

Simulation of ultra-high efficiency EUV etched phase-shift mask

Stuart Sherwin, UC Berkeley, EECS Center for X-Ray Optics, Lawrence Berkeley National Labs Dr. Patrick Naulleau, Prof. Andrew Neureuther, Prof. Laura Waller, Dr. Thomas V. Pistor

EUV source power limits throughput → high-efficiency patterning

Ref: Patrick Naulleau, et al., Ultrahigh efficiency EUV contact-hole printing with chromeless phase shift mask, Proc. SPIE 9984, 99840P (2016)

8x brighter image (SHARP)

Ref: Patrick Naulleau, et al., Ultrahigh efficiency EUV contact-hole printing with chromeless phase shift mask, Proc. SPIE 9984, 99840P (2016)

8x brighter image (SHARP)

Acknowledgement: Markus Benk, Ken Goldberg, and Antoine Wojdyla

Ref: Patrick Naulleau, et al., Ultrahigh efficiency EUV contact-hole printing with chromeless phase shift mask, Proc. SPIE 9984, 99840P (2016)

8x brighter image (SHARP)

7x shorter exposure (MET)

Absorber 94 mJ/cm²

PSM 13mJ/cm²

Ref: Patrick Naulleau, et al., Ultrahigh efficiency EUV contact-hole printing with chromeless phase shift mask, Proc. SPIE 9984, 99840P (2016)

Current work: rigorous lithographic simulations of etched PSM

Aerial Image

Goal: Use simulations to model EUV etched PSM design

Mask Design

Goal: Use simulations to model EUV etched PSM design

Goal: Use simulations to model EUV etched PSM design

Berkelev

What makes phase-shift masks so efficient?

Phase shift mask: don't absorb light, delay it

Absorber ML Mirror R = 0 R = 1erlzelev

UNIVERSITY OF CALIFORNIA

Phase shift mask: don't absorb light, delay it

Absorber ML Mirror R = 0 R = 1erleev Un-etched Etched ML mirror ML mirror $R = e^{i\pi} = -1$ R = 1

Etched Phase-Shift Mask

Mask Type	Illumination	CD (nm)	Mask Pitch (nm)	Peak Power	Peak Ratio
Absorber	Dipole	12.5	100	0.67	1
Phase Shift	Conventional	12.5	200	1.62	2.4

Mask Type	Illumination	CD (nm)	Mask Pitch (nm)	Peak Power	Peak Ratio
Absorber	Dipole	12.5	100	0.67	1
Phase Shift	Conventional	12.5	200	1.62	2.4

Mask Type	Illumination	CD (nm)	Mask Pitch (nm)	Peak Power	Peak Ratio
Absorber	Dipole	12.5	100	0.67	1
Phase Shift	Conventional	12.5	200	1.62	2.4

Mask Type	Illumination	CD (nm)	Mask Pitch (nm)	Peak Power	Peak Ratio
Absorber	Dipole	12.5	100	0.67	1
Phase Shift	Conventional	12.5	200	1.62	2.4

UNIVERSITY OF CALIFORNIA

Mask Type	Illumination	CD (nm)	Mask Pitch (nm)	Peak Power	Peak Ratio
Absorber	Dipole	12.5	100	0.67	1
Phase Shift	Conventional	12.5	200	1.62	2.4

UNIVERSITY OF CALIFORNIA

Mask Type	Illumination	CD (nm)	Mask Pitch (nm)	Peak Power	Peak Ratio
Absorber	Dipole	12.5	100	0.67	1
Phase Shift	Conventional	12.5	200	1.62	2.4

Berkeley

Mask Type	Illumination	CD (nm)	Mask Pitch (nm)	Peak Power	Peak Ratio
Absorber	Quadrupole	18	144	0.45	1
Phase Shift	Conventional	18	288	2.62	5.9

Mask Type	Illumination	CD (nm)	Mask Pitch (nm)	Peak Power	Peak Ratio
Absorber	Quadrupole	18	144	0.45	1
Phase Shift	Conventional	18	288	2.62	5.9

Mask Type	Illumination	CD (nm)	Mask Pitch (nm)	Peak Power	Peak Ratio
Absorber	Quadrupole	18	144	0.45	1
Phase Shift	Conventional	18	288	2.62	5.9

Mask Type	Illumination	CD (nm)	Mask Pitch (nm)	Peak Power	Peak Ratio
Absorber	Quadrupole	18	144	0.45	1
Phase Shift	Conventional	18	288	2.62	5.9

Mask Type	Illumination	CD (nm)	Mask Pitch (nm)	Peak Power	Peak Ratio
Absorber	Quadrupole	18	144	0.45	1
Phase Shift	Conventional	18	288	2.62	5.9

Berkeley

Not all pitches can be printed with alternating PSM

Not all pitches can be printed with alternating PSM

Edge placement error (EPE) through focus and exposure

Calculate focus-exposure process window from EPE spec

Berkeley

Calculate focus-exposure process window from EPE spec

Calculate EPE for different mask designs

Berkelev

UNIVERSITY OF CALIFORNIA

37

Choose design with largest process window

erkelev

UNIVERSITY OF CALIFORNIA

В

Choose design with largest process window

Berkelev

UNIVERSITY OF CALIFORNIA

Choose design with largest process window

UNIVERSITY OF CALIFORNIA

Contact array: NA = 0.33, p_{wf} = 36nm

Contact array: NA = 0.33, p_{wf} = 36nm

Contact array: NA = 0.55, p_{wf} = 22nm

Contact array: NA = 0.55, $p_{wf} = 22$ nm

Phase is **much** more efficient than amplitude

6-8x for contact array

Phase is **much** more efficient than amplitude

6-8x for contact array

Etched multilayer EUV mask works in theory and experiment

Phase is **much** more efficient than amplitude

6-8x for contact array

Etched multilayer EUV mask works in theory and experiment

Alternating phase-shift masks can only print certain patterns

Phase is **much** more efficient than amplitude

6-8x for contact array

Etched multilayer EUV mask works in theory and experiment

Alternating phase-shift masks can only print certain patterns

Need rigorous simulation to accurately design mask

Optimal design varies with pitch, pattern, and orientation

Thanks for your attention!

Center for Design-Enabled Nanofabrication Berkeley UCLA UCSD

