0.44
14 47.07 0.5244 89.33 1.146 0.97 44.0 27.46 0.45 12 52.70 0.5405 107.8 1.527 0.94 39.6 27.67 0.41 07 48.02 0.2656 91.23 3.178 1.9 43.9 27.93 0.26 08 27.56 0.1391 20.95 3.704 3.7 77.6 28.32 0.14 13 42.94 0.1591 73.01 2.852 3.2 49.8 28.32 0.25 05 97.47 0.2867 255.9 3.296 1.8 22.4 28.97 0.52 # 17 28.41 2.995 22.46 0.206 0.17 77.5 29.2 1.2 # 10 33.04 1.581 37.45 0.325 0.32 66.9 29.31 0.79 Mean age ± 20 n = 8 MSWD = 2.79 1.8 ± 2.2 28.09 0.31 #18 10-20-1, Sanidine, J = 0.0007404 ± 0.05%, D = 1.003 ± 0.001, NM-192A, Lab# = 55918		11	34.80	0.5739	48.02	1.136	0.89	59.4	27.38	0.30
12 52.70 0.5405 107.8 1.527 0.94 39.6 27.67 0.41 07 48.02 0.2656 91.23 3.178 1.9 43.9 27.93 0.26 08 27.56 0.1391 20.95 3.704 3.7 77.6 28.32 0.14 13 42.94 0.1591 73.01 2.852 3.2 49.8 28.32 0.25 05 97.47 0.2867 255.9 3.296 1.8 22.4 28.97 0.52 # 10 33.04 1.581 37.45 0.325 0.32 66.9 29.31 0.79 Mean age ± 2o n = 8 MSWD = 2.79 1.8 ± 2.2 28.09 0.31 #18 10-20-1, Sanidine, J = 0.0007404 ± 0.05%, D = 1.003 ± 0.001, NM-192A, Lab# = 55918		14	47.07	0.5244	89.33	1.146	0.97	44.0	27.46	0.45
07 48.02 0.2656 91.23 3.178 1.9 43.9 27.93 0.26 08 27.56 0.1391 20.95 3.704 3.7 77.6 28.32 0.14 13 42.94 0.1591 73.01 2.852 3.2 49.8 28.32 0.25 05 97.47 0.2867 255.9 3.296 1.8 22.4 28.97 0.52 # 17 28.41 2.995 22.46 0.206 0.17 77.5 29.2 1.2 # 10 33.04 1.581 37.45 0.325 0.32 66.9 29.31 0.79 Mean age ± 2σ n = 8 MSWD = 2.79 1.8 ± 2.2 28.09 0.31 # 07 45.79 0.0079 70.27 5.065 64.4 54.7 33.13 0.20 05 26.45 0.0065 4.614 4.088 78.2 94.8 33.200 0.091 10 27.99 0.0077 9.815 5.787 66.6 89.6 33.212 0.084 </td <td></td> <td>12</td> <td>52.70</td> <td>0.5405</td> <td>107.8</td> <td>1.527</td> <td>0.94</td> <td>39.6</td> <td>27.67</td> <td>0.41</td>		12	52.70	0.5405	107.8	1.527	0.94	39.6	27.67	0.41
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		07	48.02	0.2656	91.23	3.178	1.9	43.9	27.93	0.26
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		08	27.56	0.1391	20.95	3.704	3.7	77.6	28.32	0.14
0597.470.2867255.93.2961.822.428.970.52#1728.412.99522.460.2060.1777.529.21.2#1033.041.58137.450.3250.3266.929.310.79Mean age $\pm 2\sigma$ n = 8MSWD = 2.791.8 ± 2.2 28.090.31#18 10-20-1, Sanidine, J = 0.0007404 \pm 0.05%, D = 1.003 \pm 0.001, NM-192A, Lab# = 55918##0745.790.007970.275.06564.454.733.130.200526.450.00654.6144.08878.294.833.2000.0911027.990.00779.8155.78766.689.633.2120.0850625.540.00681.3223.77574.898.533.290.110826.170.00793.4404.33364.996.133.2900.0841325.350.00620.46093.38681.799.533.370.100325.420.00690.61307.35073.599.333.4020.0581425.340.00750.29596.17468.299.733.4150.0651225.360.00620.37347.24082.699.333.4540.0550225.460.00920.596311.90655.399.333.4660.0500125.380.00682.21610.349 </td <td></td> <td>13</td> <td>42.94</td> <td>0.1591</td> <td>73.01</td> <td>2.852</td> <td>3.2</td> <td>49.8</td> <td>28.32</td> <td>0.25</td>		13	42.94	0.1591	73.01	2.852	3.2	49.8	28.32	0.25
#1728.412.99522.460.2060.1777.529.21.2#1033.041.58137.450.3250.3266.929.310.79Mean age $\pm 2\sigma$ n = 8MSWD = 2.791.8 ± 2.2 28.090.31#18 10-20-1, Sanidine, J = 0.0007404 $\pm 0.05\%$, D = 1.003 ± 0.001 , NM-192A, Lab# = 55918#0745.790.007970.275.06564.454.733.130.200526.450.00654.6144.08878.294.833.2000.0911027.990.00779.8155.78766.689.633.2120.0850625.540.00681.3223.77574.898.533.290.110826.170.00793.4404.33364.996.133.2900.0841325.350.00620.46093.38681.799.533.370.100325.420.00690.61307.35073.599.333.4020.0581425.340.00750.29596.17468.299.733.4150.0651225.360.00620.37347.24082.699.633.4460.0550225.460.00920.596311.90655.399.333.4660.0550225.460.00920.596311.90655.399.333.4660.055039.2580.00682.21610.949 <t< td=""><td></td><td>05</td><td>97.47</td><td>0.2867</td><td>255.9</td><td>3.296</td><td>1.8</td><td>22.4</td><td>28.97</td><td>0.52</td></t<>		05	97.47	0.2867	255.9	3.296	1.8	22.4	28.97	0.52
#1033.041.58137.450.3250.3266.929.310.79Mean age $\pm 2\sigma$ n = 8MSWD = 2.791.8 ± 2.2 28.090.31#18 10-20-1, Sanidine, J = 0.0007404 \pm 0.05%, D = 1.003 \pm 0.001, NM-192A, Lab# = 55918#0745.790.007970.275.06564.454.733.130.200526.450.00654.6144.08878.294.833.2000.0911027.990.00779.8155.78766.689.633.2120.0850625.540.00681.3223.77574.898.533.290.110826.170.00793.4404.33364.996.133.2900.0841325.350.00620.46093.38681.799.533.370.100325.420.00690.61307.35073.599.333.4020.0581425.360.00620.37347.24082.699.633.4160.0611125.710.00761.4659.25566.898.333.4540.0550225.460.00920.596311.90655.399.333.4620.0550925.980.00682.21610.34974.797.533.5140.0551525.690.00721.1467.19571.498.733.5420.063	#	17	28.41	2.995	22.46	0.206	0.17	77.5	29.2	1.2
Mean age ± 2σ n = 8 MSWD = 2.79 1.8 ± 2.2 28.09 0.31 #18 10-20-1, Sanidine, J = 0.0007404 ± 0.05%, D = 1.003 ± 0.001, NM-192A, Lab# = 55918 # 07 45.79 0.0079 70.27 5.065 64.4 54.7 33.13 0.20 05 26.45 0.0065 4.614 4.088 78.2 94.8 33.200 0.091 10 27.99 0.0077 9.815 5.787 66.6 89.6 33.212 0.085 06 25.54 0.0068 1.322 3.775 74.8 98.5 33.29 0.11 08 26.17 0.0079 3.440 4.333 64.9 96.1 33.290 0.084 13 25.35 0.0062 0.4609 3.386 81.7 99.5 33.37 0.10 03 25.42 0.0069 0.6130 7.350 73.5 99.3 33.402 0.058 14 25.34 0.0075 0.2959 6.174 68.2 99.7 33.415 <td>#</td> <td>10</td> <td>33.04</td> <td>1.581</td> <td>37.45</td> <td>0.325</td> <td>0.32</td> <td>66.9</td> <td>29.31</td> <td>0.79</td>	#	10	33.04	1.581	37.45	0.325	0.32	66.9	29.31	0.79
#18 10-20-1, Sanidine, J = 0.0007404 ± 0.05%, D = 1.003 ± 0.001, NM-192A, Lab# = 55918 # 07 45.79 0.0079 70.27 5.065 64.4 54.7 33.13 0.20 05 26.45 0.0065 4.614 4.088 78.2 94.8 33.200 0.091 10 27.99 0.0077 9.815 5.787 66.6 89.6 33.212 0.085 06 25.54 0.0068 1.322 3.775 74.8 98.5 33.29 0.011 08 26.17 0.0079 3.440 4.333 64.9 96.1 33.290 0.084 13 25.35 0.0062 0.4609 3.386 81.7 99.5 33.37 0.10 03 25.42 0.0069 0.6130 7.350 73.5 99.3 33.402 0.058 14 25.34 0.0076 1.2959 6.174 68.2 99.7 33.415 0.065 12 25.36 0.0062 0.3734 7.240 82.6 99.6 33.416 0.061 11 25.71		Mea	n age ± 2σ	n = 8	MSV	VD = 2.79	1.8 ± 2.2		28.09	0.31
#10 10-20-1, Salintine, 3 = 0.0001404 ± 0.00376, B = 1.000 ± 0.001, NM-152A, Eab = 0.001 # 07 45.79 0.0079 70.27 5.065 64.4 54.7 33.13 0.20 05 26.45 0.0065 4.614 4.088 78.2 94.8 33.200 0.091 10 27.99 0.0077 9.815 5.787 66.6 89.6 33.212 0.085 06 25.54 0.0068 1.322 3.775 74.8 98.5 33.279 0.099 04 25.54 0.0087 1.296 4.363 58.7 98.5 33.29 0.11 08 26.17 0.0079 3.440 4.333 64.9 96.1 33.290 0.084 13 25.35 0.0062 0.4609 3.386 81.7 99.5 33.37 0.10 03 25.42 0.0069 0.6130 7.350 73.5 99.3 33.402 0.058 14 25.34 0.0075 0.2959 6.174 68.2 99.7 33.415 0.065 12 25.36 0.0062 0.3734 7.240 82.6 99.6 33.416 0.061 11 25.71 0.0076 1.465 9.255 66.8 98.3 33.454 0.055 02 25.46 0.0092 0.5963 11.906 55.3 99.3 33.466 0.050 01 25.38 0.0059 0.2284 10.339 86.3 99.7 33.497 0.055 15 25.69 0.0072 1.146 7.195 71.4 98.7 33.554 0.063 Mean age ± 2\sigma n = 14 MSWD = 2.22 71.7 ± 17.9 33.422 0.063		#18 10	-20-1 Sanidine		±0.05% D = 1	003 ± 0.001 NM-102	0A lab# - 55019	2		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	#	#1010 07	45 79	, 0 = 0.0007 +0- 0 0079	70 27	5.065	64 4	547	33 13	0 20
1027.990.00779.8155.78766.689.633.2120.0850625.540.00681.3223.77574.898.533.2790.0990425.540.00871.2964.36358.798.533.290.110826.170.00793.4404.33364.996.133.2900.0841325.350.00620.46093.38681.799.533.370.100325.420.00690.61307.35073.599.333.4020.0581425.360.00620.37347.24082.699.633.4160.0611125.710.00761.4659.25566.898.333.4540.0550225.460.00920.596311.90655.399.333.4660.0500125.380.00590.228410.33986.399.733.4970.0550925.980.00682.21610.94974.797.533.5140.0551525.690.00721.1467.19571.498.733.5540.063Mean age $\pm 2\sigma$ n = 14MSWD $= 2.22$ 71.7 \pm 17.933.4220.063	"	05	26.45	0.0065	4 614	4 088	78.2	94.8	33 200	0.091
101.101.0011.0010.1010.1010.0100.0100.0110.0110.0010625.540.00871.2964.36358.798.533.2790.0990425.540.00791.2964.36358.798.533.2900.0841325.350.00620.46093.38681.799.533.370.100325.420.00690.61307.35073.599.333.4020.0581425.360.00620.37347.24082.699.633.4160.0611125.710.00761.4659.25566.898.333.4540.0550225.460.00920.596311.90655.399.333.4660.0500125.380.00590.228410.33986.399.733.4970.0550925.980.00682.21610.94974.797.533.5140.0551525.690.00721.1467.19571.498.733.5540.063MSWD = 2.2271.7 \pm 17.933.4220.063		10	27.99	0.0077	9.815	5 787	66.6	89.6	33 212	0.085
04 25.54 0.0087 1.296 4.363 58.7 98.5 33.29 0.11 08 26.17 0.0079 3.440 4.333 64.9 96.1 33.290 0.084 13 25.35 0.0062 0.4609 3.386 81.7 99.5 33.37 0.10 03 25.42 0.0069 0.6130 7.350 73.5 99.3 33.402 0.058 14 25.36 0.0062 0.3734 7.240 82.6 99.6 33.415 0.065 12 25.36 0.0062 0.3734 7.240 82.6 99.6 33.416 0.061 11 25.71 0.0076 1.465 9.255 66.8 98.3 33.454 0.055 02 25.46 0.0092 0.5963 11.906 55.3 99.3 33.466 0.050 01 25.38 0.0059 0.2284 10.339 86.3 99.7 33.497 0.055 09 25.98 0.0068 2.216 10.949 74.7 97.5 33.514 0.055 15 25.69 0.0072 1.146 7.195 71.4 98.7 33.422 0.063 Mean age $\pm 2\sigma$ $n = 14$ MSWD $= 2.22$ 71.7 ± 17.9 33.422 0.063		06	25.54	0.0068	1 322	3 775	74.8	98.5	33 279	0.099
0.1 1.001 1.007 3.440 4.333 64.9 96.1 33.290 0.084 13 25.35 0.0062 0.4609 3.386 81.7 99.5 33.37 0.10 03 25.42 0.0069 0.6130 7.350 73.5 99.3 33.402 0.058 14 25.34 0.0075 0.2959 6.174 68.2 99.7 33.415 0.065 12 25.36 0.0062 0.3734 7.240 82.6 99.6 33.416 0.061 11 25.71 0.0076 1.465 9.255 66.8 98.3 33.454 0.055 02 25.46 0.0092 0.5963 11.906 55.3 99.3 33.466 0.050 01 25.38 0.0059 0.2284 10.339 86.3 99.7 33.497 0.055 09 25.98 0.0068 2.216 10.949 74.7 97.5 33.514 0.055 15 25.69 0.0072 1.146 7.195 71.4 98.7 33.422 0.063 Mean age $\pm 2\sigma$ $n = 14$ MSWD $= 2.22$ 71.7 ± 17.9 33.422 0.063		04	25.54	0.0087	1 296	4 363	58.7	98.5	33.29	0.11
1325.350.00620.46093.38681.799.533.370.100325.420.00690.61307.35073.599.333.4020.0581425.340.00750.29596.17468.299.733.4150.0651225.360.00620.37347.24082.699.633.4160.0611125.710.00761.4659.25566.898.333.4540.0550225.460.00920.596311.90655.399.333.4660.0500125.380.00590.228410.33986.399.733.4970.0550925.980.00682.21610.94974.797.533.5140.0551525.690.00721.1467.19571.498.733.5540.063MSWD = 2.2271.7 \pm 17.9 33.4220.063		08	26.17	0.0079	3.440	4.333	64.9	96.1	33,290	0.084
1010101010101010100325.420.00690.61307.35073.599.333.4020.0581425.340.00750.29596.17468.299.733.4150.0651225.360.00620.37347.24082.699.633.4160.0611125.710.00761.4659.25566.898.333.4540.0550225.460.00920.596311.90655.399.333.4660.0500125.380.00590.228410.33986.399.733.4970.0550925.980.00682.21610.94974.797.533.5140.0551525.690.00721.1467.19571.498.733.5540.063MSWD = 2.2271.7 \pm 17.9 33.4220.063		13	25.35	0.0062	0.4609	3.386	81.7	99.5	33.37	0.10
1425.340.00750.29596.17468.299.733.4150.0651225.360.00620.37347.24082.699.633.4160.0611125.710.00761.4659.25566.898.333.4540.0550225.460.00920.596311.90655.399.333.4660.0500125.380.00590.228410.33986.399.733.4970.0550925.980.00682.21610.94974.797.533.5140.0551525.690.00721.1467.19571.498.733.5540.063MSWD = 2.2271.7 ± 17.933.4220.063		03	25.42	0.0069	0.6130	7.350	73.5	99.3	33,402	0.058
1225.360.00620.37347.24082.699.633.4160.0611125.710.00761.4659.25566.898.333.4540.0550225.460.00920.596311.90655.399.333.4660.0500125.380.00590.228410.33986.399.733.4970.0550925.980.00682.21610.94974.797.533.5140.0551525.690.00721.1467.19571.498.733.5540.063MSWD = 2.2271.7 \pm 17.933.4220.063		14	25.34	0.0075	0 2959	6 174	68.2	99.7	33 415	0.065
1125.710.00761.4659.25566.898.333.4540.0550225.460.00920.596311.90655.399.333.4660.0500125.380.00590.228410.33986.399.733.4970.0550925.980.00682.21610.94974.797.533.5140.0551525.690.00721.1467.19571.498.733.5540.063MSWD = 2.2271.7 \pm 17.933.4220.063		12	25.36	0.0062	0.3734	7.240	82.6	99.6	33.416	0.061
02 25.46 0.0092 0.5963 11.906 55.3 99.3 33.466 0.050 01 25.38 0.0059 0.2284 10.339 86.3 99.7 33.497 0.055 09 25.98 0.0068 2.216 10.949 74.7 97.5 33.514 0.055 15 25.69 0.0072 1.146 7.195 71.4 98.7 33.554 0.063 Mean age $\pm 2\sigma$ $n = 14$ MSWD = 2.22 71.7 ± 17.9 33.422 0.063		11	25.71	0.0076	1.465	9.255	66.8	98.3	33.454	0.055
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		02	25.46	0.0092	0.5963	11,906	55.3	99.3	33.466	0.050
09 25.98 0.0068 2.216 10.949 74.7 97.5 33.514 0.055 15 25.69 0.0072 1.146 7.195 71.4 98.7 33.554 0.063 Mean age $\pm 2\sigma$ n = 14MSWD = 2.22 71.7 ± 17.9 33.422 0.063		01	25.38	0.0059	0.2284	10.339	86.3	99.7	33.497	0.055
1525.690.00721.1467.19571.498.733.5540.063Mean age $\pm 2\sigma$ n = 14MSWD = 2.2271.7 \pm 17.933.4220.063		09	25.98	0.0068	2.216	10.949	74.7	97.5	33,514	0.055
Mean age $\pm 2\sigma$ n = 14 MSWD = 2.22 71.7 ± 17.9 33.422 0.063		15	25.69	0.0072	1.146	7.195	71.4	98.7	33,554	0.063
		Mea	n age ± 2σ	n = 14	MSV	VD = 2.22	71.7 ± 1	7.9	33.422	0.063

	ID	⁴⁰ Ar/ ³⁹ Ar	³⁷ Ar/ ³⁹ Ar	³⁶ Ar/ ³⁹ Ar (∨ 10 ⁻³)	³⁹ Ar _k (~ 10 ⁻¹⁵ mol)	K/Ca	⁴⁰ Ar*	Age (Ma)	± 1σ (Ma)
	#57 9	S-27 Sanidine		+ 0.05% D -	$\frac{(\times 10^{-110})}{1.003 \pm 0.001}$ NM	1-192D ab#	(70)	(1014)	(ivia)
#	11	25.00	0.0060	0.4021	5.755	85.6	99.5	33,182	0.065
#	03	25.00	0.0070	0 4004	6 131	73.4	99.5	33 182	0.061
"	01	25.15	0.0066	0.5719	2.536	76.9	99.3	33.31	0.11
	06	25.13	0.0072	0.4851	5.502	70.6	99.4	33,333	0.068
	12	25.19	0.0065	0.6160	9.939	78.5	99.3	33.356	0.053
	14	25.13	0.0052	0.3829	6.672	97.2	99.6	33.363	0.065
	09	25.15	0.0065	0.4471	6.337	78.5	99.5	33.368	0.060
	15	25.11	0.0071	0.2644	4.641	72.0	99.7	33.389	0.071
	10	25.14	0.0070	0.3094	8.688	72.6	99.6	33.403	0.055
	07	25.09	0.0071	0.1384	8.015	71.9	99.8	33.405	0.054
	05	25.25	0.0068	0.6440	8.780	75.3	99.2	33.426	0.057
	02	25.16	0.0067	0.2556	6.333	76.2	99.7	33.453	0.065
	13	25.26	0.0066	0.6068	12.399	77.0	99.3	33.454	0.050
	08	25.33	0.0067	0.7586	12.126	76.1	99.1	33.478	0.056
	04	25.22	0.0069	0.3911	12.455	73.7	99.5	33.482	0.051
	Mea	in age ± 2σ	n = 13	MSWI	D = 0.74	76.6 ±	13.4	33.412	0.044
	#58 \$	S-14, Sanidine	, J = 0.0007421	± 0.06%, D =	1.003 ± 0.001, NM	I-192C, Lab#	= 55931		
	19	23.41	0.0337	7.109	2.359	15.1	91.0	28.31	0.16
	16	21.74	0.0249	1.167	2.800	20.5	98.4	28.42	0.12
	25	21.72	0.0654	1.071	2.145	7.8	98.6	28.43	0.15
	24	21.50	0.0231	0.1820	2.646	22.1	99.8	28.49	0.13
	18	25.35	0.0556	13.14	2.325	9.2	84.7	28.52	0.21
	08	21.77	0.0275	0.9131	4.143	18.5	98.8	28.560	0.076
	22	22.05	0.0279	1.841	2.400	18.3	97.5	28.57	0.16
	10	21.62	0.0209	0.3190	4.426	24.4	99.6	28.592	0.072
	03	22.24	0.0676	2.327	4.292	7.5	96.9	28.630	0.079
	20	26.58	0.0593	16.93	3.866	8.6	81.2	28.67	0.12
	12	21.82	0.0299	0.7950	2.316	17.1	98.9	28.67	0.11
	26	22.80	0.0177	3.985	5.831	28.8	94.8	28.717	0.077
	09	22.19	0.0153	1.925	3.443	33.5	97.4	28.717	0.091
	07	21.74	0.0378	0.3747	6.215	13.5	99.5	28.727	0.061
	04	31.28	0.0280	32.58	4.522	18.2	69.2	28.75	0.14
	14	23.70	0.0484	6.890	3.528	10.5	91.4	28.772	0.098
	23	22.83	0.0253	3.923	3.503	20.1	94.9	28.783	0.087
	13	23.80	0.0456	7.113	5.575	11.2	91.2	28.827	0.077
	17	26.66	0.0315	16.77	7.310	16.2	81.4	28.83	0.15
	01	25.95	0.0245	14.34	13.929	20.8	83.7	28.834	0.065
	05	25.20	0.0187	11.75	3.708	27.2	86.2	28.86	0.11
	15	22.57	0.0179	2.801	3.783	28.5	96.3	28.873	0.086
	11	21.95	0.0621	0.6044	2.066	8.2	99.2	28.92	0.13
	21	22.37	0.0164	1.883	3.356	31.1	97.5	28.971	0.093
	02	24.08	0.0568	7.686	4.429	9.0	90.6	28.972	0.088
	06	21.89	0.0576	0.2127	2.670	8.9	99.7	28.99	0.10
	Mea	In age $\pm 2\sigma$	n = 26	MSWI	J = 2.60	17.5 ±	15.8	28.737	0.069

APPENDIX TABLE 3A. Ar-Ar DATA SINGLE CRYSTAL EXPERIMENTS (continued)

								1 /	
	ID	40Ar/39Ar	³⁷ Ar/ ³⁹ Ar	³⁶ Ar/ ³⁹ Ar (× 10 ⁻³)	³⁹ Ar _k (× 10 ⁻¹⁵ mol)	K/Ca	⁴⁰ Ar*	Age (Ma)	± 1σ (Ma)
	#66	N-09. Sanidin	e. J=0.0007437	(<u>× 10</u>) 2±0.05%. D=1.	003±0.001. NM-1	92C. Lab#	=55930	(ivia)	(1014)
#	30	21.55	0.0375	1.067	2.648	13.6	98.6	28.27	0.15
	29	21.59	0.0499	0.6447	3.229	10.2	99.1	28.487	0.095
	05	21.68	0.0446	0.9084	2.798	11.4	98.8	28.51	0.10
	12	21.78	0.0364	1.229	4.520	14.0	98.3	28.518	0.074
	14	22.17	0.0547	2.426	3.219	9.3	96.8	28.558	0.099
	10	21.73	0.0497	0.9283	2.508	10.3	98.8	28.56	0.11
	22	21.81	0.0513	1.183	4.168	9.9	98.4	28.567	0.072
	13	22.46	0.0452	3.175	5.697	11.3	95.8	28.647	0.066
	06	21.67	0.0340	0.4491	4.348	15.0	99.4	28.668	0.072
	18	21.86	0.0360	1.101	5.924	14.2	98.5	28.669	0.065
	25	21.82	0.0392	0.8870	3.746	13.0	98.8	28.694	0.078
	01	22.16	0.0444	2.007	4.347	11.5	97.3	28.707	0.077
	04	21.70	0.0448	0.4642	2.275	11.4	99.4	28.71	0.13
	11	22.10	0.0699	1.790	5.247	7.3	97.6	28.716	0.069
	02	21.70	0.0304	0.4140	5.320	16.8	99.4	28.723	0.063
	09	21.91	0.0354	1.121	5.255	14.4	98.5	28.730	0.070
	07	21.76	0.0430	0.6065	3.430	11.9	99.2	28.733	0.095
	19	21.89	0.0423	1.010	7.546	12.1	98.7	28.740	0.097
	26	21.87	0.0510	0.9076	4.579	10.0	98.8	28.758	0.066
	03	21.91	0.0464	1.023	4.071	11.0	98.6	28.767	0.077
	08	21.75	0.0501	0.4822	4.618	10.2	99.4	28.770	0.074
	24	22.05	0.0450	1.445	11.193	11.3	98.1	28.780	0.076
	17	22.97	0.0430	4.568	16.949	11.9	94.1	28.781	0.081
	23	22.30	0.0493	2.303	4.472	10.4	97.0	28.786	0.073
	27	22.07	0.0440	1.490	5.327	11.6	98.0	28.798	0.074
	21	22.05	0.0407	1.415	7.168	12.5	98.1	28.801	0.059
	15	22.49	0.0491	2.750	7.184	10.4	96.4	28.854	0.058
	16	22.25	0.0500	1.866	8.507	10.2	97.5	28.89	0.12
	20	22.33	0.0464	2.003	5.621	11.0	97.4	28.943	0.086
	28	22.08	0.0469	1.010	4.294	10.9	98.7	28.989	0.069
	Mea	n age ± 2σ	n=29	MSWE	D=2.30	11.6 ±	±3.8	28.730	0.052
	#67 \$	S-22, Sanidin	e, J=0.000746±	0.05%, D=1.0	03±0.001, NM-19	2D, Lab#=	55949		
#	13	105.1	-0.0627	276.9	0.033	-	22.1	31.0	7.0
#	08	34.85	0.0092	22.06	4.475	55.3	81.3	37.73	0.13
#	12	52.17	0.0092	79.41	1.656	55.7	55.0	38.22	0.32
#	14	36.16	0.0090	24.47	1.726	56.7	80.0	38.52	0.23
	01	35.75	0.0156	22.14	4.721	32.7	81.7	38.89	0.12
	15	29.77	0.0089	1.738	2.321	57.6	98.3	38.95	0.14
	10	29.57	0.0102	0.5732	2.756	50.0	99.4	39.14	0.12
	03	31.83	0.0177	8.187	2.246	28.8	92.4	39.15	0.15
	09	29.65	0.0098	0.8197	2.216	52.1	99.2	39.16	0.13
	05	29.89	0.0097	1.588	6.892	52.6	98.4	39.165	0.067
	11	29.85	0.0122	1.265	2.351	41.9	98.8	39.24	0.14
	07	30.38	0.0100	2.789	8.370	50.9	97.3	39.351	0.067
	02	30.06	0.0096	1.535	4.277	53.3	98.5	39.412	0.092
	06	29.94	0.0092	0.9862	3.049	55.2	99.0	39.47	0.11
#	04	35.29	1.884	19.47	0.222	0.27	84.1	39.6	1.1
	Mea	n age ± 2σ	n=10	MSWE	D=2.88	47.5 ±	19.6	39.23	0.11

APPENDIX TABLE 3A. Ar-Ar DATA SINGLE CRYSTAL EXPERIMENTS (continued)

		7.0				0.7.12 27.1		(00111111000)	
	ID	⁴⁰ Ar/ ³⁹ Ar	³⁷ Ar/ ³⁹ Ar	³⁶ Ar/ ³⁹ Ar (× 10 ^{−3})	³⁹ Ar _κ (× 10 ⁻¹⁵ mol)	K/Ca	^{₄₀} Ar* (%)	Age (Ma)	± 1σ (Ma)
	#109	S-4, Sanidine	e, J = 0.000740	4 ± 0.05%, D =	= 1.003 ± 0.001, N	IM-192C, L	.ab# = 55934		()
#	19	24.75	0.1768	4.652	0.273	2.9	94.5	30.98	0.70
#	40	24.22	0.1302	1.899	0.145	3.9	97.7	31.3	1.3
#	34	24.59	0.1842	3.149	0.270	2.8	96.3	31.35	0.71
#	12	24.72	0.3146	3.266	0.439	1.6	96.2	31.50	0.52
#	15	24.24	0.1980	1.397	0.237	2.6	98.4	31.57	0.94
#	49	25.39	0.1129	5.185	0.084	4.5	94.0	31.6	2.1
#	30	24.33	0.1968	1.541	0.910	2.6	98.2	31.64	0.24
#	39	24.44	0.1329	1.812	0.126	3.8	97.9	31.7	1.4
#	33	24.77	0.1878	2.902	0.331	2.7	96.6	31.68	0.58
#	21	24.81	0.1808	3.005	0.676	2.8	96.5	31.70	0.31
#	28	24.13	0.1784	0.6160	0.198	2.9	99.3	31.73	0.94
	01	24.28	0.1801	0.9154	2.214	2.8	98.9	31.81	0.12
#	11	24.51	0.1667	1.591	0.499	3.1	98.1	31.85	0.47
#	36	24.62	0.1740	1.863	0.341	2.9	97.8	31.88	0.53
	20	24.38	0.1828	1.007	1.452	2.8	98.8	31.91	0.14
#	04	24.30	0.1978	0.6172	0.566	2.6	99.3	31.96	0.41
#	51	24.63	0.1828	1.685	0.158	2.8	98.0	32.0	1.1
#	46	24.74	0.1521	1.988	0.177	3.4	97.7	32.0	1.0
	02	24.47	0.0080	0.6648	2.869	63.5	99.2	32.13	0.11
	08	24.35	0.0057	0.2531	1.691	89.3	99.7	32.14	0.15
#	17	30.46	0.1749	20.98	0.254	2.9	79.7	32.15	0.86
	10	24.47	0.0197	0.5254	0.969	25.9	99.4	32.19	0.25
	47	24.55	0.0105	0.7260	0.332	48.7	99.1	32.22	0.56
#	27	24.74	0.1763	1.399	0.287	2.9	98.4	32.22	0.67
#	32	24.41	0.2083	0.2894	0.204	2.4	99.7	32.22	0.91
#	38	24.45	0.1719	0.3128	0.220	3.0	99.7	32.27	0.83
#	41	24.58	0.1620	0.6947	0.367	3.1	99.2	32.29	0.51
#	03	24.53	0.1697	0.3612	0.476	3.0	99.6	32.35	0.47
	35	24.38	0.0269	-0.2009	0.305	19.0	100.3	32.35	0.63
#	07	24.11	1.462	-0.7383	0.133	0.35	101.4	32.4	1.6
#	26	24.65	0.2048	0.5874	0.431	2.5	99.4	32.43	0.46
#	05	25.48	0.1973	3.338	0.569	2.6	96.2	32.45	0.43
#	09	25.34	0.1881	2.849	0.437	2.7	96.7	32.45	0.54
#	13	24.49	0.1854	-0.1462	0.314	2.8	100.2	32.50	0.71
#	29	24.91	0.2343	1.155	0.579	2.2	98.7	32.55	0.35
#	31	24.85	0.1679	0.8981	0.255	3.0	99.0	32.56	0.78
#	43	24.86	0.0936	0.8055	0.149	5.4	99.1	32.6	1.2
#	18	24.19	0.1607	-1.5621	0.189	3.2	102.0	32.65	0.98
#	37	24.61	0.1448	-0.3423	0.251	3.5	100.5	32.72	0.73
#	48	24.75	0.1815	0.1407	0.199	2.8	99.9	32.73	0.94
#	42	24.86	0.0690	0.3841	0.104	7.4	99.6	32.8	1.8
#	23	25.40	0.1638	2.135	0.364	3.1	97.6	32.80	0.56
#	06	24.75	0.1685	-0.4300	0.142	3.0	100.6	33.0	1.6
#	22	24.87	0.1957	-0.2531	0.224	2.6	100.4	33.04	0.85
#	25	24.53	0.1783	-2.0466	0.319	2.9	102.5	33.29	0.62
#	50	25.08	0.8474	-0.0992	0.119	0.60	100.4	33.3	1.5
#	45	25.10	0.1476	-0.4676	0.246	3.5	100.6	33.42	0.72
#	14	24.36	0.1667	-3.5364	0.148	3.1	104.3	33.6	1.5
#	16	25.84	0.2148	0.8417	0.151	2.4	99.1	33.9	1.2
#	44	25.17	0.1275	-3.2662	0.124	4.0	103.9	34.6	1.5
#	24	24.86	0.9081	-7.1420	0.077	0.56	108.8	35.8	2.4
	Mea	n age ± 2 o	n = 7	MSWD	= 1.06	36.0 ±6	65.1	32.01	0.13

APPENDIX TABLE 3A. Ar-Ar DATA SINGLE CRYSTAL EXPERIMENTS (continued)

	10	40	37 •	³⁶ Ar/ ³⁹ Ar	³⁹ Ar	1//0-	40 Ar *	Age	±1σ
	ID	^a °Ar/ ^{o°} Ar	°'Ar/°°Ar	(× 10 ^{−3})	(× 10 ⁻¹⁵ mol)	K/Ca	(%)	(Ma)	(Ma)
	#113 S	-6. Sanidine. J =	= 0.0007466 ± 0.0	05%. D = 1.003 ±	: 0.001. NM-192D. La	ub# = 55948			
#	25	72.66	4.298	167.1	0.272	0.12	32.5	31.7	1.1
#	10	53.01	3.507	99.45	0.690	0.15	45.1	32.00	0.54
#	20	50.01	4.927	88.46	0.445	0.10	48.5	32.52	0.65
#	04	42.45	2.676	60.77	0.298	0.19	58.2	33.05	0.92
#	16	50.02	3.096	85.75	0.882	0.16	49.9	33.36	0.50
#	24	39.26	2.571	49.02	0.890	0.20	63.6	33.40	0.37
#	01	67.27	3.298	143.3	0.832	0.15	37.5	33.70	0.60
#	11	35.81	4.261	36.65	0.479	0.12	70.7	33.90	0.58
#	26	43.68	1.688	62.24	0.545	0.30	58.2	33.97	0.53
#	28	34.37	2.868	30.64	0.526	0.18	74.3	34.16	0.47
#	29	42.98	3.418	59.44	0.115	0.15	59.8	34.4	1.8
#	14	27.13	2.580	5.431	0.341	0.20	94.9	34.41	0.69
#	23	38.22	1.813	42.59	0.624	0.28	67.5	34.44	0.43
#	02	36.59	2.358	37.01	0.766	0.22	70.6	34.54	0.39
#	03	46.56	2.282	70.16	0.944	0.22	55.9	34.76	0.42
#	12	34.31	1.949	28.42	0.449	0.26	76.0	34.83	0.56
#	09	31.00	2.401	17.14	0.935	0.21	84.3	34.92	0.29
	18	27.71	0.0104	5.172	3.025	49.0	94.5	34.92	0.13
#	05	26.73	2.008	2.544	0.702	0.25	97.8	34.93	0.36
	17	27.77	0.0142	5.299	10.860	35.9	94.4	34.962	0.064
#	15	33.58	2.316	25.71	0.713	0.22	77.9	34.97	0.40
	19	26.52	0.0108	1.009	3.331	47.1	98.9	34.98	0.11
	21	27.06	0.0122	2.832	3.801	41.8	96.9	34.978	0.099
	30	26.82	0.0115	1.981	5.141	44.5	97.8	34.996	0.071
	22	26.88	0.0111	1.970	4.716	46.1	97.8	35.085	0.072
	27	26.52	0.0096	0.6428	3.203	52.9	99.3	35.12	0.11
	08	26.94	0.0113	1.953	4.906	45.3	97.9	35.166	0.085
	07	27.02	0.0106	2.027	5.722	48.3	97.8	35.237	0.076
#	13	27.26	0.1806	2.630	6.406	2.8	97.2	35.354	0.074
#	06	29.16	1.915	8.328	0.427	0.27	92.1	35.87	0.58
	Mea	in age ± 2σ	n = 9	MSV	VD = 1.62	45.7 ±	± 9.6	35.06	0.08
	#120 S	-32, Sanidine, J	$= 0.0007405 \pm 0$	0.06%, D = 1.003	± 0.001, NM-192C, L	ab# = 55932			
	23	24.35	0.0136	2.664	4.645	37.4	96.8	31.207	0.080
	19	23.84	0.0110	0.8407	8.741	46.5	99.0	31.251	0.053
	05	23.73	0.0098	0.4530	4.076	51.9	99.4	31.260	0.084
	06	24.60	0.0109	3.348	5.726	46.8	96.0	31.277	0.071
	18	24.25	0.0108	2.152	14.449	47.3	97.4	31.282	0.054
	08	24.10	0.0104	1.642	6.600	49.2	98.0	31.284	0.060
	12	24.01	0.0120	1.252	4.394	42.5	98.5	31.312	0.077
	17	23.88	0.0102	0.7845	11.783	49.9	99.0	31.327	0.051
	25	24.47	0.0109	2.743	6.078	46.9	96.7	31.336	0.070
	02	24.41	0.0118	2.547	6.306	43.3	96.9	31.339	0.066
	21	24.72	0.0106	3.559	8.014	47.9	95.7	31.353	0.064
	13	26.02	0.0149	7.897	7.540	34.2	91.0	31.372	0.073
	10	24.12	0.0121	1.464	6.884	42.1	98.2	31.374	0.060
	26	24.27	0.0112	1.978	5.331	45.4	97.6	31.376	0.076
	22	23.86	0.0124	0.5513	8.060	41.1	99.3	31.381	0.068
	04	25.41	0.0125	5.828	7.239	40.9	93.2	31.381	0.066
	09	24.68	0.0116	3.315	8.499	44.2	96.0	31.385	0.057
	16	24.55	0.0127	2.831	10.680	40.0	96.6	31.402	0.083
	27	23.99	0.0121	0.9558	6.902	42.1	98.8	31.403	0.073
	11	23.88	0.0097	0.5277	4.839	52.8	99.4	31.428	0.072
	01	23.89	0.0102	0.4518	11.488	50.0	99.4	31.458	0.046
	03	24.06	0.0103	1.003	15.064	49.7	98.8	31.473	0.049
	07	25.41	0.0111	5.545	14.212	46.1	93.6	31.480	0.056
	14	23.85	0.0107	0.2782	7.667	47.6	99.7	31.480	0.053
	20	24.17	0.0123	1.307	16.481	41.5	98.4	31.504	0.068
	24	23.99	0.0102	0.6648	10.506	50.2	99.2	31.511	0.064
#	15	24.03	0.0125	0.4249	3.455	40.8	99.5	31.653	0.095
	Меа	in age ± 2σ	n=26	MS	WD=1.79	45.3 :	±9.1	31.378	0.049

APPENDIX TABLE 3A. Ar-Ar DATA SINGLE CRYSTAL EXPERIMENTS (continued)

	ID	⁴⁰ Ar/ ³⁹ Ar	³⁷ Ar/ ³⁹ Ar	³⁶ Ar/ ³⁹ Ar	$^{39}Ar_{\rm K}$	K/Ca	⁴⁰ Ar*	Age	±1σ
	#131	C-12 Sanidine	= .1 = 0.0007399	$(\times 10)$	$(\times 10^{-1101})$	-192C ab#	(/0)	(IVIA)	(Ivia)
#	04	25.07	1.985	13.17	0.058	0.26	85.1	28.3	3.8
#	14	24.53	2.952	10.06	0.038	0.17	88.9	28.9	5.8
#	20	24.73	2.080	6.141	0.071	0.25	93.4	30.6	2.5
#	22	42.97	3.461	65.62	0.041	0.15	55.5	31.7	4.5
#	12	29.07	3.486	16.43	0.166	0.15	84.3	32.5	1.4
#	05	25.47	4.147	4.200	0.083	0.12	96.5	32.6	2.6
#	10	25.32	0.0276	1.885	0.736	18.5	97.8	32.76	0.32
	09	25.44	0.0063	1.307	2.101	80.4	98.5	33.14	0.13
	03	25.54	0.0081	1.214	2.229	63.3	98.6	33.30	0.12
#	13	25.02	2.618	-0.8914	0.128	0.19	101.9	33.8	1.7
#	01	25.70	0.0093	0.4614	3.864	55.0	99.5	33.808	0.086
#	21	25.93	0.0092	0.9268	1.004	55.5	98.9	33.93	0.22
#	18	24.26	3.052	-3.7013	0.090	0.17	105.5	33.9	2.1
#	19	24.85	2.980	-2.0105	0.085	0.17	103.4	34.0	2.2
#	28	25.94	0.0055	0.5989	1.762	92.7	99.3	34.06	0.14
#	25	25.96	0.2641	0.7452	0.752	1.9	99.2	34.06	0.30
#	02	26.33	0.0243	1.678	1.041	21.0	98.1	34.16	0.24
#	24	26.03	0.0093	0.5233	1.545	55.0	99.4	34.21	0.16
#	11	26.12	0.0085	0.7712	2.332	59.9	99.1	34.23	0.12
#	30	26.06	0.0037	0.5514	1.426	139.6	99.4	34.24	0.16
#	08	26.32	0.0161	1.413	0.798	31.6	98.4	34.24	0.30
#	15	26.71	0.0225	2.497	0.995	22.6	97.2	34.34	0.25
#	29	24.93	3.172	-3.3436	0.137	0.16	105.0	34.7	1.4
#	07	26.94	0.0165	1.396	0.968	30.9	98.5	35.06	0.27
#	27	26.77	0.0299	0.4615	0.192	17.1	99.5	35.20	0.95
#	16	26.53	2.278	-0.9873	0.069	0.22	101.8	35.7	2.8
#	17	25.73	3.246	-4.0939	0.036	0.16	105.7	36.0	5.0
#	23	25.24	3.581	-6.3886	0.033	0.14	108.7	36.3	5.7
#	06	33.36	2.124	1.912	0.050	0.24	98.8	43.5	4.3
#	26	28.04	3.176	-16.0094	0.024	0.16	117.8	43.7	7.4
	Mea	in age ± 2σ	n = 2	MSWD	= 0.83	71.9 ± 2	24.1	33.22	0.18
	#122	C-7 Sanidina		+ 0.05% D = 1	0.02 ± 0.001 NM 1	102D Lob#.	- 550/6		
	01	25 11	0 0061	0.5222	4605	83.8	99.4	33 224	0 074
	13	25.72	0.0066	2.559	7.621	77.6	97.1	33,243	0.063
	10	26.00	0.0069	3.474	3.688	73.8	96.1	33.253	0.095
	14	25.22	0.0055	0.7930	5.690	92.5	99.1	33.271	0.067
	12	25.15	0.0067	0.5441	5.509	76.7	99.4	33.278	0.070
	15	25.08	0.0063	0.3074	4.238	81.4	99.6	33.278	0.087
	09	25.29	0.0066	0.9834	8.547	76.8	98.9	33.284	0.057
	08	25.24	0.0062	0.7747	8.185	82.0	99.1	33.300	0.055
	03	25.11	0.0072	0.3247	5.872	70.6	99.6	33.311	0.070
	06	25.37	0.0071	1.169	9.307	71.7	98.6	33.314	0.054
	04	25.41	0.0069	1.228	5.334	74.0	98.6	33.355	0.074
	02	25.52	0.0062	1.520	11.156	81.6	98.2	33.375	0.056
	05	25.59	0.0075	1.770	9.751	68.1	98.0	33.377	0.054
	11	25.38	0.0066	0.8919	9.596	77.4	99.0	33.443	0.055
	07	25.40	0.0064	0.7400	9.039	79.7	99.1	33.528	0.062
	Меа	n age ± 2σ	n = 15	MSWD	= 1.68	77.8 ±1	2.2	33.333	0.052

APPENDIX TABLE 3A. Ar-Ar DATA SINGLE CRYSTAL EXPERIMENTS (continued)

		40 • 69 •	37 . (39 .	³⁶ Ar/ ³⁹ Ar	³⁹ Ar.,	1/10	⁴⁰ Ar*	Age	+1o
	ID	⁴⁰ Ar/ ³⁹ Ar	³′Ar/³°Ar	(× 10 ⁻³)	(× 10 ⁻¹⁵ mol)	K/Ca	(%)	(Ma)	(Ma)
	#143	D89B, Sanidin	ie, J = 0.000742	21 ± 0.05%, D =	1.003±0.001, NM·	-192D, Lab#	= 55944		
	03	22.45	0.0054	0.3578	3.474	94.5	99.5	29.671	0.088
	14	22.54	0.0046	0.6252	3.962	110.0	99.2	29.682	0.090
	12	22.53	0.0047	0.5180	3.603	108.6	99.3	29.709	0.091
	08	22.43	0.0050	0.1690	4.289	101.8	99.8	29.721	0.078
	15	22.46	0.0043	0.2036	4.626	117.9	99.7	29.735	0.072
	13	22.53	0.0051	0.4610	4,486	99.3	99.4	29.736	0.075
	09	23.53	0.0038	3.823	4.372	133.0	95.2	29.741	0.077
	07	22.56	0.0048	0.5094	7,233	106.4	99.3	29.757	0.057
	11	22 49	0.0049	0 2424	3 234	104 7	99.7	29 765	0.093
	10	22 59	0.0047	0.5165	9 142	107.9	99.3	29 793	0.050
	05	22.49	0.0050	0.1496	4.826	102.6	99.8	29,796	0.068
	02	22 56	0.0044	0 2477	4.380	116.4	99.7	29.863	0.071
	06	22.60	0.0057	0.4326	2,315	89.0	99.4	29.86	0.12
	04	22.52	0.0048	0.2662	2.010	106.0	00.4 00.7	20.00	0.12
#	01	24.85	2 661	0.0613	0 101	0 19	100.8	23.07	1 1
m	Moa	24.00	2.001	MSWD	- 0.52	107.0 +	21 /	20 764	0.040
	Wea	n age ± 20	11 = 14	1013000	= 0.55	107.0 ±	21.4	29.704	0.049
	#151	D78B, Sanidin	ie, J =0.000743	4 ± 0.05%, D =	1.003 ± 0.001, NM	I-192D, Lab#	ŧ = 55945		
	09	22.42	0.0044	0.4385	3.862	117.1	99.4	29.649	0.085
	02	22.47	0.0055	0.5685	3.995	92.1	99.3	29.659	0.083
	15	22.43	0.0043	0.3747	4.554	118.7	99.5	29.681	0.076
	08	22.50	0.0053	0.5876	5.849	97.0	99.2	29.699	0.063
	05	22.40	0.0045	0.2466	5.391	113.0	99.7	29.699	0.062
	13	22.43	0.0061	0.3406	5.962	83.6	99.6	29.704	0.061
	06	22.46	0.0044	0.3874	5.477	114.7	99.5	29.728	0.058
	03	22.53	0.0045	0.5370	4.063	113.0	99.3	29.761	0.079
	01	22.48	0.0051	0.2539	6.398	99.5	99.7	29.796	0.060
	12	22.55	0.0044	0.4711	8.677	116.3	99.4	29.810	0.052
	07	22.54	0.0045	0.4113	6.838	113.8	99.5	29.817	0.056
	10	22.47	0.0047	0.1593	4.202	108.9	99.8	29.820	0.075
	04	22.49	0.0042	0.2466	5.413	120.8	99.7	29.822	0.062
	11	22.51	0.0046	0.1990	8.257	110.8	99.7	29.864	0.055
	14	22.75	0.0040	0.9074	8.373	126.3	98.8	29.906	0.055
	Mea	n age + 2σ	n = 15	MSWD	= 1.51	1097+	23.3	29.775	0.048
	mou		11 - 10	morre	- 1.01	100.7 1	20.0		0.0.10
	#158	J-212, Sanidin	ie, J = 0.000741	9±0.05%, D = 1	.003 ± 0.001, NM-	-192D, Lab#	= 55942		
	12	26.62	0.0023	1.094	3.478	224.3	98.8	34.852	0.097
	06	27.28	0.0036	3.329	3.152	141.9	96.4	34.86	0.11
	10	26.54	0.0032	0.4799	4.315	159.2	99.5	34.987	0.088
	15	26.67	0.0032	0.8116	4.694	157.3	99.1	35.027	0.079
	13	26.88	0.0031	1.518	2.549	162.4	98.3	35.03	0.11
	09	26.87	0.0027	1.363	3.965	190.9	98.5	35.085	0.090
	01	26.82	0.0025	1.136	3.862	204.6	98.7	35.100	0.085
	07	26.57	0.0032	0.2292	3.877	158.0	99.7	35.125	0.096
	02	26.68	0.0033	0.5903	3.218	153.1	99.3	35.13	0.10
	05	26.64	0.0029	0.4292	2.722	173.6	99.5	35.14	0.12
	04	26.92	0.0031	1.367	5.199	167.0	98.5	35.144	0.078
	14	26.88	0.0029	1.140	5.317	173.6	98.7	35.182	0.072
	08	26.77	0.0028	0.7029	3.599	183.7	99.2	35.210	0.092
	03	26.96	0.0022	1.296	5.183	231.0	98.6	35.223	0.078
#	11	27.11	0.0028	1.183	6.027	182.6	98.7	35.461	0.072
	Mea	n age ± 2σ	n = 14	MSWD	= 1.56	177.2 ±	53.7	35.090	0.069

APPENDIX TABLE 3A. Ar-Ar DATA SINGLE CRYSTAL EXPERIMENTS (continued)

		AF	FEINDIX TABLE	SA. AI-AI DAT	A SINGLE CHISTAL		S (continueu)		
	ID	⁴⁰ Ar/ ³⁹ Ar	³⁷ Ar/ ³⁹ Ar	³⁶ Ar/ ³⁹ Ar	³⁹ Ar _K	K/Ca	⁴⁰ Ar*	Age	±1σ
		,		(× 10 [⊸])	(× 10 ⁻¹³ mol)		(%)	(Ma)	(Ma)
	#163 J	-375, Sanidine	e, J = 0.0007432	± 0.05%, D = 1	.003 ± 0.001, NM-192	2D, Lab# = 5594	.1		
	15	44.43	0.2280	60.06	1.301	2.2	60.1	35.45	0.33
	03	36.61	0.2071	33.02	0.619	2.5	73.4	35.68	0.48
	11	62.34	0.1782	120.0	0.621	2.9	43.1	35.69	0.63
	01	40.23	0.3095	45.13	0.458	1.6	66.9	35.74	0.64
	04	30.89	0.2768	13.17	0.229	1.8	87.5	35.9	1.0
	09	29.34	0.1338	7.849	0.403	3.8	92.1	35.88	0.60
	08	42.63	0.2610	52.82	0.719	2.0	63.4	35.90	0.42
	14	33.65	0.1551	21.98	0.291	3.3	80.7	36.06	0.82
	10	32.08	0.2115	16.56	0.782	2.4	84.8	36.11	0.34
	05	36.81	0.2231	32.24	1.096	2.3	74.2	36.25	0.29
	07	36.49	0.2305	31.12	0.776	2.2	74.9	36.26	0.40
	06	41.72	0.1673	48.68	0.897	3.0	65.6	36.31	0.37
	12	48.06	0.5013	69.67	0.526	1.0	57.2	36.53	0.57
	13	42.25	0.1536	49.62	0.310	3.3	65.3	36.64	0.87
	02	37.65	0.2340	32.20	0.245	2.2	74.8	37.37	1.00
	Mea	n ane + 2a	n – 15	MSV	VD - 0.63	24 ± 15		36.04	0.24
	Wied	in age ± 20	11 = 15	10101	VD = 0.00	2.4 ± 1.5		00.04	0.24
	#1C0 \	VDQ Conidina	1 0 0007414	0.05% D 1	002 · 0.001 NM 100		2		
"	#109 1	vDo, Sariiuirie,	J = 0.0007414 :	E 0.05%, D = 1.7	0.001 ± 0.001, NIVI-192	D, Lab# = 55940		01 10	0.51
#	21	24.42	1.130	3.438	0.391	0.45	90.2 05.9	31.10	0.51
#	04	24.93	2.321	4.205	0.228	0.22	95.8	31.71	0.97
#	20	24.62	0.0167	2.221	1.012	30.5	97.3	31.77	0.20
#	25	24.99	3.238	4.108	0.245	0.16	96.2	31.95	0.79
	14	24.91	0.0217	2.259	1.591	23.5	97.3	32.15	0.16
#	30	24.99	2.392	3.192	0.169	0.21	97.0	32.2	1.1
	29	24.76	0.0419	1.466	0.969	12.2	98.3	32.26	0.22
#	12	24.53	0.3675	0.7886	1.409	1.4	99.2	32.26	0.18
	06	29.03	0.0241	15.68	2.227	21.1	84.0	32.34	0.16
#	19	24.53	1.515	0.8387	0.340	0.34	99.5	32.40	0.60
	27	24.89	0.0223	1.510	1.106	22.9	98.2	32.40	0.19
	07	25.80	0.0279	4.557	2.864	18.3	94.8	32.42	0.12
	24	24.86	0.0181	1.261	1.677	28.1	98.5	32.46	0.14
	13	24.71	0.0296	0.7086	6.268	17.3	99.2	32.486	0.063
#	03	24.84	0.0285	0.4766	5.387	17.9	99.4	32.743	0.072
#	02	24.83	1.472	0.1012	0.232	0.35	100.4	33.07	0.97
#	26	1936.2	0.0027	6465.5	0.017	186.1	1.3	34.0	27.8
#	22	752.6	0.0821	2439.1	0.033	6.2	4.2	42.1	10.6
	Mea	n age ± 2 o	n = 7	MSV	VD = 0.79	20.5 ±	10.3	32.42	0.09
	#217 4	EN1, Sanidine	, J = 0.0007449	± 0.05%, D = 1	.003 ± 0.001, NM-192	2C, Lab# = 5593	9		
	10	25.21	0.0268	2.073	1.078	19.1	97.6	32.76	0.23
	03	25.28	0.0229	1.972	1.043	22.2	97.7	32.90	0.24
	13	24.92	0.0251	0.6946	1.616	20.3	99.2	32.92	0.16
	06	25.12	0.0223	1.095	1.340	22.8	98.7	33.02	0.20
	05	25.05	0.0353	0.7976	3.170	14.4	99.1	33.050	0.098
	04	25.10	0.0250	0.9600	1.969	20.4	98.9	33.06	0.13
	15	25.04	0.0211	0.7318	1.627	24.1	99.1	33.06	0.16
	11	25.03	0.0238	0.6847	2.334	21.4	99.2	33.07	0.12
	01	25.07	0.0256	0.8141	2.111	19.9	99.0	33.07	0.13
	14	25.21	0.0247	1.243	3.691	20.7	98.6	33.087	0.096
	09	25.09	0.0230	0.8048	1.345	22.2	99.1	33.09	0.20
	07	25.11	0.0229	0.6824	3.394	22.3	99.2	33.165	0.093
	08	25.21	0.0216	0.9446	1.911	23.6	98.9	33.20	0.14
	12	25.61	0.0222	2.021	1.766	23.0	97.7	33.31	0.16
	02	25.30	0.0271	0.8341	2.056	18.8	99.0	33.36	0.14
	Mea	n age + 2g	n = 15	MSV	VD = 0.82	21 0 +	4.9	33,101	0.076
						21.0 1			

APPENDIX TABLE 3A. Ar-Ar DATA SINGLE CRYSTAL EXPERIMENTS (continued)

	ID	⁴⁰ Ar/ ³⁹ Ar	³⁷ Ar/ ³⁹ Ar	³⁶ Ar/ ³⁹ Ar (× 10 ⁻³)	$^{39}Ar_{\kappa}$ (× 10 ⁻¹⁵ mol)	K/Ca	⁴⁰ Ar* (%)	Age (Ma)	±1σ (Ma)
	#220 C	LLD, Sanidine.	J = 0.0007447 ±	0.05%, D = 1.003	3 ± 0.001, NM-192D,	Lab# = 5940	(/0)	(ma)	(Ma)
	04	25.33	0.0176	0.7088	2.903	29.0	99.2	33.44	0.11
	07	25.35	0.0182	0.7023	2.272	28.0	99.2	33.47	0.13
	14	25.26	0.0187	0.2986	3.926	27.2	99.7	33.511	0.091
	06	25.48	0.0189	0.8989	2.631	27.0	99.0	33.57	0.11
	12	25.45	0.0181	0.7307	2.809	28.1	99.2	33.58	0.12
	02	25.54	0.0190	0.9152	2.653	26.8	98.9	33.64	0.12
	03	25.38	0.0178	0.2695	2.576	28.7	99.7	33.68	0.12
	05	25.43	0.0170	0.3987	3.248	30.1	99.5	33.695	0.097
	11	25.39	0.0197	0.2618	4.841	25.9	99.7	33.695	0.074
	01	25.46	0.0221	0.3721	4.652	23.1	99.6	33.740	0.083
	09	25.58	0.0176	0.6807	4.275	29.0	99.2	33.774	0.079
	10	25.43	0.0198	0.1498	3.799	25.7	99.8	33.787	0.089
	08	25.58	0.0150	0.6528	2.362	34.0	99.3	33.79	0.12
	15	25.48	0.0181	0.1504	5.054	28.1	99.8	33.853	0.070
	13	25.61	0.0174	0.5365	6.522	29.4	99.4	33.876	0.067
	Mea	in age ± 2σ	n = 15	MSV	VD = 2.14	28.0 -	± 4.8	33.712	0.076
	#221 O	WLD, Sanidine	, J = 0.0007454 ±	0.05%, D = 1.00	3 ± 0.001, NM-192C,	Lab# = 5593	8		
#	13	25.33	0.0305	1.024	1.985	16.7	98.8	33.35	0.14
#	12	25.59	0.0247	1.587	2.507	20.7	98.2	33.47	0.13
	07	25.52	0.0382	0.9256	1.742	13.3	98.9	33.65	0.15
	02	26.05	0.0387	2.704	3.881	13.2	96.9	33.647	0.089
	11	25.46	0.0321	0.6319	3.183	15.9	99.3	33.68	0.10
	10	25.46	0.0301	0.5793	3.270	16.9	99.3	33.700	0.096
	05	26.39	0.0378	3.679	3.263	13.5	95.9	33.72	0.11
	16	25.51	0.0297	0.6827	2.752	17.2	99.2	33.72	0.11
	06	25.42	0.0654	0.3345	4.353	7.8	99.6	33.745	0.083
	14	25.48	0.0283	0.3821	5.800	18.1	99.6	33.801	0.066
	03	25.55	0.0282	0.5375	5.547	18.1	99.4	33.825	0.074
	09	25.99	0.0303	2.027	1.915	16.9	97.7	33.83	0.16
#	15	28.21	0.0343	9.154	7.334	14.9	90.4	33.976	0.077
#	08	25.60	0.0295	0.2175	4.079	17.3	99.8	34.027	0.082
#	04	25.74	0.0332	0.5733	4.281	15.4	99.4	34.065	0.082
#	01	30.79	0.0387	17.53	7.547	13.2	83.2	34.121	0.092
	Меа	in age ± 2σ	n = 10	MSV	<u>/D = 0.51</u>	15.1 :	± 6.4	33.744	0.067

Note: Isotopic ratios corrected for blank, radioactive decay, and mass discrimination, not corrected for interfering reactions. Errors quoted for individual analyses include analytical error only, without interfering reaction or J uncertainties. Mean age is weighted mean age of Taylor (1982). Mean age error is weighted error of the mean (Taylor, 1982), multiplied by the root of the MSWD where MSWD > 1, and also incorporates uncertainty in J factors and irradiation correction uncertainties. Decay constants and isotopic abundances after Steiger and Jäger (1977). # symbol preceding sample ID denotes analyses excluded from mean age calculations. Ages calculated relative to FC-2 Fish Canyon Tuff sanidine interlaboratory standard at 29.02 Ma. Decay Constant (LambdaK (total)) = 5.543e-10/a Correction factors: (³⁹Ar/³⁷Ar)Ca = 0.0007 ± 2e-05

 $({}^{36}\text{Ar}/{}^{37}\text{Ar})\text{Ca} = 0.00028 \pm 1e-05$ $({}^{36}\text{Ar}/{}^{37}\text{Ar})\text{Ca} = 0.013$

 $({}^{40}\text{Ar}/{}^{39}\text{Ar})\text{K} = 0 \pm 0.0004$

64

APPENDIX TABLE 3B. Ar-Ar DATA MULTIGRAIN MEASUREMENTS

	AFF		3D. AI-AI DATA	MULTIGHAI	1 MLASORLIML	110		
ID	⁴⁰ Ar/ ³⁹ Ar	³⁷ Ar/ ³⁹ Ar	³⁶ Ar/ ³⁹ Ar	³⁹ Ar _K	K/Ca	⁴⁰ Ar*	Age	±1σ
#50 0104		014060 + 0.10	0% D 10071	$(x10^{-3})$	(x10 ¹⁰ mol)	(%)	(Ma)	(Ma)
#52 P18A, I	L5:15, san, $J = 0.0$	1014368 ± 0.10	$0\%, D = 1.0071 \pm 1.0071 \pm 1.00771$	0.0016, nm-1	5,Lab = 1772	00.7	00 700	0.050
01	11.26	0.0552	0.1217	15.155	9.2	99.7	28.799	0.056
03	19.70	0.0696	28.66	15.648	7.3	57.0	28.81	0.20
05	11.28	0.0577	0.1595	9.752	8.8	99.6	28.813	0.060
04	11.29	0.0588	0.1599	12.499	8.7	99.6	28.849	0.056
06	11.34	0.0762	0.2333	15.010	6.7	99.4	28.908	0.056
02	11.31	0.0598	0.1168	18.203	8.5	99.7	28.912	0.053
08	11.33	0.0643	0.1147	15.495	7.9	99.7	28.977	0.058
07	11.36	0.0654	0.2083	15.455	7.8	99.5	28.983	0.058
Me	ean age ± 2σ	n = 8	MSWD =	1.45	8.1 ± 1.7	7	28.890	0.079
#109 S-4 , J	11:15, plag, $J = 0.1$	0014434 ± 0.1	0%, D = $1.0093 \pm$: 0.0019, nm-	15,Lab# = 1761	~ ~ -		
05	13.04	0.4092	1.580	12.104	1.2	96.7	32.457	0.093
01	12.99	0.3802	1.366	10.825	1.3	97.1	32.479	0.086
02	12.87	0.4357	0.9248	8.487	1.2	98.1	32.525	0.082
03	13.13	0.4541	1.783	11.299	1.1	96.2	32.552	0.082
04	12.97	0.3587	1.122	12.878	1.4	97.7	32.621	0.088
06	12.98	0.3690	1.130	10.006	1.4	97.6	32.633	0.084
Me	ean age ± 2σ	n = 6	MSWD = 0.68		1.3 ± 0.2	2	32.546	0.097
#119 S-31,	K1:15, $plag,J = 0$.	$.0014489 \pm 0.1$	0%, D = 1.0093 ±	± 0.0019, nm	-15,Lab# = 1762			
01	12.45	0.4468	0.5370	10.240	1.1	99.0	31.861	0.072
02	12.74	0.4781	1.501	8.817	1.1	96.8	31.875	0.075
06	12.43	0.5250	0.4244	6.912	0.97	99.3	31.903	0.076
03	12.51	0.4132	0.6790	4.240	1.2	98.6	31.906	0.085
04	12.50	0.4617	0.6356	5.665	1.1	98.8	31.919	0.085
05	12.56	0.4437	0.7017	6.223	1.1	98.6	32.012	0.083
Me	ean age ± 2σ	n = 6	MSWD =	0.44	1.1 ± 0.2	2	31.908	0.092
#149 D76B,	, H2:15, Sanidine,	J = 0.0014658	8 ± 0.10%, D = 1.0	0071 ± 0.001	6, nm-15,Lab# =	1784		
09	11.43	0.0052	0.1634	5.633	97.5	99.6	29.763	0.071
03	11.48	0.0047	0.3345	3.856	108.5	99.1	29.766	0.093
05	11.49	0.0044	0.2483	7.591	115.0	99.4	29.852	0.069
01	11.48	0.0056	0.2067	4.377	91.0	99.5	29.866	0.077
07	11.50	0.0039	0.2662	8.691	130.0	99.3	29.877	0.067
10	11.53	0.0061	0.3376	7.252	83.4	99.1	29.881	0.071
02	11.53	0.0050	0.3171	5.054	101.9	99.2	29.915	0.089
04	11.53	0.0055	0.2821	8.922	92.8	99.3	29.949	0.057
06	11.63	0.0043	0.5920	5.501	119.3	98.5	29.966	0.095
Me	ean age ± 2σ	n = 9	MSWD =	0.84	104.4 ± 30).1	29.874	0.078
#155 J-140	, H8:15, Sanidine,	J = 0.0014487,	′ ± 0.10%, D = 1.0	0071 ± 0.001	6, nm-15,Lab# =	1788		
10	11.63	0.0081	0.3524	3.037	63.0	99.1	29.785	0.088
04	11.61	0.0057	0.2791	7.448	89.7	99.3	29.793	0.071
02	11.58	0.0070	0.1458	5.447	73.2	99.6	29.813	0.084
07	11.63	0.0083	0.3141	7.779	61.5	99.2	29.833	0.065
09	11.59	0.0091	0.1713	5.094	56.3	99.6	29.834	0.072
03	11.60	0.0066	0.1879	6.485	77.3	99.5	29.835	0.071
06	11.63	0.0079	0.2539	13.036	64.3	99.4	29.866	0.064
01	11.63	0.0069	0.2123	7.020	/4.0	99.5	29.897	0.075
08	11.63	0.0075	0.2122	8.556	67.9	99.5	29.900	0.064
05	11.68	0.0063	0.2685	12.070	81.0	99.3	29.989	0.061
# 11	11.73	0.0084	0.2064	4.385	61.1	99.5	30.152	0.069
	Mean age ± 2σ	n = 10	MSWD =	0.83	70.8 ± 20	.3	29.863	0.076
			- · · · · - · · ·					
#158 J-212	, L7:15, Sanidine,	J = 0.0014293	± 0.10%, D = 1.0	071 ± 0.0016	3, nm-15,Lab = 1	1795		
06	13.92	0.0085	1.210	2.353	59.7	97.4	34.57	0.11
04	13.74	0.0038	0.2279	2.383	133.2	99.5	34.84	0.11
10	13.78	0.0039	0.1754	9.643	130.0	99.6	34.967	0.077
02	13.79	0.0038	0.1656	4.992	134.8	99.6	35.003	0.086
07	13.83	0.0033	0.2953	5.925	154.5	99.4	35.012	0.076
05	14.18	0.0046	1.263	3.689	111.9	97.4	35.187	0.093
01	13.97	0.0027	0.4945	5.316	186.0	99.0	35.230	0.087
09	13.88	0.0026	0.1262	3.816	199.3	99.7	35.267	0.087
08	13.88	0.0028	0.1123	5.372	184.5	99.8	35.289	0.093
03	13.93	0.0045	0.1506	5.183	114.2	99.7	35.376	0.090
Me	ean age ± 2σ	n = 10	MSWD = 6.03		140.8 ± 84.0		35.09	0.16

APPENDIX TABLE 3B. Ar-Ar DATA MULTIGRAIN MEASUREMENTS (continued)

		40 •	37 •/39 •	36 •/39 •	³⁹ Ar _k	K/Ca	⁴⁰Ar*	Age	±1σ
	ID	Ar/ Ar	Ar/ Ar	Ar/ Ar	(x10 ^{–̇̀} ³)	$(x10^{-15} mol)$	(%)	(Ma)	(Ma)
#470			1 0 004 4000	0.400/	4 0074 0 0		1700	(ma)	(ma)
#170	w-200,	, KTI:15, san,	J = 0.0014393	± 0.10%, D =	1.0071 ± 0.0	1016, nm-15,Lab#	= 1769		
	05	12.77	0.0174	0.1200	8.648	29.3	99.7	32.691	0.073
	03	13.18	0.0177	1.471	8.114	28.7	96.7	32.718	0.071
	02	10.80	0.0173	0 2/12	8 270	29.5	00 5	32 724	0.060
	02	12.02	0.0175	0.2412	0.270	29.0	33.5	02.724	0.003
	06	12.81	0.0190	0.1574	8.769	26.9	99.6	32.754	0.067
	07	13.14	0.0183	1.266	7.694	27.9	97.2	32.764	0.072
	01	12.80	0.0175	0.1091	7.456	29.2	99.8	32.773	0.075
	00	13 13	0.0174	1 1 3 5	10 /3/	20.4	07 5	32 852	0.075
	10	10.10	0.0174	1.100	0.404	23.4	37.5	02.002	0.075
	10	13.20	0.0174	1.347	6.644	29.2	97.0	32.855	0.075
	04	12.92	0.0140	0.3643	4.355	36.4	99.2	32.883	0.078
	08	12.86	0.0160	0.1158	6.088	31.9	99.7	32.929	0.070
	Moor	200 + 20	n - 10	MGMD	- 1 00	20.9 + 5	2	22 701	0.095
	Incal	age ± 20	11 - 10	1010000	- 1.22	29.0 ± 3	.0	52.751	0.005
#171	WF-1,	10-20 XSTALS	S SAN, J = 0.00	00735 ± 0.14	%, D = 1.007	'8 ± 0.0016, NM-20),Lab# = 20	12	
	04	25.09	0 0197	0.9817	2 380	25.9	98.8	32 565	0.083
	07	25.00	0.0160	0.0626	2.000	20.2	08.0	22.566	0.000
	07	25.09	0.0109	0.9020	2.373	30.2	90.9	32.500	0.078
	80	25.11	0.0150	0.9349	1.734	33.9	98.9	32.61	0.10
	10	25.28	0.0164	1.495	2.852	31.1	98.3	32.608	0.089
	02	25.15	0.0173	0.9908	6.361	29.5	98.8	32,642	0.081
	06	25.20	0.0162	1.060	2 0 0 0	21.2	00.0	22 672	0.070
	00	25.20	0.0105	1.000	0.000	51.5	30.0	02.072	0.073
	05	25.45	0.0175	1.794	3.031	29.2	97.9	32.718	0.082
	03	25.18	0.0174	0.4866	3.214	29.3	99.4	32.874	0.077
	09	25.32	0.0161	0.9657	3.136	31.7	98.9	32.87	0.10
	01	25 36	0.0156	1 032	4 717	32.7	98.8	32 894	0.075
		20.00	0.0100	1.002	4.717	02.7	- 50.0	02.004	0.075
	wear	n age ± 2 σ	n = 10	NSWD	= 2.53	30.5 ± 4	.5	32.70	0.12
#175	I-521. E	E5:15. Anortho	oclase.J = 0.00	14515 ± 0.10	%. D = 1.009	3 ± 0.0019. NM-1	5.Lab# = 17	/22	
	06	13.04	0.0707	1 117	1 77/	70	07.5	32.01	0.15
	00	10.04	0.0707	0.5050	1.774	7.2	07.0	02.01	0.10
	03	12.92	0.0651	0.5052	1.461	0.0	98.8	33.02	0.12
	04	12.95	0.0792	0.5547	2.047	6.4	98.8	33.10	0.10
	08	12.93	0.0830	0.4862	3.382	6.1	98.9	33.109	0.094
	05	12 91	0.0680	0 3847	1 103	75	99.2	33 13	0 14
	01	12.00	0.0000	0.5770	2 707	F.5	00.2	22.10	0.000
	01	13.00	0.0935	0.5772	3.707	5.5	90.7	33.230	0.099
	02	13.02	0.0894	0.4767	3.414	5.7	99.0	33.36	0.10
	07	13.00	0.0713	0.2271	1.435	7.2	99.5	33.49	0.12
	Mear	$n age + 2\sigma$	n = 8	MSWD	= 2 40	65+1	5	33.19	0.14
						0.0	0		••••
						0.0040			
#180	1-470, 1	15:15, Sanidin	Ie,J = 0.001454	+1 ± 0.10%, L	$J = 1.0071 \pm$	0.0016, nm-15,Lai	$0^{\#} = 1780$		
#	02	11.97	0.0053	0.3022	10.392	96.7	99.3	30.824	0.058
	04	14.72	0.0004	5.027	10.253	1165.1	89.9	34.30	0.10
	07	13.33	-0.0006	0.0283	4.256	-	99.9	34.53	0.10
	03	13 38	0 0009	0.0016	2 5 1 8	556.0	100.0	34.67	0.11
	00	10.00	0.0000	0.00176	6.060	000.0	100.0	04.600	0.11
	01	13.39	-0.0003	0.0176	0.309		100.0	34.003	0.075
	05	14.56	0.0008	3.992	10.830	677.6	91.9	34.690	0.085
	06	13.45	-0.0005	0.0726	7.001	-	99.8	34.801	0.081
	08	13 49	0.0016	0.0822	7 685	322 1	99.8	34 908	0.077
	Mee		0.0010 m 7	MOMO	4 50	600 0 · F	00.0	24.7	0.077
	wear	age ± 20	$\Pi = I$	1013000	= 4.52	000.2 ± 50	57.2	34.7	0.2
					_				
#182	DZ-31,	H1:15, Sanidi	ne,J = 0.00146	$662 \pm 0.10\%$	$D = 1.0071 \pm$	± 0.0016, nm-15,La	ab# = 1783		
	04	11.40	0.1147	0.3540	3.235	4.4	99.2	29.569	0.088
	07	11.85	0.1094	1.479	1.812	47	96.4	29.88	0.10
	00	11 //	0 1120	0.0699	1 820	15	00.4	20.00	0.10
	03	11.44	0.1130	0.0000	1.009	4.0	33.3	29.09	0.10
	08	11.53	0.1219	0.3841	2.067	4.2	99.1	29.904	0.090
	06	11.51	0.1209	0.2337	2.157	4.2	99.5	29.965	0.099
	10	11.65	0.1034	0.6784	4,489	4.9	98.3	29,982	0.088
	05	11 70	0 1 1 6 1	0 7710	4 563	4 4	08 1	20.262	0 000
ц	00	11.13	0.1101	0.1113	4.000		00.1	00.202	0.000
#	02	11.94	0.1094	0.4282	1.854	4./	99.0	30.929	0.094
#	01	12.63	0.0676	1.012	3.449	7.6	97.7	32.265	0.088
#	03	54.02	0.1229	1.084	3.331	4.1	99.4	136.68	0.37
	Mea	n age ± 2g	n = 7	MSWD	= 4.81	45+0	5	29.91	0.17
							-		Continuad
									(John and Carl

APPENDIX TABLE 3B. Ar-Ar DATA MULTIGRAIN MEASUREMENTS (continued)

		7011 610			39.		40		
	ID	⁴⁰ Ar/ ³⁹ Ar	³⁷ Ar/ ³⁹ Ar	³⁶ Ar/ ³⁹ Ar	°°Ar _k	K/Ca	^{*°} Ar*	Age	±1σ
					(x10 ⁻⁵)	(x10 ¹⁰ mol)	(%)	(Ma)	(Ma)
#184	I-478 , ⊦	17:15, Sanidin	ie,J = 0.00144	83 ± 0.10%, D	$= 1.0071 \pm 0$	0.0016, nm-15,Labi	# = 1787		
	09	13.60	0.0249	1.640	2.011	20.5	96.4	33.86	0.11
	06	13.53	0.0217	1.408	11.836	23.5	96.9	33.867	0.073
	07	14.76	0.0230	5.557	6.526	22.2	88.9	33.88	0.12
	01	15.04	0.0213	6.454	2.510	24.0	87.3	33.90	0.12
	02	13.33	0.0266	0.6761	12.588	19.2	98.5	33.913	0.069
	05	13.77	0.0269	2.127	4.298	18.9	95.4	33.93	0.10
	03	13.84	0.0247	2.313	5.351	20.7	95.1	33.963	0.092
	08	13.84	0.0203	2.321	8.217	25.2	95.0	33.968	0.084
	04	13.67	0.0284	1.693	3.115	17.9	96.4	34.006	0.100
	Mear	1 age + 2g	n – 9	MSWD	- 0.28	213+50)	33 921	0.002
	mean	ruge 1 Lo	11 = 0	MOVE	- 0.20	21.0 ± 0.0	, ,	00.021	0.002
#185	L-16/	1.15 con 1-	$0.001/372 \pm 0$	10% D - 10	0.071 ± 0.001	6 nm-15 l ab# - 17	70		
#105	06	10 00	0.0014372 ± 0	0.10%, D = 1.0	5 6 4 0	5, 1111-15,∟ab# = 17 ⊑ 1	10	22.024	0.071
	00	12.90	0.1003	0.4540	0.042	5.T	99.0	32.934	0.071
	01	12.97	0.1059	0.3649	3.323	4.8	99.2	32.977	0.086
	07	13.01	0.1033	0.3460	3.152	4.9	99.3	33.105	0.090
	03	13.01	0.0897	0.3119	3.890	5.7	99.3	33.118	0.076
	08	13.19	0.1499	0.9305	2.696	3.4	98.0	33.141	0.081
	09	13.17	0.1109	0.7791	3.622	4.6	98.3	33.185	0.085
	04	13.11	0.0955	0.5611	2.672	5.3	98.8	33.196	0.085
	02	13.07	0.1066	0.4116	3.192	4.8	99.1	33.203	0.076
	10	13.26	0.1012	1.040	6.891	5.0	97.7	33.226	0.074
	05	13.08	0.1053	0.3533	5.794	4.8	99.3	33.280	0.079
	Mear	n age ± 2σ	n = 10	MSWD	= 2.00	4.9 ± 1.2		33.135	0.099
		•							
#187	VG-7B	. K10:15. san.	J = 0.0014361	± 0.10%. D =	1.0093 ± 0.0	019. nm-15.Lab# =	1768		
	09	14.34	0.0270	1.866	11,105	18.9	96.2	35,313	0.080
	05	14.12	0.0321	1.074	7.507	15.9	97.8	35.343	0.085
	08	13.96	0.0255	0 4994	8 371	20.0	99.0	35 368	0.079
	06	14.01	0.0269	0.6187	6 4 3 9	18.9	98.7	35 393	0.076
	07	13.94	0.0260	0.3570	5 279	19.6	99.3	35 420	0.076
	10	14 10	0.0200	0.8196	7 781	20.9	98.3	35 475	0.070
	02	12.04	0.0244	0.0100	6.044	20.0	00.0	25 / 92	0.077
	02	14.02	0.0244	0.2704	10 155	20.3	00.0	25 404	0.000
	07	14.00	0.0247	1 1 95	4 070	20.7	90.0 07.5	25 505	0.000
	03	14.22	0.0229	1.100	4.970	22.3	97.5	35.505	0.092
		14.12	0.0251	0.8077	0.252	20.3	98.3	35.534	0.086
	wear	1 age ± 2 0	n = 10	NSVD	= 0.83	19.8 ± 3.4	ł	35.428	0.090
					D 4 0074				
#188	CIM-634	4, G7:15, San	dine, J = 0.001	$4475 \pm 0.10\%$	D = 1.0071	± 0.0016, nm-15,L	ab# = 1/7	′9 	
#	10	15.45	0.0835	10.15	0.761	6.1	80.6	32.16	0.26
#	08	17.84	0.1203	17.78	0.839	4.2	70.5	32.51	0.26
	09	17.16	0.1096	14.54	1.068	4.7	75.0	33.22	0.23
	03	16.90	0.1182	13.65	4.341	4.3	76.2	33.24	0.16
	01	17.35	0.1101	15.05	3.244	4.6	74.4	33.33	0.15
	04	16.93	0.1062	13.29	3.485	4.8	76.8	33.57	0.16
	02	16.92	0.1057	13.27	6.977	4.8	76.8	33.58	0.14
	05	18.47	0.1160	18.35	1.197	4.4	70.6	33.69	0.22
	07	17.77	0.1129	15.92	3.422	4.5	73.5	33.75	0.16
	06	16.06	0.1064	9.755	3.876	4.8	82.1	34.04	0.13
	Mear	$1 age \pm 2\sigma$	n = 8	MSWD	= 3.26	4.6 + 0.4		33.59	0.22
#198	J-ER H	110:15 Sanidi	ine.J = 0.0014	557 + 0 10%	D = 1.0071 +	0.0016. nm-15 Lat	o# = 1789		
	02	14 21	0 0108	2 399	6 2 9 1	47 5	95.0	35.03	0.10
	03	14 38	0.0125	2 774	7 222	40.8	9 <u>4</u> २	35 100	0.088
	04	14.04	0.0120	1 610	5 767	-0.0 ∕0 0	06.6	35 100	0.000
	04	14.04	0.0110	0.012	0.707	40.0	04.4	35.133	0.000
	00	14.42	0.0119	2.0/0	0.013	42.0 20.0	94.1 00 0	35.201	0.000
	00	10.00	0.0128	0.9247	1.304	39.0	90.0	33.217	0.098
	05	13.78	0.0130	0.6123	6.322	39.2	98.7	35.280	0.091
	Mear	n age ± 2σ	n = 6	MSWD	= 0.73	42.2 ± 6.1		35.19	0.10
								(continued)

	APPENDIX TABLE 3B. AF-AF DATA MOLTIGRAIN MEASUREMENTS (Continued)										
		40	37	36	³⁹ Ar	K/Ca	40 Ar*	Age	±1σ		
I	D	Ar/~Ar	Ar/~Ar	Ar/~Ar	(x10 ⁻³)	(x10 ⁻¹⁵ mol)	(%)	(Ma)	(Ma)		
# 201 (theology I - O	0014469 + 0 1	$\frac{0}{0}$ D - 10	0.02 ± 0.0010 NM 1	$\frac{(7-7)}{15 + 20}$	1702			
# 2010		., E7.15, AIIO		0014400 ± 0.1	0 / 0, D = 1.0	0.0019, $1001-1$	10,Lau# =	07 50	0.11		
(50	14.73	0.0223	0.5008	3.297	22.9	99.0	37.58	0.11		
()2	14.75	0.0226	0.5678	12.685	22.5	98.9	37.589	0.093		
()8	14.70	0.0240	0.2720	4.645	21.3	99.5	37.68	0.10		
()4	14.68	0.0188	0.1697	3.697	27.1	99.7	37.71	0.11		
()7	14.87	0.0237	0.7854	3.421	21.5	98.4	37.74	0.13		
(01	14.81	0.0265	0.5571	6.074	19.2	98.9	37.761	0.099		
(03	14.76	0.0233	0.1146	3.681	21.9	99.8	37.96	0.11		
# (26	15 10	0.0206	0 2298	4 723	24 7	99.6	38 75	0.11		
	Moon	200 + 20	n = 7	MSWD -	1 20	22.1.1	00.0	27 71	0.12		
	wear	aye ± 20	$\Pi = I$	1013000 =	1.50	22.4 ± 4.0		57.71	0.12		
#207 H	ED, 10	0-20 XSTALS	SAN, J = 0.00	$0/339 \pm 0.14\%$	6, D = 1.007	8 ± 0.0016 , NM-20,	Lab# = 20	11			
()7	31.44	0.0352	0.9911	2.993	14.5	99.1	40.749	0.091		
()4	31.48	0.0154	1.089	4.444	33.1	99.0	40.761	0.087		
()5	31.97	0.0298	2.728	4.047	17.1	97.5	40.778	0.089		
(09	31.38	0.0675	0.6637	3.447	7.6	99.4	40.801	0.082		
()2	31.36	0.0910	0.5036	4.317	5.6	99.5	40.830	0.086		
-	10	32.44	0.1264	3,929	2.133	4.0	96.4	40.92	0.11		
(13	33.07	0.0737	6.015	2 078	6.9	94.6	40.94	0.12		
		21.66	0.0671	1 164	2 106	7.6	09.0	40.07	0.10		
		21 56	0.0071	0.6970	0.100	7.0	00.4	40.37	0.10		
,		31.50	0.0992	0.0070	2.300	0.1	99.4	41.03	0.11		
	wean	age ± 2σ	n = 9	MSWD =	1.06	11.3 ± 18.5		40.85	0.13		
					/ -		-				
#208 H	I P , J10	15, san, J = 0	0.0014402 ± 0.0014402	10%, D = 1.009	93 ± 0.0019	nm-15,Lab# = 176	0				
()1	13.31	0.0723	0.2972	9.901	7.1	99.4	33.955	0.075		
(04	13.26	0.0365	0.1053	11.220	14.0	99.8	33.976	0.083		
(06	13.58	0.0641	1.115	8.465	8.0	97.6	34.029	0.087		
(03	13.40	0.0583	0.5011	9.977	8.8	98.9	34.048	0.078		
()2	13.37	0.0551	0.3926	9.055	9.3	99.2	34.048	0.079		
()9	13.31	0.0683	0.1813	7.383	7.5	99.6	34.059	0.084		
(07	13.33	0.0669	0.2143	6.943	7.6	99.6	34.071	0.083		
(08	13.31	0.0941	0.1151	5.318	5.4	99.8	34.103	0.083		
(15	13 40	0.0543	0 4299	3 4 9 7	9.4	99.1	34 104	0.087		
-	10	13 45	0.0520	0.5738	13 531	9.8	98.8	34 123	0.077		
	Mean	200 + 20	n – 10	MSWD - 1	0.47	87±46	00.0	34.050	0.087		
	Mean	age ± 20	11 - 10	1010 VVD = 1	0.47	0.7 ± 4.0		34.030	0.007		
#200 9	C11-0	K7.15 can	I - 0 0014408 .	+ 0 10% D - 1	0003 + 0.00	$10 \text{ nm}_{15} \text{ l ab} \# -$	1766				
#203 3	011-3 00	12 95	0.0119	$\pm 0.10\%, D = 1$	10 629	/2 2	09.9	25 140	0.095		
		10.00	0.0110	0.5005	7 5 1 0	45.5	90.0	05.140	0.005		
	00	13.75	0.0113	0.1300	7.510	45.5	99.7	35.167	0.064		
(13	13./0	0.0132	0.1483	1.921	38.5	99.7	35.229	0.087		
	10	13.86	0.0129	0.4538	8.361	39.4	99.0	35.242	0.089		
(1	13.82	0.0110	0.3381	4.992	46.5	99.3	35.245	0.097		
()7	13.77	0.0117	0.1408	6.306	43.8	99.7	35.268	0.083		
(04	13.77	0.0101	0.1146	8.022	50.7	99.8	35.285	0.093		
()9	13.85	0.0127	0.2636	7.394	40.1	99.4	35.367	0.081		
()2	13.94	0.0109	0.4516	6.403	46.6	99.0	35.463	0.090		
()5	13.92	0.0113	0.3459	6.043	45.1	99.3	35.495	0.088		
	Mean	age ± 2 o	n = 10	MSWD =	1.75	43.9 ± 7.5		35.29	0.10		
		•									
#210 S	C11-1	0, san, multi d	crystals.J = 0.0	009096 ± 0.22	%, D = 1.00	62 ± 0.0015. NM-8.	$Lab# = 72^{-1}$	1			
(D1	21.86	0.0336	0.1332	3.869	15.2	99.8	35.431	0.080		
í	05	21.88	0.0353	0.1188	1.528	14.5	99.9	35,472	0.090		
	13	21.00	0.0408	0 2761	2.312	12.5	99.6	35 505	0.004		
	14	21.00	0.0400	0 1516	2.612	14.0	00.0 00.8	25 515	0.004		
	ד י כר	21.02	0.00-0	0.1601	2.010	14.0	00.0	35 624	0.097		
	52 77	21.33	0.0334	0.1001	2.040	14.4	99.0 00.6	35.024	0.007		
(22.00	0.0340	0.0212	2.393	13.0	99.0 100 0	35.030	0.099		
(0	22.03	0.0300	0.4040	2.099	14.0	100.0	30.774	0.090		
(99	22.00	0.0342	-0.4019	1.509	14.9	100.6	35.91	0.11		
	wean	age ± 2o	n = 8	MSWD = 1	2.82	14.4 ± 1.7		35.59	0.19		

nti.

_

0.19 (continued)

6	o
n	ð
~	~

³⁹Ar_к ⁴⁰Ar* K/Ca Age $\pm 1\sigma$ ID ⁴⁰Ar/³⁹Ar ³⁷Ar/³⁹Ar ³⁶Ar/³⁹Ar (x10⁻¹⁵ mol) $(x10^{-3})$ (%) (Ma) (Ma) **#211 EC1**, H4:15, Sanidine, J = 0.0014588 ± 0.10%, D = 1.0071 ± 0.0016, nm-15, Lab# = 1785 0.0067 0.1653 8.302 99.6 35.038 0.090 01 13.52 75.6 09 13.62 0.0051 0.4302 8.859 99.9 99.1 35.089 0.070 03 13.63 0.0052 0.4184 13.444 98.0 0.075 99 1 35 124 05 14.00 0.0060 1.672 13.296 85.4 96.5 35.127 0.079 07 13.63 0.0057 0.3804 9.236 88.8 99.2 0.071 35,152 04 14.41 0.0063 2.998 10.301 80.6 93.8 35.171 0.086 02 13.57 0.0047 0.1268 10.182 108.6 99.7 35.179 0.067 06 13.60 0.0059 0.1972 8.711 86.5 99.6 35.207 0.076 08 13.73 0.0033 0 5454 3 4 0 5 152.6 98.8 35.29 0.11 MSWD = 0.60 97.3 ± 46.3 35.147 0.089 Mean age $\pm 2\sigma$ n = 9 #214 RND1, J8:15, san, J = 0.00144 ± 0.10%, D = 1.0093 ± 0.0019, nm-15, Lab# = 1759 0.5199 98.9 01 13.66 0.0267 3.019 19.1 34.68 0.11 07 13.62 0.0259 0.3617 9.540 19.7 99.2 34.701 0.088 6.550 99.3 34.879 0.082 09 13.68 0.0269 0.3327 18.9 08 13.69 0.0295 0.3465 7.086 17.3 99.3 34.880 0.079 34.884 02 0.3550 0.097 13.69 0.0267 3.805 19.1 99.2 05 13.69 0.0272 0.3231 6.542 18.7 99.3 34.903 0.086 10 13.74 0.0299 0.4885 3.820 17.0 99.0 34.905 0.094 03 13.70 0.0275 0.3438 10.158 18.5 99.3 34.905 0.084 06 13.67 0.0262 0.2399 4.551 19.4 99.5 34.912 0.087 04 13.70 0.0298 0.3378 11.423 17.1 99.3 34.923 0.075 Mean age $\pm 2\sigma$ n = 10 MSWD = 0.92 18.5 ± 2.0 34.865 0.090 #215 TTV, K8:15, san, J = 0.001437 ± 0.10%, D = 1.0093 ± 0.0019, nm-15, Lab# = 1767 10 14.77 0.2264 5.081 3.967 2.3 89.9 34.03 0.12 01 13.86 0.2284 1.539 2.2 96.0 34.09 1.918 0.12 05 2.549 2.3 13.84 0.2211 1.833 96.2 34.12 0.11 06 13.71 0.1836 1.283 2.8 97.3 34.185 0.091 4.111 02 14.77 0.2438 4.867 0.900 2.1 90.4 34.21 0.17 09 14.00 2.083 1.822 0.2153 2.4 95.7 34.33 0.12 08 14.37 0.1858 3.301 2.001 2.7 93.3 34.36 0.12 14.47 3.611 3.504 04 0.1811 2.8 92.7 34.37 0.11 13.84 07 0.1650 2.858 97.0 34.39 1.448 3.1 0.10 03 14.32 0.2057 2.962 1.355 2.5 94.0 34.49 0.13 Mean age $\pm 2\sigma$ n = 10 MSWD = 1.64 2.5 ± 0.6 34.26 0.12

APPENDIX TABLE 38	3. Ar-Ar DATA MULTIGRA	AIN MEASUREMENTS	(continued)
-------------------	------------------------	------------------	-------------

Note: Isotopic ratios corrected for blank, radioactive decay, and mass discrimination, not corrected for interfering reactions. Errors quoted for individual analyses include analytical error only, without interfering reaction or J uncertainties. Mean age is weighted mean age of Taylor (1982). Mean age error is weighted error of the mean (Taylor, 1982), multiplied by the root of the MSWD where MSWD>1, and also incorporates uncertainty in J factors and irradiation correction uncertainties. Decay constants and isotopic abundances after Steiger and Jäger (1977). # symbol preceding sample ID denotes analyses excluded from mean age calculations. Ages calculated relative to FC-2 Fish Canyon Tuff sanidine interlaboratory standard at 28.02 Ma. Decay Constant (LambdaK (total)) = 5.543e - 10/a. Correction factors (L#135-1808): $\binom{3^{\circ}}{4^{\circ}}Ar/^{3^{\circ}}Ar$)Ca = 0.00067 ± 4e-06 $\binom{3^{\circ}}{4^{\circ}}Ar/^{3^{\circ}}Ar$)Ca = 0.00026 ± 2e-06 $\binom{3^{\circ}}{4^{\circ}}Ar/^{3^{\circ}}Ar$)K = 0.01077 $\binom{4^{\circ}}{4^{\circ}}Ar/^{3^{\circ}}Ar$)K = 0.001

Correction factors (L# 2004-2015): $\binom{39}{3}$ Ar/³⁷Ar)Ca = 7e-08 ± 0 $\binom{36}{3}$ Ar/³⁷Ar)Ca = 2.6e-08 ± 0 $\binom{38}{3}$ Ar/³⁹Ar)K = 0.01077 $\binom{40}{3}$ Ar/³⁹Ar)K = 0.019 ± 0.001

ACKNOWLEDGMENTS

This publication is dedicated to UT Professor Emeritus Stephen E. Clabaugh. Steve nurtured the project through its early years, supervised some of the first students, and enabled me through his mentoring to continue the project upon his retirement. As a result of Steve's enthusiasm for the culture of Mexico and for the geology of the remote Sierra Madre Occidental, I was drawn to a fulfilling, career-long research interest. His inclination to stay in the background has concealed the magnitude of his contribution to this effort.

Obviously, a large debt of gratitude is owed to the young graduate students who produced the original maps. Their willingness to venture fearlessly into "virgin" territory for a challenging mapping experience, and their perseverance in an unfamiliar culture distant from home base has been inspiring. I have hope and confidence that the experience was valuable to all, including those who since have chosen paths outside of the earth sciences. Just as those students have taken full responsibility for the maps that they produced, I assume full responsibility for the manner in which I have merged them into this transect.

Thanks are also due to the late G. Karl Hoops for the excellent wet chemical analyses he produced at UT over the course of this project and to Emil Bramson for his important lab contribution of establishing X-ray fluorescence techniques for obtaining reliable, if limited, trace-element data for the project. Todd Housh is thanked for discussions and for producing the plots of Figures 3 and 4.

The active phase of this project was supported by a series of research grants from NASA, the National Science Foundation, and the Geology Foundation of the Jackson School of Geosciences at The University of Texas at Austin.

The preparation of this compilation would not have been completed (or possibly even started) without the immense help of Mark Helper, who guided me on almost a daily basis through the intricacies and pitfalls of ArcGIS software. Frequent consultations with Kirt Kempter, Eric Swanson, and Dave Wark were instrumental in resolving some differences in detail of mapping and conflicts across map boundaries. The high quality of data from the Washington State University Geoanalytical Laboratory and from the New Mexico Geochronology Research Laboratory is gratefully acknowledged. Preparation and publication of the transect map and acquisition of additional geochemistry and geochronology were funded by a research grant from the ExxonMobil Corporation and by a grant from the Jackson School of Geosciences of The University of Texas at Austin. Chris Henry and Doug Walker are gratefully acknowledged for reviews of the map and text and for many other helpful suggestions.

REFERENCES CITED

Bockoven, N.T., 1980, Reconnaissance geology of the Yécora-Ocampo area, Sonora and Chihuahua, Mexico [Ph.D. dissertation]: Austin, University of Texas at Austin, 197 p.

- Bramson, E., 1984, Trace-element study of Tertiary volcanic rocks from the Sierra Madre Occidental, Mexico to Trans-Pecos Texas [M.A. thesis]: Austin, University of Texas at Austin, 243 p.
- Cameron, K.L., Cameron, M., Bagby, W.C., Moll, E.J., and Drake, R.E., 1980, Petrologic characteristics of mid-Tertiary volcanic suites Chihuahua, Mexico: Geology, v. 8, p. 87–91, doi: 10.1130/0091-7613(1980)8<87: PCOMVS>2.0.CO;2.
- Cameron, K.L., Nimz, G.J., Kuentz, D., Niemeyer, S., and Gunn, S., 1989, Southern Cordilleran basaltic andesite suite, southern Chihuahua, Mexico: A link between Tertiary continental arc and flood basalt magmatism: Journal of Geophysical Research, v. 94, p. 7817–7840.
- Conlon, S.T., 1985, Volcanic geology of the General Trias-Tutuaca area, Chihuahua, Mexico [M.A. thesis]: Austin, University of Texas at Austin, 187 p.
- Cook, S.L., 1990, The geology and geochronology of the Palomas area, Chihuahua, Mexico [M.A. thesis]: Austin, University of Texas at Austin, 179 p.
- Duex, T.W., 1983, Geology, geochemistry, and geochronology of volcanic rocks between Cuauhtémoc and La Junta, central Chihuahua, Mexico [Ph.D. dissertation]: Austin, University of Texas at Austin, 215 p.
- Ferrari, L., Valencia Moreno, M., and Bryant, S., 2007, Magmatism and tectonics of the Sierra Madre Occidental and its relation with the evolution of the western margin of North America, *in* Alaniz-Álvarez, S.A., and Nieto-Samaniego, Á.F., eds., Geology of México: Celebrating the Centenary of the Geological Society of México: Geological Society of America Special Paper 422, p. 1–40, doi: 10.1130/2007.2422(01).
- Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., and Frost, C.D., 2001, A geochemical classification for granitic rocks: Journal of Petrology, v. 42, p. 2033–2048, doi: 10.1093/petrology/42.11.2033.
- Henry, C.D., and Aranda-Gómez, J.J., 1992, The real southern Basin and Range: Mid- to late-Cenozoic extension in Mexico: Geology, v. 20, p. 701–704, doi: 10.1130/0091-7613(1992)020<0701:TRSBAR>2.3.CO;2.
- Henry, C.D., and Aranda-Gómez, J.J., 2000, Plate interactions control middlelate Miocene proto-Gulf and Basin and Range extension in the southern basin and range: Tectonophysics, v. 318, p. 1–26, doi: 10.1016/S0040-1951(99)00304-2.
- Housh, T.B., and McDowell, F.W., 2005, Isotope provinces in Laramide and mid-Tertiary igneous rocks of northwestern Mexico (Chihuahua and Sonora) and their relation to basement configuration, *in* Anderson, T.A., Nourse, J.A., McKee, J.W., and Steiner, M.B., eds., The Mojave-Sonora megashear hypothesis: Development, assessment, and alternatives: Geological Society of America Special Paper 393, p. 671–692.
- Housh, T.B., McDowell, F.W., and Connelly, J.N., 2003, Early and mid-Proterozoic crust of the Coahuila terrane preserved in xenoliths at Cascada de Basaseachic, southwestern Chihuahua: Geological Society of America Abstracts with Programs, v. 36, no. 4, p. 78.
- Hovey, E.O., 1905, The western Sierra Madre of the state of Chihuahua, Mexico: Bulletin of the American Geographic Society, v. 37, p. 531–543, doi: 10.2307/198403.
- Hovey, E.O., 1907, A geological reconnaissance in the western Sierra Madre of the state of Chihuahua, Mexico: American Museum of Natural History Bulletin, v. 23, p. 401–442.
- Ide, S., 1986, Geology of mid-Tertiary volcanic rocks in the Laboricita-General Trias area, central Chihuahua, Mexico [M.A. thesis]: Austin, University of Texas at Austin, 154 p.
- Keizer, R.P., 1973, Volcanic stratigraphy, structural geology, and K-Ar geochronology of the Durango area, Durango, Mexico [M.A. thesis]: Austin, University of Texas at Austin, 91 p.
- Keller, P.C., Bockoven, N.T., and McDowell, F.W., 1982, Tertiary volcanic history of the Sierra Gallego area: Geological Society of America Bulletin, v. 93, p. 303–314, doi: 10.1130/0016-7606(1982)93<303: TVHOTS>2.0.CO;2.
- Kempter, K.A., 1986, Mid-Tertiary volcanic history of the Tomochic region, northern Sierra Madre Occidental, Chihuahua, Mexico [M.A. thesis]: Austin, University of Texas at Austin, 134 p.
- King, R.E., 1939, Geological reconnaissance in northern Sierra Madre Occidental of Mexico: Geological Society of America Bulletin, v. 50, p. 1652–1722.
- LeBas, M.J., Le Maitre, R.W., Streckeisen, A., and Zanettin, B., 1986, A chemical classification of volcanic rocks based on the total alkali-silica diagram: Journal of Petrology, v. 27, p. 745–750.
- Lipman, P.W., 1984, The roots of ash flow calderas in western North America: Windows into the tops of granitic batholiths: Journal of Geophysical Research, v. 89, p. 8801–8841.

- Lyons, J.I., 1975, Volcanogenic iron ore of Cerro de Mercado and its setting within the Chupaderos caldera, Durango, Mexico [M.A. thesis]: Austin, University of Texas at Austin, 119 p.
- MacDonald, G.A., 1968, Composition and origin of Hawaiian lavas: Geological Society of America Memoir 116, p. 477–522.
- Mauger, R.L., 1983a, The geology and volcanic stratigraphy of the Sierra Sacramento block, near Chihuahua City, Mexico, *in* Clark, K.F., and Goodell, P.C., eds., Geology and mineral resources of north-central Chihuahua: El Paso Geological Society, 1983 Field Conference, Guidebook, p. 137–156.
- Mauger, R.L., 1983b, Geologic map of the Majalca-Punta de Agua area, central Chihuahua, Mexico, *in* Clark, K.F., and Goodell, P.C., eds., Geology and mineral resources of north-central Chihuahua: El Paso Geological Society, 1983 Field Conference, Guidebook, p. 169–174.
- Mauger, R.L., 1988, A geologic sketch of the Tinaja Lisa block, north-central Chihuahua, Mexico, *in* Clark, K.F., et al., eds., Stratigraphy, tectonics and resources of parts of the northern Sierra Madre Occidental province, Mexico: El Paso Geological Society, 1988 Field Conference, Guidebook, p. 217–227.
- Mauger, R.L., and Dayvault, R.D., 1983, The Tertiary volcanic rocks in lower Santa Clara Canyon, central Chihuahua, Mexico, *in* Clark, K.F., and Goodell, P.C., eds., Geology and mineral resources of north-central Chihuahua: El Paso Geological Society, 1983 Field Conference, Guidebook, p. 175–185.
- McDowell, F.W., 1983, K-Ar dating: Incomplete extraction of radiogenic argon from alkali feldspar: Isotope Geoscience, v. 1, p. 119–126.
- McDowell, F.W., and Clabaugh, S.E., 1979, Ignimbrites of the Sierra Madre Occidental and their relation to the tectonic history of western Mexico: Geological Society of America Special Paper 180, p. 113–124.
- McDowell, F.W., and Keizer, R.P., 1977, Timing of mid-Tertiary volcanism in the Sierra Madre Occidental between Durango City and Mazatlán, Mexico: Geological Society of America Bulletin, v. 88, p. 1479–1486, doi: 10.1130/0016-7606(1977)88<1479:TOMVIT>2.0.CO;2.
- McDowell, F.W., and Mauger, R.L., 1994, K-Ar and U-Pb zircon chronology of Late Cretaceous and Tertiary magmatism in central Chihuahua state, Mexico: Geological Society of America Bulletin, v. 106, p. 118–132, doi: 10.1130/0016-7606(1994)106<0118:KAAUPZ>2.3.CO;2.
- McDowell, F.W., Housh, T.B., and Wark, D.A., 1999, Nature of the crust beneath west-central Chihuahua, Mexico, based upon Sr, Nd, and Pb isotopic compositions at the Tomochic volcanic center: Geological Society of America Bulletin, v. 111, p. 823–830, doi: 10.1130/0016-7606(1999)111<0823: NOTCBW>2.3.CO;2.
- McDowell, F.W., McIntosh, W.C., and Farley, K.A., 2005, A precise ⁴⁰Ar-³⁹Ar reference age for the Durango apatite (U-Th)/He and fission-track dating standard: Chemical Geology, v. 214, p. 249–263, doi: 10.1016/ j.chemgeo.2004.10.002.
- McDowell, F.W., Roldán-Quintana, J., and Amaya-Martínez, R., 1997, Interrelationship of sedimentary and volcanic deposits associated with Tertiary extension in Sonora, Mexico: Geological Society of America Bulletin, v. 109, p. 1349–1360, doi: 10.1130/0016-7606(1997)109<1349: IOSAVD>2.3.CO;2.
- Megaw, P.K.M., 1979, Volcanic rocks of the Sierra Pastorias caldera area, Chihuahua, Mexico [M.A. thesis]: Austin, University of Texas at Austin, 161 p.
- Megaw, P.K.M., and McDowell, F.W., 1983, Geology and geochronology of the volcanic rocks of the Sierra Pastorias area, Chihuahua, Mexico, *in* Clark, K.F., and Goodell, P.C., eds., Geology and mineral resources of northcentral Chihuahua: El Paso Geological Society, 1983 Field Conference, Guidebook, p. 195–204.
- Steiger, R.H., and Jäger, E., 1977, Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology: Earth

and Planetary Science Letters, v. 36, p. 359-362, doi: 10.1016/0012-821X(77)90060-7.

- Stimac, J.A., 1983, Volcanic rocks and ore deposits of the Cusihuiriachic-Cuauhtémoc area, Chihuahua, Mexico [M.A. thesis]: Austin, University of Texas at Austin, 178 p.
- Sun, S.-s., and McDonough, W.F., 1989, Chemical and isotopic composition of oceanic basalts: Implications for mantle composition and processes, *in* Saunders, A.D. and Norry, M.J., eds., Magmatism in the ocean basins: Geological Society [London] Special Publication No. 42, p. 313–345.
- Swanson, E.R., 1974, Petrology and volcanic stratigraphy of the Durango area, Durango, Mexico [M.A. thesis]: Austin, University of Texas at Austin, 138 p.
- Swanson, E.R., 1977, Reconnaissance geology of the Tomochic-Ocampo area, Sierra Madre Occidental, Chihuahua, Mexico [Ph.D. dissertation]: Austin, University of Texas at Austin, 123 p.
- Swanson, E.R., and McDowell, F.W., 1984, Calderas of the Sierra Madre Occidental volcanic field western Mexico: Journal of Geophysical Research, v. 89, p. 8787–8799.
- Swanson, E.R., and McDowell, F.W., 1985, Geology and geochronology of the Tomochic caldera, Chihuahua, Mexico: Geological Society of America Bulletin, v. 96, p. 1477–1482, doi: 10.1130/0016-7606(1985)96<1477: GAGOTT>2.0.CO;2.
- Swanson, E.R., Keizer, R.P., Lyons, J.I., and Clabaugh, S.E., 1978, Tertiary volcanism and caldera development in the Durango City area, Sierra Madre Occidental, Mexico: Geological Society of America Bulletin, v. 89, p. 1000–1012, doi: 10.1130/0016-7606(1978)89<1000: TVACDN>2.0.CO;2.
- Swanson, E.R., Kempter, K.A., McDowell, F.W., and McIntosh, W.C., 2006, Major ignimbrites and volcanic centers of the Copper Canyon area: A view into the core of Mexico's Sierra Madre Occidental: Geosphere, v. 2, p. 125–141, doi: 10.1130/GES00042.1.
- Taylor, J.R., 1982, An introduction to error analysis: the study of uncertainties in physical measurements: Mill Valley, California, University Science Books, 270 p.
- Wahl, D.E., 1973, Geology of the El Salto strip, Durango Mexico [M.A. thesis]: Austin, University of Texas at Austin, 112 p.
- Waitt, R.B., 1970, Ignimbrites of the Sierra Madre Occidental between Durango and Mazatlán, Mexico [M.A. thesis]: Austin, University of Texas at Austin, 133 p.
- Wark, D.A., 1983, Geology of the mid-Tertiary volcanic terrane at Buenos Aires, Chihuahua, Mexico [M.A. thesis]: Austin, University of Texas at Austin, 156 p.
- Wark, D.A., 1989, Field, geochemical, and isotopic constraints on the genesis of rhyolite ash-flow tuffs and related rocks of the Tomochic volcanic center, Sierra Madre Occidental, Mexico [Ph.D. dissertation]: Austin, University of Texas at Austin, 185 p.
- Wark, D.A., 1991, Oligocene ash flow volcanism, northern Sierra Madre Occidental: Role of mafic and intermediate-composition magmas in rhyolite genesis: Journal of Geophysical Research, v. 96, p. 13389–13411.
- Wark, D.A., Kempter, K.A., and McDowell, F.W., 1990, Evolution of waning, subduction-related magmatism, northern Sierra Madre Occidental, Mexico: Geological Society of America Bulletin, v. 102, p. 1555–1564, doi: 10.1130/0016-7606(1990)102<1555:EOWSRM>2.3.CO;2.
- Webb, A.W., and McDougall, I., 1967, A comparison of mineral and whole rock potassium-argon ages of Tertiary volcanics from central Queensland, Australia: Earth and Planetary Science Letters, v. 3, p. 41–47.

MANUSCRIPT ACCEPTED BY THE SOCIETY 16 AUGUST 2007