

ETSI GS CIM 009 V1.3.1 (2020-08)

Context Information Management (CIM);
NGSI-LD API

Disclaimer

The present document has been produced and approved by the cross-cutting Context Information Management (CIM) ETSI
Industry Specification Group (ISG) and represents the views of those members who participated in this ISG.

It does not necessarily represent the views of the entire ETSI membership.

GROUP SPECIFICATION

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)2

Reference
RGS/CIM-0009v131

Keywords
API, architecture, GAP, information model,

interoperability, smart city, WoT

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2020.

All rights reserved.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its Members.
3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and

of the 3GPP Organizational Partners.
oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and

of the oneM2M Partners.
GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

http://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)3

Contents

Intellectual Property Rights .. 14

Foreword ... 14

Modal verbs terminology .. 14

Executive summary .. 14

Introduction .. 15

1 Scope .. 16

2 References .. 16

2.1 Normative references ... 16

2.2 Informative references .. 18

3 Definition of terms, symbols and abbreviations ... 19

3.1 Terms .. 19

3.2 Symbols .. 21

3.3 Abbreviations ... 21

4 Context Information Management Framework .. 22

4.1 Introduction .. 22

4.2 NGSI-LD Information Model... 22

4.2.1 Introduction... 22

4.2.2 NGSI-LD Meta Model .. 23

4.2.3 Cross Domain Ontology ... 24

4.2.4 NGSI-LD domain-specific models and instantiation .. 24

4.2.5 UML representation .. 25

4.3 NGSI-LD Architectural considerations .. 26

4.3.1 Introduction... 26

4.3.2 Centralized architecture .. 27

4.3.3 Distributed architecture ... 27

4.3.4 Federated architecture ... 28

4.4 Core NGSI-LD @context ... 29

4.5 NGSI-LD Data Representation... 30

4.5.1 NGSI-LD Entity Representation ... 30

4.5.2 NGSI-LD Property Representation ... 31

4.5.3 NGSI-LD Relationship Representation .. 31

4.5.4 Simplified Representation ... 32

4.5.5 Multi-Attribute Support .. 32

4.5.6 Temporal Representation of an Entity .. 33

4.5.7 Temporal Representation of a Property .. 33

4.5.8 Temporal Representation of a Relationship .. 33

4.5.9 Simplified Temporal Representation of an Entity .. 33

4.5.10 Entity Type List Representation ... 34

4.5.11 Detailed Entity Type List Representation ... 34

4.5.12 Entity Type Information Representation... 34

4.5.13 Attribute List Representation .. 34

4.5.14 Detailed Attribute List Representation ... 35

4.5.15 Attribute Information Representation ... 35

4.5.16 GeoJSON Representation of Entities .. 35

4.5.16.0 Foreword ... 35

4.5.16.1 Top-level "geometry" field selection algorithm .. 35

4.5.16.2 GeoJSON Representation of an individual Entity ... 36

4.5.16.3 GeoJSON Representation of Multiple Entities ... 36

4.5.17 Simplified GeoJSON Representation of Entities .. 36

4.5.17.0 Foreword ... 36

4.5.17.1 Simplified GeoJSON Representation of an individual Entity ... 37

4.5.17.2 Simplified GeoJSON Representation of multiple Entities .. 37

4.6 Data Representation Restrictions ... 37

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)4

4.6.1 Supported text encodings .. 37

4.6.2 Supported names ... 37

4.6.3 Supported data types for Values ... 38

4.6.4 Supported Entity Content .. 39

4.7 Geospatial Properties .. 39

4.7.1 GeoJSON Geometries ... 39

4.7.2 Representation of GeoJSON Geometries in JSON-LD .. 40

4.8 Temporal properties ... 40

4.9 NGSI-LD Query Language .. 40

4.10 NGSI-LD Geo-query language ... 45

4.11 NGSI-LD Temporal Query language ... 47

4.12 NGSI-LD Query pagination ... 48

4.13 Counting the Number of Results .. 48

4.14 Supporting Multiple Tenants .. 49

5 API Operation Definition ... 49

5.1 Introduction .. 49

5.2 Data Types.. 49

5.2.1 Introduction... 49

5.2.2 Common members .. 50

5.2.3 @context ... 50

5.2.4 Entity .. 50

5.2.5 Property .. 51

5.2.6 Relationship .. 51

5.2.7 GeoProperty .. 51

5.2.8 EntityInfo .. 52

5.2.9 CsourceRegistration .. 52

5.2.10 RegistrationInfo .. 54

5.2.11 TimeInterval ... 54

5.2.12 Subscription .. 55

5.2.13 GeoQuery .. 56

5.2.14 NotificationParams ... 56

5.2.14.1 NotificationParams data type definition .. 56

5.2.14.2 Additional members .. 57

5.2.15 Endpoint .. 57

5.2.16 BatchOperationResult ... 58

5.2.17 BatchEntityError ... 58

5.2.18 UpdateResult... 58

5.2.19 NotUpdatedDetails.. 59

5.2.20 EntityTemporal ... 59

5.2.21 TemporalQuery ... 59

5.2.22 KeyValuePair .. 59

5.2.23 Query .. 60

5.2.24 EntityTypeList .. 60

5.2.25 EntityType .. 60

5.2.26 EntityTypeInfo .. 61

5.2.27 AttributeList .. 61

5.2.28 Attribute .. 61

5.2.29 Feature .. 62

5.2.30 FeatureCollection .. 62

5.2.31 FeatureProperties .. 62

5.3 Notification data types .. 63

5.3.1 Notification ... 63

5.3.2 CsourceNotification .. 64

5.3.3 TriggerReasonEnumeration .. 64

5.4 NGSI-LD Fragments .. 64

5.5 Common behaviours... 65

5.5.1 Introduction... 65

5.5.2 Error types .. 65

5.5.3 Error response payload body .. 65

5.5.4 General NGSI-LD validation .. 66

5.5.5 Default @context assignment ... 66

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)5

5.5.6 Operation execution .. 66

5.5.7 Term to URI expansion or compaction ... 66

5.5.8 JSON-LD Merge Patch Behaviour ... 67

5.5.9 Pagination Behaviour .. 67

5.5.10 Multi-Tenant Behaviour ... 68

5.6 Context Information Provision ... 69

5.6.1 Create Entity ... 69

5.6.1.1 Description .. 69

5.6.1.2 Use case diagram .. 69

5.6.1.3 Input data .. 69

5.6.1.4 Behaviour .. 69

5.6.1.5 Output data .. 69

5.6.2 Update Entity Attributes ... 69

5.6.2.1 Description .. 69

5.6.2.2 Use case diagram .. 70

5.6.2.3 Input data .. 70

5.6.2.4 Behaviour .. 70

5.6.2.5 Output data .. 70

5.6.3 Append Entity Attributes .. 70

5.6.3.1 Description .. 70

5.6.3.2 Use case diagram .. 71

5.6.3.3 Input data .. 71

5.6.3.4 Behaviour .. 71

5.6.3.5 Output data .. 72

5.6.4 Partial Attribute update ... 72

5.6.4.1 Description .. 72

5.6.4.2 Use case diagram .. 72

5.6.4.3 Input data .. 72

5.6.4.4 Behaviour .. 73

5.6.4.5 Output data .. 73

5.6.5 Delete Entity Attribute .. 73

5.6.5.1 Description .. 73

5.6.5.2 Use case diagram .. 73

5.6.5.3 Input data .. 74

5.6.5.4 Behaviour .. 74

5.6.5.5 Output data .. 75

5.6.6 Delete Entity ... 75

5.6.6.1 Description .. 75

5.6.6.2 Use case diagram .. 75

5.6.6.3 Input data .. 75

5.6.6.4 Behaviour .. 75

5.6.6.5 Output data .. 75

5.6.7 Batch Entity Creation.. 75

5.6.7.1 Description .. 75

5.6.7.2 Use case diagram .. 76

5.6.7.3 Input data .. 76

5.6.7.4 Behaviour .. 76

5.6.7.5 Output data .. 76

5.6.8 Batch Entity Creation or Update (Upsert) ... 77

5.6.8.1 Description .. 77

5.6.8.2 Use case diagram .. 77

5.6.8.3 Input data .. 77

5.6.8.4 Behaviour .. 77

5.6.8.5 Output data .. 78

5.6.9 Batch Entity Update .. 78

5.6.9.1 Description .. 78

5.6.9.2 Use case diagram .. 78

5.6.9.3 Input data .. 78

5.6.9.4 Behaviour .. 78

5.6.9.5 Output data .. 79

5.6.10 Batch Entity Delete ... 79

5.6.10.1 Description .. 79

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)6

5.6.10.2 Use case diagram .. 79

5.6.10.3 Input data .. 79

5.6.10.4 Behaviour .. 80

5.6.10.5 Output data .. 80

5.6.11 Create or Update Temporal Representation of an Entity .. 80

5.6.11.1 Description .. 80

5.6.11.2 Use case diagram .. 80

5.6.11.3 Input data .. 81

5.6.11.4 Behaviour .. 81

5.6.11.5 Output data .. 81

5.6.12 Add Attributes to Temporal Representation of an Entity ... 81

5.6.12.1 Description .. 81

5.6.12.2 Use case diagram .. 81

5.6.12.3 Input data .. 81

5.6.12.4 Behaviour .. 82

5.6.12.5 Output data .. 82

5.6.13 Delete Attribute from Temporal Representation of an Entity ... 82

5.6.13.1 Description .. 82

5.6.13.2 Use case diagram .. 82

5.6.13.3 Input data .. 82

5.6.13.4 Behaviour .. 83

5.6.13.5 Output data .. 83

5.6.14 Partial update Attribute instance in Temporal Representation of an Entity .. 83

5.6.14.1 Description .. 83

5.6.14.2 Use case diagram .. 83

5.6.14.3 Input data .. 84

5.6.14.4 Behaviour .. 84

5.6.14.5 Output data .. 85

5.6.15 Delete Attribute instance from Temporal Representation of an Entity ... 85

5.6.15.1 Description .. 85

5.6.15.2 Use case diagram .. 85

5.6.15.3 Input data .. 85

5.6.15.4 Behaviour .. 85

5.6.15.5 Output data .. 86

5.6.16 Delete Temporal Representation of an Entity ... 86

5.6.16.1 Description .. 86

5.6.16.2 Use case diagram .. 86

5.6.16.3 Input data .. 86

5.6.16.4 Behaviour .. 86

5.6.16.5 Output data .. 87

5.7 Context Information Consumption ... 87

5.7.1 Retrieve Entity .. 87

5.7.1.1 Description .. 87

5.7.1.2 Use case diagram .. 87

5.7.1.3 Input data .. 87

5.7.1.4 Behaviour .. 87

5.7.1.5 Output data .. 88

5.7.2 Query Entities ... 88

5.7.2.1 Description .. 88

5.7.2.2 Use case diagram .. 88

5.7.2.3 Input data .. 89

5.7.2.4 Behaviour .. 89

5.7.2.5 Output data .. 90

5.7.3 Retrieve temporal evolution of an Entity .. 90

5.7.3.1 Description .. 90

5.7.3.2 Use case diagram .. 90

5.7.3.3 Input data .. 91

5.7.3.4 Behaviour .. 91

5.7.3.5 Output data .. 91

5.7.4 Query temporal evolution of Entities .. 92

5.7.4.1 Description .. 92

5.7.4.2 Use case diagram .. 92

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)7

5.7.4.3 Input data .. 92

5.7.4.4 Behaviour .. 93

5.7.4.5 Output Data ... 94

5.7.5 Retrieve Available Entity Types ... 94

5.7.5.1 Description .. 94

5.7.5.2 Use case diagram .. 94

5.7.5.3 Input data .. 94

5.7.5.4 Behaviour .. 94

5.7.5.5 Output data .. 95

5.7.6 Retrieve Details of Available Entity Types .. 95

5.7.6.1 Description .. 95

5.7.6.2 Use case diagram .. 95

5.7.6.3 Input data .. 95

5.7.6.4 Behaviour .. 95

5.7.6.5 Output data .. 95

5.7.7 Retrieve Available Entity Type Information .. 96

5.7.7.1 Description .. 96

5.7.7.2 Use case diagram .. 96

5.7.7.3 Input data .. 96

5.7.7.4 Behaviour .. 96

5.7.7.5 Output data .. 96

5.7.8 Retrieve Available Attributes ... 96

5.7.8.1 Description .. 96

5.7.8.2 Use case diagram .. 97

5.7.8.3 Input data .. 97

5.7.8.4 Behaviour .. 97

5.7.8.5 Output data .. 97

5.7.9 Retrieve Details of Available Attributes ... 97

5.7.9.1 Description .. 97

5.7.9.2 Use case diagram .. 97

5.7.9.3 Input data .. 98

5.7.9.4 Behaviour .. 98

5.7.9.5 Output data .. 98

5.7.10 Retrieve Available Attribute Information ... 98

5.7.10.1 Description .. 98

5.7.10.2 Use case diagram .. 98

5.7.10.3 Input data .. 99

5.7.10.4 Behaviour .. 99

5.7.10.5 Output data .. 99

5.7.11 Architecture-related aspects of retrieval of entity types and attributes ... 99

5.8 Context Information Subscription .. 100

5.8.1 Create Subscription ... 100

5.8.1.1 Description .. 100

5.8.1.2 Use case diagram .. 100

5.8.1.3 Input data .. 100

5.8.1.4 Behaviour .. 100

5.8.1.5 Output data .. 101

5.8.2 Update Subscription .. 101

5.8.2.1 Description .. 101

5.8.2.2 Use case diagram .. 101

5.8.2.3 Input data .. 102

5.8.2.4 Behaviour .. 102

5.8.2.5 Output data .. 102

5.8.3 Retrieve Subscription .. 102

5.8.3.1 Description .. 102

5.8.3.2 Use case diagram .. 102

5.8.3.3 Input data .. 103

5.8.3.4 Behaviour .. 103

5.8.3.5 Output data .. 103

5.8.4 Query Subscriptions .. 103

5.8.4.1 Description .. 103

5.8.4.2 Use case diagram .. 103

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)8

5.8.4.3 Input data .. 104

5.8.4.4 Behaviour .. 104

5.8.4.5 Output data .. 104

5.8.5 Delete Subscription ... 104

5.8.5.1 Description .. 104

5.8.5.2 Use case diagram .. 104

5.8.5.3 Input data .. 105

5.8.5.4 Behaviour .. 105

5.8.5.5 Output data .. 105

5.8.6 Notification behaviour .. 105

5.9 Context Source Registration ... 106

5.9.1 Introduction... 106

5.9.2 Register Context Source ... 106

5.9.2.1 Description .. 106

5.9.2.2 Use case diagram .. 106

5.9.2.3 Input data .. 107

5.9.2.4 Behaviour .. 107

5.9.2.5 Output data .. 107

5.9.3 Update Context Source Registration ... 107

5.9.3.1 Description .. 107

5.9.3.2 Use case diagram .. 108

5.9.3.3 Input data .. 108

5.9.3.4 Behaviour .. 108

5.9.3.5 Output data .. 108

5.9.4 Delete Context Source Registration .. 109

5.9.4.1 Description .. 109

5.9.4.2 Use case diagram .. 109

5.9.4.3 Input data .. 109

5.9.4.4 Behaviour .. 109

5.9.4.5 Output data .. 109

5.10 Context Source Discovery .. 109

5.10.1 Retrieve Context Source Registration ... 109

5.10.1.1 Description .. 109

5.10.1.2 Use case diagram .. 110

5.10.1.3 Input data .. 110

5.10.1.4 Behaviour .. 110

5.10.1.5 Output data .. 110

5.10.2 Query context source registrations .. 110

5.10.2.1 Description .. 110

5.10.2.2 Use case diagram .. 111

5.10.2.3 Input data .. 111

5.10.2.4 Behaviour .. 111

5.10.2.5 Output data .. 112

5.11 Context Source Registration Subscription .. 112

5.11.1 Introduction... 112

5.11.2 Create Context Source Registration Subscription ... 113

5.11.2.1 Description .. 113

5.11.2.2 Use case diagram .. 113

5.11.2.3 Input data .. 113

5.11.2.4 Behaviour .. 113

5.11.2.5 Output data .. 114

5.11.3 Update Context Source Registration Subscription .. 114

5.11.3.1 Description .. 114

5.11.3.2 Use case diagram .. 114

5.11.3.3 Input data .. 115

5.11.3.4 Behaviour .. 115

5.11.3.5 Output data .. 115

5.11.4 Retrieve Context Source Registration Subscription .. 115

5.11.4.1 Description .. 115

5.11.4.2 Use case diagram .. 115

5.11.4.3 Input data .. 115

5.11.4.4 Behaviour .. 116

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)9

5.11.4.5 Output data .. 116

5.11.5 Query Context Source Registration Subscriptions .. 116

5.11.5.1 Description .. 116

5.11.5.2 Use case diagram .. 116

5.11.5.3 Input data .. 116

5.11.5.4 Behaviour .. 116

5.11.5.5 Output data .. 117

5.11.6 Delete Context Source Registration Subscriptions ... 117

5.11.6.1 Description .. 117

5.11.6.2 Use case diagram .. 117

5.11.6.3 Input data .. 117

5.11.6.4 Behaviour .. 117

5.11.6.5 Output data .. 117

5.11.7 Notification behaviour .. 118

5.12 Matching Context Source Registrations ... 118

6 API HTTP binding ... 119

6.1 Introduction .. 119

6.2 Global definitions and resource structure ... 119

6.3 Common behaviours... 123

6.3.1 Introduction... 123

6.3.2 Error types .. 123

6.3.3 Reporting errors .. 123

6.3.4 HTTP request preconditions ... 123

6.3.5 JSON-LD @context resolution ... 124

6.3.6 HTTP response common requirements ... 125

6.3.7 Simplified representation of entities ... 125

6.3.8 Notification behaviour .. 126

6.3.9 Csource Notification behaviour .. 126

6.3.10 Pagination behaviour .. 126

6.3.11 Including system-generated attributes .. 127

6.3.12 Simplified temporal representation of entities .. 127

6.3.13 Counting number of results ... 127

6.3.14 Tenant specification .. 128

6.3.15 GeoJSON representation of spatially bound entities .. 128

6.4 Resource: entities/ .. 128

6.4.1 Description .. 128

6.4.2 Resource definition ... 128

6.4.3 Resource methods ... 129

6.4.3.1 POST ... 129

6.4.3.2 GET ... 129

6.5 Resource: entities/{entityId} .. 131

6.5.1 Description .. 131

6.5.2 Resource definition ... 131

6.5.3 Resource methods ... 131

6.5.3.1 GET ... 131

6.5.3.2 DELETE ... 132

6.6 Resource: entities/{entityId}/attrs/ ... 133

6.6.1 Description .. 133

6.6.2 Resource definition ... 133

6.6.3 Resource methods ... 133

6.6.3.1 POST ... 133

6.6.3.2 PATCH ... 134

6.7 Resource: entities/{entityId}/attrs/{attrId} ... 135

6.7.1 Description .. 135

6.7.2 Resource definition ... 135

6.7.3 Resource methods ... 135

6.7.3.1 PATCH ... 135

6.7.3.2 DELETE ... 136

6.8 Resource: csourceRegistrations/ ... 137

6.8.1 Description .. 137

6.8.2 Resource definition ... 137

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)10

6.8.3 Resource methods ... 137

6.8.3.1 POST ... 137

6.8.3.2 GET ... 138

6.9 Resource: csourceRegistrations/{registrationId} ... 139

6.9.1 Description .. 139

6.9.2 Resource definition ... 140

6.9.3 Resource methods ... 140

6.9.3.1 GET ... 140

6.9.3.2 PATCH ... 141

6.9.3.3 DELETE ... 141

6.10 Resource: subscriptions/ ... 142

6.10.1 Description .. 142

6.10.2 Resource definition ... 142

6.10.3 Resource methods ... 142

6.10.3.1 POST ... 142

6.10.3.2 GET ... 143

6.11 Resource: subscriptions/{subscriptionId} .. 144

6.11.1 Description .. 144

6.11.2 Resource definition ... 144

6.11.3 Resource methods ... 144

6.11.3.1 GET ... 144

6.11.3.2 PATCH ... 145

6.11.3.3 DELETE ... 145

6.12 Resource: csourceSubscriptions/ .. 146

6.12.1 Description .. 146

6.12.2 Resource definition ... 146

6.12.3 Resource methods ... 146

6.12.3.1 POST ... 146

6.12.3.2 GET ... 147

6.13 Resource: csourceSubscriptions/{subscriptionId}.. 148

6.13.1 Description .. 148

6.13.2 Resource definition ... 148

6.13.3 Resource methods ... 148

6.13.3.1 GET ... 148

6.13.3.2 PATCH ... 149

6.13.3.3 DELETE ... 150

6.14 Resource: entityOperations/create .. 150

6.14.1 Description .. 150

6.14.2 Resource definition ... 151

6.14.3 Resource methods ... 151

6.14.3.1 POST ... 151

6.15 Resource: entityOperations/upsert .. 152

6.15.1 Description .. 152

6.15.2 Resource definition ... 152

6.15.3 Resource methods ... 152

6.15.3.1 POST ... 152

6.16 Resource: entityOperations/update ... 153

6.16.1 Description .. 153

6.16.2 Resource definition ... 153

6.16.3 Resource methods ... 153

6.16.3.1 POST ... 153

6.17 Resource: entityOperations/delete .. 154

6.17.1 Description .. 154

6.17.2 Resource definition ... 154

6.17.3 Resource methods ... 155

6.17.3.1 POST ... 155

6.18 Resource: temporal/entities/ ... 155

6.18.1 Description .. 155

6.18.2 Resource definition ... 156

6.18.3 Resource methods ... 156

6.18.3.1 POST ... 156

6.18.3.2 GET ... 157

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)11

6.19 Resource: temporal/entities/{entityId} ... 159

6.19.1 Description .. 159

6.19.2 Resource definition ... 159

6.19.3 Resource methods ... 159

6.19.3.1 GET ... 159

6.19.3.2 DELETE ... 160

6.20 Resource: temporal/entities/{entityId}/attrs/ .. 161

6.20.1 Description .. 161

6.20.2 Resource definition ... 161

6.20.3 Resource methods ... 161

6.20.3.1 POST ... 161

6.21 Resource: temporal/entities/{entityId}/attrs/{attrId}.. 162

6.21.1 Description .. 162

6.21.2 Resource definition ... 162

6.21.3 Resource methods ... 162

6.21.3.1 DELETE ... 162

6.22 Resource: temporal/entities/{entityId}/attrs/{attrId}/ {instanceId} ... 163

6.22.1 Description .. 163

6.22.2 Resource definition ... 163

6.22.3 Resource methods ... 164

6.22.3.1 PATCH ... 164

6.22.3.2 DELETE ... 164

6.23 Resource: entityOperations/query .. 165

6.23.1 Description .. 165

6.23.2 Resource definition ... 165

6.23.3 Resource methods ... 165

6.23.3.1 POST ... 165

6.24 Resource: temporal/entityOperations/query ... 166

6.24.1 Description .. 166

6.24.2 Resource definition ... 166

6.24.3 Resource methods ... 166

6.24.3.1 POST ... 166

6.25 Resource: types/ ... 167

6.25.1 Description .. 167

6.25.2 Resource definition ... 167

6.25.3 Resource methods ... 167

6.25.3.1 GET ... 167

6.26 Resource: types/{type} ... 168

6.26.1 Description .. 168

6.26.2 Resource definition ... 169

6.26.3 Resource methods ... 169

6.26.3.1 GET ... 169

6.27 Resource: attributes/ ... 170

6.27.1 Description .. 170

6.27.2 Resource definition ... 170

6.27.3 Resource methods ... 170

6.27.3.1 GET ... 170

6.28 Resource: attributes/{attrId} ... 171

6.28.1 Description .. 171

6.28.2 Resource definition ... 171

6.28.3 Resource methods ... 171

6.28.3.1 GET ... 171

7 API MQTT notification binding ... 172

7.1 Introduction .. 172

7.2 Notification behaviour .. 172

Annex A (normative): NGSI-LD identifier considerations .. 174

A.1 Introduction .. 174

A.2 Entity identifiers ... 174

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)12

A.3 NGSI-LD namespace ... 174

Annex B (normative): Core NGSI-LD @context definition ... 175

Annex C (informative): Examples of using the API .. 178

C.1 Introduction .. 178

C.2 Entity Representation ... 178

C.2.1 Property Graph ... 178

C.2.2 Vehicle Entity ... 179

C.2.3 Parking Entity ... 180

C.2.4 @context .. 183

C.3 Context Source Registration ... 184

C.4 Context Subscription .. 185

C.5 HTTP REST API Examples ... 185

C.5.1 Introduction .. 185

C.5.2 Create Entity of Type Vehicle .. 186

C.5.2.1 HTTP Request .. 186

C.5.2.2 HTTP Response .. 186

C.5.3 Query Entities ... 186

C.5.3.1 Introduction... 186

C.5.3.2 HTTP Request .. 186

C.5.3.3 HTTP Response .. 186

C.5.4 Query Entities (Pagination) .. 186

C.5.4.1 Introduction... 186

C.5.4.2 HTTP Request .. 187

C.5.4.3 HTTP Response .. 187

C.5.5 Temporal Query ... 187

C.5.5.1 Introduction... 187

C.5.5.2 HTTP Request .. 187

C.5.5.3 HTTP Response .. 187

C.5.6 Temporal Query (Simplified Representation) .. 188

C.5.6.1 Introduction... 188

C.5.6.2 HTTP Request .. 188

C.5.6.3 HTTP Response .. 188

C.5.7 Retrieve Available Entity Types .. 189

C.5.7.1 Introduction... 189

C.5.7.2 HTTP Request .. 189

C.5.7.3 HTTP Response .. 189

C.5.8 Retrieve Details of Available Entity Types .. 189

C.5.8.1 Introduction... 189

C.5.8.2 HTTP Request .. 189

C.5.8.3 HTTP Response .. 190

C.5.9 Retrieve Available Entity Type Information .. 190

C.5.9.1 Introduction... 190

C.5.9.2 HTTP Request .. 190

C.5.9.3 HTTP Response .. 190

C.5.10 Retrieve Available Attributes ... 191

C.5.10.1 Introduction... 191

C.5.10.2 HTTP Request .. 191

C.5.10.3 HTTP Response .. 191

C.5.11 Retrieve Details of Available Attributes .. 192

C.5.11.1 Introduction... 192

C.5.11.2 HTTP Request .. 192

C.5.11.3 HTTP Response .. 192

C.5.12 Retrieve Available Attribute Information ... 193

C.5.12.1 Introduction... 193

C.5.12.2 HTTP Request .. 193

C.5.12.3 HTTP Response .. 193

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)13

C.6 Date Representation ... 193

C.7 @context utilization clarifications ... 194

C.8 Link header utilization clarifications .. 196

C.9 @context processing clarifications ... 197

Annex D (informative): Transformation Algorithms .. 199

D.1 Introduction .. 199

D.2 Algorithm for transforming an NGSI-LD Entity into a JSON-LD document (ALG1) 199

D.3 Algorithm for transforming an NGSI-LD Property into JSON-LD (ALG1.1) 200

D.4 Algorithm for transforming an NGSI-LD Relationship into JSON-LD (ALG1.2) 201

Annex E (informative): RDF-compatible specification of NGSI-LD meta-model 202

Annex F (informative): Conventions and syntax guidelines... 203

Annex G (informative): Change history ... 204

History .. 205

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)14

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

Foreword
This Group Specification (GS) has been produced by ETSI Industry Specification Group (ISG) cross-cutting Context
Information Management (CIM).

Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

Executive summary
The present document formally describes the Context Information Management API (NGSI-LD) Specification. The
Context Information Management API allows users to provide, consume and subscribe to context information in
multiple scenarios and involving multiple stakeholders. It enables close to real-time access to information coming from
many different sources (not only IoT data sources).

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)15

Introduction
The present document defines the Context Information Management API Specification. The Context Information
Management API allows users to provide, consume and subscribe to context information in multiple scenarios and
involving multiple stakeholders. The ongoing status of the NGSI-LD API can be found in [i.17].

The ETSI ISG CIM has decided to give the name "NGSI-LD" to the Context Information Management API. The
rationale is to reinforce the fact that the present document leverages on the former OMA NGSI 9 and 10 interfaces [i.3]
and FIWARE NGSIv2 [i.9] to incorporate the latest advances from Linked Data.

The present document provides additions and corrections to the ETSI GS CIM 004 [i.16] preliminary API specification,
based on feedback about ETSI GS CIM 004 [i.16] received from other SDOs as well as developers in the linked-data,
internet-of-things, and mobile-apps and smart-applications communities, as well as from end users and stakeholders. In
particular, open issues and proposed features in annexes of the referred ETSI GS CIM 004 [i.16] document have been
addressed or added respectively.

Most of the NGSI-LD API and the ETSI ISG CIM information model work referenced here was created with the
support of the following European Union Horizon 2020 research projects: No. 732851 (FI-NEXT), No. 723156
(WISE-IoT), No. 732240 (SynchroniCity) and No. 731993 (AutoPilot), No. 814918 (Fed4IoT), No. 779852
(IoTCrawler), No. 731884 (IoF2020).

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)16

1 Scope
The purpose of the present document is the definition of a standard API for Context Information Management
(NGSI-LD API) enabling close to real-time access to information coming from many different sources (not only IoT
data sources). The present document defines how such an API enables applications to perform updates on context,
register context providers which can be queried to get updates on context, query information on current and historic
context information and subscribe to receive notifications of context changes. The criteria for choice of the API
characteristics are based on requirements resulting from the Use Cases [i.1] and other work items [i.2] and [i.8].

The present document leverages on ETSI GS CIM 004 [i.16] prelimAPI specification, providing additions and
corrections, based on feedback about ETSI GS CIM 004 [i.16] received from other SDOs as well as developers in the
linked-data, internet-of-things, and mobile-apps and smart-applications communities, as well as from end users and
stakeholders. In particular, it contains the resolution of some of the open issues and proposed features in annexes of
ETSI GS CIM 004 [i.16].

2 References

2.1 Normative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
https://docbox.etsi.org/Reference/.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long-term validity.

The following referenced documents are necessary for the application of the present document.

[1] W3C Recommendation 25 February 2014: "RDF Schema 1.1".

NOTE: Available at https://www.w3.org/TR/2014/REC-rdf-schema-20140225/.

[2] W3C Proposed Recommendation 07 May 2020: "JSON-LD 1.1 - A JSON-based Serialization for
Linked Data".

NOTE: Available at http://www.w3.org/TR/2014/REC-json-ld-20140116/.

[3] IETF RFC 7231: "Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content".

NOTE: Available at https://tools.ietf.org/html/rfc7231.

[4] IETF RFC 7232: "Hypertext Transfer Protocol (HTTP/1.1): Conditional Requests".

NOTE: Available at https://tools.ietf.org/html/rfc7232.

[5] IETF RFC 3986: "Uniform Resource Identifier (URI): Generic Syntax".

NOTE: Available at https://tools.ietf.org/html/rfc3986.

[6] IETF RFC 8259: "The JavaScript Object Notation (JSON) Data Interchange Format".

NOTE: Available at https://tools.ietf.org/html/rfc8259.

[7] IETF RFC 8288: "Web Linking".

NOTE: Available at https://tools.ietf.org/html/rfc8288.

[8] IETF RFC 7946: "The GeoJSON Format".

https://docbox.etsi.org/Reference/
https://www.w3.org/TR/2014/REC-rdf-schema-20140225/
http://www.w3.org/TR/2014/REC-json-ld-20140116/
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7232
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc8259
https://tools.ietf.org/html/rfc8288

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)17

NOTE: Available at https://tools.ietf.org/html/rfc7946.

[9] IETF RFC 8141: "Uniform Resource Names (URNs)".

NOTE: Available at https://tools.ietf.org/html/rfc8141.

[10] IETF RFC 7807: "Problem Details for HTTP APIs".

NOTE: Available at https://tools.ietf.org/html/rfc7807.

[11] IEEE POSIX 1003.2™-1992: "IEEE Standard for Information Technology - Portable Operating
System Interfaces (POSIX®) - Part 2: Shell and Utilities".

[12] IETF RFC 5234: "Augmented BNF for Syntax Specifications: ABNF".

NOTE: Available at https://tools.ietf.org/html/rfc5234.

[13] Unicode® Technical Standard #10: "Unicode Collation Algorithm".

NOTE: Available at http://unicode.org/reports/tr10/.

[14] Open Geospatial Consortium Inc. OGC 06-103r4: "OpenGIS® Implementation Standard for
Geographic information - Simple feature access - Part 1: Common architecture".

NOTE: Available at https://portal.opengeospatial.org/files/?artifact_id=25355.

[15] UN/CEFACT Common Codes for specifying the unit of measurement.

NOTE: Available at
http://www.unece.org/fileadmin/DAM/cefact/recommendations/rec20/rec20_Rev9e_2014.xls.

[16] IETF RFC 7396: "JSON Merge Patch".

NOTE: Available at https://tools.ietf.org/html/rfc7396.

[17] ISO 8601: 2004: "Data elements and interchange formats -- Information interchange --
Representation of dates and times".

NOTE: Available at http://www.iso.org/iso/catalogue_detail?csnumber=40874.

[18] IETF RFC 2818: "HTTP Over TLS".

NOTE: Available at https://tools.ietf.org/html/rfc2818.

[19] IETF RFC 5246: "The Transport Layer Security (TLS) Protocol Version 1.2".

NOTE: Available at https://tools.ietf.org/html/rfc5246.

[20] IANA Registry of Link Relation Types.

NOTE: Available at https://www.iana.org/assignments/link-relations/.

[21] ECMA 262 Specification: "ECMAScript® 2018 Language Specification".

NOTE: Available at http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf.

[22] The Unicode Consortium. The Unicode Standard.

NOTE: Available at http://www.unicode.org/versions/latest/

[23] IETF RFC 3987: "Internationalized Resource Identifiers (IRIs)".

NOTE: Available at https://tools.ietf.org/html/rfc3987.

[24] MQTT Version 3.1.1. Edited by Andrew Banks and Rahul Gupta. 29 October 2014. OASIS
Standard.

NOTE: Available at https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html.

https://tools.ietf.org/html/rfc7946
https://tools.ietf.org/html/rfc8141
https://tools.ietf.org/html/rfc7807
https://tools.ietf.org/html/rfc5234
http://unicode.org/reports/tr10/
https://portal.opengeospatial.org/files/?artifact_id=25355
http://www.unece.org/fileadmin/DAM/cefact/recommendations/rec20/rec20_Rev9e_2014.xls
https://tools.ietf.org/html/rfc7396
http://www.iso.org/iso/catalogue_detail?csnumber=40874
https://tools.ietf.org/html/rfc2818
https://tools.ietf.org/html/rfc5246
https://www.iana.org/assignments/link-relations/
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.unicode.org/versions/latest/
https://tools.ietf.org/html/rfc3987
https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)18

[25] MQTT Version 5.0. Edited by Andrew Banks, Ed Briggs, Ken Borgendale, and Rahul Gupta. 07
March 2019. OASIS Standard.

NOTE: Available at https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html.

[26] IETF RFC 7240: "Prefer Header for HTTP".

NOTE: Available at https://tools.ietf.org/html/rfc7240.

[27] IETF RFC 7230: "Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing".

NOTE: Available at https://tools.ietf.org/html/rfc7230.

2.2 Informative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long-term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] ETSI GR CIM 002 (V1.1.1): "Context Information Management (CIM); Use Cases (UC)".

NOTE: Available at https://www.etsi.org/deliver/etsi_gr/CIM/001_099/002/01.01.01_60/
gr_CIM002v010101p.pdf

[i.2] ETSI GR CIM 007: "Context Information Management (CIM); Security and Privacy".

NOTE: Available at https://portal.etsi.org/webapp/WorkProgram/Report_WorkItem.asp?WKI_ID=53370.

[i.3] OMA-TS-NGSI-Context-Management-V1-0-20120529-A: "NGSI Context Management".

NOTE: Available at http://www.openmobilealliance.org/release/NGSI/V1_0-20120529-A/OMA-TS-
NGSI_Context_Management-V1_0-20120529-A.pdf.

[i.4] ETSI TS 103 264 (V3.1.1) (2020-02): "SmartM2M; Smart Applications; Reference Ontology and
oneM2M Mapping".

[i.5] NGSI-LD Wrapper, Experimental proxy for adaptation between FIWARE and NGSI-LD.

NOTE: Available at https://github.com/Fiware/NGSI-LD_Wrapper.

[i.6] Graph Databases: "New Opportunities for Connected Data". O'Reilly 2nd Edition. Webber,
Robinson, et al. ISBN:1491930896 9781491930892.

[i.7] JSON-LD Playground. Experimentation tool for JSON-LD.

NOTE: Available at https://json-ld.org/playground/.

[i.8] ETSI GS CIM 006: "Context Information Management (CIM); Information Model (MOD0)".

NOTE: Available at https://portal.etsi.org/webapp/WorkProgram/Report_WorkItem.asp?WKI_ID=51351.

[i.9] FIWARE NGSI REST binding version 2.

NOTE: Available at http://fiware.github.io/specifications/ngsiv2/stable/.

[i.10] IETF RFC 6902: "JavaScript Object Notation (JSON) Patch".

NOTE: Available at https://tools.ietf.org/html/rfc6902.

[i.11] JSON Schema Validation: "A Vocabulary for Structural Validation of JSON".

https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://tools.ietf.org/html/rfc7240
https://tools.ietf.org/html/rfc7230
https://www.etsi.org/deliver/etsi_gr/CIM/001_099/002/01.01.01_60/gr_CIM002v010101p.pdf
https://www.etsi.org/deliver/etsi_gr/CIM/001_099/002/01.01.01_60/gr_CIM002v010101p.pdf
https://portal.etsi.org/webapp/WorkProgram/Report_WorkItem.asp?WKI_ID=53370
http://www.openmobilealliance.org/release/NGSI/V1_0-20120529-A/OMA-TS-NGSI_Context_Management-V1_0-20120529-A.pdf
http://www.openmobilealliance.org/release/NGSI/V1_0-20120529-A/OMA-TS-NGSI_Context_Management-V1_0-20120529-A.pdf
https://github.com/Fiware/NGSI-LD_Wrapper
https://json-ld.org/playground/
https://portal.etsi.org/webapp/WorkProgram/Report_WorkItem.asp?WKI_ID=51351
http://fiware.github.io/specifications/ngsiv2/stable/
https://tools.ietf.org/html/rfc6902

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)19

NOTE: Available at https://json-schema.org/latest/json-schema-validation.html.

[i.12] OpenAPI™ Specification.

NOTE 1: Available at https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.3.md

NOTE 2: OpenAPI is a trademark of the Linux Foundation.

[i.13] NGSI-LD JSON Schemas.

NOTE: Available at https://forge.etsi.org/gitlab/NGSI-LD/NGSI-LD/tree/master/schema.

[i.14] NGSI-LD OpenAPI™ Specification.

NOTE: Available at https://forge.etsi.org/gitlab/NGSI-LD/NGSI-LD/tree/master/spec.

[i.15] NGSI-LD Examples.

NOTE: Available at https://forge.etsi.org/gitlab/NGSI-LD/NGSI-LD/tree/master/examples.

[i.16] ETSI GS CIM 004 (V1.1.2): "Context Information Management (CIM); Application Programming
Interface (API)".

[i.17] ETSI ISG CIM: "NGSI-LD Status".

NOTE: Available at https://docbox.etsi.org/ISG/CIM/Open/NGSI-LD Status.pdf.

[i.18] Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the
protection of natural persons with regard to the processing of personal data and on the free
movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation).

[i.19] MQTT URI Scheme.

NOTE: Available at https://github.com/mqtt/mqtt.github.io/wiki/URI-Schemes.

[i.20] GeoJSON-LD 1.0 defines a base context for processing GeoJSON according to the JSON-LD
processing model.

NOTE: Available at http://geojson.org/geojson-ld/.

3 Definition of terms, symbols and abbreviations

3.1 Terms
For the purposes of the present document, the following terms apply:

NOTE 1: The letters "NGSI-LD" were added to most terms to confirm that they are distinct from other terms of
similar/same name in use in other organizations, however, in the present document the letters "NGSI-LD"
are generally omitted for brevity.

NOTE 2: The use of URI in the context of the present document also includes the use of International Resource
Identifiers (IRIs) as defined in IETF RFC 3987 [23], which extends the use of characters to Unicode
characters [22] beyond the ASCII character set, enabling the support of languages other than English.

NGSI-LD Attribute: reference to both an NGSI-LD Property and to an NGSI-LD Relationship

NGSI-LD Attribute Instance (in case of temporal representation of NGSI-LD Entities): reference to an NGSI-LD
Attribute, at a specific moment in time of its temporal evolution, usually identified by its instanceId

NGSI-LD Central Broker: NGSI-LD Context Broker that only uses a local storage when serving NGSI-LD requests,
without involving any external Context Sources

NGSI-LD Context Broker: architectural component that implements all the NGSI-LD interfaces

https://json-schema.org/latest/json-schema-validation.html
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.3.md
https://forge.etsi.org/gitlab/NGSI-LD/NGSI-LD/tree/master/schema
https://forge.etsi.org/gitlab/NGSI-LD/NGSI-LD/tree/master/spec
https://forge.etsi.org/gitlab/NGSI-LD/NGSI-LD/tree/master/examples
https://docbox.etsi.org/ISG/CIM/Open/NGSI-LD%20Status.pdf
https://github.com/mqtt/mqtt.github.io/wiki/URI-Schemes
http:/geojson.org/geojson-ld/

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)20

NGSI-LD Context Consumer: agent that uses the query and subscription functionality of NGSI-LD to retrieve context
information

NGSI-LD Context Producer: agent that uses the NGSI-LD context provision and/or registration functionality to
provide or announce the availability of its context information to an NGSI-LD Context Broker

NGSI-LD Context Registry: software functional element where Context Sources register the information that they can
provide

NOTE: It is used by Distribution Brokers and Federation Brokers to find the appropriate Context Sources which
can provide the information required for serving an NGSI-LD request.

NGSI-LD Context Source: source of context information which implements the NGSI-LD consumption and
subscription (and possibly provision) interfaces defined by the present document

NOTE: It is usually registered with an NGSI-LD Registry so that it can announce what kind of information it can
provide, when requested, to Context Consumers and Brokers.

NGSI-LD Distribution Broker: NGSI-LD Context Broker that uses both local context information and registration
information from an NGSI-LD Context Registry, to access matching context information from a set of distributed
Context Sources

NGSI-LD Element: any JSON element that is defined by the NGSI-LD API

NGSI-LD Entity: informational representative of something that is supposed to exist in the real world, physically or
conceptually

NOTE: In the NGSI-LD API, any instance of such an entity is uniquely identified by a URI, and characterized
by reference to one or more NGSI-LD Entity Type(s). The API defined by the present document only
allows associating one NGSI-LD Entity Type per NGSI-LD Entity. This restriction will be removed in
future versions.

NGSI-LD Entity Type: categorization of an NGSI-LD Entity as belonging to a class of similar entities, or sharing a set
of characteristic properties

NOTE: In the NGSI-LD API, an NGSI-LD Entity Type is uniquely identified by a URI.

EXAMPLE 1: "Vehicle" is an NGSI-LD Entity Type and is identified with a proper URI.

EXAMPLE 2: Bob's private car whose plate number is "ABCD1234" is an NGSI-LD Entity whose NGSI-LD
Entity Type Name is "Vehicle".

NGSI-LD External Linked Entity: Linked Entity that is identified through a dereferenceable URI which does not
exist within the current NGSI-LD system

NOTE: It can exist within another NGSI-LD system or within a non-NGSI-LD system.

EXAMPLE: An NGSI-LD Entity, which Entity Type Name is "Book", can be externally linked, through the
"wasWrittenBy" relationship, to a resource identified by the URI
"http://dbpedia.org/resource/Mark_Twain".

NGSI-LD Federation Broker: Distribution Broker that federates information from multiple underlying NGSI-LD
Context Brokers and across domains

NGSI-LD Internal Linked Entity: Linked Entity that exists within the current NGSI-LD system

EXAMPLE: An NGSI-LD Entity, which Entity Type name is "Vehicle", can be internally linked, through the
"isParkedAt" relationship, to another NGSI-LD Entity, of Type Name "Parking", identified by the
URI "urn:ngsi-ld:Parking:Downtown1".

NGSI-LD Linked Entity: NGSI-LD Entity referenced from another NGSI-LD Entity (the linking NGSI-LD Entity) via
an NGSI-LD Relationship

NGSI-LD Linking Entity: NGSI-LD Entity which is the subject of a Relationship to another NGSI-LD Entity (the
linked NGSI-LD Entity) or an external resource (identified by a URI)

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)21

NGSI-LD Name: short-hand string (term) that locally identifies an NGSI-LD Entity Type, Property Type or
Relationship Type and which can be mapped to a URI which serves as a fully qualified identifier

EXAMPLE: The sentence "Bob's vehicle's speed is 40 km/h" can be represented by an NGSI-LD Property,
whose Name is "speed", and which characterizes an NGSI-LD Entity, which NGSI-LD Type
Name is "Vehicle". Such a name can be expanded to a fully qualified name in the form of a URI,
for instance "http://example.org/Vehicle" or "http://example.org/speed".

NGSI-LD Property: description instance which associates a main characteristic, i.e. an NGSI-LD Value, to either an
NGSI-LD Entity, an NGSI-LD Relationship or another NGSI-LD Property and that uses the special hasValue property
to define its target value

NGSI-LD Query: a collection of criteria used to select a sub-set of NGSI-LD Entities, matching the criteria

NGSI-LD Relationship: description of a directed link between a subject which is either an NGSI-LD Entity, an
NGSI-LD Property, or another NGSI-LD Relationship on one hand, and an object, which is an NGSI-LD Entity, on the
other hand, and which uses the special hasObject property to define its target object

EXAMPLE: An NGSI-LD Entity of type (Type Name) "Vehicle" (when parked) can be the subject of an
NGSI-LD Relationship which object is an NGSI-LD Entity of type "Parking".

NGSI-LD Tenant: a user or a group of users that utilize a single instance of a system implementing the NGSI-LD API
(NGSI-LD Context Source or NGSI-LD Broker) in isolation from other users or groups of users of the same instance.
Any information related to one tenant (e.g. Entities, Subscriptions, Context Source Registrations) are only visible to
users of the same tenant, but not to users of a different tenant

NGSI-LD Value: JSON value (i.e. a string, a number, true or false, an object, an array), or a JSON-LD typed value
(i.e. a string as the lexical form of the value together with a type, defined by an XSD base type or more generally an
IRI), or a JSON-LD structured value (i.e. a set, a list, a language-tagged string)

EXAMPLE: Bob's private car 'speed' NGSI-LD Value is the number 100 (kilometres per hour).

3.2 Symbols
Void.

3.3 Abbreviations
For the purposes of the present document, the following abbreviations apply:

ABNF Augmented Backus-Naur Form
API Application Programming Interface
ASCII American Standard Code for Information Interchange
BNF Backus Naur Form
ECMA European Association for Standardizing Information and Communication Systems
FQN Fully Qualified Name
GDPR General Data Protection Regulation
GeoJSON Geographic JavaScript Object Notation
GeoJSON-LD Geographic JavaScript Object Notation - Linked Data
GIS Geographic Information System
GPS Global Positioning System
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
IANA Internet Assigned Numbers Authority
IETF Internet Engineering Task Force
IoT Internet of Things
IRI Internationalized Resource Identifier
ISG Industry Specification Group

ISO International Organization for Standardization
JSON JavaScript Object Notation
JSON-LD JSON Linked Data
MQTT Message Queuing Telemetry Transport

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)22

NGSI Next Generation Service Interfaces
NID Namespace Identifier
NSS Namespace Specific String
OAS Open API Specification
OMA Open Mobile Alliance
POSIX Portable Operating System Interface
RDF Resource Description Format
REST Representational State Transfer
RFC Request For Comments
SAREF Smart Applications Reference ontology
TB Technical Body
TCP Transport Control Protocol
TLS Transport Layer Security
UCA Unicode Collation Algorithm
UML Unified Modelling Language
URI Uniform Resource Identifier
URL Universal Resource Locator
URN Uniform Resource Name

UTC Coordinated Universal Time
UTF Unicode (or Universal Coded Character Set) Transformation Format
XSD XML Schema Definition

4 Context Information Management Framework

4.1 Introduction
This clause describes the technical design principles behind the context information management framework supported
by NGSI-LD. As stated in clause 3.1, the letters "NGSI-LD" which are part of most terms, to confirm that they are
distinct from other terms of similar/same name in use in other organizations, are generally omitted in the present
document for brevity. In the present document, a number of rather obvious typographic conventions and syntax
guidelines are followed and the reader is referred to annex F for details.

4.2 NGSI-LD Information Model

4.2.1 Introduction

The NGSI-LD Information Model prescribes the structure of context information that shall be supported by an
NGSI-LD system. It specifies the data representation mechanisms that shall be used by the NGSI-LD API itself. In
addition, it specifies the structure of the Context Information Management vocabularies to be used in conjunction with
the API.

The NGSI-LD Information Model is defined at two levels (see figure 4.2.1-1): the foundation classes which correspond
to the Core Meta-model and the Cross-Domain Ontology. The former amounts to a formal specification of the "property
graph" model [i.6]. The latter is a set of generic, transversal classes which are aimed at avoiding conflicting or
redundant definitions of the same classes in each of the domain-specific ontologies. Below these two levels, domain-
specific ontologies or vocabularies can be devised. For instance, the SAREF Ontology ETSI TS 103 264 [i.4] can be
mapped to the NGSI-LD Information Model, so that smart home applications will benefit from this Context Information
Management API specification.

The version of the cross-domain model proposed by the present document is a minimal one, aimed at defining the
classes used in this release of the API specification. It has been extended by other work items like ETSI
GS CIM 006 [i.8], with classes defining extra concepts such as mobile vs. stationary entities, instantaneous vs. static
properties, etc.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)23

Figure 4.2.1-1: Overview of the NGSI-LD Information Model Structure

4.2.2 NGSI-LD Meta Model

Figure 4.2.2-1 provides a graphical representation of the NGSI-LD Meta-Model in terms of classes and their
relationships. To provide additional clarity an informal (non-normative) mapping to the Property Graph Model is also
presented.

Figure 4.2.2-1: NGSI-LD Core Meta-Model

Implementations shall support the NGSI-LD Meta-model as follows:

• An NGSI-LD Entity is a subclass of rdfs:Resource [1].

• An NGSI-LD Relationship is a subclass of rdfs:Resource [1].

• An NGSI-LD Property is a subclass of rdfs:Resource [1].

• An NGSI-LD Value shall be either a rdfs:Literal or a node object (in JSON-LD language) to represent
complex data structures [1].

• An NGSI-LD Property shall have a value, stated through hasValue, which is of type rdf:Property [1].

• An NGSI-LD Relationship shall have an object stated through hasObject which is of type rdf:Property [1].

PropertyEntity Relationship hasValuehasObject Value

Literal

(rdfs:Literal)

Resource

(rdfs:Resource)

Property

(rdf:Property)

rdfs:subClassOf a ardfs:subClassOf rdfs:subClassOf

a = rdf:type

rdfs:subClassOf

rdfs:domain

rdfs:range

N
G
S
I-
LD

M
e
ta
-M
o
d
e
l

R
D
F/
R
D
FS

G
ro
u
n
d
in
g

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)24

4.2.3 Cross Domain Ontology

Figure 4.2.3-1: NGSI-LD Core Meta-Model plus the Cross-Domain Ontology

Figure 4.2.3-1 describes the concepts introduced by the NGSI-LD Cross-Domain Ontology, which shall be supported
by implementations as follows:

• Geo Properties: Are intended to convey geospatial information and implementations shall support them as
defined in clause 4.7.

• Temporal Properties: They are non-reified Properties (represented only by its Value) that convey temporal
information for capturing the time series evolution of other Properties; implementations shall support them as
defined in clause 4.8.

• "unitCode" Property: A Property intended to provide the units of measurement of an NGSI-LD Value.
Implementations shall support it as defined in clause 4.5.2.

• Geometry Values: They are a special type of NGSI-LD Value intended to convey geometries corresponding
to geospatial properties. Implementations shall support them as defined in clause 4.7.

• Time Values: They are a special type of NGSI-LD Value intended to convey time instants or intervals
representations. Implementations shall support them as defined in clause 4.6.3.

Clause 4.4 defines the Core JSON-LD @context which includes the URIs which correspond to the concepts introduced
above.

4.2.4 NGSI-LD domain-specific models and instantiation

This clause is informative and is intended to illustrate the relationship between the NGSI-LD Information Model and
NGSI-LD Domain-specific models.

Figure 4.2.4-1 shows an example of an NGSI-LD domain-specific model. Domain-specific models introduce the
specific entity types required for a particular domain. Figure 4.2.4-1 shows the types Car, Parking, Street, Gate. Entity
types can have further subtypes, e.g. OffStreetParking as subtype of Parking.

PropertyEntity Relationship hasValuehasObject Value

Literal

(rdfs:Literal)

Resource

(rdfs:Resource)

Property

(rdf:Property)

rdfs:subClassOf a ardfs:subClassOf rdfs:subClassOf

Temporal

Property

observedAt createdAtmodifiedAt

a = rdf:type

rdfs:subClassOf

coordinates

(for GeoJSON)
location

GeoProperty

observation

Space

operation

Space

unitCode TimeInterval Geometry

Point LineString Polygon

rdfs:domain

rdfs:range

startAt

endAt

N
G
S
I-
L
D

C
ro
ss
-D
o
m
a
in

O
n
to
lo
g
y

N
G
S
I-
LD

M
e
ta
-M
o
d
e
l

R
D
F
/
R
D
F
S

G
ro
u
n
d
in
g

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)25

Figure 4.2.4-1: Cross-Domain Ontology and instantiation

In addition, two different NGSI-LD Properties are introduced ('hasState', 'reliability').

The 'adjacentTo' Relationship links entities of type 'Parking' with entities of type 'Street'.

4.2.5 UML representation

This clause is informative and is intended to show how the NGSI-LD information model could be described using UML
diagrams. The aim of this diagram is to help those readers less familiar with ontology representations or RDF [1] to
understand the NGSI-LD Information Model.

In figure 4.2.5-1 NGSI-LD Entity, Relationship, Property and Value are represented as UML classes. UML associations
are used to interrelate these classes while keeping the structure and semantics defined by the NGSI-LD Information
Model.

PropertyEntity Relationship hasValuehasObject Value

Literal

(rdfs:Literal)

Resource

(rdfs:Resource)

Property

(rdf:Property)

rdfs:subClassOf a ardfs:subClassOf rdfs:subClassOf

Temporal

Property

observedAt createdAtmodifiedAt

a = rdf:type

rdfs:subClassOf

coordinates

(for GeoJSON)
location

GeoProperty

observation

Space

operation

Space

unitCode TimeInterval Geometry

Point LineString Polygon

rdfs:domain

rdfs:range

startAt

endAt

N
G
S
I-
L
D

C
ro
s
s
-D
o
m
a
in

O
n
to
lo
g
y

N
G
S
I-
L
D

M
e
ta
-M
o
d
e
l

R
D
F
/
R
D
F
S

G
ro
u
n
d
in
g

D
o
m
a
in

M
o
d
e
l

E
x
a
m
p
le

(R
D
F
 R
e
if
ic
a
ti
o
n
)

Parking Street Gate Car adjacentTo hasOpening hasState reliability

rdfs:subClassOf “Entity”:

rdfs:subClassOf “Relationship”:

rdfs:subClassOf “Property”:

ParkingA _:adjacentTo#1 StreetA

_:operationSpace#1

GateA

adjacentTo

operationSpace

hasObject

_:hasOpening#1

_:hasState#1
hasState

30% busy
hasValue

_:reliability#1 90%
hasValuereliability

hasObject

hasOperning

2018-01-01T00:00:00Z

2018-01-01T00:00:00Z

createdAt

modifiedAt

2018-01-01T00:00:00Z

2018-01-01T00:00:00Z

createdAt

modifiedAt
2018-01-01T00:00:00Z

2018-01-01T00:00:00Z

createdAt

modifiedAt

2018-01-01T00:00:00Z

2018-01-01T00:00:00Z

createdAt

modifiedAt

[{0,0},{0,1},{1,1},{1,0}]

polygon
hasValue

type

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)26

Figure 4.2.5-1: NGSI-LD information model as UML

4.3 NGSI-LD Architectural considerations

4.3.1 Introduction

The NGSI-LD API is intended to be primarily an API and does not define a specific architecture. It is envisioned that
the NGSI-LD API can be used in different architectural settings and the architectural assumptions of the API are kept to
a minimum.

As it is not possible to elaborate all possible architectures in which the NGSI-LD API could be used, three prototypical
architectures are presented. The NGSI-LD API shall enable efficient support for all of them, i.e. the design decisions for
the NGSI-LD API take these prototypical architectures into consideration. A real system architecture utilizing the
NGSI-LD API can map to one, take elements from multiple or combine all of the prototypical architectures.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)27

4.3.2 Centralized architecture

Figure 4.3.2-1 shows a centralized architecture. In the centre is a Central Broker that stores all the context information.
There are Context Producers that use update operations to update the context information in the Central Broker and
there are Context Consumers that request context information from the Central Broker, either using synchronous
one-time query or asynchronous subscribe/notify operations. The Central Broker answers all requests from its storage.
Figure 4.3.2-1 shows one component that acts as both Context Producer and Context Consumer. The general
assumption is that components can have multiple roles, so such components are not explicitly shown in clause 4.3.3 and
clause 4.3.4.

Figure 4.3.2-1: Centralized architecture

4.3.3 Distributed architecture

Figure 4.3.3-1 shows a distributed architecture. The underlying idea here is that all information is stored by the Context
Sources. Context Sources implement the query and subscription part of the NGSI-LD API as a Context Broker does.
They register themselves with the Context Registry, providing information about what context information they can
provide, but not the context information itself, e.g. a certain Context Source registers that it can provide the indoor
temperature for Building A and Building B or that it can provide the speed of cars in a geographic region covering the
centre of a city.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)28

Figure 4.3.3-1: Distributed architecture

Context Consumers can query or subscribe to the Distribution Broker. On each request, the Distribution Broker
discovers or does a discovery subscription to the Registry for relevant Context Sources, i.e. those that may provide
context information relevant to the respective request from the Context Consumer. The Distribution Broker then queries
or subscribes to each relevant Context Source, if possible it aggregates the context information retrieved from the
Context Sources and provides them to the Context Consumer. In this mode of operation, it is not visible to the Context
Consumer, whether the Broker is a Central Broker or a Distribution Broker. Alternatively, the architecture allows that
Context Consumers can discover Context Sources through the Registry themselves and then directly request from
Context Sources. This is shown in figure 4.3.3-1 with the fine dashed arrows.

4.3.4 Federated architecture

The federated architecture shown in figure 4.3.4-1 is used in cases where existing domains are to be federated. For
example, different departments in a city operate their own Context Broker-based NGSI-LD infrastructure, but
applications should be able to easily access all available information using just one point of access. The architecture
works in the same way as the distributed architecture described in clause 4.3.3, except that instead of simple Context
Sources, whole domains are registered with the respective Context Broker as point of access. Typically, the domains
will be registered to the federation Context Registry on a more coarse-grained level, providing scopes, in particular
geographic scopes, that can then be matched to the scopes provided in the requests. For example, instead of registering
individual entities like buildings, the domain would be registered with having information about entities of type
building within a geographic area. Applications then query or subscribe for entities within a geographic scope,
e.g. buildings in a certain area of the city. The Federation Broker discovers the domain Context Brokers that can
provide relevant information, forwards the request to these Brokers and aggregates the results, so the application gets
the result in the same way as in the centralized and distributed cases.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)29

Figure 4.3.4-1: Federated architecture

A domain itself can use a centralized or distributed architecture, or could even utilize a federated architecture that
federates sub-domains.

As in the distributed case, it is also possible that applications discover relevant domains through the federation-level
Context Registry and directly contact the Context Brokers in the individual domains.

4.4 Core NGSI-LD @context
NGSI-LD serialization is based on JSON-LD [2], a JSON-based format to serialize Linked Data. The @context in
JSON-LD is used to expand terms, provided as short hand strings, to concepts, specified as URIs, and vice versa, to
compact URIs into terms. The Core NGSI-LD (JSON-LD) @context is defined as a JSON-LD @context which
contains:

• The core terms needed to uniquely represent the key concepts defined by the NGSI-LD Information Model, as
mandated by clause 4.2.

• The terms needed to uniquely represent all the members that define the API-related Data Types, as mandated
by clauses 5.2 and 5.3.

• A fallback @vocab rule to expand or compact user-defined terms to a default URI, in case there is no other
possible expansion or compaction as per the current @context.

NGSI-LD compliant implementations shall support such Core @context, which shall be implicitly present when
processing or generating context information. Furthermore, the Core @context is protected and shall remain immutable
and invariant during expansion or compaction of terms. Therefore, and as per the JSON-LD processing rules [2], when
processing NGSI-LD content, implementations shall consider the Core @context as if it were in the last position of the
@context array. Nonetheless, for the sake of compatibility and cleanness, data providers should generate JSON-LD
content that conveys the Core @context in the last position.

For the avoidance of doubt, when rendering NGSI-LD Elements, the Core @context shall always be treated as if it had
been originally placed in the last position, so that, if needed, upstream JSON-LD processors can properly expand as
NGSI-LD or override the resulting JSON-LD documents provided by API implementations.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)30

The NGSI-LD Core @context is publicly available at https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.3.jsonld and
shall contain all the terms as mandated by annex B.

4.5 NGSI-LD Data Representation

4.5.1 NGSI-LD Entity Representation

An NGSI-LD Entity shall be represented by an object encoded using JSON-LD [2]. The rules described below state the
encoding that shall be supported by implementations. Annex D provides a computational description of this process in
terms of an algorithm.

In addition to the terms defined by the Core NGSI-LD @context (mandatory as per annex B), the @context should
contain the following terms:

• One term associated to the Entity Type, mapping the Entity Type Name with its Type Identifier (URI).

• One term associated to the name of each Property used by the entity representation (see below), mapping the
Property Name with its Property Identifier (URI). If the Property's range is a data type different than a native
JSON type, then it shall be conveyed explicitly under this term by using a nested JSON object in the form:

- "@type": <Datatype's URI>.

- "@id": <Property's URI>.

• One term associated to the name of each Relationship used by the entity representation, mapping the
Relationship Name with the Relationship Identifier (URI) in the form:

- "@type": "@id".

- "@id": <Relationship's URI>.

The JSON-LD object shall contain at least the following members:

• "id" whose value shall be a URI that identifies the Entity.

• "type" whose value shall be equal to the Entity Type Name.

• "@context" as mandated by [2], section 5.1. Depending on the binding, the @context may not just be provided
in line with rest of the JSON content, but there could be other options. For example, in the HTTP binding, the
@context can be made available through a Link header (see clause 6.3.5).

• One member for each Property as per the rules stated in clause 4.5.2. In case of multiple Property instances
with the same Property Name as described in clause 4.5.5, all instances are provided as an unordered JSON
array.

• One member for each Relationship as per the rules stated in clause 4.5.3. In case of multiple Relationship
instances with the same Property Name as described in clause 4.5.5, all instances are provided as an unordered
JSON array.

NOTE:1 The term Attribute is used when referring in the text to both an NGSI-LD Property and an NGSI-LD
Relationship

NOTE:2 When GeoJSON representation is selected, the layout of the Entities changes, see clause 4.5.16 for
details.

http://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)31

4.5.2 NGSI-LD Property Representation

An NGSI-LD Property shall be represented by a member whose key is the Property Name (a term), possibly with an
index, and whose value is a JSON-LD object including the following members:

• "type": "Property". Mandatory.

• "value": the Property Value (see definition in clause 3.1). Mandatory. If the Value's datatype is a native JSON
data type it shall be encoded directly as the member's value. Otherwise the member's value shall be a JSON
object in the form:

- "@type": <Data Type URI>.

- "@value": Property Value.

• "observedAt": a string as mandated by clause 4.8. Optional.

• "datasetId": a URI as mandated by clause 4.5.5. Optional.

• "instanceId": a URI uniquely identifying a Property instance. System generated. Optional.

NOTE: For temporal representations, systems should maintain an instanceId for each Property instance. Without
such an instanceId, it is not possible to selectively modify or delete temporal information via the
NGSI-LD API. The consequences of this may be severe in the case of modification or deletion requests
for legal reasons, e.g. GDPR [i.18]. When implementing the NGSI-LD API on storage systems that do
NOT allow modification or deletion, similar problems may be encountered.

• "createdAt": a string as mandated by clause 4.8. System generated.

• "modifiedAt": a string as mandated by clause 4.8. System generated.

• "unitCode": a string representing the measurement unit corresponding to the Property value. It shall be
encoded using the UN/CEFACT Common Codes for Units of Measurement [15]. Optional.

• For each of the Properties this Property is associated with, a member whose key (a term) is the Property Name
and value is the result of serializing a Property.

• For each of the Relationships this Property is associated with, a member whose key (a term) is the
Relationship Name and value is the result of serializing a Relationship.

4.5.3 NGSI-LD Relationship Representation

An NGSI-LD Relationship shall be represented by a member whose key is the Relationship Name (a term), possibly
with an index, and whose value is a JSON-LD object with the following terms:

• "type": "Relationship". Mandatory.

• "object": the Relationship's object represented by a URI. Mandatory.

• "observedAt": a string as mandated by clause 4.8. Optional.

• "datasetId": a URI as mandated by clause 4.5.5. Optional.

• "instanceId": a URI uniquely identifying a Relationship instance. System generated. Optional.

NOTE: For temporal representations, systems should maintain an instanceId for each Property instance. Without
such an instanceId, it is not possible to selectively modify or delete temporal information via the NGSI-
LD API. The consequences of this may be severe in the case of modification or deletion requests for legal
reasons, e.g. GDPR [i.18]. When implementing the NGSI-LD API on storage systems that do NOT allow
modification or deletion, similar problems may be encountered.

• "createdAt": a string as mandated by clause 4.8. System generated.

• "modifiedAt": a string as mandated by clause 4.8. System generated.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)32

• For each of the Relationships this Relationship is associated with, a member whose key is the Relationship
Name (a term) and whose value is the result of serializing a Relationship as per the rules of representation of a
Relationship.

• For each of the Properties this Relationship is associated with, a member whose key is the Property Name (a
term) and whose value is the result of serializing a Property as per the rules of representation of a Property.

4.5.4 Simplified Representation

The NGSI-LD specification defines an alternative, abbreviated representation of Entities, which allows consuming only
entity data (the target object of each Relationship or the value of each Property) corresponding to the Properties or
Relationships whose subject is the Entity itself i.e. the own Attributes of the Entity. The simplified representation of
Entities shall be supported by implementations and can be selected by Context Consumers through specific request
parameters. An example of this representation can be found in annex C, clause C.2.2.

The simplified representation of an entity shall include the following:

• A JSON-LD @context as described in clause 4.4.

• A JSON-LD object containing the following members:

- Id, type and @context as described in clause 4.4.

- For each Property a member whose key is the Property Name (a term) and whose value is the Property
Value. In the multi-attribute case, an unordered JSON array consisting of the Values of all Property
instances is provided.

- For each Relationship a term whose key is the Relationship Name (a term) and whose value is the
Relationship's Object (represented as a URI). In the multi-attribute case, an unordered JSON array
consisting of the Objects of all Relationship instances is provided.

NOTE: When the simplified GeoJSON representation is selected, the layout of the Entities changes, see
clause 4.5.17 for details.

4.5.5 Multi-Attribute Support

For each Entity, there can be Attributes that simultaneously have more than one instance. In the case of Properties, there
may be more than one source at a time that provides a Property instance, e.g. based on independent sensor
measurements with different quality characteristics. For instance, take a speedometer and a GPS both providing the
current speed of a car. In the case of Relationships, there may be non-functional Relationships, e.g. for a room, there
may be multiple "contains" Relationships to all sorts of objects currently in the room that have been put there by
different people and which are dynamically changing over time.

To be able to explicitly manage such multi-attributes, the optional datasetId property is used, which is of datatype URI.
It is introduced for Properties and Relationships in clauses 4.5.2 and 4.5.3 respectively. If a datasetId is provided when
creating, updating, appending or deleting Attributes, only instances with the same datasetId are affected, leaving
instances with another datasetId or an instance without a datasetId untouched. If no datasetId is provided, it is
considered as the default Attribute instance. Thus the creation, updating, appending or deleting of Attributes without
providing a datasetId only affects the default Attribute instance. There can only be one default Attribute instance for an
Attribute with a given Attribute Name in any request or response. An example can be found in clause C.2.2.

When requesting Entity information, if there are multiple instances of matching Attributes these are returned as arrays
of Attributes, instead of a single Attribute element.The datasetId of the default Attribute instance is never explicitly
included in responses.

There is no multi-attribute support for non-reified Attributes, in particular this applies to the Temporal Properties
createdAt, modifiedAt and observedAt, and also the unitCode Property.

In case of conflicting information for an Attribute, where a datasetId is duplicated, but there are differences in the other
attribute data, the one with the most recent observedAt DateTime, if present, and otherwise the one with the most recent
modifiedAt DateTime shall be provided.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)33

4.5.6 Temporal Representation of an Entity

The temporal representation of an Entity shall be as mandated by clause 4.5.1, but for each Property and Relationship
their temporal representation shall be provided as mandated by clauses 4.5.7 and 4.5.8.

4.5.7 Temporal Representation of a Property

The temporal representation of an NGSI-LD Property (for instance, its historical evolution) is composed of the
sequence of instances of the referred Property during a period of time within its lifetime.

The temporal evolution of an NGSI-LD Property shall be represented as an Array of JSON-LD objects, each one
representing an instance of the Property (as mandated by clause 4.5.2) at a particular point in time, which is recorded as
a Temporal Property of the instance (typically "observedAt"). See example in clause C.5.6.

If a Property is static (i.e. it has not changed over time) then it shall be represented by an Array with a single instance.

4.5.8 Temporal Representation of a Relationship

The temporal representation of an NGSI-LD Relationship (for instance, its historical evolution) is composed of the
sequence of instances of the referred Relationship during a period of time within its lifetime.

The temporal evolution of an NGSI-LD Relationship shall be represented as an Array of JSON-LD objects, each one
representing an instance of the Relationship (as mandated by clause 4.5.3) at a particular point in time, which is
recorded as a Temporal Property of the instance (typically "observedAt"). See example in clause C.5.5.

If a Relationship is static (i.e. it has not changed over time) then it shall be represented by an Array with a single
instance.

4.5.9 Simplified Temporal Representation of an Entity

The NGSI-LD specification defines an alternative, abbreviated temporal representation of Entities, which allows
consuming temporal Entity data in a more straightforward manner. The simplified temporal representation of Entities
shall be supported by implementations and can be selected by Context Consumers through specific request parameters.
An example can be found in clause C.5.6.

The simplified temporal representation of an Entity shall include the following:

• A JSON-LD @context as described in clause 4.4.

• A JSON-LD object containing the following members:

- id, type and @context as described in clause 4.4.

- For each Property a member whose key is the Property Name (a term). The member value shall be a
JSON-LD object labelled with the type "Property". Such JSON-LD object shall only contain a member
whose key shall be "values". The value of the referred values member shall be a JSON-LD Array that
shall contain as many array elements as Property instances (i.e. data points of the concerned Property)
being represented. Each array element shall be another Array containing exactly two array elements: the
first element shall be a Property value and the second element shall correspond to the associated
Temporal Property (for instance "observedAt"). If the value of the Temporal Property is not known then
an empty string ("") shall be conveyed as the second array element.

- For each Relationship a term whose key is the Relationship Name (a term). The member value shall be a
JSON-LD object labelled with the type "Relationship". Such JSON-LD object shall only contain a
member whose key shall be "objects". The value of the referred objects member shall be a JSON-LD
Array that shall contain as many array elements as Relationship instances (i.e. data points of the
concerned Relationship) being represented. Each array element shall be another array containing exactly
two elements: the first element shall be a Relationship object (a URI) and the second element shall
correspond to the associated Temporal Property (for instance "observedAt"). If the value of the Temporal
Property is not known then an empty string ("") shall be conveyed as the second array element.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)34

4.5.10 Entity Type List Representation

The entity type list representation is used to consume information about entity types.

The entity type list representation shall include the following:

• A JSON-LD @context as described in clause 4.4.

• A JSON-LD object containing the following members:

- "id" whose value shall be a URI that identifies the entity type list. Mandatory.

- "type": "EntityTypeList". Mandatory.

- "typeList": JSON-LD array containing the entity type names. Mandatory.

4.5.11 Detailed Entity Type List Representation

The detailed entity type list representation is used to consume detailed information about entity types including the
names of attributes that instances of each entity type can have.

The detailed entity type list representation shall include the following:

• A JSON-LD @context as described in clause 4.4.

• An array of JSON-LD objects containing the following members:

- "id" whose value shall be the URI that identifies the entity type. Mandatory.

- "type": "EntityType". Mandatory.

- "typeName": Name of entity type, short name if contained in @context. Mandatory.

- "attributeNames": JSON-LD array containing the names of attributes that instances of the entity type can
have. Mandatory.

4.5.12 Entity Type Information Representation

The entity type information representation is used to consume detailed information about an entity type.

The entity type information representation shall include the following:

• A JSON-LD @context as described in clause 4.4.

• A JSON-LD object containing the following members:

- "id" whose value shall be the URI that identifies the entity type. Mandatory.

- "type": "EntityTypeInformation". Mandatory.

- "typeName": the URI that identifies the entity type (short name in case of availability in @context).
Mandatory.

- "entityCount": number of entity instances of this entity type. Mandatory.

- "attributeDetails": an array of JSON-LD objects as described in clause 4.5.15 representing attribute
information with only the elements "id", "type", "attributeName" and "attributeTypes". Mandatory.

4.5.13 Attribute List Representation

The attribute list representation is used to consume information about attributes.

The attribute list representation shall include the following:

• A JSON-LD @context as described in clause 4.4.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)35

• A JSON-LD object containing the following members:

- "id" whose value shall be a URI that identifies the attribute list. Mandatory.

- "type": "AttributeList". Mandatory.

- "attributeList": JSON-LD array containing the attribute names. Mandatory.

4.5.14 Detailed Attribute List Representation

The detailed attribute list representation is used to consume detailed information about attributes including the names of
entity types that have instances with attributes, which have the respective attribute name.

The detailed entity type list representation shall include the following:

• A JSON-LD @context as described in clause 4.4.

• An array of JSON-LD objects as described in clause 4.5.15 representing attribute information with only the
elements "id", "type", "attributeName" and "typeNames".

4.5.15 Attribute Information Representation

The attribute information representation is used to consume detailed information about an attribute.

The attribute information representation shall include the following:

• A JSON-LD @context as described in clause 4.4.

• A JSON-LD object containing the following members:

- "id" whose value shall be the URI that identifies the attribute. Mandatory.

- "type": "Attribute". Mandatory.

- "attributeName": the URI that identifies the attribute (short name in case of availability in @context).
Mandatory.

- "attributeCount": number of instances of this attribute. Optional.

- "attributeTypes": an array of attribute types (e.g. Property, Relationship, GeoProperty) for which
instances with the attribute name exist. Optional.

- "typeNames": an array of the names of entity types that have instances with attributes, which have the
respective attribute name. Optional.

4.5.16 GeoJSON Representation of Entities

4.5.16.0 Foreword

The NGSI-LD specification defines an alternative representation of Entities, to make NGSI-LD responses compatible
with GIS (Geographic Information System) applications which support the GeoJSON format [8] and/or GeoJSON-LD
[i.20].

Every NGSI-LD Entity can be represented as a GeoJSON Feature object, where a Feature object represents any
spatially bounded thing as defined by its geometry.

4.5.16.1 Top-level "geometry" field selection algorithm

A parameter of the request (named "geometryProperty") may be used to indicate the name of the GeoProperty to be
selected. If this parameter is not present, then the default name of "location" shall be used.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)36

If the selected GeoProperty has multiple instances as described in clause 4.5.5, either a "datasetId" shall be specified,
in order to define which instance of the value is to be selected, or a default attribute instance exists, which is then
selected, if no "datasetId" was specified.

If an entity lacks the GeoProperty as specified or the value does not hold a valid GeoJSON geometry object then the
geometry shall be undefined and returned with a value of null - which is syntactically valid GeoJSON.

4.5.16.2 GeoJSON Representation of an individual Entity

The GeoJSON representation of a spatially bounded Entity is defined as a single GeoJSON Feature object including the
following members:

• "id": Mandatory - the Entity "id".

• "type": Mandatory - the fixed value "Feature".

• "geometry": Mandatory - The value of the selected GeoProperty (a GeoJSON geometry object) used to define
the spatial location of the Entity. Note that no sub-attributes of the selected GeoProperty are present in the
representation.

• "properties": Mandatory - An array containing:

- "type": Mandatory - the "type" of the Entity.

- One member for each Property (including the selected GeoProperty) as per the rules stated in
clause 4.5.2. In case of multiple Property instances with the same Property Name as described in
clause 4.5.5, all instances are provided as an unordered JSON array.

- One member for each Relationship as per the rules stated in clause 4.5.3. In case of multiple
Relationship instances with the same Property Name as described in clause 4.5.5, all instances are
provided as an unordered JSON array.

• A JSON-LD @context as described in clause 4.4 if requested as part of the payload body

This representation shall be fully compliant with Feature as defined within IETF RFC 7946 [8].

An example can be found in clause C2.3.

4.5.16.3 GeoJSON Representation of Multiple Entities

The GeoJSON representation of a list of spatially bounded Entities is defined as a single GeoJSON FeatureCollection
object containing an array of GeoJSON Feature objects as follows:

• "type": Mandatory - the fixed value "FeatureCollection".

• "features": a JSON array of GeoJSON Feature objects as defined in clause 4.5.16.2. Note that separate
@context elements for each Feature will not be present in the payload body.

• A JSON-LD @context as described in clause 4.4 if requested as part of the payload body.

This representation shall be fully compliant with FeatureCollection as defined within IETF RFC 7946 [8].

An example can be found in clause C2.3.

4.5.17 Simplified GeoJSON Representation of Entities

4.5.17.0 Foreword

When both simplified (see clause 4.5.4) and GeoJSON representation is requested, the following simplified GeoJSON
representation compatible with GIS systems shall be returned.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)37

4.5.17.1 Simplified GeoJSON Representation of an individual Entity

The simplified GeoJSON representation of a spatially bounded Entity is defined as a single GeoJSON Feature object as
follows:

• "id": Mandatory - the Entity "id".

• "type": Mandatory - the fixed value "Feature".

• "geometry": Mandatory - The value of the selected GeoProperty (a GeoJSON geometry object) used to define
the spatial location of the Entity.

• "properties": Mandatory - An array containing the following attributes:

- "type": Mandatory - the "type" of the Entity.

- For each Property (including the selected GeoProperty) a member whose key is the Property Name (a
term) and whose value is the Property Value. In the multi-attribute case, an unordered JSON array
consisting of the Values of all Property instances is provided.

- For each Relationship a term whose key is the Relationship Name (a term) and whose value is the
Relationship's Object (represented as a URI). In the multi-attribute case, an unordered JSON array
consisting of the Objects of all Relationship instances is provided.

• A JSON-LD @context as described in clause 4.4 if requested as part of the payload body.

The selection of the geometry field is defined in clause 4.5.16.1.

This representation shall be fully compliant with Feature as defined within IETF RFC 7946 [8].

An example can be found in clause C2.3.

4.5.17.2 Simplified GeoJSON Representation of multiple Entities

The simplified GeoJSON representation of a list of spatially bounded Entities is defined as a single GeoJSON
FeatureCollection object containing an array of GeoJSON Feature objects as follows:

• "type": Mandatory - the fixed value "FeatureCollection".

• "features": Mandatory - a JSON array of simplified GeoJSON Feature objects as defined in clause 4.5.17.1.
Note that separate @context elements for each Feature will not be present in the payload body.

• A JSON-LD @context as described in clause 4.4 if requested as part of the payload body.

This representation shall be fully compliant with FeatureCollection as defined within IETF RFC 7946 [8].

4.6 Data Representation Restrictions

4.6.1 Supported text encodings

NGSI-LD implementations shall support the UTF-8 text encoding format. To avoid interoperability problems,
applications shall provide JSON content encoded using UTF-8 and NGSI-LD systems shall also expose such JSON
content using UTF-8.

4.6.2 Supported names

Even though the JSON serialization format allows inclusion of any character in the Unicode space, NGSI-LD restricts
Entity Type Names, Property Names and Relationship Names to the following ABNF grammar:

nameChar = unicodeNumber / unicodeLetter
nameChar =/ %x5F ; _
name = unicodeLetter *nameChar

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)38

• unicodeNumber is any Unicode character that has Number as a Category [22]. With Unicode-capable regular
expression (RegEx) parsers, such a character may be matched by \p{N}.

• unicodeLetter is any Unicode character that has Letter as a Category [22]. With Unicode-capable regular
expression (RegEx) parsers, such a character may be matched by \p{L}.

In order to avoid name clashing, names can be prefixed as specified by the following BNF grammar:

prefix = unicodeLetter *nameChar
name =/ prefix %x3A unicodeLetter *nameChar ; prefix:name

When receiving a JSON-LD object with a Name (Type, Property, Relationship) including characters different than
those expressed above, implementations should raise an error of type BadRequestData.

4.6.3 Supported data types for Values

Compliant NGSI-LD implementations shall support the following data types for representing Values:

• All the JSON native data types as mandated by IETF RFC 8259 [6], section 3.

• All the GeoJSON Geometries [8] with the exception of GeometryCollection.

• DateTime string for encoding a timestamp, i.e. a calendar date together with a time of day, expressed in UTC,
using the ISO 8601 [17] Complete Representation and in particular using the 'Extended Format', as described
below:

- The timestamp shall be a string containing Year, Month, Day, Hours, Minutes, Seconds and time zone
components using the format YYYY-MM-DDThh:mm:ssZ as defined in ISO 8601 [17]. In this
representation, the character "-" is used to separate the calendar date components, the character "T" is
used to indicate the start of the time of day portion, the character ":" is used to separate the time of day
components, and the trailing character "Z" is used to convey the time zone.

- All the referred components shall appear in the string; reduced representations are not permitted.

- The Seconds component may optionally contain a decimal fraction. In this case the string shall contain
two integer digits, followed by a comma and then one or more fractional digits, up to a maximum of six.
For example, YYYY-MM-DDThh:mm:ss,ssssssZ.

- The trailing timestamp component shall contain the time zone related information and shall always be
equal to the character "Z". Therefore, all timestamps shall be expressed in UTC.

• Date string for encoding a calendar date. It uses ISO 8601 [17] Complete Representation using the 'Extended
Format', as described below:

- It shall be a string containing Year, Month, Day components using the format YYYY-MM-DD as defined
in ISO 8601 [17]. In this representation, the character "-" is used to separate the calendar date
components.

- All the referred components shall appear in the string; reduced representations are not permitted.

• Time string for encoding a local time expressed in UTC. It uses ISO 8601 [17] Complete Representation using
the 'Extended Format', as described below:

- It shall be a string containing Hours, Minutes and Seconds components using the format hh:mm:ssZ as
defined in ISO 8601 [17]. In this representation, the character ":" is used to separate the local time
components.

- All the referred components shall appear in the string; reduced representations are not permitted.

- The Seconds component may optionally contain a decimal fraction. In this case the string shall contain
two integer digits, followed by a comma and then one or more fractional digits, up to a maximum of six.
For example, hh:mm:ss,ssssssZ.

- The string shall not contain expressions of the difference between local time and UTC. All
representations shall be interpreted as being expressed in UTC.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)39

• URI as mandated by ISO 8601 [17], Appendix A, production rule named 'URI'.

Implementations may support additional data types different to those enumerated above, for instance:

• JSON-LD typed value (i.e. a string as the lexical form of the value together with a type, defined by an XSD
base type or more generally an IRI).

• JSON-LD structured value (i.e. a set, a list, a language-tagged string).

4.6.4 Supported Entity Content

In principle, context information providers can publish any kind of data serialized in JSON and encoded in UTF-8.
Nonetheless, to avoid security problems caused by script injection attacks or other attack vectors, the following
characters are prohibited and shall not be part of any value:

• %x3C ; <

• %x3E ; >

• %x22 ; "

• %x27 ; '

• %x3D ; =

• %x3B ; ;

• %x28 ; (

• %x29 ;)

When receiving entities (context information) encoded in JSON format and containing values that include the forbidden
characters implementations shall raise an error of type BadRequestData.

4.7 Geospatial Properties

4.7.1 GeoJSON Geometries

Geospatial Properties in NGSI-LD shall be represented using GeoJSON Geometries [8]. With the aim of highlighting
and encoding those Properties which convey geospatial characteristics, NGSI-LD defines a special type of Property
named GeoProperty, defined by the NGSI-LD @context described by the present document in clause 4.4.

When dealing with NGSI-LD Entities, implementations shall interpret JSON-LD nodes of type GeoProperty just as
conventional Properties but with the additional requirement that the Value corresponding to such Property shall be a
GeoJSON Geometry. All the Geometries defined by [8] are allowed except GeometryCollection. In addition,
implementations should take the necessary steps to create the corresponding geo-indexes so that information can be
properly returned when geo-queries are executed.

NGSI-LD defines the following Properties of type GeoProperty. Preferably these Properties should be used if they
semantically fit, but if necessary, additional Properties of type GeoProperty can be defined by Context Producers:

• location is defined as the geospatial Property representing the geographic location of the Entity, e.g. the
location of a building or the current location of a car.

• observationSpace is defined as the geospatial Property representing the geographic location that is being
observed, e.g. by a sensor. For example, in the case of a camera, the location of the camera and the observation
space are different and can be disjoint.

• operationSpace is defined as the geospatial Property representing the geographic location in which an Entity,
e.g. an actuator is active. For example, a crane can have a certain operation space.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)40

The defined Properties can also be used as part of Context Source Registrations (see clause 5.2.9). In this case they
represent locations in which Entities with the respective geospatial Properties are contained. For example, a Context
Source that monitors the location of cars in a city may be represented by a Context Source Registration whose Property
location corresponds to the space of the city in which the location of cars is monitored.

4.7.2 Representation of GeoJSON Geometries in JSON-LD

There are certain types of GeoJSON geometries, for instance Polygon, whose coordinates are represented using nested
array structures (through the coordinates member). Such representation may introduce serialization problems when
transforming JSON-LD content into RDF graphs.

Also, when using whole GeoJSON geometries (consisting of type and coordinates) in an NGSI-LD document, its JSON
syntax is only preserved in the regular JSON-LD representation (with separate @context), but not in an expanded
representation. To handle resulting problems, optionally, whole GeoJSON geometries can be represented as a JSON
string.

Implementations shall accept the referred encoded string value, if and only if, it can be parsed into a JSON Object, as
mandated by IETF RFC 8259 [6], meeting the syntax and restrictions mandated by IETF RFC 7946 [8] when
representing a valid Geometry of the type specified.

For the avoidance of doubt, regular encodings of GeoJSON geometries (as JSON Object) shall also be accepted by
implementations, but Context Producers should consider the implications in terms of RDF compatibility.

4.8 Temporal properties
NGSI-LD defines the following Properties of type TemporalProperty that shall be supported by implementations:

• observedAt is defined as the temporal Property at which a certain Property or Relationship became valid or
was observed. For example, a temperature Value was measured by the sensor at this point in time.

• createdAt is defined as the temporal Property at which the Entity, Property or Relationship was entered into
an NGSI-LD system.

• modifiedAt is defined as the temporal Property at which the Entity, Property or Relationship was last
modified in an NGSI-LD system, e.g. in order to correct a previously entered incorrect value.

Temporal Properties in NGSI-LD shall be represented based on the DateTime data type as mandated by clause 4.6.3.

NOTE 1: For simplicity reasons, a TemporalProperty is represented only by its Value, i.e. no Properties of
TemporalProperty nor Relationships of TemporalProperty can be conveyed. In more formal language, a
TemporalProperty does not allow reification.

NOTE 2: It is important to remark that the term TemporalProperty has been reserved for the semantic tagging of
non-reified structural timestamps (observedAt, createdAt, modifiedAt), which capture the temporal
evolution of Entity Attributes. Only such structural timestamps can be used as timeproperty in Temporal
Queries as mandated by clause 4.11.

NOTE 3: User-defined Properties whose value is a time value (Date, DateTime or Time) are defined as Property,
not as TemporalProperty, and are serialized in NGSI-LD as shown in clause C.6.

4.9 NGSI-LD Query Language
The NGSI-LD Query Language shall be supported by implementations. It is intended to:

• filter out Entities by Attribute Values (target is the "value" member of a Property, see table 5.2.5-1, or the
"object" member of a Relationship, see table 5.2.6-1);

• filter out Context Sources by the values of properties that describe them, defined when Context Sources are
registered (target is the name of a Context Source Property member of the CsourceRegistration, see
table 5.2.9-1).

In this clause, one string parameter is defined in order to fully specify an NGSI-LD Query.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)41

In case of HTTP binding, whenever the string acting as a filter is part of the HTTP binding's URI, then it shall be URI-
encoded (percent-encoded, as described in IETF RFC 3986 [5]).

The grammar that encodes the syntax of the parameter, expressed in ABNF format [12], is the NGSI-LD Query
Language. It is described below (it has been validated using https://tools.ietf.org/tools/bap/abnf.cgi), and it shall be
supported by implementations:

Query = (QueryTerm / QueryTermAssoc) *(LogicalOp (QueryTerm / QueryTermAssoc))
QueryTermAssoc = %x28 QueryTerm *(LogicalOp QueryTerm) %x29 ; (QueryTerm)
QueryTerm = Attribute
QueryTerm =/ Attribute Operator ComparableValue
QueryTerm =/ Attribute equal CompEqualityValue
QueryTerm =/ Attribute unequal CompEqualityValue
QueryTerm =/ Attribute patternOp RegExp
QueryTerm =/ Attribute notPatternOp RegExp
DottedPath = AttrName *(%x2E AttrName) ; AttrName *(.AttrName)
Attribute = DottedPath *1(%x5B DottedPath %x5D) ; DottedPath *1([DottedPath])
Operator = equal / unequal / greaterEq / greater / lessEq / less
ComparableValue = Number / quotedStr / dateTime / date / time
OtherValue = false / true
Value = ComparableValue / OtherValue
Range = ComparableValue dots ComparableValue
ValueList = Value 1*(%x2C Value) ; Value 1*(, Value)
CompEqualityValue = OtherValue / ValueList / Range / URI
equal = %x3D %x3D ; ==
unequal = %x21 %x3D ; !=
greater = %x3E ; >
greaterEq = %x3E %x3D ; >=
less = %x3C ; <
lessEq = %x3C %x3D ; <=
patternOp = %x7E %x3D ; ~=
notPatternOp = %x21 %x7E %x3D ; !~=
dots = %x2E %x2E ; ..
AttrNameChar = unicodeNumber / unicodeLetter
AttrNameChar =/ %x5F ; _
AttrName = unicodeLetter *AttrNameChar
quotedStr = String ; "*char"
andOp = %x3B ; ;
orOp = %x7C ; |
LogicalOp = andOp / orOp

• unicodeNumber is any Unicode character that has Number as a Category [22]. With Unicode-capable regular
expression (RegEx) parsers, such a character may be matched by \p{N}.

• unicodeLetter is any Unicode character that has Letter as a Category [22]. With Unicode-capable regular
expression (RegEx) parsers, such a character may be matched by \p{L}.

• Number shall be a number as mandated by the JSON Specification, following the ABNF Grammar, production
rule named number, section 6 of IETF RFC 8259 [6].

• String shall be a text string as mandated by the JSON Specification, following the ABNF Grammar,
production rule named String, section 7 of IETF RFC 8259 [6].

• char shall be a character as mandated by the JSON Specification, ABNF Grammar, production rule named
char, section 7 of IETF RFC 8259 [6].

• false shall be conformant with the JSON ABNF Grammar, production rule named false, section 3 of IETF
RFC 8259 [6]. It is intended to represent the Boolean value corresponding to "false".

• true shall be conformant with the JSON ABNF Grammar, production rule named true, section 3 of IETF
RFC 8259 [6]. It is intended to represent the Boolean value corresponding to "true".

• RegExp shall be a regular expression as mandated by IEEE POSIX 1003.2™ [11].

• dateTime shall be a DateTime value as mandated by clause 4.6.3.

• time shall be a Time value as mandated by clause 4.6.3.

• date shall be a Date value as mandated by clause 4.6.3.

https://tools.ietf.org/tools/bap/abnf.cgi

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)42

• URI shall be a URI as mandated by IETF RFC 3986 [5] or an IRI as mandated by IETF RFC 3987 [23],
appendix A, production rule named URI.

A Query Term (production rule QueryTerm) defines a predicate which serves as a matching condition for Entities. The
constituent parts of a Query Term are:

• an attribute path (production rule named Attribute);

• an optional pair composed by an operator (production rule named Operator) and a value (production rule
named Value).

The attribute path (production rule Attribute) is a simple name AttrName, optionally followed by a dot-separated list
of more AttrName (see later Example 8), optionally followed by one trailing list of more dot-separated AttrNames
enclosed in one pair of square brackets (see later Example 9). The attribute path is always a composition of short
hand names and not a fully qualified ones, because, when the query language is used, an @context properly defining
all the terms (as per clause 5.5.7) shall be issued.

EXAMPLE 1: temperature==20.

EXAMPLE 2: brandName!="Mercedes".

EXAMPLE 3: isParked=="urn:ngsi-ld:OffStreetParking:Downtown1".

EXAMPLE 4: A query encoded as an HTTP Query String. Please note that this is HTTP binding specific, to be
used via GET method, as defined in clause 6.4.3.2. The NGSI-LD query language string is
conveyed by means of parameter q.

 ?q=speed>50;brandName!=Mercedes. Also note that (as stated above) URI-encoding
(percent-encoding) is required if the query string contains reserved characters (see IETF
RFC 3986 [5] and IETF RFC 3987 [23], for the exact list of them).

EXAMPLE 5: isMonitoredBy (to query Entities that have the Attribute isMonitoredBy).

Query Terms may be combined through logical operators that shall be supported by implementations as follows:

• The production rule andOp defines a logical AND operator conveying that the requested entities are those
which meet at the same time the conditions posed by all the Query Terms affected by such an operator.

• The production rule orOp defines a logical OR operator conveying that the requested entities are those which
meet any of the conditions posed by the Query Terms affected by such an operator.

• When evaluating logical conditions, and in the absence of specific Query Term associations (see below), the
logical AND operator shall take precedence over the logical OR operator.

Association of Query Terms shall be supported by implementations as per the grammar included by the present clause
(production rule named QueryTermAssoc). An association of Query Terms is composed of the combination of different
Query Terms linked by logical operators (AND, OR) and delimited by parenthesis. The evaluation of an association of
Query Terms shall always take precedence over individual, non-associated Query Terms.

EXAMPLE 6: ((speed>50|rpm>3000);brandName=="Mercedes").

EXAMPLE 7: (temperature>=20;temperature<=25)|capacity<=10.

The following Example 8 shows the syntax of an attribute path that is defined by the production rule Attribute, as a dot-
separated list of names. Such a list is intended to address a Property or Relationship included by the matching entities
subjacent graph, in accordance with the following rules:

• Every name in the list shall be expanded to a URI (fully qualified name) as mandated by clause 5.5.7.

• The first name shall refer to a Property or Relationship (top level element) whose subject shall be a matching
Entity. Strictly speaking, and as per the JSON-LD representation rules, such (fully qualified) name shall be
equal to the (fully qualified) name of the concerned Property or Relationship.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)43

• Each other name (if present) represents a (sub)Property or (sub)Relationship, starting with the top-level
element as subject and continuing through the graph traversal. The element addressed by the last name in the
list is defined as the target element. If only one name is present in the attribute path, then the target element is
the top level one.

EXAMPLE 8: temperature.observedAt>=2017-12-24T12:00:00Z.

If the target element is a Property, the target value is defined as the Value associated to such Property. If a Property has
multiple instances (identified by its respective datasetId), and no datasetId is explicitly addressed, the target value shall
be any Value of such instances.

If the target element is a Relationship, the target object is defined as the object associated (represented as a URI) to
such Relationship. If a Relationship has multiple instances (identified by its respective datasetId), and no datasetId is
explicitly addressed, the target object shall be any object of such instances.

When a Query Term only defines an attribute path (production rule named Attribute), the matching Entities shall be
those which define the target element (Property or a Relationship), regardless of any target value or object.

Lastly, implementations shall support queries involving specific data subitems belonging to a Property Value (seed
target value) represented by a JSON object structure (compound value). For that purpose, an attribute path may
additionally contain a trailing path (enclosed in a single pair of square brackets that signal that the overall path is now
entering the compound value) composed of a dot-concatenated list of JSON member names, and intended to address a
specific data subitem (member) within the seed target value. When such a trailing path is present, implementations
shall interpret and evaluate it (against the seed target value) as a MemberExpression of ECMA 262 (see reference [21]),
in dot notation, as clarified therein at section Property Accessors). If the evaluation of such MemberExpression does not
result in a defined value, the target element shall be considered as non-existent for the purpose of query resolution.

EXAMPLE 9: address[city]=="Berlin". The trailing path is [city]. It is used to refer to a particular subitem within
the value of the "address" Property, which is a complex JSON object representing a postal address.
Please refer to the following NGSI-LD Entity:

{

 "id":"urn:ngsi-ld:placedescription:123",

 "type":"PlaceDescription",

 "address": {

 "type":"Property",

 "value": {

 "city":"Berlin",

 "street":"Ulrich Strasse"

 }

 }

}

EXAMPLE 10: sensor.rawdata[airquality.particulate]==40. The trailing path is [airquality.particulate]. The
"particulate" property of the compound JSON object is targeted. Please refer to the following
NGSI-LD Entity:

{

 "id":"urn:ngsi-ld:particulatemeasurement:345",

 "type":"ParticulateMeasurement",

 "sensor": {

 "type":"Property",

 "value": 40,

 "rawdata": {

 "type":"Property",

 "value": {

 "airquality": {

 "particulate": 40,

 "PM20": 85

 }

 }

 }

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)44

 }

}

If the target element corresponds to a Relationship, the combination of such target element with any operator different
than equal or unequal shall result in not matching.

A Query Term value shall be any of the following (depending on the operator used):

• A literal value (string, number, date, etc.) (production rule named Value).

• A range of values (production rule named Range), specified as a minimum and a maximum value.

• A regular expression (production rule named RegExp).

• A URI (production rule named URI).

• A comma-separated list of literal values (production rule named ValueList).

When comparing dates or times, the order relation considered shall be a temporal one.

When it comes to comparing text strings, implementations:

• shall follow the recommendations defined by IETF RFC 8259 [6], section 8.3.

• should support the Unicode Collation Algorithm (UCA), as defined by [13].

URI comparison should be performed so that the number of false negatives is minimized, as recommended by IETF
RFC 3986 [5], section 6.

The semantics of the different logical operators used by Query Terms are described as follows and shall be supported by
compliant implementations:

• Equal operator (production rule named equal). A matching Entity shall contain the target element and meet
any of the following conditions:

- The Query Term value, e.g. color == "red":

 Is identical or equivalent to the target value (e.g. matches "red").

 Is included in the target value, if the latter is an array (e.g. matches ["blue","red","green"]).

- If the Query Term value is a list of values (production rule named ValueList), e.g. color=="black", "red":

 The target value is identical or equivalent to any of the list values (e.g. matches "red").

 The target value includes any of the Query Term values, if the target value is an array (e.g. matches
["red","blue"]).

- If the Query Term value is a range (production rule named Range), e.g. temperature==10..20:

 The target value is in the interval between the minimum and maximum of the range (both included)
(e.g. matches 15).

- If there is no equality between the target value data type and the Query Term value data type, then it shall
be considered as not matching.

• Unequal operator (production rule named unequal). A matching entity shall contain the target element and
meet any of the following conditions:

- The Query Term value, e.g. color!= "red":

 Is neither identical nor equivalent to the target value (e.g. matches "black").

 Is not included in the target value, if the latter is an array (e.g. matches ["blue","black","green"],
but not ["blue","red","green"]).

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)45

- If the Query Term value is a list of values (production rule named ValueList), e.g. color!= "black", "red":

 The target value is neither identical nor equivalent to any of the list values (e.g. matches "blue").

 The target value does not include any of the list values, if the target value is an array (e.g. matches
["blue","yellow","green"], but not ["blue","red","green"]).

- If the Query Term value is a range (production rule named Range), e.g. temperature!=10..20:

 The target value is not in the interval between the minimum and the maximum (both included)
(e.g. matches 9).

- If the data type of the target value and the data type of the Query Term value are different, then they shall
be considered unequal.

• Greater than operator (production rule named greater). For an entity to match, it shall contain the target
element and the target value has to be strictly greater than the Query Term value:

- If there is no equality between the target value data type and the Query Term value data type then it shall
be considered as not matching.

• Less than operator (production rule named less). For an entity to match, it shall contain the target element and
the target value shall be strictly less than the value:

- If there is no equality between the target value data type and the Query Term value data type then it shall
be considered as not matching.

• Greater or equal than (production rule named greaterEq). A matching entity shall meet any of the Greater
than or the Equal conditions for single values.

• Less or equal than (production rule named lessEq). A matching entity shall meet any of the Less than or the
Equal conditions for single values.

• Match pattern (production rule named patternOp). A matching entity shall contain the target element and the
target value shall be in the L(R) of the regular pattern specified by the Query Term:

- If the target value data type is different than String then it shall be considered as not matching.

• Do not match pattern (production rule named notPatternOp). A matching entity shall contain the target
element and the target value shall not be in the L(R) of the regular pattern specified by the Query Term:

- If the target value data type is different than String then it shall be considered as not matching.

4.10 NGSI-LD Geo-query language
The NGSI-LD Geo-query language shall be supported by implementations. It is intended to define predicates which
allow testing whether a specific topological spatial relationship exists between a pair of geometries: a target geometry
and a reference geometry. The target geometry represents a geospatial Property of an Entity, typically, the location of
the Entity.

A total of four parameters are defined in order to fully specify an NGSI-LD Geo-query:

• georel, to express the desired geospatial relationship;

• geometry, to express the type of the reference geometry;

• coordinates, to express the reference geometry;

• geoproperty, to express the target geometry of an Entity. This parameter is optional, location is the default.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)46

The following grammar defines the syntax for the geospatial relationships (parameter name georel):

andOp = %x3B ; ;
equal = %x3D %x3D ; ==
georel = nearRel / withinRel / containsRel / overlapsRel / intersectsRel / equalsRel / disjointRel
nearRel = nearOp andOp distance equal PositiveNumber ; near;max(min)Distance==x (in meters)
distance = "maxDistance" / "minDistance"
nearOp = "near"
withinRel = "within"
containsRel = "contains"
intersectsRel = "intersects"
equalsRel = "equals"
disjointRel = "disjoint"
overlapsRel = "overlaps"

PositiveNumber shall be a non-zero positive number as mandated by the JSON Specification. Thus, it shall follow the
ABNF Grammar, production rule named Number, section 6 of IETF RFC 8259 [6], excluding the 'minus' symbol and
excluding the number 0.

Reference geometries shall be specified by:

• A geometry type (parameter name geometry) as defined by the GeoJSON specification (IETF RFC 7946 [8],
section 1.4), except GeometryCollection.

• A coordinates (parameter name coordinates) element which shall represent the coordinates of the reference
geometry as mandated by IETF RFC 7946 [8], section 3.1.1.

Target geometry, i.e. the target Entity's GeoProperty to which the geo-query is to be applied, can be specified by an
extra parameter named geoproperty. The GeoProperty's name shall be specified as short hand name and not a fully
qualified one, because, when the query language is used, an @context properly defining all the terms (as per
clause 5.5.7) shall be issued. If no geoproperty is specified, the geo-query is applied to the default Property location
(see clause 4.7.1).

(Please note that proper URL encoding shall be used by HTTP binding API clients when using these examples.)

EXAMPLE 1: georel=near;maxDistance==2000

geometry=Point

coordinates=[8,40]

geoproperty=observationSpace

EXAMPLE 2: georel=within

geometry=Polygon

coordinates=[[[100.0,0.0],[101.0,0.0],[101.0,1.0],[100.0,1.0],[100.0,0.0]]]

geoproperty=location

EXAMPLE 3: A query encoded as an HTTP Query String. Please note that this is HTTP binding specific, to be
used via GET method, as defined in clause 6.4.3.2.

 ?georel=near;maxDistance==2000&geometry=Point&coordinates=[8,40]

The semantics of the different geospatial relationships defined above is as follows, and shall be supported by compliant
implementations:

• near statement (production rule named nearRel):

- maxDistance modifier. For an entity to match it has to be within the buffer geometric object (as defined
by [14]) given by the reference geometry, with distance (in meters) equal to the number conveyed
(production rule named PositiveNumber).

- minDistance modifier. For an entity to match it has to be disjoint with the buffer geometric object (as
defined by [14]) given by the reference geometry, with distance (in meters) equal to the number
conveyed (production rule named PositiveNumber).

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)47

• equals relationship (production rule named equalsRel). For an entity to match, the target geometry shall be
equal, as specified by [14], to the reference geometry.

• disjoint relationship (production rule named disjointRel). For an entity to match, the target geometry shall be
disjoint, as specified by [14], to the reference geometry.

• intersects relationship (production rule named intersectsRel). For an entity to match, the target geometry shall
intersect, as specified by [14], with the reference geometry.

• within relationship (production rule named withinRel). For an entity to match, the target geometry shall to be
within, as specified by [14], the reference geometry.

• contains relationship (production rule named containsRel). For an entity to match, the target geometry shall
contain, as specified by [14], the reference geometry.

• overlaps relationship (production rule named overlapsRel). For an entity to match, the target geometry shall
overlap, as specified by [14], the reference geometry.

When resolving geo-queries, Entities which do not convey the target GeoProperty of the query shall be considered as
non-matching.

4.11 NGSI-LD Temporal Query language
The NGSI-LD Temporal Query language shall be supported by implementations. It is intended to define predicates
which allow testing whether Temporal Properties of NGSI-LD Entities, Properties and Relationships, are within certain
temporal constraints. In particular it can be used to request historic Property values and Relationships that were valid
within the specified timeframe.

The following grammar defines the syntax that shall be supported:

timerel = beforeRel / afterRel / betweenRel
beforeRel = "before"
afterRel = "after"
betweenRel = "between"

The points in time for comparison are defined as follows:

• A timeAt parameter, which shall represent the comparison point for the before and after relation and the
starting point for the between relation. It shall be represented as DateTime (mandated by clause 4.6.3).

• An endTimeAt parameter, which is only used for the between relation and shall represent the end point for
comparison. It shall be represented as DateTime (mandated by clause 4.6.3).

The Temporal Property (see clause 4.8) to which the temporal query is to be applied can be specified by timeproperty.
If no timeproperty is specified, the temporal query is applied to the default Temporal Property observedAt.

EXAMPLE 1: timerel=before

timeAt=2017-12-13T14:20:00Z

EXAMPLE 2: timerel=between

timeAt=2017-12-13T14:20:00Z

endTimeAt=2017-12-13T14:40:00Z

timeproperty=modifiedAt

EXAMPLE 3: Temporal query encoded as HTTP Query String, please note that this is HTTP binding specific, to
be used via GET method, as defined in clause 6.18.3.2.

 ?timerel=between&timeAt=2017-12-13T14:20:00Z&timeproperty=observedAt

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)48

The semantics of the different temporal relations defined above is as follows, and shall be supported by compliant
implementations:

• before relationship (production rule named beforeRel). For a Temporal Property to match, the value of the
specified Temporal Property (or observedAt as default) has to be before the time specified by timeAt.

• after relationship (production rule named afterRel). For a Temporal Property to match, the value of the
specified Temporal Property (or observedAt as default) has to be after the time specified by timeAt.

• between relationship (production rule named betweenRel). For a Temporal Property to match, the value of the
specified Temporal Property (or observedAt as default) has to be after the time specified by timeAt and before
the time specified by endtimeAt.

When resolving temporal queries, Entities which do not convey the target Temporal Property of the query shall be
considered as non-matching.

4.12 NGSI-LD Query pagination
NGSI-LD Query operations can potentially return a result set including a large number of NGSI-LD Elements, so that
pagination of query results shall be supported by compliant implementations. Nonetheless, the NGSI-LD API is
agnostic about specific pagination mechanisms and only defines the behaviour that shall be observed by NGSI-LD
Systems. FacebookTM for Developers (https://developers.facebook.com/docs/graph-api/using-graph-api/#paging)
describes different pagination mechanisms that can be of help when it comes to the implementation of NGSI-LD Query
Pagination.

For each Query operation, NGSI-LD Systems shall:

• provide a mechanism to iterate through the NGSI-LD Elements of a result set without exhausting NGSI-LD
Client or Broker resources;

• provide a mechanism to flag NGSI-LD Clients when there are remaining NGSI-LD Elements to be traversed
as part of a result set;

• allow NGSI-LD Clients specifying a limit (page size), as a parameter of API Query operations, to the number
of NGSI-LD Elements (at a maximum) retrieved by the implementation for each pagination iteration;

• define a default limit (default page size) to the number of NGSI-LD Elements retrieved per pagination
iteration;

• allow NGSI-LD Clients iterating forwards and backwards through a result set.

NGSI-LD implementations should:

• avoid Denial of Service attacks or other potential security risks, by defining a hard limit to the size of
generated response payload body while paginating. For instance, certain queries can be rejected by issuing an
error of type TooManyResults.

NGSI-LD implementations may:

• warn NGSI-LD Clients when result sets become invalid due to dynamic changes in NGSI-LD Elements
(additions, deletions) occurred while iterating over pages.

The concrete realization of the features described above might depend on each API binding. Nonetheless, NGSI-LD
Systems shall implement pagination features as mandated by the present clause, for any API binding.

4.13 Counting the Number of Results
Given that NGSI-LD Query operations can potentially return a result set including a large number of NGSI-LD
Elements and that pagination of query results shall be supported (see clause 4.12), compliant implementations shall also
support a mechanism for relaying to the client the number of expected resulting elements, when a query is executed.

A specific field (e.g. a custom header in the response in case of HTTP binding, see clause 6.3.13) shall be returned
within the response of a query, whenever this is requested by the client.

https://developers.facebook.com/docs/graph-api/using-graph-api/

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)49

Mechanisms for limiting the number of returned NGSI-LD Elements are independent of the counting mechanism, so
that, potentially, a client can issue a query that limits to zero the number of desired results but asks for the count to be
present.

This is useful for client-side planning and fine-tuning of subsequent queries and their parameters.

4.14 Supporting Multiple Tenants
The concept of a tenant is that a user or group of users utilizes a single instance of an NGSI-LD system (Context Source
or Context Broker) in isolation from other users or groups of users of the same instance, which are considered to be
different tenants. Thus a multi-tenant NGSI-LD system is a system where a single software instance is used by different
users or groups of users, the tenants, where any information related to one tenant (e.g. Entities, Subscriptions, Context
Source Registrations) are only visible to users of the same tenant, but not to users of a different tenant. Typically, multi-
tenancy is used together with an access control mechanism, enforcing the isolation of tenants, however access control
and other security-related aspects are out-of-scope of the present document.

The NGSI-LD API optionally enables multi-tenant systems. To support this, tenant information can be optionally
specified in NGSI-LD API operations. The operation then only applies to the targeted tenant. As all information of one
tenant is isolated from other tenants, the NGSI-LD API operations for managing, retrieving and subscribing to entity
information, but also any context source related operations only apply to the information of the specified tenant in
isolation and never have any effect on the information of other tenants.

As the support and use of tenants is optional, any operation not explicitly specifying a tenant targets a default tenant,
which always exists. NGSI-LD systems not supporting multiple tenants should raise an error of type
NoMultiTenantSupport if a tenant is specified. To enable Context Sources to be part of tenant-based distributed or
federated systems, tenant information can optionally be specified in Context Source Registrations. When contacting the
respective Context Sources, the tenant information from the Context Source Registration has to be used. If no tenant
information is present in the Context Source Registration, no tenant information is to be used and thus the default tenant
is targeted on the registered Context Source. This enables integrating Context Sources not supporting multi-tenancy in a
distributed system with a tenant-based Context Broker or integrating local tenants in a federated system using a
different tenant.

5 API Operation Definition

5.1 Introduction
This clause defines data structures and operations of the NGSI-LD API. No specific binding is assumed. Clause 6 maps
these operations and data types to the HTTP REST binding.

NOTE: In UML diagrams dotted arrows denote a response to a request.

5.2 Data Types

5.2.1 Introduction

Implementations shall support the data types defined by the clauses below. For each member defined by each data type
(including nested ones) a term shall be added to the Core @context, as mandated by clause 4.5.

None of the members described admit a null value, except when they are used in the context of an update operation (see
clause 5.5.8) and implementations shall raise an error of type BadRequestData if a null value is encountered.

Non-normative JSON Schema [i.11] definitions of the referred data types are also available at [i.13].

The use of URI in the context of the present document also includes the use of International Resource Identifiers (IRIs)
as defined in IETF RFC 3987 [23], which extends the use of characters to Unicode characters [22] beyond the ASCII
character set, enabling the support of languages other than English.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)50

5.2.2 Common members

The JSON-LD representation of NGSI-LD Entity, Property, Relationship, Context Source Registration and Subscription
can include the common members described by table 5.2.2-1.

Those members are read-only, and shall be automatically generated by NGSI-LD implementations. They shall not be
provided by Context Producers. In the event that they are provided (in update or create operations) NGSI-LD
implementations shall ignore them.

In query or retrieve operations implementations shall only generate common members (table 5.2.2-1) when the Context
Consumer explicitly asks for their inclusion. Clause 6.3.11 defines the mechanism offered by the HTTP binding for
such purpose.

Table 5.2.2-1: Common members of NGSI-LD elements

Name Data Type Restriction Cardinality Description
createdAt string DateTime (clause 4.6.3) 0..1 Entity creation timestamp. See clause 4.8
modifiedAt string DateTime (clause 4.6.3) 0..1 Entity last modification timestamp. See clause 4.8

5.2.3 @context

When encoding NGSI-LD Entities, Context Source Registrations, Subscriptions and Notifications, as pure JSON-LD
(MIME type "application/ld+json"), a proper @context shall be included as a special member of the corresponding
JSON-LD Object. Table 5.2.3-1 gives a precise definition of this special member.

Table 5.2.3-1: JSON-LD @context tagged member

Name Data Type Restriction Cardinality Description
@context URI, JSON Object, or JSON Array See [2], section 5.1. 0..1 JSON-LD @context.

5.2.4 Entity

This type represents the data needed to define an NGSI-LD entity as mandated by clause 4.5.

The supported JSON members shall follow the requirements provided in table 5.2.4-1.

Table 5.2.4-1: NGSI-LD Entity data type definition

Name Data Type Restriction Cardinality Description
id URI 1 Entity id
type URI or String Entity Type 1 Entity Type. Both short hand

string (type name) or URI are
allowed

location GeoProperty See datatype definition on
clause 5.2.7

0..1 Default geospatial Property of an
entity. See clause 4.7

observationSpace GeoProperty 0..1 See clause 4.7
operationSpace GeoProperty 0..1 See clause 4.7
<Property Name> Property or

Property[]
See datatype definition on
clause 5.2.5

0..N Property as mandated by
clause 4.5.1. For each Property
identified by the same Property
Name, there can be one or more
instances

<Relationship Name> Relationship
or
Relationship[]

See datatype definition on
clause 5.2.6

0..N Relationship as mandated by
clause 4.5.2. For each
Relationship identified by the
same Relationship Name, there
can be one or more instances

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)51

5.2.5 Property

This type represents the data needed to define a Property as mandated by clause 4.5.1.

The supported JSON members shall follow the requirements provided in table 5.2.5-1.

Table 5.2.5-1: NGSI-LD Property data type definition

Name Data Type Restriction Cardinality Description
type string It shall be equal to

"Property"
1 Node type

value Any JSON value
as defined by IETF
RFC 8259 [6]

See NGSI-LD Value
definition at clause 3.1

1 Property Value

observedAt string DateTime (clause 4.6.3) 0..1 Timestamp. See clause 4.8
unitCode string As mandated by [15] 0..1 Property Value's unit code
datasetId URI 0.1 It allows identifying a set or

group of property values
<Property Name> Property or

Property[]
 0..N Properties of Property. For

each Property identified by
the same Property Name,
there can be one or more
instances

<Relationship Name> Relationship or
Relationship[]

See datatype definition on
clause 5.2.6

0..N Relationships of Property.
For each Relationship
identified by the same
Relationship Name, there
can be one or more
instances

5.2.6 Relationship

This type represents the data needed to define a Relationship as mandated by clause 4.5.2.

The supported JSON members shall follow the requirements provided in table 5.2.6-1.

Table 5.2.6-1: NGSI-LD Relationship data type definition

Name Data Type Restriction Cardinality Description
type string It shall be equal to "Relationship" 1 Node type
object URI 1 Relationship's target object
observedAt string DateTime (clause 4.6.3) 0..1 Timestamp. See clause 4.8
datasetId URI 0..1 It allows identifying a set or

group of target relationship
objects

<Property Name> Property or
Property[]

See datatype definition on
clause 5.2.5

0..N Properties of the
Relationship. For each
Property identified by the
same Property Name, there
can be one or more
instances

<Relationship Name> Relationship
or
Relationship[]

 0..N Relationships of the
Relationship. For each
Relationship identified by
the same Relationship
Name, there can be one or
more instances

5.2.7 GeoProperty

This type represents the data needed to define a GeoProperty.

The supported JSON members shall follow the requirements provided in table 5.2.7-1.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)52

Table 5.2.7-1: NGSI-LD GeoProperty data type definition

Name Data Type Restriction Cardinality Description
type string It shall be equal to

"GeoProperty"
1 Node type

value JSON Object As mandated by clause 4.7 1 Geolocation encoded as
GeoJSON [8]

observedAt string DateTime (clause 4.6.3) 0..1 Timestamp. See clause 4.8
datasetId URI 0..1 It allows identifying a set or

group of property values
<Property Name> Property or

Property[]
 0..N Properties of Property For

each Property identified by
the same Property Name,
there can be one or more
instances

<Relationship Name> Relationship
or
Relationship[]

See datatype definition on
clause 5.2.6

0..N Relationships of Property.
For each Relationship
identified by the same
Relationship Name, there
can be one or more
instances

5.2.8 EntityInfo

This type represents what Entities, Entity Types or group of Entity ids (as a regular expression pattern mandated by
IEEE POSIX 1003.2™ [11]) can be provided (by Context Sources) or Subscribed to by Context Consumers.

The JSON members shall follow the indications provided in table 5.2.8-1. id takes precedence over idPattern.

Please notice that Cardinality of "type" being 1 implies that it is not possible to register what Entities can be provided
by a Context Source (or what Entities a Context Consumer wants to subscribe to) just by their id or idPattern (i.e.
without specifying their type).

Table 5.2.8-1: EntityInfo data type definition

Name Data Type Restrictions Cardinality Description
id string valid URI 0..1 Entity identifier
idPattern string Regular expression as per IEEE

POSIX 1003.2™ [11]
0..1 A regular expression which denotes a

pattern that shall be matched by the
provided or subscribed Entities

type URI or
String

Fully Qualified Name of an Entity
Type or the Entity Type Name as
a short-hand string. See
clause 4.6.2

1 Entity Type

5.2.9 CsourceRegistration

This type represents the data needed to register a new Context Source.

The supported JSON members shall follow the indications provided in table 5.2.9-1.

Table 5.2.9-1: CsourceRegistration data type definition

Name Data Type Restriction Cardinality Description
id URI At creation time, If it is not

provided, it will be assigned
during registration process
and returned to client.
It cannot be later modified in
update operations

0..1 Unique registration identifier.
(JSON-LD @id).
There may be multiple
registrations per Context
Source, i.e. the id is unique
per registration

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)53

Name Data Type Restriction Cardinality Description
type string "ContextSource

Registration"
1 JSON-LD @type

Use reserved type for
identifying Context Source
Registration

registrationName string Non-empty string 0..1 A name given to this Context
Source Registration

description string Non-empty string 0..1 A description of this Context
Source Registration

information RegistrationInfo[] See data type definition in
clause 5.2.10. Empty array (0
length) is not allowed

1 Describes the Entities,
Properties and Relationships
for which the Context Source
may be able to provide
information

tenant URI 0..1 Identifies the tenant that has to
be specified in all requests to
the Context Source that are
related to the information
registered in this Context
Source Registration. If not
present, the default tenant is
assumed. Should only be
present in systems supporting
multi-tenancy.

observationInterval TimeInterval See data type definition in
clause 5.2.11

0..1 If present, the Context Source
can be queried for Temporal
Entity Representations. (If
latest Entity information is also
provided, a separate Context
Registration is needed for this
purpose). The
observationInterval specifies
the time interval for which the
Context Source can provide
Entity information as specified
by the observedAt Temporal
Property. A temporal query
based on the observedAt
Temporal Property, which is
the default, is matched against
the observationInterval for
overlap

managementInterval TimeInterval See data type definition in
clause 5.2.11

0..1 If present, the Context Source
can be queried for Temporal
Entity Representations. (If
latest Entity information is also
provided, a separate Context
Registration is needed for this
purpose). The
managementInterval specifies
the time interval for which the
Context Source can provide
Entity information as specified
by the createdAt and
modifiedAt Temporal
Properties. A temporal query
based on the createdAt or
modifiedAt Temporal Property
is matched against the
managementInterval for
overlap

location GeoJSON
Geometry as
mandated by
clause 4.7

 0..1 Location for which the Context
Source may be able to provide
information

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)54

Name Data Type Restriction Cardinality Description
observationSpace GeoJSON

Geometry as
mandated by
clause 4.7

 0..1 Geographic location that
includes the observation
spaces of all entities as
specified by their respective
observationSpace
GeoProperty for which the
Context Source may be able
to provide information

operationSpace GeoJSON
Geometry as
mandated by
clause 4.7

 0..1 Geographic location that
includes the operation spaces
of all entities as specified by
their respective
operationSpace GeoProperty
for which the Context Source
may be able to provide
information

expiresAt string DateTime (clause 4.6.3) 0..1 Provides an expiration date.
When passed the Context
Source Registration will
become invalid and the
Context Source might no
longer be available

endpoint URI It shall be a dereferenceable
URI

1 Endpoint expressed as
dereferenceable URI through
which the Context Source
exposes its NGSI-LD interface

<Csource Property
Name>

Any JSON value
as defined by
IETF RFC 8259
[6]

 0..N Each Context Source Property
pertains to a characteristic of
the Context Source the
Context Source Registration
describes

5.2.10 RegistrationInfo

The supported JSON members shall follow the requirements provided in table 5.2.10-1.

Table 5.2.10-1: RegistrationInfo data type definition

Name Data Type Restrictions Cardinality Description
entities EntityInfo [] See data type definition on

clause 5.2.8. Empty array
(0 length) is not allowed

0..1 Describes the entities for which the
CSource may be able to provide
information

propertyNames string [] Property Names as short-
hand strings. Empty array
is not allowed

0..1 Describes the Properties that the
CSource may be able to provide

relationshipNames string [] Relationship
Names as short-hand
strings. Empty array is not
allowed

0..1 Describes the Relationships that the
CSource may be able to provide

At least one element of RegistrationInfo shall be present.

5.2.11 TimeInterval

The supported JSON members shall follow the requirements provided in table 5.2.11-1.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)55

Table 5.2.11-1: TimeInterval data type definition

Name Data Type Restrictions Cardinality Description
startAt string DateTime (clause 4.6.3) 1 Describes the start of the time interval
endAt string DateTime (clause 4.6.3) 0..1 Describes the end of the time interval. If not present

the interval is open

5.2.12 Subscription

This datatype represents a Context Subscription.

The supported JSON members shall follow the requirements provided in table 5.2.12-1.

Table 5.2.12-1: Subscription data type definition

Name Data Type Restrictions Cardinality Description
id URI At creation time, If it is

not provided, it will be
assigned during
subscription process
and returned to client.
It cannot be later
modified in update
operations

0..1 Subscription identifier (JSON-LD
@id)

type string It shall be equal to
"Subscription"

1 JSON-LD @type

subscriptionName string 0..1 A (short) name given to this
Subscription

description string 0..1 Subscription description
entities EntityInfo[] See data type definition

on clause 5.2.8. Empty
array (0 length) is not
allowed

0..1 Entities subscribed

watchedAttributes string[] Attribute Name as
short-hand string.
if timeInterval is present
it shall not appear (0
cardinality). Empty array
(0 length) is not allowed

0..1 Watched Attributes (Properties or
Relationships). If not defined it
means any Attribute

timeInterval Number Greater than 0
if watchedAttributes is
present it shall not
appear (0 cardinality)

0..1 Indicates that a notification shall be
delivered periodically regardless of
attribute changes. Actually, when the
time interval (in seconds) specified in
this value field is reached

q string A valid query string as
per clause 4.9

0..1 Query that shall be met by
subscribed entities in order to trigger
the notification

geoQ GeoQuery See data type definition
on clause 5.2.13

0..1 Geo-Query that shall be met by
subscribed entities in order to trigger
the notification

csf string A valid query string as
per clause 4.9

0..1 Context source filter that shall be met
by Context Source Registrations
describing Context Sources to be
used for Entity Subscriptions

isActive boolean true by default 0..1 Allows clients to temporarily pause
the subscription by making it
inactive. true indicates that the
Subscription is under operation. false
indicates that the subscription is
paused and notifications shall not be
delivered

notification NotificationParams See data type definition
on clause 5.2.14

1 Notification details

expiresAt string DateTime (see
clause 4.6.3)

0..1 Expiration date for the subscription

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)56

Name Data Type Restrictions Cardinality Description
throttling Number Greater than 0. If

timeInterval is present it
shall not appear (0
cardinality)

0..1 Minimal period of time in seconds
which shall elapse between two
consecutive notifications

temporalQ TemporalQuery See data type definition
on clause 5.2.21

0..1 Temporal Query to be used only in
Context Registration Subscriptions
for matching Context Source
Registrations of Context Sources
providing temporal information

At least one of (a) entities or (b) watchedAttributes shall be present.

The members (defined by table 5.2.12-2) of the Subscription data structure are also defined. They are read-only and
shall be automatically generated by NGSI-LD implementations. They shall not be provided by Context Subscribers. In
the event that they are provided (in update or create operations) NGSI-LD implementations shall ignore them.

Table 5.2.12-2: Additional members of the Subscription data type

Name Data Type Restrictions Cardinality Description
status string Allowed values:

"active"
"paused"
"expired"

0..1 Read-only. Provided by the
system when querying the
details of a subscription

5.2.13 GeoQuery

This datatype represents a geo-query used for Subscriptions.

The supported JSON members shall follow the requirements provided in table 5.2.13-1.

Table 5.2.13-1: GeoQuery data type definition

Name Data Type Restrictions Cardinality Description
geometry string A valid GeoJSON [8] geometry

type excepting
GeometryCollection

1

Type of the reference geometry

coordinates JSON Array or string A JSON Array coherent with
the geometry type as per IETF
RFC 7946 [8]

1 Coordinates of the reference
geometry. For the sake of
JSON-LD compatibility It can be
encoded as a string as
described in clause 4.7.1

georel string A valid geo-relationship as
defined by clause 4.10

1 Geo-relationship (near, within,
etc.)

geoproperty string Attribute Name as short-hand
string

0..1 Specifies the GeoProperty to
which the GeoQuery is to be
applied. If not present, the
default GeoProperty is location

5.2.14 NotificationParams

5.2.14.1 NotificationParams data type definition

This datatype represents the parameters that allow to convey the details of a notification.

The supported JSON members shall follow the requirements provided in table 5.2.14.1-1.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)57

Table 5.2.14.1-1: NotificationParams data type definition

Name Data Type Restrictions Cardinality Description
attributes string[] Attribute Name as short-hand string.

Empty array (0 length) is not allowed
0..1 Entity Attribute Names (Properties

or Relationships) to be included in
the notification payload body. If
undefined it will mean all Attributes

format string It shall be one of:
"keyValues"
"normalized"

0..1 Conveys the representation format
of the entities delivered at
notification time. By default, it will
be in normalized format

endpoint Endpoint See data type definition on clause 5.2.15 1 Notification endpoint details
status string Allowed values:

"ok", "failed"
0..1 Status of the Notification. It shall be

"ok" if the last attempt to notify the
subscriber succeeded. It shall be
"failed" if the last attempt to notify
the subscriber failed

5.2.14.2 Additional members

The members (defined by table 5.2.14.2-1) of the NotificationParams data structure are also defined. They are read-
only, and shall be automatically generated by NGSI-LD implementations. They shall not be provided by Context
Subscribers. In the event that they are provided (in update or create operations) NGSI-LD implementations shall ignore
them.

In query or retrieve operations involving Subscriptions, implementations shall generate them as part of their
representation.

Table 5.2.14.2-1: Additional members of the NotificationParams data structure

Name Data Type Restrictions Cardinality Description
timesSent Number Greater than 0 0..1 Number of times that the notification was

sent. Provided by the system when querying
the details of a subscription

lastNotification string DateTime (clause 4.6.3) 0..1 Timestamp corresponding to the instant when
the last notification was sent. Provided by the
system when querying the details of a
subscription

lastFailure string DateTime (clause 4.6.3) 0..1 Timestamp corresponding to the instant when
the last notification resulting in failure (for
instance, in the HTTP binding, an HTTP
response code different than 200) was sent.
Provided by the system when querying the
details of a subscription

lastSuccess string DateTime (clause 4.6.3) 0..1 Timestamp corresponding to the instant when
the last successful (200 OK response)
notification was sent. Provided by the system
when querying the details of a subscription

5.2.15 Endpoint

This datatype represents the parameters that are required in order to define an endpoint for notifications. This can
include, in addition the the endpoint's URI, a generic{key, value} array, named receiverInfo, which contains, in a
generalized form, whatever extra information the broker shall convey to the receiver in order for the broker to
successfully communicate with receiver (e.g Authorization material), or for the receiver to correctly interpret the
received content (e.g. the Link URL to fetch an @context). Additionally, it can include another generic{key, value}
array, named notifierInfo, which contains the configuration that the broker needs to know in order to correctly set up the
communication channel towards the receiver (e.g. MQTT-Version, MQTT-QoS, in case of MQTT binding, as defined
in clause 7.2).

The supported JSON members shall follow the indications provided in table 5.2.15-1.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)58

Table 5.2.15-1: Endpoint data type definition

Name Data Type Restrictions Cardinality Description
uri URI Dereferenceable URI 1 URI which conveys the endpoint

which will receive the notification
accept string MIME type. It shall be one

of:
"application/json"
"application/ld+json"
"application/geo+json"

0..1 Intended to convey the MIME type
of the notification payload body
(JSON, or JSON-LD, or
GeoJSON)

receiverInfo KeyValuePair[] 0..1 Generic {key, value} array to
convey optional information to the
receiver

notifierInfo KeyValuePair[] 0..1 Generic {key, value} array to set
up the communication channel

5.2.16 BatchOperationResult

This datatype represents the result of a batch operation.

The supported JSON members shall follow the indications provided in table 5.2.16-1.

Table 5.2.16-1: BatchOperationResult data type definition

Name Data Type Restrictions Cardinality Description
success URI[] Entity Id. Empty

Array if no Entity
was successfully
treated

1 Array of Entity Ids corresponding to the Entities
that were successfully treated by the concerned
operation

errors BatchEntityError[] Empty Array if no
errors happened

1 One array item per Entity in error

5.2.17 BatchEntityError

This datatype represents an error raised (associated to a particular Entity) during the execution of a batch operation.

The supported JSON members shall follow the indications provided in table 5.2.17-1.

Table 5.2.17-1: BatchEntityError data type definition

Name Data Type Restrictions Cardinality Description
entityId URI Entity Id 1 Entity Id corresponding to the Entity in error
error ProblemDetails (see

reference [10])
 1 One instance per Entity in error

5.2.18 UpdateResult

This datatype represents the result of Attribute update (append or update) operations in the NGSI-LD API.

The supported JSON members shall follow the indications provided in table 5.2.18-1.

Table 5.2.18-1: UpdateResult data type definition

Name Data Type Restrictions Cardinality Description
updated string[] 1 List of Attributes (represented by their Name) that

were appended or updated.
notUpdated NotUpdatedDetails[] See clause 5.2.19 1 List which contains the Attributes (represented by

their Name) that were not updated, together with
the reason for not being updated.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)59

5.2.19 NotUpdatedDetails

This datatype represents additional information provided by an implementation when an Attribute update did not
happen. See also clause 5.2.18.

The supported JSON members shall follow the indications provided in table 5.2.19-1.

Table 5.2.19-1: NotUpdatedDetails data type definition

Name Data Type Restrictions Cardinality Description
attributeName string 1 Attribute name
reason string 1 Reason for not having changed such Attribute

5.2.20 EntityTemporal

This is the same data type as mandated by clause 5.2.4 with the only deviation that the representation of Properties and
Relationships shall be the temporal one (arrays of (Property or Relationship) instances represented by JSON-LD
objects) as defined in clauses 4.5.7 and 4.5.8. Alternatively it is possible to specify the EntityTemporal by using the
"Simplified Temporal Representationof an Entity", as defined in clause 4.5.9.

5.2.21 TemporalQuery

This datatype represents a temporal query.

The supported JSON members shall follow the requirements provided in table 5.2.21-1.

Table 5.2.21-1: TemporalQuery data type definition

Name Data Type Restrictions Cardinality Description
timerel String representing the temporal

relationship as defined by clause
4.11

 1 Allowed values: "before", "after" and
"between"

timeAt String representing the timeAt
parameter as defined by
clause 4.11

 1 It shall be a DateTime

endTimeAt String representing the
endTimeAt parameter as defined
by clause 4.11

 0..1 It shall be a DateTime. Cardinality shall be
1 if timerel is equal to "between"

timeproperty String representing a Property
name

 0..1 The name of the Property that contains the
temporal data that will be used to resolve
the temporal query. If not specified, the
default is "observedAt"

5.2.22 KeyValuePair

This datatype represents the optional information that is required when contacting an endpoint for notifications.

The supported members shall follow the indications provided in table 5.2.22-1. They are intended to represent a
key/value pair.

Example optional information includes additional HTTP Headers such as:

• The HTTP Authentication Header.

• The HTTP Prefer Header (IETF RFC 7240 [26] used when notifying the GeoJSON Endpoint.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)60

Table 5.2.22-1: KeyValuePair data type definition

Name Data Type Restrictions Cardinality Description
key String Binding-dependent 1 The key of the key/value pair
value String Binding-dependent 1 The value of the key/value pair

5.2.23 Query

This datatype represents the information that is required in order to convey a query when a "Query Entities" operation
or a "Query Temporal Evolution of Entities" operation is to be performed (as per clause 5.7.2 and 5.7.4, respectively).

The supported JSON members shall follow the requirements provided in table 5.2.23-1.

Table 5.2.23-1: Query data type definition

Name Data Type Restrictions Cardinality Description
type string It shall be equal to

"Query"
1 JSON-LD @type

entities EntityInfo[] See data type definition
on clause 5.2.8. Empty
array (0 length) is not
allowed

0..1 Entity ids, id pattern and Entity types
that shall be matched by Entities in
order to be retrieved

attrs string[] Attribute Name as
short-hand string.
Empty array (0 length) is
not allowed

0..1 List of Attributes that shall be
matched by Entities in order to be
retrieved. If not present all Attributes
will be retrieved

q string A valid query string as
per clause 4.9

0..1 Query that shall be matched by
Entities in order to be retrieved

geoQ GeoQuery See data type definition
on clause 5.2.13

0..1 Geo-Query that shall be matched by
Entities in order be retrieved

csf string A valid query string as
per clause 4.9

0..1 Context source filter that shall be
matched by Context Source
Registrations describing Context
Sources to be used for retrieving
Entities

temporalQ TemporalQuery See data type definition
on clause 5.2.21

0..1 Temporal Query to be present only
for "Query Temporal Evolution of
Entities" operation (clause 5.7.4)

5.2.24 EntityTypeList

This type represents the data needed to define the entity type list representation as mandated by clause 4.5.10.

The supported JSON members shall follow the requirements provided in table 5.2.24-1.

Table 5.2.24-1: NGSI-LD EntityTypeList data type definition

Name Data Type Restriction Cardinality Description
id URI URI that is unique within the system

scope
1 Unique identifier for the entity type list

type string It shall be equal to "EntityTypeList" 1 JSON-LD @type
typeList string[] 1 List containing the entity type names

5.2.25 EntityType

This type represents the data needed to define the elements of the detailed entity type list representation as mandated by
clause 4.5.11.

The supported JSON members shall follow the requirements provided in table 5.2.25-1.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)61

Table 5.2.25-1: NGSI-LD EntityType data type definition

Name Data Type Restriction Cardinality Description
id URI Fully Qualified Name (FQN) of

entity type
1 Fully Qualified Name (FQN) of the

entity type being described
type string It shall be equal to "EntityType" 1 JSON-LD @type
typeName string 1 Name of the entity type, short name if

contained in @context
attributeNames string[] 1 List containing the names of attributes

that instances of the entity type can
have

5.2.26 EntityTypeInfo

This type represents the data needed to define the detailed entity type information representation as mandated by
clause 4.5.12.

The supported JSON members shall follow the requirements provided in table 5.2.26-1.

Table 5.2.26-1: NGSI-LD EntityTypeInfo data type definition

Name Data Type Restriction Cardinality Description
id URI Fully Qualified Name (FQN) of

entity type
1 Fully Qualified Name (FQN) of the entity

type being described
type string It shall be equal to

"EntityTypeInformation"
1 JSON-LD @type

typeName string 1 Name of the entity type, short name if
contained in @context

entityCount number Unsigned integer 1 Number of entity instances of this entity
type

attributeDetails Attribute[] See data type definition in
clause 5.2.28. Attribute with only
the elements "id", "type",
"attributeName" and
"attributeTypes"

1 List of attributes that entity instances
with the specified entity type can have

5.2.27 AttributeList

This type represents the data needed to define the attribute list representation as mandated by clause 4.5.13.

The supported JSON members shall follow the requirements provided in table 5.2.27-1.

Table 5.2.27-1: NGSI-LD AttributeList data type definition

Name Data Type Restriction Cardinality Description
id URI URI that is unique within the system

scope
1 Unique identifier for the attribute list

type string It shall be equal to "AttributeList" 1 JSON-LD @type
attributeList string[] 1 List containing the attribute names

5.2.28 Attribute

This type represents the data needed to define the attribute information needed as:

• part of the entity type information representation as mandated by clause 4.5.12;

• the detailed attribute list representation as mandated by clause 4.5.14;

• the attribute information representation as mandated by clause 4.5.15.

The supported JSON members shall follow the requirements provided in table 5.2.28-1.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)62

Table 5.2.28-1: NGSI-LD Attribute data type definition

Name Data Type Restriction Cardinality Description
id URI 1 Full URI of attribute name
type string It shall be equal to

"Attribute"
1 JSON-LD @type

attributeName string 1 Name of the attribute, short name if
contained in @context

attributeCount number Unsigned integer 0..1 Number of attribute instances with this
attribute name

attributeTypes string[] 0..1 List of attribute types (e.g. Property,
Relationship, GeoProperty) for which entity
instances exist, which contain an attribute
with this name

typeNames string[] 0..1 List of entity type names for which entity
instances exist containing attributes that
have the respective name

5.2.29 Feature

This data type represents a spatially bounded Entity in GeoJSON format, as mandated by IETF RFC 7946 [8]. The
supported JSON members shall follow the requirements provided in table 5.2.29-1.

Table 5.2.29-1: Feature data type definition

Name Data Type Restriction Cardinality Description
id URI 1 Entity id
type String It shall be equal to "Feature" 1 GeoJSON Type
geometry GeoJSON Object The value field from the

matching GeoProperty (as
specified in clause 4.5.16) or
null

1 Null if no matching GeoProperty

properties FeatureProperties See data type definition 1 List of attributes as mandated by
clause 5.2.31

@context URI, JSON Object,
or JSON Array

See [2], section 5.1. 0..1 JSON-LD @context. This field is only
present if requested in the payload
by the HTTP Prefer Header (IETF
RFC 7240 [26])

5.2.30 FeatureCollection

This data type represents an list of spatially bounded Entities in GeoJSON format, as mandated by IETF RFC 7946 [8].
The supported JSON members shall follow the requirements provided in table 5.2.30-1.

Table 5.2.30-1: FeatureCollection data type definition

Name Data Type Restriction Cardinality Description
type String It shall be equal to

"FeatureCollection"
1 GeoJSON Type

features Feature[] See data type definition 1..N In the case that no matches are found,
"features" will be an empty array

@context URI, JSON
Object, or JSON
Array

See [2], section 5.1. 0..1 JSON-LD @context. This field is only
present if requested in the payload by
the HTTP Prefer Header (IETF
RFC 7240 [26])

5.2.31 FeatureProperties

This data type represents the type and the associated attributes (Properties and Relationships) of an Entity in GeoJSON
format.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)63

Table 5.2.31-1: NGSI-LD Entity data type definition

Name Data Type Restriction Cardinality Description
type URI or String Entity Type 1 Entity Type. Both short hand

string (type name) or URI are
allowed.

<Property Name> Property or
Property[]

See data type definition 0..N Property as mandated by
clause 4.5.1. For each Property
identified by the same Property
Name, there can be one or more
instances.

<Relationship Name> Relationship
or
Relationship
[]

See data type definition 0..N Relationship as mandated by
clause 4.5.2. For each
Relationship identified by the
same Relationship Name, there
can be one or more instances.

5.3 Notification data types

5.3.1 Notification

This datatype represents the parameters that allow building a notification to be sent to a subscriber. How to build this
notification is detailed in clause 5.8.6.

The supported JSON members shall follow the indications provided in table 5.3.1-1.

Table 5.3.1-1: Notification data type definition

Name Data Type Restrictions Cardinality Description
id URI 1 Notification identifier (JSON-LD

@id). It shall be automatically
generated by the implementation

type String It shall be equal to
"Notification"

1 JSON-LD @type

subscriptionId URI 1 Identifier of the subscription that
originated the notification

notifiedAt string DateTime (clause 4.6.3) 1 Timestamp corresponding to the
instant when the notification was
generated by the system

data NGSI-LD Entity[]
or
FeatureCollection

 1 The content of the notification as
NGSI-LD Entities. See
clause 5.2.4.

If the notification has been
triggered from a Subscription that
has the notification.
endpoint.accept field set to
application/geo+json then
data is returned as a
FeatureCollection. In this case, if
the endpoint.info contains the
key "Prefer" and it is set to the
value "body=json" the
FeatureCollection will not contain
an @context field.

If endpoint.accept is not set or
holds another value then Entity[] is
returned

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)64

5.3.2 CsourceNotification

This datatype represents the parameters that allow building a Context Source Notification to be sent to a subscriber.
How to build this notification is detailed in clause 5.11.7.

The supported JSON members shall follow the indications provided in the table 5.3.2-1.

Table 5.3.2-1: CsourceNotification data type definition

5.3.3 TriggerReasonEnumeration

The enumeration can take one of the following values:

• "newlyMatching" - describes the case that the notified Context Source Registration(s) newly match(es) the
identified subscription. This value is used in the first notification and whenever a new Context Source
Registration matching the Subscription has been registered, or an existing Context Source Registration that did
not match before has been updated in such a way that it matches now.

• "updated" - describes the case that the notified Context Source Registration that was part of a previous
notification has been updated, but still matches the Subscription.

• "noLongerMatching" - describes the case that the notified Context Source Registration that was part of a
previous notification no longer matches the Subscription, i.e. as a result of an update or because it was deleted.

5.4 NGSI-LD Fragments
When updating NGSI-LD elements (Entities, Context Source Registrations or Context Subscriptions) it is necessary to
have a means of describing a set of modifications to their content.

An NGSI-LD Fragment is a JSON merge patch document [16] and [i.10] which describes changes to be made to a
target JSON-LD document using a syntax that closely mimics the document being modified.

An NGSI-LD Fragment is a JSON-LD Object which shall include the following members:

• id (it could be omitted for certain bindings if it can be determined from the operation signature). It shall be
equal to the id of the target (mutated) NGSI-LD element.

• type (it could be omitted for certain bindings if it can be determined from the operation signature). It shall be
equal to the Type Name of the target NGSI-LD element.

• A member (following the same data representation and nesting structure) for each new member to be added to
the target NGSI-LD element.

Name Data Type Restrictions Cardinality Description
id URI 1 Csource notification identifier

(JSON-LD @id)
type string It shall be equal to

"ContextSource Notification"
1 JSON-LD @type

subscriptionId URI 1 Identifier of the subscription that
originated the notification

notifiedAt string DateTime (see clause 4.6.3) 1 Timestamp corresponding to the
instant when the notification was
generated by the system

data Csource
Registration[]

 1 The content of the notification as
NGSI-LD entities. See clause 5.2.4

triggerReason string TriggerReasonEnumeration (see
clause 5.3.3)

1 Indicates whether the Csources in
the CsourceRegistration(s) in data
are newly matching (initial
notification or creation), have been
updated (but still match) or do not
match any longer

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)65

• A member (following the same data representation and nesting structure) for each new member to be modified
in the target NGSI-LD element, which value shall correspond to the new member value to be given.

• A member (following the same data representation and nesting structure) with value equal to null for each
member to be removed from the target NGSI-LD element.

EXAMPLE: The following NGSI-LD Fragment allows to modify a Context Subscription by changing its
endpoint's URI:

{
 "id": "urn:ngsi-ld:Subscription:MySubscription",
 "type": "Subscription",
 "endpoint": {
 "uri": "http://example.org/newNotificationEndPoint"
 }
}

5.5 Common behaviours

5.5.1 Introduction

This clause defines common behaviours for the API operations.

When comparing URIs, implementations shall follow the recommendations of IETF RFC 3986 [5], section 6.

5.5.2 Error types

Table 5.5.2-1 details a list of error types defined by NGSI-LD. The particular conditions under which error type shall be
raised are defined when describing each operation supported by the API.

Table 5.5.2-1: Error types in NGSI-LD

Error Type Description
https://uri.etsi.org/ngsi-ld/errors/InvalidRequest The request associated to the operation is syntactically

invalid or includes wrong content
https://uri.etsi.org/ngsi-ld/errors/BadRequestData The request includes input data which does not meet the

requirements of the operation
https://uri.etsi.org/ngsi-ld/errors/AlreadyExists The referred element already exists
https://uri.etsi.org/ngsi-ld/errors/OperationNotSupported The operation is not supported
https://uri.etsi.org/ngsi-ld/errors/ResourceNotFound The referred resource has not been found
https://uri.etsi.org/ngsi-ld/errors/InternalError There has been an error during the operation execution
https://uri.etsi.org/ngsi-ld/errors/TooComplexQuery The query associated to the operation is too complex and

cannot be resolved
https://uri.etsi.org/ngsi-ld/errors/TooManyResults The query associated to the operation is producing so many

results that can exhaust client or server resources. It should
be made more restrictive

https://uri.etsi.org/ngsi-ld/errors/LdContextNotAvailable A remote JSON-LD @context referenced in a request cannot
be retrieved by the NGSI-LD Broker and expansion or
compaction cannot be performed

https://uri.etsi.org/ngsi-ld/errors/NoMultiTenantSupport The NGSI-LD API implementation does not support multiple
tenants.

https://uri.etsi.org/ngsi-ld/errors/NonexistentTenant The addressed tenant does not exist.

5.5.3 Error response payload body

When reporting errors back to clients, NGSI-LD implementations shall generate a JSON object in accordance with
IETF RFC 7807 [10], section 3.1, including, at least the following terms:

• type: Error type as per clause 5.5.2.

• title: Error title which shall be a short string summarizing the error.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)66

• detail: A detailed message that should convey enough information about the error.

Even though IETF RFC 7807 [10] defines a specific MIME type for error payloads, NGSI-LD implementations shall
use the standard JSON MIME type ("application/json") when reporting errors, so that old clients or existing tools are
not broken.

5.5.4 General NGSI-LD validation

All the operations that take a JSON-LD document as input shall process such JSON-LD document as follows:

• If the request payload body is not a valid JSON document then an error of type InvalidRequest shall be raised.

• If the data included by the JSON-LD document is not syntactically correct, according to the @context or the
API data type definitions, then an error of type BadRequestData shall be raised.

• Any attempt to use null as member value, with the exception of NGSI-LD Fragments (as mandated by
clauses 5.4 and 5.5.8), shall result in an error of type BadRequestData.

5.5.5 Default @context assignment

If an input JSON document provided by an API client, does not include an @context and there is no other mechanism
available to determine it, then the implementation shall assign the default @context to such JSON document. The
default @context shall include all the terms defined by the Core NGSI-LD @context as mandated by clause 4.4.

5.5.6 Operation execution

When executing an operation if an unexpected error happens and the operation cannot be completed, implementations
shall raise an error of type InternalError. This includes, as well, situations such as database timeouts, etc.

If the NGSI-LD endpoint is not capable of executing the requested operation, an error of type OperationNotSupported
shall be raised. This may happen in a distributed architecture where a Context Broker might not be able to store Entities
(only to forward queries to Context Sources), and, as a result, certain operations such as "Create Entity" might not be
supported.

When a query operation is so complex that cannot be resolved by an NGSI-LD system, implementations shall raise an
error of type TooComplexQuery.

When a query operation is producing so many results that can potentially exhaust client or server resources, or it can be
just impractical to be managed, implementations shall raise an error of type TooManyResults. The threshold conditions
used as criteria to raise such error is up to each implementation.

When a remote JSON-LD @context referenced by an incoming request is not available, implementations shall raise an
error of type LdContextNotAvailable.

5.5.7 Term to URI expansion or compaction

NGSI-LD API operations allow clients to use short-hand strings as non-qualified names, particularly for Property,
Relationship or Type Names. For instance, an API client can refer to the term "Vehicle" as a non-qualified type name.
When executing API update-related operations, NGSI-LD systems shall expand terms to URIs, in order to obtain and
store Fully Qualified Names. Likewise, when executing query-related operations, NGSI-LD systems shall compact
URIs (Fully Qualified Names) to short terms in order to provide short-hand strings to context consumers.

The term to URI expansion or compaction shall be performed using a @context as described by the JSON-LD
specification [2], section 5.1. In the absence of a @context, the term expansion or compaction shall be performed using
the default @context (clause 5.5.5). For the avoidance of doubt, the @context used to perform compaction or expansion
of terms shall be the one provided by each API call itself (or the default @context in its absence), and not any other
@context which might have been supplied previously. For instance, when performing "Query Entity" operations (clause
5.7.2), the @context used to perform URI expansion and compaction shall be the one provided by the request.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)67

In case of HTTP binding via GET (clause 6.4.3.2) of the "Query Entity" operation, this means using the JSON-LD Link
Header as described by the JSON-LD specification [2], section 6.8. In case of HTTP binding via POST
(clause 6.23.3.1), of the "Query Entity" operation, this means giving the @context either via Link Header or within the
payload body, depending on the Content-Type Header being application/json or application/ld+json, respectively.

As the Core @context is protected and cannot be overridden, when performing term to URI expansion or compaction,
implementations shall always consider the Core @context as having absolute precedence, regardless of the position
of the Core @context in the @context array of elements. Nonetheless, NGSI-LD data providers may use appropriate
term prefixing to ensure that a proper term to URI expansion or compaction is performed.

At compaction time, in the event that no matching term is found in the current @context, implementations shall render
Fully Qualified Names.

EXAMPLE: An entity of type "Vehicle" bound to a certain @context, C, will match a query by "Vehicle" type
if and only if the supplied query @context, Q, maps the term "Vehicle" to the same URI as C.

5.5.8 JSON-LD Merge Patch Behaviour

When updating NGSI-LD elements (Entities, Context Source Registrations or Context Subscriptions) using NGSI-LD
Fragments, implementations shall determine the exact set of changes being requested by comparing the content of the
provided Fragment (patch) against the current content (a JSON-LD object) of the target element.

Implementations shall perform an algorithm equivalent to the one described below (slightly adapted from IETF
RFC 7396 [16]), in order to observe the name to URI expansion rules:

• For each member of the Fragment perform the term to URI expansion.

• If the provided Fragment (merge patch) contains members that do not appear within the target (their URIs do
not match), those members are added to the target.

• For each member of the Fragment, whose value is different than null, contained by the target, the target
member value is replaced by value given in the Fragment. In the case of a member representing a reified
Property or Relationship including a datasetId, such member is only replaced if the datasetId is the same,
otherwise the member of the Fragment is added as a new instance to the target. If no datasetId is present, the
default Attribute instance is targeted and replaced if present and otherwise added.

• For each member of the Fragment, whose value is null, contained by the target, the target member is removed.
In the case of deleting a specific Entity Attribute, the handling of members with a datasetId shall be according
to the description in clause 5.6.5. A datasetId property cannot be deleted by setting it to the value null.

5.5.9 Pagination Behaviour

When resolving NGSI-LD Query operations NGSI-LD Systems shall exhibit the behaviour described by the present
clause:

• Let Md be equal to the default maximum number of NGSI-LD Elements to be retrieved by the API during
each query pagination iteration, as defined by the NGSI-LD implementation.

• Let Mc be equal to the maximum number of NGSI-LD Elements to be retrieved as requested by the NGSI-LD
Client. If Mc is undefined then it shall be equal to Md.

• Let L be the maximum number of NGSI-LD Elements to be retrieved by the API during each query pagination
iteration. L shall be equal to Mc.

• During query execution and for each pagination iteration, the query resolution mechanisms of the NGSI-LD
System shall ensure that only up to a maximum of L NGSI-LD Elements are retrieved and returned to the
NGSI-LD client, i.e. the maximum page size per iteration shall not overpass L. Nonetheless, implementations
shall take care of not overpassing a maximum size of response payload body, which, in practice, implies that,
under certain circumstances, the number of Elements retrieved per page can be lower than L.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)68

• After the retrieval of each page (containing at most L NGSI-LD Elements) implementations shall check
whether there are pending NGSI-LD Elements to be retrieved in the context of the current query. If that is the
case, implementations shall flag NGSI-LD Clients of the existence of such NGSI-LD Elements. Ultimately,
the flagging mechanisms used shall depend on each API binding but shall be present as mandated by the
present clause.

• When flagging the existence of additional NGSI-LD Elements (pages) pending to be retrieved, generally,
implementations shall provide NGSI-LD Clients pointers to get access to both the following page of NGSI-LD
Elements and the previous one, according to the current pagination iteration.

• The pointer to the previous page of NGSI-LD Elements shall be included for all pagination iterations
excepting the first one, as, obviously, there will be no previous NGSI-LD Elements.

• When the last page of NGSI-LD Elements is reached, only the pointer to the previous page shall be provided
to NGSI-LD Clients, so that they can detect that no more NGSI-LD Elements are available.

• The pointers to NGSI-LD Elements shall contain all the parameters needed to allow NGSI-LD Clients to
retrieve the next and previous page, without further interactions with the API.

While iterating over a set of pages, there might be changes in the target result set, due to additions or removals of
NGSI-LD Elements occurring in between. Implementations may detect those situations and may warn NGSI-LD Clients
appropriately.

5.5.10 Multi-Tenant Behaviour

If a tenant is specified for an NGSI-LD operation, the operation shall only be applied to information related to the
speficied tenant. If no tenant is specified, the operation shall apply to the implicitly existing default tenant. If a tenant is
explicitly specified, but the system implementing the NGSI-LD API does not support multi-tenancy, an error of type
NoMultiTenantSupport should be raised.

In case an operation applies to a tenant, this information shall also be provided in the response to the operation. This
also applies to notifications sent as a result of subscriptions (clauses 5.8 and 5.11).

A tenant is represented in form of a URI. How the tenant is specified for an API operation is protocol binding specific.
How tenants are created, is implementation-specific.

One implementation option is to support the implicit creation of tenants. This means that a tenant is implicitly created
when an NGSI-LD operation for creating information targets a new tenant; this is the case for:

• Create Entity (clause 5.6.1).

• Batch Entity Creation (clause 5.6.7).

• Create or Update Temporal Representation of an Entity (clause 5.6.11).

• Create Subscription (clause 5.8.1).

• Register Context Source (clause 5.9.2).

• Create Context Source Registration (clause 5.11.2).

All other NGSI-LD operations, e.g. for retrieving, updating, appending or deleting information that target a non-existing
tenant should raise an error of type NonexistentTenant.

If the system implementing the NGSI-LD API does not support multiple tenants, the attempt to register a Context
Source with tenant information in the Context Source Registration should also result in an error of type
NoMultiTenantSupport.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)69

5.6 Context Information Provision

5.6.1 Create Entity

5.6.1.1 Description

This operation allows creating a new NGSI-LD Entity.

5.6.1.2 Use case diagram

A Context Producer can create an Entity within an NGSI-LD system as shown in figure 5.6.1.2-1.

Figure 5.6.1.2-1: Create entity use case

5.6.1.3 Input data

A JSON-LD document representing an NGSI-LD Entity as mandated by clause 5.2.4.

5.6.1.4 Behaviour

Implementations shall exhibit the following behaviour:

• Execute the behaviour defined in clause 5.5.4 on JSON-LD validation.

• If the NGSI-LD endpoint already knows about this Entity, because there is an existing entity whose id (URI) is
equivalent an error of type AlreadyExists shall be raised.

• Otherwise, implementations shall create the provided entity.

5.6.1.5 Output data

None.

5.6.2 Update Entity Attributes

5.6.2.1 Description

This operation allows modifying an existing NGSI-LD Entity by updating already existing Attributes (Properties or
Relationships).

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)70

5.6.2.2 Use case diagram

A Context Producer can update Entity Attributes within an NGSI-LD system as shown in figure 5.6.2.2-1.

Figure 5.6.2.2-1: Update entity Attributes use case

5.6.2.3 Input data

• A URI representing the id of the Entity to be updated (target Entity).

• A JSON-LD document representing an NGSI-LD Entity Fragment.

5.6.2.4 Behaviour

• If the Entity Id is not present or it is not a valid URI then an error of type BadRequestData shall be raised.

• If the NGSI-LD endpoint does not know about the target Entity, because there is no existing Entity whose id
(URI) is equivalent to the target entity, an error of type ResourceNotFound shall be raised.

• Execute the behaviour defined on clause 5.5.4 on JSON-LD validation.

• For each of the Attributes included in the Fragment, if the target Entity includes a matching one (considering
term expansion rules as mandated by clause 5.5.7), then replace it by the one included by the Fragment. If the
Attribute includes a datasetId, only an Attribute instance with the same datasetId is replaced. In case no
datasetId is present, the default Attribute instance is targeted and replaced if present. In case there is no
matching datasetId, the Attribute shall be ignored. The type of an Attribute in the Entity Fragment has to be
the same as the type of the targeted Attribute fragment, i.e. it is not allowed to change the type of an Attribute.

5.6.2.5 Output data

• A status code indicating whether all the new Attributes were updated or only some of them.

• List of Attributes (Properties or Relationships) actually updated.

5.6.3 Append Entity Attributes

5.6.3.1 Description

This operation allows modifying an NGSI-LD Entity by adding new attributes (Properties or Relationships).

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)71

5.6.3.2 Use case diagram

A Context Producer can append new Attributes to an existing Entity within an NGSI-LD system as shown in
figure 5.6.3.2-1.

Figure 5.6.3.2-1: Append Entity Attributes use case

5.6.3.3 Input data

• A URI representing the id of the E to be modified (target Entity).

• A JSON-LD document representing an NGSI-LD Entity Fragment.

• An optional flag indicating whether the append operation should overwrite or not existing Attributes. By
default, Attributes will be overwritten.

5.6.3.4 Behaviour

The following behaviour shall be exhibited by compliant implementations:

• If the Entity Id is not present or it is not a valid URI then an error of type BadRequestData shall be raised.

• If the NGSI-LD endpoint does not know about this Entity, because there is no an existing Entity which id
(URI) is equivalent to the one passed as parameter, an error of type ResourceNotFound shall be raised.

• The behaviour defined on clause 5.5.4 on JSON-LD validation.

• For each Attribute (Property or Relationship) included by the Entity Fragment at root level:

- If the target Entity does not include a matching Attribute (considering term expansion rules as mandated
by clause 5.5.7) then such Attribute shall be appended to the target Entity.

- If the target Entity already includes a matching Attribute (considering term expansion rules as mandated
by clause 5.5.7):

 If a datasetId is present in the Attribute included by the Entity Fragment:

- If an Attribute instance in the target Entity has the same datasetId:

o If overwrite is allowed, then the existing Attribute with the specified datasetId in the
target Entity shall be replaced by the new one supplied.

o If overwrite is not allowed the existing Attribute with the specified datasetId in the
target Entity shall be left untouched.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)72

- Otherwise the Attribute instance with the specified datasetId shall be appended to the target
Entity.

 If no datasetId is present in the Attribute included by the Entity Fragment, the default Attribute
instance is targeted:

- If the default Attribute instance is present:

o If overwrite is allowed, then the existing Attribute in the target Entity shall be replaced
by the new one supplied.

o If overwrite is not allowed the existing Attribute in the target Entity shall be left
untouched.

- Otherwise the default Attribute instance shall be appended to the target Entity.

5.6.3.5 Output data

• A status code indicating whether all the new Attributes were appended or only some of them.

• List of Attributes (Properties and/or Relationships) actually appended.

5.6.4 Partial Attribute update

5.6.4.1 Description

This operation allows performing a partial update on an NGSI-LD Entity's Attribute (Property or Relationship).
A partial update only changes the elements provided in an Entity Fragment, leaving the rest as they are.

5.6.4.2 Use case diagram

A Context Producer can carry out a partial Attribute update of an Entity within an NGSI-LD System as shown in
figure 5.6.4.2-1.

Figure 5.6.4.2-1: Partial Attribute update use case

5.6.4.3 Input data

• Entity Id (URI) of the concerned Entity, the target Entity.

• Target Attribute (Property or Relationship) to be modified, identified by a name.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)73

• A JSON-LD document representing an NGSI-LD Entity Fragment.

5.6.4.4 Behaviour

• If the target Entity id is not a valid URI or it is not present, then an error of type BadRequestData shall be
raised.

• If the target Attribute Name is not valid or it is not present, then an error of type BadRequestData shall be
raised.

• If the NGSI-LD endpoint does not know about the target Entity, because there is no existing Entity whose id
(URI) is equivalent, then an error of type ResourceNotFound shall be raised.

• Apply term expansion as mandated by clause 5.5.7, so that the fully qualified name (URI) associated to the
target Attribute is properly obtained.

• If the target Entity does not contain the target Attribute:

- as a default instance in case no datasetId is present;

- as an instance with the specified datasetId if present;

then an error of type ResourceNotFound shall be raised.

• Perform a partial update on the target Attribute following the algorithm mandated by clause 5.5.8. If present in
the provided NGSI-LD Entity Fragment, the type of the Attribute has to be the same as the type of the targeted
Attribute fragment, i.e. it is not allowed to change the type of an Attribute. The value of a Property or the
object of a Relationship shall not be set to null in order to delete it as this would result in an incomplete
Attribute instance.

5.6.4.5 Output data

None.

5.6.5 Delete Entity Attribute

5.6.5.1 Description

This operation allows deleting an NGSI-LD Entity's Attribute (Property or Relationship). The Attribute itself and all its
children elements shall be deleted.

5.6.5.2 Use case diagram

A Context Producer can delete a specific Entity Attribute within an NGSI-LD system as shown in figure 5.6.5.2-1.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)74

Figure 5.6.5.2-1: Delete Entity Attribute use case

5.6.5.3 Input data

• Entity id (URI) of the concerned Entity, the target Entity.

• Target Attribute (Property or Relationship) to be deleted, identified by a Name.

• An optional parameter identifying the datasetId of the target Attribute instance to be deleted. Otherwise the
default Attribute instance is targeted.

• An optional flag "deleteAll" indicating whether also all target Attribute instances with a datasetId are to be
deleted.

• An optional JSON-LD @context.

5.6.5.4 Behaviour

• If the target Entity id is not a valid URI or it is not present, then an error of type BadRequestData shall be
raised.

• If the target Attribute name is not a valid Name or it is not present, then an error of type BadRequestData shall
be raised.

• If the NGSI-LD endpoint does not know about the target Entity, because there is no existing Entity whose id
(URI) is equivalent, then an error of type ResourceNotFound shall be raised.

• Apply term expansion as mandated by clause 5.5.7 so that the fully qualified name (URI) associated to the
target Attribute is properly obtained.

• If the target Entity does not contain the target Attribute then an error of type ResourceNotFound shall be
raised.

• If the deleteAll flag is set, remove all target Attribute instances from the target Entity.

• Otherwise:

- if a datasetId parameter is provided, remove only the target Attribute instance from the given dataset
whose datasetId matches the parameter;

- if no datasetId parameter is provided, remove the default target Attribute instance from the target Entity.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)75

5.6.5.5 Output data

None.

5.6.6 Delete Entity

5.6.6.1 Description

This operation allows deleting an NGSI-LD Entity.

5.6.6.2 Use case diagram

A Context Producer can completely delete an Entity within an NGSI-LD system as shown in figure 5.6.6.2-1.

Figure 5.6.6.2-1: Delete Entity use case

5.6.6.3 Input data

• Entity Id (URI) of the Entity to be deleted, the target Entity.

5.6.6.4 Behaviour

• If the target Entity id is not present or it is not a valid URI, then an error of type BadRequestData shall be
raised.

• If the NGSI-LD endpoint does not know about the target Entity, then an error of type ResourceNotFound shall
be raised.

• Otherwise the Entity shall be removed.

5.6.6.5 Output data

None.

5.6.7 Batch Entity Creation

5.6.7.1 Description

This operation allows creating a batch of NGSI-LD Entities.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)76

5.6.7.2 Use case diagram

A Context Producer can create a batch of NGSI-LD Entities within an NGSI-LD system as shown in figure 5.6.7.2-1.

Figure 5.6.7.2-1: Create a batch of Entities use case

5.6.7.3 Input data

• A JSON-LD Array containing one or more JSON-LD documents each one representing an NGSI-LD Entity as
mandated by clause 5.2.4.

5.6.7.4 Behaviour

Implementations shall exhibit the following behaviour:

• If the input Array is empty or contains a null value in any of its items an error of type BadRequestData shall be
raised.

• Execute the behaviour defined in clause 5.5.4 on JSON-LD validation.

• Let S be an array which shall contain a list of Entity ids, one for each NGSI-LD Entity successfully created.
S shall be initialized to the empty array.

• Let E be an array which shall contain a list of BatchEntityError as defined by clause 5.2.17, one for each
NGSI-LD Entity which resulted in error. E shall be initialized to the empty array.

• For each of the NGSI-LD Entities included in the input Array execute the behaviour defined by clause 5.6.1 as
follows:

- If the Entity was successfully created, then add the corresponding Entity Id to the S array.

- If the Entity creation failed, then a new BatchEntityError shall be added to E containing the failed Entity
Id and the related ProblemDetails.

5.6.7.5 Output data

• The list of Entities successfully created (S Array).

• The list of Entities in error (E Array).

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)77

5.6.8 Batch Entity Creation or Update (Upsert)

5.6.8.1 Description

This operation allows creating a batch of NGSI-LD Entities, updating each of them if they already existed. In some
database jargon this kind of operation is known as "upsert".

5.6.8.2 Use case diagram

A Context Producer can create or update a batch of Entities within an NGSI-LD system as shown in figure 5.6.8.2-1.

Figure 5.6.8.2-1: Upsert a batch of Entities use case

5.6.8.3 Input data

• A JSON-LD Array containing one or more JSON-LD documents each one representing an Entity as mandated
by clause 5.2.4.

• An optional flag indicating the update mode (only applies in case the Entity already exists):

- Replace. All the existing Entity content shall be replaced (default mode).

- Update. Existing Entity content shall be updated.

5.6.8.4 Behaviour

Implementations shall exhibit the following behaviour:

• If the input Array is empty or contains a null value in any of its items, an error of type BadRequestData shall
be raised.

• Execute the behaviour defined in clause 5.5.4 on JSON-LD validation.

• Let S be an array which shall contain a list of Entity ids, one for each NGSI-LD Entity which was successfully
processed. S shall be initialized to the empty array.

• Let E be an array which shall contain a list of BatchEntityError as defined by clause 5.2.17, one for each
NGSI-LD Entity which resulted in error. E shall be initialized to the empty array.

• For each of the NGSI-LD Entities included in the input Array implementations shall:

- Create the Entity if it does not exist (i.e. no Entity with the same Entity Id is present).

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)78

- If there were an existing Entity with the same Entity Id, it shall be completely replaced by the new Entity
content provided, if the requested update mode is 'replace'.

- If there were an existing Entity with the same Entity Id, it shall be executed the behaviour defined by
clause 5.6.3, if the requested update mode is 'update'.

• If while processing an Entity there is any kind of error or abnormal situation, a BatchEntityError shall be
added to E containing the failed Entity Id and the related ProblemDetails.

5.6.8.5 Output data

• The list of Entities successfully processed (S Array).

• The list of Entities in error (E Array).

5.6.9 Batch Entity Update

5.6.9.1 Description

This operation allows updating a batch of NGSI-LD Entities.

5.6.9.2 Use case diagram

A Context Producer can update a batch of Entities within an NGSI-LD system as shown in figure 5.6.9.2-1.

Figure 5.6.9.2-1: Update a batch of Entities use case

5.6.9.3 Input data

• A JSON-LD Array containing one or more JSON-LD documents each one representing an Entity as mandated
by clause 5.2.4.

• An optional flag indicating whether Attributes shall be overwritten or not. By default, Attributes will be
overwritten.

5.6.9.4 Behaviour

Implementations shall exhibit the following behaviour:

• If the input Array is empty or contains a null value in any of its items, an error of type BadRequestData shall
be raised.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)79

• Execute the behaviour defined in clause 5.5.4 on JSON-LD validation.

• Let S be an array which shall contain a list of Entity ids, one for each NGSI-LD Entity which was successfully
processed. S shall be initialized as the empty array.

• Let E be an array which shall contain a list of BatchEntityError as defined by clause 5.2.17, one for each
NGSI-LD Entity which resulted in error. E shall be initialized as the empty array.

• For each of the NGSI-LD Entities included in the input Array execute the behaviour defined by clause 5.6.3 as
follows:

- If the Entity was successfully updated (Attributes appended), then add the corresponding Entity Id to the
S array.

- If the Entity update failed, then a new BatchEntityError shall be added to E containing the failed Entity
Id and the ProblemDetails associated.

5.6.9.5 Output data

• The list of Entities successfully processed (S Array).

• The list of Entities in error (E Array).

5.6.10 Batch Entity Delete

5.6.10.1 Description

This operation allows deleting a batch of NGSI-LD Entities.

5.6.10.2 Use case diagram

A Context Producer can delete a batch of Entities within an NGSI-LD system as shown in figure 5.6.10.2-1.

Figure 5.6.10.2-1: Delete a batch of Entities use case

5.6.10.3 Input data

• A JSON-LD Array containing a list of Entity Ids (URIs) that are requested to be deleted.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)80

5.6.10.4 Behaviour

Implementations shall exhibit the following behaviour:

• If the input Array is empty or contains a null value in any of its items, an error of type BadRequestData shall
be raised.

• Let S be an array which shall contain a list of Entity ids, one for each NGSI-LD Entity which was successfully
processed. S shall be initialized to the empty array.

• Let E be an array which shall contain a list of BatchEntityError as defined by clause 5.2.17, one for each
NGSI-LD Entity which resulted in error. E shall be initialized to the empty array.

• For each of the NGSI-LD Entity Ids included in the input Array execute the behaviour defined by clause 5.6.6
as follows:

- If the Entity corresponding to an Entity Id was successfully deleted, then add such Entity Id to the S
array.

- If the Entity deletion failed, then a new BatchEntityError shall be added to E containing the failed Entity
Id and the related ProblemDetails.

5.6.10.5 Output data

• The list of Entities successfully processed (S Array).

• The list of Entities in error (E Array).

5.6.11 Create or Update Temporal Representation of an Entity

5.6.11.1 Description

This operation allows creating or updating (by adding new Attribute instances) a Temporal Representation of an Entity.

5.6.11.2 Use case diagram

A Context Producer can create a Temporal Representation of an Entity within an NGSI-LD system as shown in
figure 5.6.11.2-1.

Similarly, if the Entity already exists then an Update scenario will be in place.

Figure 5.6.11.2-1: Create Temporal Representation of Entity use case

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)81

5.6.11.3 Input data

A JSON-LD document representing a Temporal Representation of an Entity as mandated by clause 5.2.20.

5.6.11.4 Behaviour

Implementations shall exhibit the following behaviour:

• Execute the behaviour defined in clause 5.5.4 on JSON-LD validation.

• If the NGSI-LD endpoint already knows about this Temporal Representation of an Entity, because there is an
existing Temporal Representation of an Entity whose id (URI) is the same, then all the Attribute instances
included by the Temporal Representation shall be added to the existing Entity as mandated by clause 5.6.12.

• Otherwise, implementations shall create the provided Temporal Representation of an Entity.

5.6.11.5 Output data

None.

5.6.12 Add Attributes to Temporal Representation of an Entity

5.6.12.1 Description

This operation allows modifying a Temporal Representation of an Entity by adding new Attribute instances.

5.6.12.2 Use case diagram

A Context Producer can add new Attributes or Attribute instances to an existing Temporal Representation of an Entity
within an NGSI-LD system as shown in figure 5.6.12.2-1.

Figure 5.6.12.2-1: Add Attributes to Temporal Representation of Entity use case

5.6.12.3 Input data

• Entity id (URI) which Temporal Representation is to be modified with additional Attributes (target Entity).

• A JSON-LD document representing an NGSI-LD Fragment of EntityTemporal, including only the new
Attribute instance(s), and contained by an Array.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)82

5.6.12.4 Behaviour

The following behaviour shall be exhibited by compliant implementations:

• If the Entity Id is not present or it is not a valid URI then an error of type BadRequestData shall be raised.

• If the NGSI-LD endpoint does not know about the Temporal Representation of the target Entity, because there
is no existing Temporal Representation of an Entity whose id (URI) is equivalent to the one passed as
parameter, an error of type ResourceNotFound shall be raised.

• The behaviour defined in clause 5.5.4 on JSON-LD validation.

• For each Attribute (Property or Relationship) instance included by the EntityTemporal Fragment at root level:

- The Attribute (considering term expansion rules as mandated by clause 5.5.7) instance(s) shall be added
to the target Entity.

5.6.12.5 Output data

None.

5.6.13 Delete Attribute from Temporal Representation of an Entity

5.6.13.1 Description

This operation allows deleting an Attribute (Property or Relationship) of the Temporal Representation of an Entity. The
Attribute itself and all its child NGSI-LD elements shall be deleted.

5.6.13.2 Use case diagram

A Context Producer can delete a specific Attribute of a Temporal Representation of an Entity within an NGSI-LD
system as shown in figure 5.6.13.2-1.

Figure 5.6.13.2-1: Delete Attribute from Temporal Representation of Entity use case

5.6.13.3 Input data

• Entity id (URI) of the target Entity which Temporal Representation is to be modified.

• Target Attribute (Property or Relationship) to be deleted, identified by a Name.

• An optional parameter identifying the dataset (datasetId) of the target Attribute instance to be deleted.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)83

• An optional parameter, a flag, (deleteAll) indicating whether all target Attribute instances are to be deleted,
regardless of datasetId.

• An optional JSON-LD @context.

5.6.13.4 Behaviour

• If the target Entity id is not a valid URI or it is not present, then an error of type BadRequestData shall be
raised.

• If the target Attribute name is not a valid Name, then an error of type BadRequestData shall be raised.

• If the NGSI-LD endpoint does not know about the target Entity, because there is no existing Temporal
Representation of an Entity whose id (URI) is equivalent, then an error of type ResourceNotFound shall be
raised.

• Apply term expansion as mandated by clause 5.5.7 so that the fully qualified name (URI) associated to the
target Attribute is properly obtained.

• If the target Entity does not contain the target Attribute then an error of type ResourceNotFound shall be
raised.

• If the deleteAll flag is set, remove all target Attribute instances from the target Entity.

• Otherwise:

- if a datasetId parameter is provided, remove only any target Attribute instance from the given dataset;

- if no datasetId parameter is provided, remove only the default target Attribute instance datasetId from
the target Entity.

5.6.13.5 Output data

None.

5.6.14 Partial update Attribute instance in Temporal Representation of an
Entity

5.6.14.1 Description

This operation allows modifying a specific Attribute (Property or Relationship) instance, identified by its instanceId, of
a Temporal Representation of an Entity.

This operation enables the correction of wrong information that could have been previously added to the Temporal
Representation of an Entity.

5.6.14.2 Use case diagram

A Context Producer can modify a specific Attribute instance, identified by a given instanceId, of the Temporal
Representation of an Entity within an NGSI-LD system as shown in figure 5.6.14.2-1.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)84

Figure 5.6.14.2-1: Modify Attribute Instance from Temporal Representation of Entity use case

5.6.14.3 Input data

• Entity id (URI) of the target Entity whose Temporal Representation is to be modified.

• Target Attribute (Property or Relationship) to be modified, identified by a Name.

• Entity Attribute instance to be modified, identified by its instanceId.

• A JSON-LD document representing an NGSI-LD Fragment of EntityTemporal, including only the new
Attribute instance, contained by an Array of exactly one item.

• An optional JSON-LD @context.

5.6.14.4 Behaviour

• If the target Entity id is not a valid URI or it is not present, then an error of type BadRequestData shall be
raised.

• If the target Attribute name is not a valid Name or it is not present, then an error of type BadRequestData shall
be raised.

• If the target instanceId is not a valid URI or it is not present, then an error of type BadRequestData shall be
raised.

• If the NGSI-LD endpoint does not know about the target Entity, because there is no existing Entity whose id
(URI) is equivalent, then an error of type ResourceNotFound shall be raised.

• Apply term expansion as mandated by clause 5.5.7 so that the fully qualified name (URI) associated to the
target Attribute is properly obtained.

• If the target Entity does not contain the target Attribute then an error of type ResourceNotFound shall be
raised.

• If for the target Attribute no instance with the specified instanceId exists, an error of type ResourceNotFound
shall be raised.

• Replace the target Attribute instance identified by the instanceId with the Attribute instance in the
EntityTemporal Fragment. The createdAt property of the concerned instance shall remain unchanged, but the
modifiedAt property shall be set to the timestamp corresponding to this modification.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)85

5.6.14.5 Output data

None.

5.6.15 Delete Attribute instance from Temporal Representation of an Entity

5.6.15.1 Description

This operation allows deleting one Attribute instance (Property or Relationship), identified by its instanceId, of a
Temporal Representation of an Entity. The Attribute itself and all its child elements shall be deleted. This operation
enables the removal of individual Attribute instances that could have been previously added to the Temporal
Representation of an Entity.

5.6.15.2 Use case diagram

A Context Producer can delete an Attribute instance, identified by a given instanceId, of the Temporal Representation
of an Entity within an NGSI-LD system as shown in figure 5.6.15.2-1.

Figure 5.6.15.2-1: Delete Attribute Instance from Temporal Representation of Entity use case

5.6.15.3 Input data

• Entity id (URI) of the Entity whose Temporal Representation is to be modified, the target Entity.

• Target Attribute (Property or Relationship) to be deleted, identified by a Name.

• Entity Attribute instance to be deleted, identified by its instanceId.

• An optional JSON-LD @context.

5.6.15.4 Behaviour

• If the target Entity id is not a valid URI or it is not present, then an error of type BadRequestData shall be
raised.

• If the target Attribute name is not a valid Name or it is not present, then an error of type BadRequestData shall
be raised.

• If the target instanceId is not a valid URI or it is not present, then an error of type BadRequestData shall be
raised.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)86

• If the NGSI-LD endpoint does not know about the target Entity, because there is no existing Entity whose id
(URI) is equivalent, then an error of type ResourceNotFound shall be raised.

• Apply term expansion as mandated by clause 5.5.7 so that the fully qualified name (URI) associated to the
target Attribute is properly obtained.

• If the Temporal Representation of the target Entity does not contain the target Attribute then an error of type
ResourceNotFound shall be raised.

• If for the target Attribute no instance with the specified instanceId exists, an error of type ResourceNotFound
shall be raised.

• Remove the instance, with the specified instanceId, of the target Attribute from the target Entity.

5.6.15.5 Output data

None.

5.6.16 Delete Temporal Representation of an Entity

5.6.16.1 Description

This operation allows deleting the Temporal Representation of an Entity.

5.6.16.2 Use case diagram

A Context Producer can completely delete the Temporal Representation of an Entity within an NGSI-LD system as
shown in figure 5.6.16.2-1.

Figure 5.6.16.2-1: Delete Temporal Representation of Entity use case

5.6.16.3 Input data

• Entity Id (URI) of the target Entity, whose Temporal Representation is to be deleted.

5.6.16.4 Behaviour

• If the target Entity id is not present or it is not a valid URI, then an error of type BadRequestData shall be
raised.

• If the NGSI-LD endpoint does not know about the target Entity, then an error of type ResourceNotFound shall
be raised.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)87

• Otherwise the entire Temporal Representation of the Entity shall be removed.

5.6.16.5 Output data

None.

5.7 Context Information Consumption

5.7.1 Retrieve Entity

5.7.1.1 Description

This operation allows retrieving an NGSI-LD Entity.

5.7.1.2 Use case diagram

A context consumer can retrieve a specific Entity from an NGSI-LD system as shown in figure 5.7.1.2-1.

Figure 5.7.1.2-1: Retrieve Entity use case

5.7.1.3 Input data

• Entity Id (URI) of the Entity to be retrieved (target Entity).

• List of Attribute (Properties or Relationships) Names to be retrieved (projection attributes) (optional).

• An optional JSON-LD context.

• In the case of a GeoJSON representation:

- The name of the GeoProperty attribute to use as the geometry for the GeoJSON representation as
mandated by clause 4.5.16 (optional).

- A datasetId specifying which instance of the value is to be selected if the GeoProperty value has
multiple instances as defined by clause 4.5.5 (optional).

5.7.1.4 Behaviour

• If the Entity Id is not present or it is not a valid URI, then an error of type BadRequestData shall be raised.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)88

• If the NGSI-LD endpoint does not know about the target Entity, because there is no existing Entity whose id
(URI) is equivalent, then an error of type ResourceNotFound shall be raised.

• Term to URI expansion of Attribute names shall be observed as mandated by clause 5.5.7.

• If the optional Attribute list is present and the NGSI-LD endpoint does know about a matching Entity for the
Entity Id, but this Entity does not have any of the Attributes in the Attribute list, then an error of type
ResourceNotFound shall be raised.

• If the Accept Header is set to "application/json" or "application/ld+json, return return a JSON-LD object
representing the Entity as mandated by clause 5.2.4 and containing only the Attributes requested (if present).

• If the Accept Header is set to "application/geo+json", a GeoJSON Feature object representing the entity as
mandated by clause 5.2.29 and containing only the Attributes requested (if present):

- If the Prefer Header is omitted or set to "body=ld+json" then the Feature object will also contain an
@context field.

- If the Prefer Header is set to "body=json" the @context is set as a Link Header and removed from the
Feature object.

5.7.1.5 Output data

A JSON-LD object representing the target Entity as mandated by clause 5.2.4 or a GeoJSON Feature as mandated by
clause 5.2.29.

5.7.2 Query Entities

5.7.2.1 Description

This operation allows querying an NGSI-LD system.

5.7.2.2 Use case diagram

A context consumer can retrieve a set of entities which matches a specific query from an NGSI-LD system as shown in
figure 5.7.2.2-1.

Figure 5.7.2.2-1: Query entities use case

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)89

5.7.2.3 Input data

• A reference to a JSON-LD @context (optional).

• A list (one or more) of Entity types (optional). Both type name (short hand string) and fully qualified type
name (URI) are allowed.

• A list (one or more) of Entity identifiers (optional).

• A list (one or more) of Attribute names (called query projection attributes) (optional).

• An id pattern as a regular expression (optional).

• An NGSI-LD query (to filter out Entities by Attribute values) as per clause 4.9 (optional).

• An NGSI-LD geo-query (to filter out Entities by spatial relationships) as mandated by clause 4.10 (optional).

• In the case of GeoJSON representation:

- The name of the GeoProperty attribute to use as the geometry for the GeoJSON representation as
mandated by clause 4.5.16 (optional).

- A datasetId specifying which instance of the value is to be selected if the GeoProperty value has
multiple instances as defined by clause 4.5.5 (optional).

• An NGSI-LD query (called context source filter, to filter out Context Sources by the values of properties that
describe them) as per clause 4.9 (optional).

• A limit to the number of Entities to be retrieved. See clause 5.5.9.

It is not possible to retrieve a set of entities by only specifying desired identifiers, without further specifying restrictions
on the entities' types or attributes, either explicitly, via lists of Entity types or of Attribute names, or implicitly, within
an NGSI-LD query or geo-query.

5.7.2.4 Behaviour

• At least one of the following input data shall be provided:

a) list of Entity Types,

b) list of Attribute names,

c) NGSI-LD query,

d) NGSI-LD geo-query

If none of them is provided, then an error of type BadRequestData shall be raised (too wide query).

• If the list of Entity identifiers includes a URI which it is not valid, or the query, geo-query or context source
filter are not syntactically valid (as per the referred clauses 4.9 and 4.10) an error of type BadRequestData
shall be raised.

• Term to URI expansion of type and Attribute names shall be performed, as mandated by clause 5.5.7.

• Otherwise, implementations shall run a query that shall return all the Entities that meet all of the following
conditions:

- type matches any of the expanded type(s) in the list that is passed as parameter;

- attribute matches any of the expanded attribute(s) in the list that is passed as parameter;

- id is equal to any of the id(s) passed as parameter;

- id matches the id pattern passed as parameter;

- the filter conditions specified by the query are met (as mandated by clause 4.9);

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)90

- the geospatial restrictions imposed by the geoquery are met (as mandated by clause 4.10); if there are
multiple instances of the GeoProperty on which the geoquery is based, it is sufficient if any of these
instances meets the geospatial restrictions;

- the entity is available at the Context Source(s) that match the context source filter conditions.

- if the Attribute list is present, in order for an Entity to match, it shall contain at least one of the Attributes
in the Attribute list.

• Pagination logic shall be in place as mandated by clause 5.5.9.

• If in the process of obtaining the query result it is necessary to issue a Context Source discovery operation, the
same Context Source filter input parameter (if present) shall be propagated.

• If the Accept Header is set to "application/json" or "application/ld+json, a JSON-LD array is returned,
representing the Entities as mandated by clause 5.2.4 and containing only the Attributes requested (if present).

• If the Accept Header is set to "application/geo+json", the response shall be a GeoJSON FeatureCollection as
mandated by clause 5.2.30, with each Feature within the FeatureCollection containing only the Attributes
requested (if present).

- If the Prefer Header is omitted or set to "body=ld+json" then the FeatureCollection will also contain an
@context field.

- If the Prefer Header is set to "body=json" the @context is sent as a Link Header and removed from the
FeatureCollection object.

5.7.2.5 Output data

A JSON-LD array representing the matching entities as defined by clause 5.2.4 4 or in the case of GeoJSON requests a
FeatureCollection as mandated by clause 5.2.30. For each matching Entity only the Attributes specified by the Attribute
list parameter shall be included. If such parameter is not present, then all Attributes shall be included.

5.7.3 Retrieve temporal evolution of an Entity

5.7.3.1 Description

This operation allows retrieving the temporal evolution of an NGSI-LD Entity.

5.7.3.2 Use case diagram

A Context Consumer can retrieve the temporal evolution of an Entity (in the form of a Temporal Representation) from
an NGSI-LD system as shown in figure 5.7.3.2-1.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)91

Figure 5.7.3.2-1: Retrieve temporal evolution of Entity use case

5.7.3.3 Input data

• Entity Id (URI) of the Entity, whose temporal evolution is to be retrieved (target Entity).

• List of Attribute (Properties or Relationships) Names to be retrieved (projection attributes) (optional).

• An NGSI-LD temporal query as mandated by clause 4.11 (optional).

• A parameter (lastN) conveying that only the last N instances (per Attribute) within the concerned temporal
interval shall be retrieved (optional).

• An optional JSON-LD context.

5.7.3.4 Behaviour

• If the Entity Id is not present or it is not a valid URI, then an error of type BadRequestData shall be raised.

• If the NGSI-LD endpoint does not know about the target Entity, because there is no existing Entity whose id
(URI) is equivalent, then an error of type ResourceNotFound shall be raised.

• Term to URI expansion of Attribute names shall be observed as mandated by clause 5.5.7.

• The lastN parameter refers to a number, n, of Attribute instances which shall correspond to the last n
timestamps (in descending ordering) of the temporal property (by default observedAt) within the concerned
temporal interval.

• Otherwise, return a JSON-LD object representing the Temporal Representation of the Entity as mandated by
clause 5.2.19 and containing only the Attributes requested (if present). The NGSI-LD temporal query (if
present) is used for filtering the Attribute instances. Thus, only Attribute instances, whose temporal property
(explicitly specified, or observedAt as default) fulfils the temporal query, are included in the response, up to
the number, n, specified by the lastN parameter (per Attribute).

- For the avoidance of doubt, if for a requested Attribute no instance fulfils the temporal query, then an
empty Array of instances shall be provided as the representation for such Attribute.

5.7.3.5 Output data

A JSON-LD object representing the Temporal Representation of the target Entity as mandated by clause 5.2.20.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)92

5.7.4 Query temporal evolution of Entities

5.7.4.1 Description

This operation allows querying the temporal evolution of Entities present in an NGSI-LD system. It is similar to the
operation defined by clause 5.7.2 (Query Entities) with the addition of a temporal query.

5.7.4.2 Use case diagram

A Context Consumer can retrieve the temporal evolution of a set of NGSI-LD Entities which matches a specific query
from an NGSI-LD system as shown in figure 5.7.4.2-1.

Figure 5.7.4.2-1: Temporal query use case

5.7.4.3 Input data

• A reference to a JSON-LD @context (optional).

• A list (one or more) of Attribute names (query projection attributes) (optional).

• An NGSI-LD temporal query as mandated by clause 4.11.

• A parameter (lastN) conveying that only the last N instances (per Attribute) within the concerned temporal
interval shall be retrieved (optional).

• A list (one or more) of Entity types of the matching entities (optional). Both type name (short hand string) and
fully qualified type name (URI) are allowed.

• A list (one or more) of Entity identifiers (optional).

• An id pattern as a regular expression (optional).

• An NGSI-LD query as mandated by clause 4.9 (values filter query) (optional).

• An NGSI-LD geo-query as mandated by clause 4.10 (optional).

• An NGSI-LD Context Source filter as per clause 4.9 (optional).

• A limit to the number of Entities to be retrieved. See clause 5.5.9.

At least one of (a) list of Entity Types or (b) list of Attribute names shall be present.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)93

5.7.4.4 Behaviour

• If a temporal query is not provided then an error of type BadRequestData shall be raised.

• If the list of Entity identifiers includes a URI which it is not valid, or the query or geo-query are not
syntactically valid (as per the referred clauses 4.9 and 4.10) an error of type BadRequestData shall be raised.

• Term to URI expansion of type and Attribute names shall be observed mandated by clause 5.5.7.

• The lastN parameter refers to a number, n, of Attribute instances which shall correspond to the last n
timestamps (in descending ordering) of the temporal property (by default observedAt) within the concerned
temporal interval.

• Otherwise, implementations shall run a query process intended to return the temporal evolution of the
matching Entities; the logical steps to select the final result set of Entities, and the Attribute instances included
as part of their temporal representation, are enumerated as follows:

- Let S be the set of selected Entities i.e. the query result set.

- If id(s) is provided, keep in S only those Entities whose id is equivalent to any of the id(s) passed as
parameter.

- If type(s) is provided, keep in S only those Entities whose Entity Type matches the expanded type(s).

- From S, select only those Entities any of whose Attribute instances (corresponding to the Attributes
specified by the query or all if none are specified) match the temporal restrictions imposed by the
temporal query (as mandated by clause 4.11); i.e. if the time series, for all the concerned Attributes of an
Entity, does not include data corresponding to the temporal query interval, then such Entity shall be
removed from S, thus it shall not appear in the final result set. Let S1 be this new subset.

- If a values filter query is provided, from S1, select those Entities whose Entity Attribute instances
(during the interval defined by the temporal query) meet the matching conditions specified by the query
(as mandated by clause 4.9); i.e. the values filter query shall be checked against all the Attribute
instances resulting from the initial filtering performed by the temporal query. Let S2 be this new subset.

- If no values filter query is provided, then S2 is equal to S1.

- If geo-query is present, from S2, select those Entities whose GeoProperty instances meet the geospatial
restrictions imposed by the geo-query (as mandated by clause 4.10); those geospatial restrictions shall be
checked against the GeoProperty instances that are within the interval defined by the temporal query. Let
S3 be this new subset.

- If no geo-query is provided, then S3 is equal to S2.

- From the set of Entities that are in S3, include in their temporal representation only the Attribute
instances (up to lastN) corresponding to the query's projection Attributes, and which meet the temporal,
query and geo-query restrictions:

 For the avoidance of doubt, and similarly to what was stated by clause 5.7.3 (Retrieve Temporal
Representation of an Entity), all the query projection Attributes shall be included in the temporal
representation of Entities defined by the final result set. If some of those Attributes do not include
any instance for the temporal query's time interval, then it shall be represented by an empty Array.

• Pagination logic shall be in place as mandated by clause 5.5.9.

• If in the process of obtaining the query result it is necessary to issue a Context Source discovery operation, the
same Context Source filter input parameter (if present) shall be propagated.

EXAMPLE: Entity Attribute: temperature

 Time series values available from 2018-10-03T12:00:00 till 2018-10-03T13:00:00

 Values [10,12,22,25]

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)94

 Query Elements:

 Temporal Query: timerel=between; timeAt=2018-10-03T12:00:00; endTimeAt=2018-10-
03T13:00:00

 Values Filter Query: q=temperature>12

As the values filter query is requesting only those temperature values which are greater than 12, even though the
timeseries for the specified interval includes 4 values, i.e. 4 Attribute instances, only 2 Attribute instances
(corresponding to [22,25]) will be included in the Temporal Representation of the Entity returned as part of the query
result set.

5.7.4.5 Output Data

A JSON-LD array representing the matching entities as defined by clause 5.2.21 and selected according to the behavior
described by clause 5.7.4.4.

5.7.5 Retrieve Available Entity Types

5.7.5.1 Description

This operation allows retrieving a list of NGSI-LD entity types for which entity instances exist within the NGSI-LD
system.

5.7.5.2 Use case diagram

A context consumer can retrieve a list of NGSI-LD entity types from the system as shown in figure 5.7.5.2-1.

Figure 5.7.5.2-1: Retrieve Available Entity Types use case

5.7.5.3 Input data

• An optional JSON-LD context.

5.7.5.4 Behaviour

• Return a JSON-LD object representing the list of entity types, as mandated by clause 5.2.24, for which entity
instances exist within the NGSI-LD system. See clause 5.7.11 for architecture-related implementation aspects.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)95

5.7.5.5 Output data

A JSON-LD object representing the list of available entity types, as mandated by clause 5.2.24.

5.7.6 Retrieve Details of Available Entity Types

5.7.6.1 Description

This operation allows retrieving a list with a detailed representation of NGSI-LD entity types for which entity instances
exist within the NGSI-LD system. The detailed representation includes the type name (as short name if available in the
provided @context) and the attribute names that existing instances of this entity type have.

5.7.6.2 Use case diagram

A context consumer can retrieve a list with a detailed representation of NGSI-LD entity types from the system as shown
in figure 5.7.6.2-1.

Figure 5.7.6.2-1: Retrieve Details of Available Entity Types use case

5.7.6.3 Input data

• An optional JSON-LD context.

5.7.6.4 Behaviour

• Return a list of JSON-LD objects representing the details of available entity types as mandated by
clause 5.2.25 for which entity instances exist within the NGSI-LD system. See clause 5.7.11 for
architecture-related implementation aspects.

5.7.6.5 Output data

A list of JSON-LD objects representing the details of available entity types as mandated by clause 5.2.25.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)96

5.7.7 Retrieve Available Entity Type Information

5.7.7.1 Description

This operation allows retrieving detailed entity type information about a specified NGSI-LD entity type for which entity
instances exist within the NGSI-LD system. The detailed representation includes the type name (as short name if
available in the provided @context), the count of available entity instances and details about attributes that existing
instances of this entity type have, including their name (as short name if available in the the provided @context) and a
list of types the attribute can have (e.g. Property, Relationship or GeoProperty).

5.7.7.2 Use case diagram

A context consumer can retrieve a detailed representation of a specified NGSI-LD entity type from the system as shown
in figure 5.7.7.2-1.

Figure 5.7.7.2-1: Retrieve Available Entity Type Information use case

5.7.7.3 Input data

• Entity type name for which detailed information is to be retrieved

• An optional JSON-LD context.

5.7.7.4 Behaviour

• Return a JSON-LD object representing the details of the specified entity type as mandated by clause 5.2.26, for
which instances exist within the NGSI-LD system. See clause 5.7.11 for architecture-related implementation
aspects.

5.7.7.5 Output data

A JSON-LD object representing the details of the specified entity type as mandated by clause 5.2.26.

5.7.8 Retrieve Available Attributes

5.7.8.1 Description

This operation allows retrieving a list of NGSI-LD attributes that belong to entity instances existing within the NGSI-
LD system.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)97

5.7.8.2 Use case diagram

A context consumer can retrieve a list of NGSI-LD attributes from the system as shown in figure 5.7.8.2-1.

Figure 5.7.8.2-1: Retrieve Available Attributes use case

5.7.8.3 Input data

• An optional JSON-LD context.

5.7.8.4 Behaviour

• Return a JSON-LD object representing the list of attributes as mandated by clause 5.2.27 that belong to entity
instances existing within the NGSI-LD system. See clause 5.7.11 for architecture-related implementation
aspects.

5.7.8.5 Output data

A JSON-LD object representing the list of available attributes as mandated by clause 5.2.27.

5.7.9 Retrieve Details of Available Attributes

5.7.9.1 Description

This operation allows retrieving a list with a detailed representation of NGSI-LD attributes that belong to entity
instances existing within the NGSI-LD system. The detailed representation includes the attribute name (as short name if
available in the provided @context) and the type names for which entity instances exist that have the respective
attribute.

5.7.9.2 Use case diagram

A context consumer can retrieve a list with a detailed representation of NGSI-LD attributes from the system as shown in
figure 5.7.9.2-1.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)98

Figure 5.7.9.2-1: Retrieve Details of Available Attributes use case

5.7.9.3 Input data

• An optional JSON-LD context.

5.7.9.4 Behaviour

• Return a list of JSON-LD objects representing the details of available attributes as mandated by clause 5.2.28
(restricted to the elements id, type, attributeName and typeNames) that belong to entity instances existing
within the NGSI-LD system. See clause 5.7.11 for architecture-related implementation aspects.

5.7.9.5 Output data

A list of JSON-LD objects representing the details of available attributes as mandated by clause 5.2.28 (restricted to the
elements id, type, attributeName and typeNames).

5.7.10 Retrieve Available Attribute Information

5.7.10.1 Description

This operation allows retrieving detailed attribute information about a specified NGSI-LD attribute that belongs to
entity instances existing within the NGSI-LD system. The detailed representation includes the attribute name (as short
name if available in the provided @context) and the type names for which entity instances exist that have the respective
attribute, a count of available attribute instances and a list of types the attribute can have (e.g. Property, Relationship or
GeoProperty).

5.7.10.2 Use case diagram

A context consumer can retrieve a list with a detailed representation of NGSI-LD attributes from the system as shown in
figure 5.7.10.2-1.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)99

Figure 5.7.10.2-1: Retrieve Available Attribute Information use case

5.7.10.3 Input data

• Name of the attribute for which detailed information is to be retrieved

• An optional JSON-LD context.

5.7.10.4 Behaviour

• Return a JSON-LD object representing the details of available attributes as mandated by clause 5.2.28 that
belong to entity instances existing within the NGSI-LD system. See clause 5.7.11 for architecture-related
implementation aspects.

5.7.10.5 Output data

A JSON-LD object representing the details of available attributes as mandated by clause 5.2.28.

5.7.11 Architecture-related aspects of retrieval of entity types and attributes

Retrieving information about available types or attributes can be an expensive operation depending on the scale and
architectural design decisions of the NGSI-LD system. This is in particular the case for retrieving the information about
all available entity types and attributes related to all entity information available in an NGSI-LD system. Especially in
the case of distributed architecture (clause 4.3.3) and federated architecture (clause 4.3.4) checking all entities can be so
expensive that it can become practically infeasibile.

Therefore, implementations may only take into account information that is available or can be derived from a local
datastore and the Context Registry, when implementing the retrieval of available entity types and attributes, as
described in clauses 5.7.5, 5.7.6, 5.7.7, 5.7.8, 5.7.9 and 5.7.10. Context registrations do not always reflect which entity
instances are actually available from a Context Source at a particular point in time, but only which entity instances are
possibly available from a Context Source, thus in this case the information about available entity types and attributes is
to be interpreted as "possibly available". Also, context registrations can have different granularities, i.e. they possibly
only contain entity type or attribute information, and thus the provided information about available entity types and
attributes is possibly incomplete as a result. In particular the attributeNames in the EntityType data structure (clause
5.2.25), the attributeDetails in the EntityTypeInfo data structure (clause 5.2.26), and the attributeTypes and typeNames
in the Attribute data structure (clause 5.2.27) may be provided as empty arrays if the information is not included in the
respective context registration. Implementations may also provide estimates for the entity count or attribute count
instead of the accurate count.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)100

5.8 Context Information Subscription

5.8.1 Create Subscription

5.8.1.1 Description

This operation allows creating a new subscription.

5.8.1.2 Use case diagram

A context subscriber can create a subscription to receive context updates within an NGSI-LD system as shown in
figure 5.8.1.2-1.

Figure 5.8.1.2-1: Create subscription use case

5.8.1.3 Input data

• A data structure (represented in JSON-LD) conforming to the Subscription data type as mandated by
clause 5.2.12.

5.8.1.4 Behaviour

• If the data types, cardinalities and restrictions expressed by clause 5.2.12 are not met, then an error of type
BadRequestData shall be raised.

• If the NGSI-LD endpoint already knows about this Subscription, as there is an existing Subscription whose id
(URI) is equivalent, an error of type AlreadyExists shall be raised.

• If the subscription document does not include a Subscription identifier, a new identifier (URI) shall be
automatically generated by the implementation.

• Then, implementations shall add a new Subscription. The parameters of the created Subscription shall be
configured as follows:

- The Subscription expiration date shall be equal to the value of the expiresAt member. If the expiration
timestamp provided represents a moment before the current date and time, then an error of type
BadRequestData shall be raised. If there is no expiresAt member the Subscription shall be considered as
perpetual.

- If the value of the isActive field is not included or is true then the initial status of the Subscription shall
be set to "active".

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)101

- If the value of the isActive field is false, then the initial status of the Subscription shall be set to "paused".

- If present, the subscribed entities shall be those matching the conditions expressed under the EntityInfo,
as defined in clause 5.2.8.

- Watched Attributes shall be those Attributes (subject to clause 5.5.7 Term to URI expansion) pertaining
to the subscribed entities (if present) and conveyed through the watchedAttributes member. Watched
Attributes are those that trigger a new notification when they are changed. A non-present
watchedAttributes member means that all Attributes shall be watched. If no subscribed entities have been
specified, all entities with attributes matching at least one member of watchedAttributes are subscribed
to.

• If the subscription defines a timeInterval member, a Notification shall be sent periodically, when the time
interval (in seconds) specified in such value field is reached, regardless of Attribute changes.

• If timeInterval is not defined, whenever there is a change in the watched Attribute nodes (Properties or
Relationships) of the concerned Entities, implementations shall post a new Notification as per the rules defined
by clause 5.8.6.

• Implementations shall ensure that, when the Subscription expiration date is due, the status of the Subscription
changes automatically to expired, so that notifications will no longer be sent.

5.8.1.5 Output data

• One subscription identifier (id) of type string, representing a URI. Implementations shall ensure that
subscription identifiers are unique within an NGSI-LD system.

5.8.2 Update Subscription

5.8.2.1 Description

This operation allows updating an existing subscription.

5.8.2.2 Use case diagram

A context subscriber can update an existing subscription within an NGSI-LD system as shown in figure 5.8.2.2-1.

Figure 5.8.2.2-1: Update subscription use case

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)102

5.8.2.3 Input data

• Subscription identifier (URI), the target subscription.

• A JSON-LD document representing a Subscription Fragment.

5.8.2.4 Behaviour

• If the Subscription id is not present or it is not a valid URI, then an error of type BadRequestData shall be
raised.

• If the NGSI-LD System does not know about the target Subscription, because there is no existing Subscription
whose id (URI) is equivalent, an error of type ResourceNotFound shall be raised.

• Execute the behaviour defined on clause 5.5.4 on JSON-LD validation.

• If the data types and restrictions expressed by clause 5.2.12 are not met by the Subscription Fragment, then an
error of type BadRequestData shall be raised.

• Any attempt to remove (by setting them to null in the Fragment) mandatory properties of a Subscription
(clause 5.2.12) shall result in an error of type BadRequestData.

• Term to URI expansion of Attribute names shall be observed as mandated by clause 5.5.7.

• Then, implementations shall modify the target Subscription as mandated by clause 5.5.8.

• Finally, the following extra behaviour shall be observed when updating Subscriptions:

- If isActive is equal to true or null and expiresAt is not present, then status shall be updated to "active", if
and only if, the previous value of status was different than "expired".

- If isActive is equal to true or null and expiresAt is null or corresponds to a DateTime in the future, then
status shall be updated to "active".

- If isActive is equal to false and expiresAt is not present, then status shall be updated to "paused", if and
only if, the previous value of status was different than "expired".

- If isActive is null then status shall be updated to "active".

- If only expiresAt is included and refers to a DateTime in the future or is null, then status shall be updated
to "active", if and only if the previous value of status was "expired".

- If expiresAt is included but referring to a DateTime in the past, then a BadRequestData error shall be
raised, regardless the value of isActive.

5.8.2.5 Output data

None.

5.8.3 Retrieve Subscription

5.8.3.1 Description

This operation allows retrieving an existing subscription.

5.8.3.2 Use case diagram

A Context Subscriber can retrieve a specific subscription from an NGSI-LD system as shown in figure 5.8.3.2-1.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)103

Figure 5.8.3.2-1: Retrieve subscription use case

5.8.3.3 Input data

• Id (URI) of the subscription to be retrieved (target subscription).

5.8.3.4 Behaviour

• If the subscription Id is not present or it is not a valid URI, then an error of type BadRequestData shall be
raised.

• If the identifier provided does not correspond to any existing subscription in the system then an error of type
ResourceNotFound shall be raised.

• Otherwise implementations shall query the subscriptions and obtain the subscription data to be returned to the
caller.

5.8.3.5 Output data

A JSON-LD object representing the subscription details as mandated by clause 5.2.12.

5.8.4 Query Subscriptions

5.8.4.1 Description

This operation allows querying existing Subscriptions.

5.8.4.2 Use case diagram

A Context Consumer can query the existent Subscriptions from an NGSI-LD system as shown in figure 5.8.4.2-1.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)104

Figure 5.8.4.2-1: Query subscriptions use case

5.8.4.3 Input data

• A limit to the number of subscriptions to be retrieved. See clause 5.5.9.

5.8.4.4 Behaviour

• The NGSI-LD system shall list all the existing subscriptions up to the limit specified as input data. If no limit
is specified the number of subscriptions retrieved may depend on the implementation.

• Pagination logic shall be in place as mandated by clause 5.5.9.

5.8.4.5 Output data

A list (represented as a JSON array) of JSON-LD objects each one representing subscription details as mandated by
clause 5.2.12.

5.8.5 Delete Subscription

5.8.5.1 Description

This operation allows deleting an existing subscription.

5.8.5.2 Use case diagram

A context subscriber can delete a subscription within an NGSI-LD system as shown in figure 5.8.5.2-1.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)105

Figure 5.8.5.2-1: Delete subscription use case

5.8.5.3 Input data

• A subscription identifier (URI).

5.8.5.4 Behaviour

• If the subscription Id is not present or it is not a valid URI, then an error of type BadRequestData shall be
raised.

• If the subscription id provided does not correspond to any existing subscription in the system then an error of
type ResourceNotFound shall be raised.

• Otherwise implementations shall delete the Subscription and no longer perform notifications concerning such
Subscription.

5.8.5.5 Output data

None.

5.8.6 Notification behaviour

A notification is a message that allows a subscriber to be aware of the changes in subscribed Entities. Implementations
shall exhibit the following behaviour:

• Notifications shall only be sent if and only if the status of the corresponding subscription
("subscription.status") is active, i.e. not paused nor expired.

• If a Subscription defines a timeInterval member, a Notification shall be sent periodically, when the time
interval (in seconds) specified in such value field is reached, regardless of Attribute changes. The notification
message shall include all the subscribed Entities that match the query and geoquery conditions. If query or
geoquery are not defined then all subscribed Entities shall be included.

• If a Subscription does not define a timeInterval term, the notification shall be sent whenever there is a change
in the watched Attributes. An Attribute is considered to change when any of the members (including children)
in its corresponding JSON-LD node is updated with a value different than the existing one. The notification
message shall include all the subscribed Entities that changed and that match (as mandated by clauses 4.9 and
4.10) the query and geoquery conditions. If query or geoquery are not defined then all subscribed Entities that
changed shall be included. If, for an Entity, there are multiple instances of the GeoProperty on which the
geoquery is based, it is sufficient if any of these instances meets the geospatial restrictions. Finally, if a
Context Source filter is defined, then only the subscribed Entities whose origin Context Source matches the
referred filter shall be included.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)106

• A Notification shall be sent as follows:

- The structure of the notification message shall be as mandated by clause 5.3.1.

- The Entity Attributes included (Properties or Relationships) shall be those specified by the
notification.attributes member in the Subscription data type (clause 5.2.12). Term to URI expansion shall
be observed (clause 5.5.7). The absence of the notification.attributes member of a Subscription means
that all Entity Attributes shall be included.

- If the notification.format member value is "keyValues" then a simplified representation of the entities (as
mandated by clause 4.5.3) shall be provided. Otherwise the normalized format shall be used.

- A Notification shall be sent (as mandated by each concrete binding and including any optional
endpoint.info defined by clause 5.2.22) to the endpoint specified by the endpoint.uri member of the
notification structure defined by clause 5.2.14. The Notification content shall be JSON by default.
However, this can be changed to JSON-LD by means of the endpoint.accept member.

- The notification.timesSent member shall be incremented by one.

- The notification.lastNotification member shall be updated with a timestamp representing the current date
and time.

- If the response to the notification request is 200 OK then implementations shall:

 Update notification.lastSuccess with a timestamp representing the current date and time.

 Update notification.status to "ok".

- If the response to the notification request is different than 200 OK then implementations shall:

 Update notification.lastFailure with a timestamp representing the current date and time.

 Update notification. status to "failed".

5.9 Context Source Registration

5.9.1 Introduction

As described in clause 5.2.9, Context Source Registrations have a similar structure as Entities and are generally handled
in the same way. However, there are some aspects that are specific to Registrations, in particular with respect to the
handling of required properties. Thus, the operation descriptions for Registrations reference the respective operations
for Entities and in addition specify any deviations and additions that are necessary for handling Context Source
Registrations.

Context Source Registrations either contain information about Context Sources providing the latest information or
about Context Sources providing temporal information, but not both. Context Sources that can provide both thus have to
use two separate Context Source Registrations. If no temporal query is present, only Context Source Registrations for
Context Sources providing latest information are returned, i.e. those which do not specify time intervals used for
temporal queries. If a temporal query is present in a request for Context Source Registrations, only those Context
Source Registrations that have a matching time interval are returned.

5.9.2 Register Context Source

5.9.2.1 Description

This operation allows registering a context source within an NGSI-LD system.

5.9.2.2 Use case diagram

A context provider can register one or more context sources within an NGSI-LD system as shown in figure 5.9.2.2-1.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)107

Figure 5.9.2.2-1: Register context source use case

5.9.2.3 Input data

A data structure conforming to the CsourceRegistration data type as mandated by clause 5.2.9.

5.9.2.4 Behaviour

Implementations shall generally exhibit the behaviour described in clause 5.6.1.4, but instead of any type of entities
only Context Source Registrations can be provided. Deviating from clause 5.6.1.4, implementations shall exhibit the
following behaviour:

• If the data types and restrictions expressed by clause 5.2.9 are not met by the Context Source Registration,
then an error of type BadRequestData shall be raised.

• If the property expiresAt is not defined then the Context Source Registration shall last forever (or until it is
deleted from the system).

• If expiresAt is a date and time in the past, an error of type BadRequestData shall be raised.

• If expiresAt is a date and time in the future, implementations shall delete the Registration when this point in
time is reached.

• If the registration identifier, id, is contained in the Context Source Registration, implementations have to check
whether this is a valid identifier that conforms to its policies and is unique within its scope. Otherwise it can
replace the 'id' with a valid registration identifier.

• Implementations shall add the concerned Context Source Registration and return an 'ok' response together with
a registration identifier (id).

• This id shall be used if NGSI-LD clients need to manage the registration later.

5.9.2.5 Output data

One registration identifier (id) of type string, representing a URI. Implementations shall ensure that registration
identifiers are unique within an NGSI-LD system.

5.9.3 Update Context Source Registration

5.9.3.1 Description

This operation allows updating a Context Source Registration in an NGSI-LD system.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)108

5.9.3.2 Use case diagram

A Context Provider can update a Context Source Registration in an NGSI-LD system as shown in figure 5.9.3.2-1.

Figure 5.9.3.2-1: Update context source registration use case

5.9.3.3 Input data

• Context Source Registration identifier (URI), the target Context Source Registration.

• A JSON-LD document representing a Context Source Registration Fragment (clause 5.4).

5.9.3.4 Behaviour

• If the target Context Source Registration id (id) is not present or it is not a valid URI, then an error of type
BadRequestData shall be raised.

• If the NGSI-LD System does not know about the target Context Source Registration, because there is no
existing Context Source Registration whose id (URI) is equivalent, an error of type ResourceNotFound shall
be raised.

• Execute the behaviour defined on clause 5.5.4 on JSON-LD validation.

• If the data types and restrictions expressed by clause 5.2.9 are not met by the Context Source Registration
Fragment, then an error of type BadRequestData shall be raised.

• Any attempt to remove (by setting them to null in the Fragment) mandatory properties of a Context Source
Registration (clause 5.2.9) shall result in an error of type BadRequestData.

• Term to URI expansion of Attribute names shall be observed as mandated by clause 5.5.7.

• Then, implementations shall modify the target Context Source Registration as mandated by clause 5.5.8 and
observing the following specific behaviour:

- If the property expiresAt is set to null then the Context Source Registration shall be updated to last
forever.

5.9.3.5 Output data

None.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)109

5.9.4 Delete Context Source Registration

5.9.4.1 Description

This operation allows deleting a Context Source Registration from an NGSI-LD system.

5.9.4.2 Use case diagram

A context provider can delete a context source registration from an NGSI-LD system as shown in figure 5.9.4.2-1.

Figure 5.9.4.2-1: Delete context source registration use case

5.9.4.3 Input data

Registration identifier (URI) of the context source registration to be deleted (target registration).

5.9.4.4 Behaviour

• If the target context source registration id is not present or it is not a valid URI, then an error of type
BadRequestData shall be raised.

• If the NGSI-LD endpoint does not know about the target context source registration, because there is no
existing context source registration whose id (URI) is equivalent, then an error of type ResourceNotFound
shall be raised.

• Otherwise the context source registration shall be removed.

5.9.4.5 Output data

None.

5.10 Context Source Discovery

5.10.1 Retrieve Context Source Registration

5.10.1.1 Description

This operation allows retrieving a specific context source registration from an NGSI-LD system.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)110

5.10.1.2 Use case diagram

A context consumer or a context provider can retrieve a specific context source registration from an NGSI-LD system
as shown in figure 5.10.1.2-1.

Figure 5.10.1.2-1: Retrieve context source registration use case

5.10.1.3 Input data

• Context source registration identifier (id) of the context source registration to be retrieved (target registration).

5.10.1.4 Behaviour

• If the context source registration id (id) is not present or it is not a valid URI, then an error of type
BadRequestData shall be raised.

• If the NGSI-LD endpoint does not know about the target context source registration, because there is no
existing context source registration whose id (URI) is equivalent, then an error of type ResourceNotFound
shall be raised.

• Term to URI expansion of Attribute names shall be observed as mandated by clause 5.5.7.

• Otherwise return a JSON-LD object representing the Context Source Registration as mandated by clause 5.2.9.

5.10.1.5 Output data

A JSON-LD object representing the target context source registration as mandated by clause 5.2.9.

5.10.2 Query context source registrations

5.10.2.1 Description

This operation allows discovering context source registrations from an NGSI-LD system. The behaviour of the
discovery of context source registrations differs significantly from the querying of entities as described in clause 5.7.2.
The approach is that the client submits a query for entities as described in clause 5.7.2, but instead of receiving the
Entity information, it receives a list of Context Source Registrations describing Context Sources that possibly have
some of the requested Entity information. This means that the requested Entities and Attributes are matched against the
'information' property as described in clause 5.12.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)111

If no temporal query is present, only Context Source Registrations for Context Sources providing latest information, i.e.
without specified time intervals, are considered. If a temporal query is present only Context Source Registrations with
matching time intervals, i.e. observationInterval or managementInterval, are considered.

5.10.2.2 Use case diagram

A context consumer can discover context source registrations that may be able to provide (part of) the context
information specified in the query from an NGSI-LD system as shown in figure 5.10.2.2-1.

Figure 5.10.2.2-1: Discover context source registrations use case

5.10.2.3 Input data

• A reference to a JSON-LD @context (optional).

• A list (one or more) of Entity types of the matching entities (optional).

• A list (one or more) of Entity identifiers (optional).

• A list (one or more) of Attribute names (optional).

• An id pattern as a regular expression (optional).

• An NGSI-LD query (optional) as per clause 4.9.

• An NGSI-LD geo-query (optional) as per clause 4.10.

• An NGSI-LD temporal query (optional) as per clause 4.11.

• An NGSI-LD context source query (optional) as per clause 4.9.

• A limit to the number of Context Source Registrations to be retrieved. See clause 5.5.9.

At least one of (a) list of Entity Types or (b) list of Attribute names shall be present.

5.10.2.4 Behaviour

• Execute the behaviour defined in clause 5.5.4 on JSON-LD validation.

• If neither Entity types nor Attribute names are provided, an error of type BadRequestData shall be raised.

• If the list of Entity identifiers includes a URI which it is not valid, or the query, geo-query or temporal query
are not syntactically valid (as per clauses 4.9, 4.10 and 4.11) an error of type BadRequestData shall be raised.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)112

• If a JSON-LD context is not provided then all the query terms shall be resolved against the default JSON-LD
@context.

• Implementations should run a query that shall return context source registrations that meet all the applicable
conditions:

- If present, the entity specification in the query consisting of a combination of entity type and entity
id/entity id pattern matches an EntityInfo specified in a RegistrationInfo of the information property in a
context source registration. If there is no EntityInfo specified in the RegistrationInfo, the entity
specification is considered matching. This matching is further described in clause 5.12.

- If present, at least one Attribute name specified in the query matches one Property or Relationship in the
RegistrationInfo element of the information property in a context source registration.. If no Properties or
Relationships are specified in the RegistrationInfo, the Attribute names are considered matching. This
matching is further described in clause 5.12.

- If present, the geoquery is matched against the GeoProperty identified in the geoquery. If no
GeoProperty is specified in the geoquery, the default property is 'location'. The geoquery matches the
GeoProperty specified in the Context Source Registration, if the location directly matches or if the
location possibly contains locations that would match the geoquery.

- If no temporal query is present, only Context Source Registrations for Context Sources providing latest
information, i.e. without specified time intervals, are considered.

- If a temporal query is present, only Context Source Registrations with specified time intervals,
i.e. observationInterval or managementInterval are considered. If the timeproperty is observedAt or no
timeproperty is specified in the temporal query (default: observedAt), the temporal query is matched
against the observationInterval (if present). If the timeproperty is createdAt or modifiedAt, the temporal
query is matched against the managementInterval (if present). If the relevant interval is not present, there
is no match:

 The semantics of the match is that the "timeAt" in the case of the "before" and "after" relation is
contained in or is an endpoint of a time period included in the specified time interval. In the case of
the "between" relation there is a match if there is an overlap between the interval specified by the
"timeAt" and "endtimeAt" and the specified time interval.

- If present, the conditions specified by the context source query match the respective Context Source
Properties (as mandated by clause 4.9).

• Pagination logic shall be in place as mandated by clause 5.5.9.

5.10.2.5 Output data

A JSON-LD array of matching Context Source Registrations as defined by clause 5.2.9. Instead of the original Context
Source Registration which may contain a lot of irrelevant information, implementations should return filtered Context
Source Registrations, which only contain context source registration information relevant for the query, in particular
only matching RegistrationInfo elements.

5.11 Context Source Registration Subscription

5.11.1 Introduction

Context Source Registration Subscriptions in general work like context information subscriptions; however, instead of
resulting in notifications with context information, the notifications contain Context Source Registrations describing
Context Sources that can potentially provide the requested context information. If no temporal query is present, only
Context Source Registrations for Context Sources providing latest information, i.e. without such time intervals, are
considered. If a temporal query is present only Context Source Registrations with matching time intervals, i.e.
observationInterval or managementInterval, are considered.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)113

5.11.2 Create Context Source Registration Subscription

5.11.2.1 Description

This operation allows creating a new Context Source Registration Subscription.

5.11.2.2 Use case diagram

A Context Source subscriber can subscribe to a new Context Source Registration Subscription as shown in
figure 5.11.2.2-1.

Figure 5.11.2.2-1: Subscribe Context Source Registration use case

5.11.2.3 Input data

• A data structure (represented in JSON-LD) conforming to the Subscription data type as mandated by
clause 5.2.12.

5.11.2.4 Behaviour

• The behaviour shall be as described in clause 5.8.1.4 with the following exceptions:

- If all checks described in clause 5.8.1.4 pass, implementations shall add a new Context Source
Registration Subscription. The parameters of the created subscription shall be configured as described in
clause 5.8.1.4.

- Instead of directly matching the entities and watched Attributes from the subscription with the Context
Source registrations, the entities specified in the subscription, the watched Attributes and the Attributes
specified in the notification parameter are matched against the respective information property of the
Context Source registrations. If either the watched Attributes or the Attributes in the notification are not
present or of length 0, all possible Attributes (if present in the Context Source Registrations) for
matching entities match. This matching is further described in clause 5.12.

- If present, the geoquery in the geoQ element is matched against the GeoProperty of the subscription
identified in the geoQ element. If no GeoProperty is specified in the geoquery, the default property is
'location'. The geoquery matches the GeoProperty specified in the Context Source Registration, if the
location directly matches or if the location possibly contains locations that would match the geoquery.

- If no temporal query is present in the temporalQ element, only Context Source Registrations for Context
Sources providing latest information, i.e. without specified time intervals for observationInterval or
managementInterval, are considered.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)114

- If a temporal query in the temporalQ element is present, only Context Source Registrations with
specified time intervals are considered. If the timeproperty is observedAt or no timeproperty is specified
in the temporal query (default: observedAt), the temporal query is matched against the
observationInterval (if present). If the timeproperty is createdAt or modifiedAt, the temporal query is
matched against the managementInterval (if present). If the relevant interval is not present, there is no
match:

 The semantics of the match is that the "timeAt" in the case of the "before" and "after" relation is
contained in or is an endpoint of a time period included in the specified time interval. In the case of
the "between" relation there is a match if there is an overlap between the interval specified by the
"timeAt" and "endtimeAt" and the specified time interval.

• If the subscription defines a "timeInterval" term, a cSourceNotification (clause 5.3.2) with all matching
Context Source Registrations shall be sent periodically, initially on subscription and when the time interval (in
seconds) specified in such value field is reached, independent of any changes to the set of Context Source
registrations.

• If "timeInterval" is not defined, initially on subscription and whenever there is a change of a matching Context
Source Registration (creation, update, deletion), implementations shall post a new cSourceNotification to the
endpoint specified in the notification parameters informing about this change by providing the Context Source
Registration(s) together with the appropriate trigger reason in the "triggerReason" member.

5.11.2.5 Output data

One subscription identifier (id) of type string, representing a URI. Implementations shall ensure that subscription
identifiers are unique within an NGSI-LD system.

5.11.3 Update Context Source Registration Subscription

5.11.3.1 Description

This operation allows updating an existing Context Source Registration Subscription.

5.11.3.2 Use case diagram

A context source subscriber can update a Context Source Registration Subscription. as shown in figure 5.11.3.2-1.

Figure 5.11.3.2-1: Update Context Source Registration Subscription use case

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)115

5.11.3.3 Input data

• Subscription identifier (URI), the target Context Source Registration Subscription.

• A JSON-LD document representing a Subscription Fragment.

5.11.3.4 Behaviour

• If the Subscription Id is not present or it is not a valid URI, then an error of type BadRequestData shall be
raised.

• If the data types and restrictions expressed by clause 5.2.12 are not met by the Subscription Fragment, then an
error of type BadRequestData shall be raised.

• Any attempt to remove (by setting them to null in the Fragment) mandatory properties of a Context Source
Registration Subscription (clause 5.2.9) shall result in an error of type BadRequestData.

• Then, implementations shall modify the target subscription as mandated by clause 5.5.8.

• Finally, send a notification with all currently matching Context Source Registrations.

5.11.3.5 Output data

None.

5.11.4 Retrieve Context Source Registration Subscription

5.11.4.1 Description

This operation allows retrieving an existing Context Source Registration Subscription.

5.11.4.2 Use case diagram

A Context Source subscriber can retrieve a specific Context Source Registration Subscription as shown in
figure 5.11.4.2-1.

Figure 5.11.4.2-1: Retrieve Context Source Registration Subscription use case

5.11.4.3 Input data

• Id (URI) of the subscription to be retrieved (target subscription).

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)116

5.11.4.4 Behaviour

• If the subscription Id is not present or it is not a valid URI, then an error of type BadRequestData shall be
raised.

• If the identifier provided does not correspond to any existing subscription in the system then an error of type
ResourceNotFound shall be raised.

• Otherwise implementations shall query the Context Source Registration Subscriptions and obtain the
subscription data to be returned to the caller.

5.11.4.5 Output data

A JSON-LD object representing the subscription details as mandated by clause 5.2.12.

5.11.5 Query Context Source Registration Subscriptions

5.11.5.1 Description

This operation allows querying existing Context Source Registration Subscriptions.

5.11.5.2 Use case diagram

A context source subscriber can query all existing Context Source Registration Subscriptions as shown in
figure 5.11.5.2-1.

Figure 5.11.5.2-1: Retrieve Context Source Registration Subscriptions use case

5.11.5.3 Input data

• A limit to the number of Context Source Registration Subscriptions to be retrieved. See clause 5.5.9.

5.11.5.4 Behaviour

• The NGSI-LD System shall list all the existing Context Source Registration Subscriptions.

• Pagination logic shall be in place as mandated by clause 5.5.9.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)117

5.11.5.5 Output data

A list (represented as a JSON array) of JSON-LD objects each one representing subscription details as mandated by
clause 5.2.12.

5.11.6 Delete Context Source Registration Subscriptions

5.11.6.1 Description

This operation allows deleting an existing Context Source Registration Subscription.

5.11.6.2 Use case diagram

A context source subscriber can delete a Context Source Registration Subscription as shown in figure 5.11.6.2-1.

Figure 5.11.6.2-1: Delete Context Source Registration Subscriptions use case

5.11.6.3 Input data

• A subscription identifier (URI).

5.11.6.4 Behaviour

• If the subscription Id is not present or it is not a valid URI, then an error of type BadRequestData shall be
raised.

• If the subscription id provided does not correspond to any existing subscription in the system then an error of
type ResourceNotFound shall be raised.

• Otherwise implementations shall delete the Context Source Registration Subscription and no longer perform
notifications concerning that Subscription.

5.11.6.5 Output data

None.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)118

5.11.7 Notification behaviour

A Context Source Notification is a message that allows a subscriber to be aware of the changes in the set of Context
Source Registrations describing Context Sources that can potentially provide the requested context information.
Implementations shall exhibit the behaviour described in clause 5.8.6 with the following exceptions:

• If a subscription defines a "timeInterval" member, a CsourceNotification (clause 5.3.2) shall be sent on initial
subscription and periodically, when the time specified time interval (in seconds) has elapsed, regardless of any
changes to the set of context source registrations. The CsourceNotification message shall include all the
Context Source Registrations whose information property matches the entities and watched Attributes or
Attributes specified in the notification parameter and, if present, have a matching geo-query. If either the
watched Attributes or the Attributes in the notification are not present or of length 0, all possible Attributes (if
present in the Context Source Registrations) for fitting entities match.

• If a subscription does not define a "timeInterval" term, the csource notification shall be sent on initial
subscription and whenever there is a change in a matching csource registration. Such a change may be
triggered by the creation of a new matching csource registration, the update of a csource registration (whether
matching before the update, after the update or in both cases) or the deletion of a matching csource
registration. The notification message shall include the matching csource registration(s) together with the
appropriate trigger reason in the "triggerReason" member.

• Instead of providing the original Context Source Registration which may contain a lot of irrelevant
information, implementations should return filtered Context Source Registrations, which only contain context
source registration information relevant for the subscription, in particular only matching RegistrationInfo
elements.

• A csource notification shall be sent as follows:

- The structure of the csource notification message shall be as mandated by clause 5.3.2.

- A csource notification shall be sent to the "endpoint".

- The "notification.timesSent" member shall be incremented by one.

- The "notification.lastNotification" member shall be updated with the current timestamp.

- If the notification is sent successfully:

 Update "notification.lastSuccess" with the current timestamp.

- If the notification is not sent successfully:

 Update "notification.lastFailure" with the current timestamp.

 Update the subscription "status" to "failed".

5.12 Matching Context Source Registrations
When querying Context Source Registrations as described in clause 5.10.2 and subscribing to Context Source
Registrations as described in clause 5.11.2, the Entities and/or Attributes specified in the request have to be matched
against the set of Context Source Registrations, extracting the matching ones. This clause describes this matching.

The relevant specification information in the query for Context Source Registrations are the list of Entity Types (if
present), the list of Entity identifiers (if present), the id pattern (if present) and the list of Attribute names (if present). In
the case of subscriptions to context source registrations, it is the Entities as specified in the array of type EntityInfo in
the Subscription, the watchedAttributes element of the Subscription and the attributes specified as part of the
NotificationParams element of the Subscription. If the attributes in the NotificationParams element are empty or not
present, the matching is done as if no attribute identifiers have been specified, otherwise the combination of the
watchedAttributes and the attributes in the NotificationParams element are used as the specified attribute identifiers for
the matching.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)119

Even though the structure of Entity specifications differs in queries and subscriptions, they consist of the same
information, so for the purpose of this clause, the Entity specification refers to the relevant elements for matching,
i.e. Entity Types, Entity identifiers, id pattern and Attribute names. An Entity specification shall contain at least one of:

a) list of Entity Types; or

b) list of Attribute names.

An Entity specification matches a Context Source Registration if at least one of the RegistrationInfo elements in the
information element matches. An Entity specification matches a RegistrationInfo if the following conditions hold:

• If present, the Entity Types, Entity identifiers and id pattern match at least one of the EntityInfo elements (see
below).

• If present, the Attribute identifiers match the combination of Properties and Relationships specified in the
RegistrationInfo (see below).

An Entity specification consisting of Entity Types, Entity identifiers and id pattern matches an EntityInfo element if one
of the specified Entity Types matches the entity type in the EntityInfo element and one of the following conditions
holds:

• The EntityInfo contains neither an id nor an idPattern.

• One of the specified entity identifiers matches the id in the EntityInfo.

• At least one of the specified entity identifiers matches the idPattern in the EntityInfo.

• The specified id pattern matches the id in the EntityInfo.

• Both a specified id pattern and an idPattern in the Entity Info are present (since in the general case it is not
easily feasible to determine if there can be identifiers matching both patterns).

Attribute names match the combination of Properties and Relationships if one of the following conditions hold:

• No Attribute names have been specified (as this means all Attributes are requested).

• The combination of Properties and Relationships is empty (as this means only Entities have been registered
and the Context Sources may have matching Property or Relationship instances).

• If at least one of the specified attribute names matches a Property or Relationship specified in the
RegistrationInfo.

6 API HTTP binding

6.1 Introduction
This clause defines the resources and operations of the NGSI-LD API. The NGSI-LD API is structured in terms of
HTTP [3], [4] verbs, request and response payload bodies.

A non-normative OAS specification [i.12] of the referred HTTP binding can be found at [i.14].

6.2 Global definitions and resource structure
All resource URIs of this API shall have the following root:

• {apiRoot}/{apiName}/{apiVersion}/

NOTE 1: The apiRoot discovery process is out of the scope of the present document.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)120

NOTE 2: The apiRoot for Context Source related aspects and the apiRoot for general Entity-related aspects can be
different, e.g. the Context Source related aspects can be implemented by a Context Registry as shown for
the distributed and federated architectures (see clause 4.3), whereas the Entity-related aspects would be
implemented by a Context Broker.

NOTE 3: The apiRoot for Context Source related aspects and the apiRoot for general Entity-related aspects can be
different than the apiRoot for temporal aspects, e.g. the temporal aspects can be implemented by an
NGSI-LD subsystem specialized in historical data.

The apiRoot includes the scheme ("http" or "https"), host and optional port, and an optional prefix string. The API shall
support HTTP over TLS (also known as HTTPS - see IETF RFC 2818 [18]). TLS version 1.2 as defined by IETF
RFC 5246 [19] shall be supported. HTTP without TLS is not recommended.

The apiName shall be set to "ngsi-ld" and the apiVersion shall be set to "v1" for the present document.

All resource URIs in clauses 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 6.10, 6.11, 6.12, 6.13, 6.14, 6.15, 6.16, 6.17, 6.18, 6.19, 6.20,
6.21 and 6.22 are defined relative to the above root URI. The structure of the resources under the root URI is shown in
figure 6.2-1 and methods defined on them are shown in table 6.2-1.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)121

Figure 6.2-1: Resource URI structure of the NGSI-LD API

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)122

Table 6.2-1: Resources and HTTP methods defined on them

Resource Name Resource URI HTTP
Method Meaning

Entity List /entities/
POST Entity creation
GET Query entities

Entity by id /entities/{entityId}
GET Entity retrieval by id

DELETE Entity deletion by id

Entity Attribute List /entities/{entityId}/attrs/
POST Append entity Attributes

PATCH Update entity Attributes

Attribute by id /entities/{entityId}/attrs/{attrId}
PATCH Attribute partial update
DELETE Attribute delete

Subscriptions List /subscriptions/
POST Subscription creation
GET Subscription list retrieval

Subscription by Id /subscriptions/{subscriptionId}
GET Subscription retrieval by id

PATCH Subscription update by id
DELETE Subscription deletion by id

Entity Types /types/ GET Available entity types
Entity Type /types/{type} GET Details about available entity type
Attributes /attributes/ GET Available attributes
Attribute /attributes/{attrId} GET Details about available attribute

Context source
registration list /csourceRegistrations/

POST Csource registration creation
GET Discover Csource registrations

Context source
registration by Id /csourceRegistrations/{registrationId}

GET Csource registration retrieval by id
PATCH Csource registration update by id
DELETE Csource registration deletion by id

Context source
registration

subscription list
/csourceSubscriptions/

POST Csource registration subscription

GET Csource registration subscription
list retrieval

Context source
registration

subscription by Id
/csourceSubscriptions/{subscriptionId}

GET Csource registration subscription
retrieval by id

PATCH Csource registration subscription
update by id

DELETE Csource registration subscription
deletion by id

Entity Operations.
Create /entityOperations/create POST

Batch Entity creation

Entity Operations.
Upsert

/entityOperations/upsert POST Batch Entity create or update
(upsert)

Entity Operations.
Update

/entityOperations/update POST Batch Entity update

Entity Operations.
Delete

/entityOperations/delete POST Batch Entity deletion

Entity Operations.
Query

/entityOperations/query POST Entity Query based on POST

Entity Temporal
Evolution

/temporal/entities/ POST Temporal Representation of Entity
creation

GET Query temporal evolution of
Entities

Temporal
Representation of

Entity by id

/temporal/entities/{entityId} GET Temporal Representation of Entity
retrieval by id

DELETE Temporal Representation of Entity
deletion by id

Temporal
Representation of
Entity Attribute List

/temporal/entities/{entityId}/attrs/ POST Temporal Representation of Entity
Attribute instance addition

Temporal
Representation of

Entity Attribute by id

/temporal/entities/{entityId}/attrs/{attrId} DELETE Attribute from Temporal
Representation of Entity deletion

Temporal
Representation of

Entity Attribute
Instance by id

/temporal/entities/{entityId}/attrs/{attrId}
/{instanceId}

PATCH Attribute Instance update
DELETE Attribute Instance deletion by

instance id

Temporal Query
Operation

/temporal/entityOperations/query POST Temporal Representation of Entity
Query based on POST

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)123

6.3 Common behaviours

6.3.1 Introduction

This clause extends the API common behaviours to the particularities of the HTTP REST binding. For each operation
implementations shall exhibit the common behaviours as specified by clause 5.5 and the behaviours defined by the
present clause.

6.3.2 Error types

This clause associates API error types (which shall be contained in the response payload body) defined by clause 5.5.2
with HTTP status codes as shown in table 6.3.2-1.

Table 6.3.2-1: Mapping of error types to HTTP status codes

Error Type HTTP status
https://uri.etsi.org/ngsi-ld/errors/InvalidRequest 400
https://uri.etsi.org/ngsi-ld/errors/BadRequestData 400
https://uri.etsi.org/ngsi-ld/errors/AlreadyExists 409
https://uri.etsi.org/ngsi-ld/errors/OperationNotSupported 422
https://uri.etsi.org/ngsi-ld/errors/ResourceNotFound 404
https://uri.etsi.org/ngsi-ld/errors/InternalError 500
https://uri.etsi.org/ngsi-ld/errors/TooComplexQuery 403
https://uri.etsi.org/ngsi-ld/errors/TooManyResults 403
https://uri.etsi.org/ngsi-ld/errors/LdContextNotAvailable 503
https://uri.etsi.org/ngsi-ld/errors/NoMultiTenantSupport 501
https://uri.etsi.org/ngsi-ld/errors/NonexistentTenant 404

In addition, implementations shall support the standard specific errors of HTTP bindings, such as the following:

• "Method Not Allowed" (405) which shall be raised when a client invokes a wrong HTTP verb over a resource.
Implementations shall provide the allowed HTTP methods as mandated by IETF RFC 7231 [3] in
section 6.5.5.

• "Request Entity too large" (413) which shall be raised when the HTTP input data stream provided by a client
was too large i.e. too many bytes.

• "Length required" (411) which shall be raised when an HTTP request provided by a client does not define the
"Content-Length" HTTP header.

• "Unsupported Media Type" (415) which shall be raised when an HTTP request payload body (as per the
"Content-Type" header) it is not "application/json" nor "application/ld+json".

• "Not Acceptable" (406) which shall be raised when the response media types that are acceptable by a client (as
per the "Accept" header) do not include or expand to "application/json" nor "application/ld+json".

6.3.3 Reporting errors

When an API operation results in an error, implementations shall return an HTTP response as follows:

• Content-Type: application/json.

• HTTP Status Code: As per clause 6.3.2 depending on error type.

• Payload body: A JSON object including all the terms defined by clause 5.5.3.

6.3.4 HTTP request preconditions

For POST and PATCH HTTP requests implementations shall check the following preconditions:

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)124

• Content-Type header shall be "application/json" or "application/ld+json".

• Content-Length header shall include the length of the request payload body.

For PATCH HTTP requests "application/merge-patch+json" is allowed as Content-Type, as mandated by IETF
RFC 7396 [16]. Implementations shall interpret such MIME type as equivalent to "application/json".

For GET HTTP requests implementations shall check the following preconditions:

• Accept header shall include (or define a media range that can be expanded to):

- "application/ld+json"

- "application/geo+json"

- "application/json"

The order of the list above is significant. If the Accept header can be expanded to more than one of the options of the
list, the first one of the list shall be selected, unless amended by the HTTP Accept header processing rules, e.g. the
presence of a "q" parameter indicating a relative weight, (as mandated by IETF RFC 7231 [3], section 5.3.2) require
otherwise.

If the Accept header is not present, "application/json" shall be assumed.

If an incoming HTTP request does not meet the preconditions stated above, an HTTP error response of type
InvalidRequest shall be returned, with the following exceptions:

• "Content-Length" HTTP header absence, shall result in just a 411 HTTP status code (without any payload
body).

• Unsupported Media Type, i.e. "Content-Type" header is not "application/json" nor "application/ld+json", shall
result in just a 415 HTTP status code (without any payload body).

• Not Acceptable Media Type, i.e. "Accept" header does not imply "application/json" nor "application/ld+json",
shall result in just a 406 HTTP status code and the body of the message shall contain the list of the available
representations of the resources.

Notwithstanding the above, if the Accept Header is set to "application/geo+json":

• For Context Information Consumption operations only, specifically "Retrieve Entity" (see clause 5.7.1) and
"Query Entity" (clause 5.7.2) GeoJSON is considered as an acceptable content type and a GeoJSON payload
will be returned.

• For all other operations, the request will result in a Not Acceptable Media Type error, returning a 406 HTTP
status code and the body of the message shall contain the list of the available representations of the resources.

6.3.5 JSON-LD @context resolution

In the HTTP REST binding, implementations shall resolve the JSON-LD "@context" associated to an incoming HTTP
request as follows:

• If the request verb is GET or DELETE, then the associated JSON-LD "@context" shall be obtained from a
Link header [7] as mandated by JSON-LD [2], clause 6.8. In the absence of such Link header, then the
associated "@context" shall be the default JSON-LD "@context".

EXAMPLE: The structure of the referred Link header is shown below. The first component (between < >) is a
dereferenceable URI pointing to the JSON-LD document which contains the @context to be used
to expand the terms used by the corresponding operation. The second parameter is a fixed, non-
dereferenceable URI used to denote a unique identifier and semantics for this header (marking it as
a link to a JSON-LD @context). The third and final parameter flags the MIME type of the linked
resource (JSON-LD).

 Link: <http://json-ld.org/contexts/person.jsonld>; rel="http://www.w3.org/ns/json-ld#context";
type="application/ld+json".

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)125

• If the request verb is POST or PATCH and the Content-Type header is "application/json", then the @context
shall be obtained from a Link Header as mandated by JSON-LD [2], clause 6.8. In the absence of such Link
Header, then the "@context" shall be the default @context. In any case, if the request payload body (as JSON)
contains a "@context" term, then an HTTP error response of type BadRequestData shall be raised.

• If the request verb is POST or PATCH and the Content-Type header is "application/ld+json", then the
associated @context shall be obtained from the request payload body itself. If no @context can be obtained
from the request payload body, then an HTTP error response of type BadRequestData shall be raised. In any
case, the presence of a JSON-LD Link header in the incoming HTTP request when the Content-Type header is
"application/ld+json" shall result in an HTTP error response of type BadRequestData.

In summary, from a developer's perspective, for POST and PATCH operations, if MIME type is "application/ld+json",
then the associated @context shall be provided only as part of the request payload body. Likewise, if MIME type is
"application/json", then the associated @context shall be provided only by using the JSON-LD Link header. No mixes
are allowed, i.e. mixing options shall result in HTTP response errors. Implementations should provide descriptive error
messages when these situations arise.

On the other hand, GET and DELETE operations always take their input @context from the JSON-LD Link Header.

6.3.6 HTTP response common requirements

Implementations shall honour the Accept header provided by HTTP requests as mandated by clause 6.3.4:

• If the target response's MIME type is "application/json" such response shall include a Link to the associated
JSON-LD @context as mandated by [2], clause 6.8.

• If the target response's MIME type is "application/ld+json", then the response payload body provided by the
HTTP response shall include a JSON-LD @context.

• If the target response's MIME type is "application/geo+json" and the Prefer Header [26] is omitted or set to
"body=ld+json" ,then the response payload body provided by the HTTP response shall include a JSON-LD
@context, and the representation of the entities shall be in GeoJSON format in the response payload body

• If the target response's MIME type is "application/geo+json" and the Prefer Header [26] is set to "body=json"
such response shall include a Link to the associated JSON-LD @context as mandated by [2], clause 6.8, and
the representation of the entities shall be in GeoJSON format in the response payload body, and "@context"
shall be omitted from the payload body.

Operations that result in an error that return a payload shall always respond with MIME type "application/json",
regardless of the Accept header. It is assumed that if a client application understands any of the supported MIME types,
the application shall understand "application/json" errors.

Operations where the response payload body is not present such as successful POST or PATCH operations and all error
responses do not include the Link header in the response. Only Fully Qualified Names shall be used in the payload body
of error responses, as there is no context present.

6.3.7 Simplified representation of entities

For HTTP GET operations performed over the resource /entities and all of its sub-resources, implementations shall
support the parameter specified in table 6.3.7-1.

Table 6.3.7-1: Simplified representation: options parameter

Name Data Type Cardinality Remarks
options Comma separated list of strings 0..1 When its value includes the keyword "keyValues", a

simplified representation of entities shall be provided as
defined by clause 4.5.4.
If the Accept Header is set to "application/geo+json" the
response will be in simplified GeoJSON format as defined
by clause 4.5.17.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)126

6.3.8 Notification behaviour

In the HTTP binding a notification that is triggered by a subscription shall be sent by issuing an HTTP POST request
targeted to the value of "notification.endpoint.uri" member of the subscription structure (defined by clauses 5.2.12,
5.2.14 and 5.2.15). For the HTTP binding, the protocol part of the endpoint URI is http or https. In case the optional
MQTT notification binding (clause 7) is supported, the protocol part of the endpoint URI can also be mqtt or mqtts.The
MIME type associated to the POST request shall be "application/json" by default. However, this can be changed to
"application/ld+json", or "application/geo+json" by means of the "endpoint.accept" member.

If the target MIME type is "application/json" then the HTTP notification request shall include a Link header with a
reference to the corresponding JSON-LD @context as mandated by the JSON-LD specification [2], clause 6.8 (to the
default JSON-LD @context if none available).

If the optional array (of KeyValuePair type, as defined by clause 5.2.22) "notification.endpoint.receiverInfo" of the
subscription is present, then a new custom HTTP header for each member named "key" of the key, value pairs that
make up the array shall be generated and included in the HTTP POST's list of headers. The content of each custom
header shall be set equal to the content of the corresponding "value" member of the KeyValuePair. "Key" and "value"
members shall adhere to IETF RFC 7230 [27] Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing
definitions concerning HTTP headers.

If the target MIME type is "application/geo+json" and the "endpoint.info" member contains a key "Prefer" whose value
is set to "body=json" then the HTTP notification request shall include a Link header with a reference to the
corresponding JSON-LD @context as mandated by the JSON-LD specification [2], clause 6.8 (to the default JSON-LD
@context if none available).

If the target MIME type is "application/geo+json" and the "endpoint.info" contains a key "Prefer" whose value is set to
"body=ld+json" or the "Prefer" key is omitted, then the HTTP notification request includes an @context element in the
payload body.

6.3.9 Csource Notification behaviour

In the HTTP binding a csource notification that is triggered by a csource subscription shall be sent by issuing an HTTP
POST request targeted to the value of "notification.endpoint.uri" member of the csource subscription structure (defined
by clauses 5.2.12 and 5.2.14). The MIME type associated to the POST request shall be "application/json" by default.
However, this can be changed to application/ld+json by means of the "endpoint.accept" member.

If the target MIME type is "application/json" then the HTTP notification request shall include a Link header with a
reference to the corresponding JSON-LD @context as mandated by the JSON-LD specification [2], clause 6.8 (to the
default JSON-LD @context if none available).

If the optional array (of KeyValuePair type, as defined by clause 5.2.22) "notification.endpoint.receiverInfo" of the
subscription is present, then a new custom HTTP Header for each member named "key" of the key, value pairs that
make up the array shall be generated and included in the HTTP POST's list of headers. The content of each custom
header shall be set equal the content of the corresponding "value" member of the KeyValuePair. "Key" and "value"
members shall adhere to IETF RFC 7230 [27] Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing
definitions concerning HTTP headers.

6.3.10 Pagination behaviour

For HTTP GET operations (corresponding to query-related operations) performed over the resources /entities/,
/subscriptions/, /csourceRegistrations/, /csourceSubscriptions/, implementations shall support the HTTP query
parameter specified in table 6.3.10-1.

Table 6.3.10-1: Pagination: limit parameter

Name Data Type Cardinality Remarks
limit Integer

(only values
greater or equal
to 0)

0..1 It defines the limit to the number of NGSI-LD Elements that shall be retrieved
at a maximum as mandated by clause 5.5.9. The value 0 is only allowed in
combination with the count URI parameter.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)127

This clause defines the specific HTTP binding mechanisms that shall be used in conjunction with the behaviours
defined by clause 5.5.9. Particularly, to flag the existence of related pages that could be retrieved when dealing with
query operations involving pagination, NGSI-LD Systems implementing the HTTP binding shall use the HTTP Link
header field as mandated by IETF RFC 8288 [7], clause 3, as follows:

• The pointers to the next and previous pages (when needed as mandated by clause 5.5.9) shall be serialized as
link-value elements. The content of such link-value(s) shall be:

- For the next page, the Link Target shall be a URI-reference that could be dereferenced by an NGSI-LD
Client to retrieve the next page of NGSI-LD Elements. In addition, the Link Relation Type shall be equal
to "next", registered under the IANA Registry of Link Relation Types [20].

- For the previous page, the Link Target shall be a URI-reference that could be dereferenced by an NGSI-
LD Client to retrieve the previous page of NGSI-LD Elements. In addition, the Link Relation Type shall
be equal to "prev", registered under the IANA Registry of Link Relation Types [20].

• At least, the "type" Link Target Attribute shall be included by the previously described serialized Link Header,
as mandated by IETF RFC 8288 [7], clause 3.4, and its value shall be exactly equal to the media type resulting
from the original request made by the NGSI-LD Client (the request that triggered the current pagination
iteration).

EXAMPLE: If the media type requested originally was "application/json" then during the entire pagination
iteration the value of the Link Target Attribute "type" shall be "application/json".

6.3.11 Including system-generated attributes

For HTTP GET operations performed over the resources /entities/, /subscriptions/, /csourceRegistrations/,
/csourceSubscriptions/ and all of its sub-resources, implementations shall support the parameter specified in
table 6.3.11-1.

Table 6.3.11-1: Including system generated attributes: options parameter

Name Data Type Cardinality Remarks
options Comma separated list of strings 0..1 When its value includes the keyword "sysAttrs", a

representation of NGSI-LD Elements shall be provided so
that the system-generated attributes createdAt, modifiedAt
are included in the response payload body.

6.3.12 Simplified temporal representation of entities

For HTTP GET operations performed over the resource /temporal/entities/ and all of its sub-resources, implementations
shall support the parameter specified in table 6.3.12-1.

Table 6.3.12-1: Simplified representation: options parameter

Name Data Type Cardinality Remarks
options Comma separated list of strings 0..1 When its value includes the keyword "temporalValues", a

simplified temporal representation of entities shall be
provided as defined by clause 4.5.8

6.3.13 Counting number of results

This clause implements the behaviour described in clause 4.13, in case of HTTP binding.

For HTTP GET operations (corresponding to query-related operations) performed over the resources /entities/,
/subscriptions/, /csourceRegistrations/, /csourceSubscriptions/, implementations shall support the HTTP query
parameter specified in table 6.3.13-1.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)128

Table 6.3.13-1: Counting number of results: count parameter

Name Data Type Cardinality Remarks
count boolean 0..1 If true, then a special HTTP header (NGSILD-Results-Count) is set in the

response. Regardless of how many entities are actually returned (maybe due to
the "limit" URI parameter), the total number of matching results (e.g. number of
Entities) is returned.

This clause defines the specific HTTP binding mechanisms that can be useful to plan the "limit" and "offset" URI
parameters for pagination, thus allowing to convey an overview of the number of entities in a system.

To get only the count itself, and no entities, the URI parameter "limit" may have the value "0", and an empty array shall
be returned as payload body.

Setting the URI parameter "limit" to zero without including the "count" URI parameter will result in a 400 Bad Request
error.

6.3.14 Tenant specification

If the system implementing the NGSI-LD API supports multi-tenancy as described in clause 4.14 and clause 5.5.10, the
tenant, to which the NGSI-LD HTTP operation is targeted, is specified as the HTTP header "NGSILD-Tenant", whose
value is the tenant URI. In case the target tenant is the default tenant, the HTTP header is omitted. If the HTTP header
"NGSILD-Tenant" is present in the HTTP request, it shall also be present in HTTP response. This also applies to HTTP
notifications sent as a result of subscriptions with an "NGSILD-Tenant" HTTP header (clause 6.3.8).

6.3.15 GeoJSON representation of spatially bound entities

For HTTP GET operations performed over the resource /entities and /entities/{entity-id}, if the GeoJSON Accept
header ("application/geo+json") is present, implementations shall render the entities of the response in the GeoJSON
format, as described in clause 5.2.29.

For GeoJSON representations, a GeoProperty may be selected as the geolocation to be used as the geometry within the
GeoJSON payload. If no "geometryProperty" parameter is specified then the "location" GeoProperty of the Entity is
used.

Table 6.3.15-1: Selecting a geometry

Name Data Type Cardinality Remarks
geometryProperty string 0..1 If not present, "location" is used.
datasetId URI 0..1. If the referenced GeoProperty consists of an attribute with mulitple

instances the datasetId specifies which instance of the value is to be
selected. If not present, the default instance is used.

6.4 Resource: entities/

6.4.1 Description

This resource represents the entities known to an NGSI-LD system.

6.4.2 Resource definition

Resource URI:

• /entities/

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)129

6.4.3 Resource methods

6.4.3.1 POST

This method is bound to the operation "Create Entity" and shall exhibit the behaviour defined by clause 5.6.1, taking the
entity to be created from the HTTP request payload body. Figure 6.4.3.1-1 shows the Create Entity interaction and
table 6.4.3.1-1 describes the request body and possible responses.

Figure 6.4.3.1-1: Create Entity interaction

Table 6.4.3.1-1: Post Entity request body and possible responses

Request Body
Data Type Cardinality Remarks

NGSI-LD Entity 1 Payload body in the request contains a JSON-LD object
which represents the entity that is to be created.

Response Body

Data Type Cardinality Response Codes Remarks
N/A N/A 201 Created Upon success, the HTTP response

shall include a "Location" HTTP
header that contains the resource URI
of the created entity resource.

ProblemDetails (see
reference [10])

0..1 400 Bad Request It is used to indicate that the request
or its content is incorrect, see
clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" member should
convey more information about the
error.

ProblemDetails (see
reference [10])

0..1 409 Already Exists It is used to indicate that the entity
already exists, see clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails (see
reference [10])

0..1 422 Unprocessable
Entity

It is used to indicate that the operation
is not available, see clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

6.4.3.2 GET

This method is associated to the operation "Query Entities" and shall exhibit the behaviour defined by clause 5.7.2,
providing entities as part of the HTTP response payload body. In addition to this method, an alternative way to perform
"Query Entities" operations via POST is defined in clause 6.23. Figure 6.4.3.2-1 shows the query entities interaction.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)130

Figure 6.4.3.2-1: Query Entities interaction

The query parameters that shall be supported by implementations are those defined in table 6.4.3.2-1, and
table 6.4.3.2-2 describes the request body and possible responses.

Table 6.4.3.2-1: Query parameters

Name Data Type Cardinality Remarks
id Comma separated

list of URIs
0..1 List of entity ids to be retrieved

type Comma separated
list of entity types (as
short hand string
names or URIs)

0..1
At least one among: type,
attrs, q, or georel shall be
present.

List of entity types to be retrieved

idPattern Regular expression
as defined by [11]

0..1 Regular expression that shall be matched
by entity ids

attrs Comma separated
list of attribute
names (Properties or
Relationships)

0..1
At least one among: type,
attrs, q, or georel shall be
present.

List of Attributes to be matched by the
Entities and also included in the response,
i.e. only Entities that contain at least one of
the Attributes in attrs are to be included in
the response, and only the Attributes listed
in attrs are to be included in each of the
Entities of the response.

q String 0..1
At least one among: type,
attrs, q, or georel shall be
present.

Query as per clause 4.9

csf String 0..1 Context Source filter as per clause 4.9
georel String 0..1

It shall be 1 if geometry or
coordinates are present. At
least one among: type,
attrs, q, or georel shall be
present.

Geo relationship as per clause 4.10. It is
part of geoquery.

geometry String 0..1
It shall be 1 if georel or
coordinates are present

Geometry as per clause 4.10. It is part of
geoquery.

coordinates String 0..1
It shall be one if georel or
geometry are present

Coordinates serialized as a string as per
clause 4.10. It is part of geoquery.

geoproperty string representing a
Property Name

0..1
It shall be ignored unless a
geoquery is present

The name of the Property that contains the
geospatial data that will be used to resolve
the geoquery. By default, will be location
(see clause 4.7)

geometryProperty string representing a
Property Name

0..1 In the case of GeoJSON Entity
representation, this parameter indicates
which GeoProperty to use for the toplevel
"geometry" field.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)131

Table 6.4.3.2-2: Get Entities request body and possible responses

Request Body
Data Type Cardinality Remarks

N/A

Response Body

Data Type Cardinality Response Codes Remarks
NGSI-LD Entity[] or
GeoJSON
FeatureCollection

1 200 OK Upon success, a response body
containing the query result as a list of
entities.
A FeatureCollection is returned if
GeoJSON format is requested

ProblemDetails [10] 0..1
400 Bad Request

It is used to indicate that the request or its
content is incorrect, see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

6.5 Resource: entities/{entityId}

6.5.1 Description

This resource represents an entity known to an NGSI-LD system.

6.5.2 Resource definition

Resource URI:

• /entities/{entityId}

Resource URI variables for this resource are defined in table 6.5.2-1.

Table 6.5.2-1: URI variables

Name Definition
entityId Id (URI) of the entity to be retrieved

6.5.3 Resource methods

6.5.3.1 GET

This method is associated to the operation "Retrieve Entity" and shall exhibit the behaviour defined by clause 5.7.1. The
entity identifier is the value of the resource URI variable "entityId". Figure 6.5.3.1-1 shows the retrieve entity
interaction.

Figure 6.5.3.1-1: Retrieve Entity interaction

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)132

The query parameters that shall be supported are those defined in table 6.5.3.1-1 and table 6.5.3.1-2 describes the
request body and possible responses.

Table 6.5.3.1-1: Query parameters

Name Data Type Cardinality Remarks
attrs Comma separated list

of Attribute names
0..1 List of Attributes to be matched by the Entity and

included in the response. If the Entity does not have any
of the Attributes in attrs, then a 404 Not Found shall be
retrieved. If attrs is not specified, no matching is
performed and all Attributes related to the Entity shall be
retrieved.

geometryProperty String representing a
GeoProperty Name

0..1 In the case of GeoJSON Entity representation, this
parameter indicates which GeoProperty to use for the
"geometry" element. By default, it shall be 'location'.

Table 6.5.3.1-2: Get Entity request body and possible responses

Request Body
Data Type Cardinality Remarks

N/A

Response
Body

Data Type Cardinality Response Codes Remarks
NGSI-LD Entity or
GeoJSON Feature

1 200 OK Upon success, a response body
containing the JSON-LD representation of
the target entity containing the selected
Attributes.
If the Accept Header indicates that the
Entity is to be rendered as GeoJSON, a
GeoJSON Feature is returned.

ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request or its
content is incorrect, see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

ProblemDetails [10] 0..1 404 Not Found It is used when a client provided an entity
identifier (URI) not known to the system,
see clause 6.3.2.

6.5.3.2 DELETE

This method is associated to the operation "Delete Entity" and shall exhibit the behaviour defined by clause 5.6.6. The
entity identifier is the value of the resource URI variable "entityId". Figure 6.5.3.2-1 shows the delete entity interaction
and table 6.5.3.2-1 describes the request body and possible responses.

Figure 6.5.3.2-1: Delete Entity interaction

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)133

Table 6.5.3.2-1: Delete Entity request body and possible responses

Request Body
Data Type Cardinality Remarks

N/A

Response
Body

Data Type Cardinality Response Codes Remarks
N/A 204 No Content
ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request or

its content is incorrect, see clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails [10] 0..1 404 Not Found It is used when a client provided an
entity identifier (URI) not known to the
system, see clause 6.3.2.

6.6 Resource: entities/{entityId}/attrs/

6.6.1 Description

This resource represents all the Attributes (Properties or Relationships) of an NGSI-LD Entity.

6.6.2 Resource definition

Resource URI:

• /entities/{entityId}/attrs

Resource URI variables for this resource are defined in table 6.6.2-1.

Table 6.6.2-1: URI variables

Name Definition
entityId Id (URI) of the concerned entity

6.6.3 Resource methods

6.6.3.1 POST

This method is bound to the "Append Entity Attributes" operation and shall exhibit the behaviour defined by
clause 5.6.3. The entity identifier is the value of the resource URI variable "entityId". The data to be appended shall be
contained in the HTTP request payload body. Figure 6.6.3.1-1 shows the append entity attributes interaction and
table 6.6.3.1-1 describes the request body and possible responses.

The "options" query parameter for this request can take the following values:

• "noOverwrite". Indicates that no attribute overwrite shall be performed.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)134

Figure 6.6.3.1-1: Append Entity Attributes interaction

Table 6.6.3.1-1: Post Entity Attributes request body and possible responses

Request Body
Data Type Cardinality Remarks

NGSI-LD Entity
Fragment

1 Entity Fragment containing a complete representation of the
Attributes to be added.

Response Body

Data Type Cardinality Response Codes Remarks
N/A 204 No content All the Attributes were appended

successfully.
UpdateResult 1 207 Multi-Status Only the Attributes included in the

response payload body were
successfully appended.

ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request or
its content is incorrect, see clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails [10] 0..1 404 Not Found It is used when a client provided an
entity identifier (URI) not known to the
system, see clause 6.3.2.

6.6.3.2 PATCH

This method is bound to the "Update Entity Attributes" operation and shall exhibit the behaviour defined by
clause 5.6.2. The entity identifier is the value of the resource URI variable "entityId". The data to be updated shall be
contained in the HTTP request payload body. Figure 6.6.3.2-1 shows the Update Entity Attributes interaction and
table 6.6.3.2-1 describes the request body and possible responses.

Figure 6.6.3.2-1: Update Entity Attributes interaction

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)135

Table 6.6.3.2-1: Patch Entity Attributes request body and possible responses

Request Body
Data Type Cardinality Remarks

NGSI-LD Entity
Fragment

1 Entity Fragment containing a complete representation of the
Attributes to be updated.

Response Body

Data Type Cardinality Response Codes Remarks
N/A 204 No content All the Attributes were updated

successfully.
UpdateResult 1 207 Multi-Status Only the Attributes included in the

response payload body were
successfully updated. If no Attributes
were successfully updated the updated
array of UpdateResult (see
clause 5.2.18) will be empty.

ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request or
its content is incorrect, see clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails [10] 0..1 404 Not Found It is used when a client provided an
entity identifier not known to the system,
see clause 6.3.2.

6.7 Resource: entities/{entityId}/attrs/{attrId}

6.7.1 Description

This resource represents an attribute (Property or Relationship) of an NGSI-LD Entity.

6.7.2 Resource definition

Resource URI:

• /entities/{entityId}/attrs/{attrId}

Resource URI variables for this resource are defined in table 6.7.2-1.

Table 6.7.2-1: URI variables

Name Definition
entityId Id (URI) of the concerned entity
attrId Attribute name (Property or Relationship)

6.7.3 Resource methods

6.7.3.1 PATCH

This method is bound to the "Partial Attribute Update" operation and shall exhibit the behaviour defined by
clause 5.6.4. The entity identifier is the value of the resource URI variable "entityId". The attribute name is the value of
the resource URI variable "attrId". The Entity Fragment shall be contained in the HTTP request payload body.
Figure 6.7.3.1-1 shows the Partial Attribute Update interaction and table 6.7.3.1-1 describes the request body and
possible responses.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)136

Figure 6.7.3.1-1: Partial Attribute Update interaction

Table 6.7.3.1-1: Patch Entity Attribute request body and possible responses

Request Body
Data Type Cardinality Remarks

NGSI-LD Entity
Fragment

1 Entity Fragment containing the elements of the attribute to
be updated.

Response Body

Data Type Cardinality Response Codes Remarks
N/A 204 No content The attribute was updated

successfully.
ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request

or its content is incorrect, see
clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails [10] 0..1 404 Not Found It is used when a client provided an
entity identifier or attribute name not
known to the system, see
clause 6.3.2.

6.7.3.2 DELETE

This method is associated to the operation "Delete Entity Attribute" and shall exhibit the behaviour defined by
clause 5.6.5. The entity identifier is the value of the resource URI variable "entityId". The attribute name is the value of
the resource URI variable "attrId". Figure 6.7.3.2-1 shows the Delete Entity Attribute interaction, table 6.7.3.2-1 shows
the delete parameters to be supported and table 6.7.3.2-2 describes the request body and possible responses.

Figure 6.7.3.2-1: Delete Entity Attribute interaction

Table 6.7.3.2-1: Delete parameters

Name Data Type Cardinality Remarks
deleteAll boolean 0..1 If true, all attribute instances are deleted. Otherwise (default) only the Attribute

instance specified by the datasetId is deleted. In case neither the deleteAll flag
nor a datasetId is present, the default Attribute instance is deleted.

datasetId URI 0..1 Specifies the datasetId of the dataset to be deleted.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)137

Table 6.7.3.2-2: Delete Entity Attribute request body and possible responses

Request Body
Data Type Cardinality Remarks

N/A

Response Body

Data Type Cardinality Response Codes Remarks
N/A 204 No Content
ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request

or its content is incorrect, see
clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails [10] 0..1 404 Not Found It is used when a client provided an
entity identifier (URI) or attribute
name not known to the system. see
clause 6.3.2.

6.8 Resource: csourceRegistrations/

6.8.1 Description

This resource represents the context source registrations known to an NGSI-LD system.

6.8.2 Resource definition

Resource URI:

• /csourceRegistrations/

6.8.3 Resource methods

6.8.3.1 POST

This method is bound to the operation "Register Context Source" and shall exhibit the behaviour defined by
clause 5.9.2, taking the context source registration to be created from the HTTP request payload body. Figure 6.8.3.1-1
shows the Register Context Source interaction and table 6.8.3.1-1 describes the request body and possible responses.

Figure 6.8.3.1-1: Register Context Source interaction

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)138

Table 6.8.3.1-1: Patch Attribute request body and possible responses

Request Body
Data Type Cardinality Remarks

CsourceRegistration 1 Payload body in the request contains a JSON-LD object which
represents the context source registration that is to be created.

Response Body

Data Type Cardinality Response Codes Remarks
N/A N/A 201 Created Upon success, the HTTP response shall

include a "Location" HTTP header that
contains the resource URI of the created
context source registration resource.

ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request or
its content is incorrect see clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails [10] 0..1 409 Already Exists It is used to indicate that the context
source registration already exists, see
clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails [10] 0..1 422 Unprocessable
Context Source
Registration

It is used to indicate that the operation is
not available see clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

6.8.3.2 GET

This method is associated to the operation "Query Context Source Registrations" and shall exhibit the behaviour defined
by clause 5.10.2, i.e. the parameters in the request describe entity related information, but instead of directly providing
this entity information, the context source registration data, which describes context sources that can possibly provide
the information, are returned as part of the HTTP response payload body. Figure 6.8.3.2-1 shows the Query Context
Source Registrations interaction.

Figure 6.8.3.2-1: Query Context Source Registrations interaction

The query parameters that shall be supported by implementations are those defined in table 6.8.3.2-1 and table 6.8.3.2-2
describes the request body and possible responses.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)139

Table 6.8.3.2-1: Query parameters

Name Data Type Cardinality Remarks
id Comma separated list of

URIs
0..1 List of entity ids to be retrieved

type Comma separated list of
entity types as short hand
string names or URIs

0..1 List of entity types to be retrieved

idPattern Regular expression as
defined by [11]

0..1 Regular expression that shall be matched
by entity ids satisfying the query

attrs Comma separated list of
attribute names (Properties
or Relationships)

0..1 List of Attributes (Properties or
Relationships) to be retrieved

q String 0..1 Query as per clause 4.9
csf String 0..1 Context Source filter as per clause 4.9
georel String 0..1

It shall be 1 if "geometry" or
"coordinates" are present

Geo relationship as per clause 4.10

geometry String 0..1
It shall be 1 if "georel" or
"coordinates" are present

Geometry as per clause 4.10

coordinates String 0..1
It shall be one if "georel" or
"geometry" are present

Coordinates serialized as a string as per
clause 4.10

geoproperty string representing a
Property name

0..1
It shall be ignored if no
geoquery is present

The name of the Property that contains the
geospatial data that will be used to resolve
the geoquery

timeproperty string representing a
Property name

0..1
It shall be ignored if no
temporal query is present

The name of the Property that contains the
temporal data that will be used to resolve
the temporal query

timerel String representing the
temporal relationship as
defined by clause 4.11

0..1 Allowed values: "before", "after", "between"

timeAt String representing the
timeAt parameter as defined
by clause 4.11

0..1 It shall be a DateTime. Cardinality shall be
1 if timerel is present.

endTimeAt String representing the
endTimeAt parameter as
defined by clause 4.11

0..1 It shall be a DateTime. Cardinality shall be
1 if timerel is equal to "between"

Table 6.8.3.2-2: Get Context Source Registrations request body and possible responses

Request Body
Data Type Cardinality Remarks

N/A

Response Body

Data Type Cardinality Response Codes Remarks
CSourceRegistration[] 1 200 OK Upon success, a response body

containing the query result as an array
of context source registrations.

ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request or
its content is incorrect see clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

6.9 Resource: csourceRegistrations/{registrationId}

6.9.1 Description

This resource represents the context source registration, identified by registrationId, known to an NGSI-LD system.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)140

6.9.2 Resource definition

Resource URI:

• /csourceRegistrations/{registrationId}

Resource URI variables for this resource are defined in table 6.9.2-1.

Table 6.9.2-1: URI variables

Name Definition
registrationId Id (URI) of the context source registration

6.9.3 Resource methods

6.9.3.1 GET

This method is associated with the operation "Retrieve Context Source Registration" and shall exhibit the behaviour
defined by clause 5.10.1. The registration identifier is the value of the resource URI variable "registrationId".
Figure 6.9.3.1-1 shows the Retrieve Context Source Registration interaction and table 6.9.3.1-1 describes the request
body and possible responses.

Figure 6.9.3.1-1: Retrieve Context Source Registration interaction

Table 6.9.3.1-1: Get Context Source Registration request body and possible responses

Request Body Data Type Cardinality Remarks
N/A

Response Body Data Type Cardinality Response Codes Remarks
CsourceRegistration 1 200 OK Upon success, a response body

containing the JSON-LD representation
of the target context source registration.

ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request or
its content is incorrect, see clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails [10] 0..1 404 Not Found It is used when a client provided an
context source registration identifier
(URI) not known to the system, see
clause 6.3.2.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)141

6.9.3.2 PATCH

This method is bound to the "Update Context Source Registration" operation and shall exhibit the behaviour defined by
clause 5.9.3. The context source registration identifier is the value of the resource URI variable "registrationId". The
context source registration to be updated shall be contained in the HTTP request payload body. Figure 6.9.3.2-1 shows
the Update Context Source Registration interaction and table 6.9.3.2-1 describes the request body and possible
responses.

Figure 6.9.3.2-1: Update Context Source Registration interaction

Table 6.9.3.2-1: Patch Context Source Registration request body and possible responses

Request Body

Data Type Cardinality Remarks
CSourceRegistration 1 Payload body in the request contains a JSON-LD object

which represents the context source registration that is to
be updated.

Response Body

Data Type Cardinality Response Codes Remarks
N/A 204 No content The context source registration was

successfully updated.
ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request

or its content is incorrect, see
clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails [10] 0..1 404 Not Found It is used when a client provided a
context source registration identifier
not known to the system, see
clause 6.3.2.

6.9.3.3 DELETE

This method is associated to the operation "Delete Context Source Registration" and shall exhibit the behaviour defined
by clause 5.9.4. The context source registration identifier is the value of the resource URI variable "registrationId".
Figure 6.9.3.3-1 shows the Delete Context Source Registration interaction and table 6.9.3.3-1 describes the request body
and possible responses.

Figure 6.9.3.3-1: Delete Context Source Registration interaction

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)142

Table 6.9.3.3-1: Delete Context Source Registration request body and possible responses

Request Body
Data Type Cardinality Remarks

N/A

Response
Body

Data Type Cardinality Response Codes Remarks
N/A 204 No Content
ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request

or its content is incorrect, see
clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails [10] 0..1 404 Not Found It is used when a client provided a
context source registration identifier
(URI) not known to the system, see
clause 6.3.2.

6.10 Resource: subscriptions/

6.10.1 Description

This resource represents the subscriptions known to an NGSI-LD system.

6.10.2 Resource definition

Resource URI:

• /subscriptions/

6.10.3 Resource methods

6.10.3.1 POST

This method is bound to the operation "Create Subscription" and shall exhibit the behaviour defined by clause 5.8.1,
taking the subscription to be created from the HTTP request payload body. Figure 6.10.3.1-1 shows the Create
Subscription interaction and table 6.10.3.1-1 describes the request body and possible responses.

Figure 6.10.3.1-1: Create Subscription interaction

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)143

Table 6.10.3.1-1: Post Subscription request body and possible responses

Request Body
Data Type Cardinality Remarks

Subscription 1 Payload body in the request contains a JSON-LD object which
represents the subscription that is to be created.

Response
Body

Data Type Cardinality Response Codes Remarks
N/A N/A 201 Created Upon success, the HTTP response shall

include a "Location" HTTP header that
contains the resource URI of the created
subscription resource.

ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request or its
content is incorrect see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

ProblemDetails [10] 0..1 409 Already Exists It is used to indicate that the subscription
already exists see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

6.10.3.2 GET

This method is associated to the operation "Query Subscriptions" and shall exhibit the behaviour defined by
clause 5.8.4, providing the subscription data as part of the HTTP response payload body. Figure 6.10.3.2-1 shows the
Query Subscriptions interaction.

Figure 6.10.3.2-1: Query Subscriptions interaction

The query parameters that shall be supported by implementations are those defined in table 6.10.3.2-1 and
table 6.10.3.2-2 describes the request body and possible responses.

Table 6.10.3.2-1: Query parameters

Name Data Type Cardinality Remarks
limit Number 0..1 Maximum number of subscriptions to be retrieved

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)144

Table 6.10.3.2-2: Get Subscriptions request body and possible responses

Request Body
Data Type Cardinality Remarks

N/A

Response Body

Data Type Cardinality Response Codes Remarks
Subscription[] 1 200 OK Upon success, a response body

containing a list of subscriptions.
ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request

or its content is incorrect see
clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

6.11 Resource: subscriptions/{subscriptionId}

6.11.1 Description

This resource represents a subscription known to an NGSI-LD system.

6.11.2 Resource definition

Resource URI:

• /subscriptions/{subscriptionId}

Resource URI variables for this resource are defined in table 6.11.2-1.

Table 6.11.2-1: URI variables

Name Definition
subscriptionId Id (URI) of the concerned subscription

6.11.3 Resource methods

6.11.3.1 GET

This method is associated to the operation "Retrieve Subscription" and shall exhibit the behaviour defined by
clause 5.8.3. The subscription identifier is the value of the resource URI variable "subscriptionId". Figure 6.11.3.1-1
shows the Retrieve Subscription interaction and table 6.11.3.1-1 describes the request body and possible responses.

Figure 6.11.3.1-1: Retrieve Subscription interaction

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)145

Table 6.11.3.1-1: Get Subscription request body and possible responses

Request Body
Data Type Cardinality Remarks

N/A

Response
Body

Data Type Cardinality Response Codes Remarks
Subscription 1 200 OK Upon success, a response body containing

the JSON-LD representation of the target
subscription.

ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request or its
content is incorrect, see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

ProblemDetails [10] 0..1 404 Not Found It is used when a client provided a
subscription identifier (URI) not known to
the system, see clause 6.3.2.

6.11.3.2 PATCH

This method is associated to the operation "Update Subscription" and shall exhibit the behaviour defined by
clause 5.8.2. The subscription identifier is the value of the resource URI variable "subscriptionId". Figure 6.11.3.2-1
shows the Update Subscription interaction and table 6.11.3.2-1 describes the request body and possible responses.

Figure 6.11.3.2-1: Update Subscription interaction

Table 6.11.3.2-1: Patch Subscription request body and possible responses

Request Body
Data Type Cardinality Remarks

Subscription Fragment 1 Subscription Fragment including id, type and any other
subscription field to be changed

Response Body

Data Type Cardinality Response Codes Remarks
N/A 204 No Content
ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request

or its content is incorrect, see
clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails [10] 0..1 404 Not Found It is used when a client provided a
subscription identifier (URI) not known
to the system, see clause 6.3.2.

6.11.3.3 DELETE

This method is associated to the operation "Delete Subscription" and shall exhibit the behaviour defined by clause 5.8.5.
The subscription identifier is the value of the resource URI variable "subscriptionId". Figure 6.11.3.3-1 shows the
Delete Subscription interaction and table 6.11.3.3-1 describes the request body and possible responses.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)146

Figure 6.11.3.3-1: Delete Subscription interaction

Table 6.11.3.3-1: Delete Subscription request body and possible responses

Request Body
Data Type Cardinality Remarks

N/A

Response
Body

Data Type Cardinality Response Codes Remarks
N/A 204 No Content
ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request or its

content is incorrect, see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

ProblemDetails [10] 0..1 404 Not Found It is used when a client provided a
subscription identifier (URI) not known to
the system, see clause 6.3.2.

6.12 Resource: csourceSubscriptions/

6.12.1 Description

This resource represents the context source registration subscriptions known to an NGSI-LD system.

6.12.2 Resource definition

Resource URI:

• /csourceSubscriptions/

6.12.3 Resource methods

6.12.3.1 POST

This method is bound to the operation "Create Context Source Registration Subscription" and shall exhibit the
behaviour defined by clause 5.11.2, taking the context source registration subscription to be created from the HTTP
request payload body. Figure 6.12.3.1-1 shows the Create Context Source Registration Subscription interaction and
table 6.12.3.1-1 describes the request body and possible responses.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)147

Figure 6.12.3.1-1: Create Context Source Registration Subscription interaction

Table 6.12.3.1-1: Post Context Source Registration Subscription request body
and possible responses

Request Body

Data Type Cardinality Remarks
Subscription 1 Payload body in the request contains a JSON-LD object which

represents the context source registration subscription that is to
be created.

Response Body

Data Type Cardinality Response Codes Remarks
N/A N/A 201 Created Upon success, the HTTP response shall

include a "Location" HTTP header that
contains the resource URI of the created
context source registration subscription
resource.

ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request or its
content is incorrect see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

ProblemDetails [10] 0..1 409 Already Exists It is used to indicate that the context
source registration subscription already
exists, see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

6.12.3.2 GET

This method is associated to the operation "Query Context Source Registration Subscriptions" and shall exhibit the
behaviour defined by clause 5.11.5, providing the context source registration subscription data as part of the HTTP
response payload body. Figure 6.12.3.2-1 shows the Query Context Source Registration Subscriptions interaction.

Figure 6.12.3.2-1: Query Context Source Registration Subscriptions interaction

The query parameters that shall be supported by implementations are those defined in table 6.12.3.2-1 and
table 6.12.3.2-2 describes the request body and possible responses.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)148

Table 6.12.3.2-1: Query parameters

Name Data Type Cardinality Remarks
limit Number 0..1 Maximum number of subscriptions to be retrieved

Table 6.12.3.2-2: Get Context Source Registration Subscriptions request body
and possible responses

Request Body
Data Type Cardinality Remarks

N/A

Response Body

Data Type Cardinality Response Codes Remarks
Subscription[] 1 200 OK Upon success, a response body

containing a list of context source
registration subscriptions.

ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request
or its content is incorrect see
clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

6.13 Resource: csourceSubscriptions/{subscriptionId}

6.13.1 Description

This resource represents the context source registration subscription, identified by subscriptionId, known to an NGSI-
LD system.

6.13.2 Resource definition

Resource URI:

• /csourceSubscriptions/{subscriptionId}

Resource URI variables for this resource are defined in table 6.13.2-1.

Table 6.13.2-1: URI variables

Name Definition
subscriptionId Id (URI) of the concerned context source registration subscription

6.13.3 Resource methods

6.13.3.1 GET

This method is associated to the operation "Retrieve Context Source Registration Subscription" and shall exhibit the
behaviour defined by clause 5.11.4. The subscription identifier is the value of the resource URI variable
"subscriptionId". Figure 6.13.3.1-1 shows the Retrieve Context Source Registration interaction and table 6.13.3.1-1
describes the request body and possible responses.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)149

Figure 6.13.3.1-1: Retrieve Context Source Registration Subscription interaction

Table 6.13.3.1-1: Get Context Source Registration Subscription request body and possible responses

Request Body
Data Type Cardinality Remarks

N/A

Response
Body

Data Type Cardinality Response Codes Remarks
Subscription 1 200 OK Upon success, a response body containing

the JSON-LD representation of the target
context source registration subscription.

ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request or its
content is incorrect, see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

ProblemDetails [10] 0..1 404 Not Found It is used when a client provided a
subscription identifier (URI) not known to
the system, see clause 6.3.2.

6.13.3.2 PATCH

This method is associated to the operation "Update Context Source Registration Subscription" and shall exhibit the
behaviour defined by clause 5.11.3. The subscription identifier is the value of the resource URI variable
"subscriptionId". Figure 6.13.3.2-1 shows the Update Context Source Registration Subscription interaction and
table 6.13.3.2-1 describes the request body and possible responses.

Figure 6.13.3.2-1: Update Context Source Registration Subscription interaction

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)150

Table 6.13.3.2-1: Patch Context Source Registration Subscription request body
and possible responses

Request Body
Data Type Cardinality Remarks

Subscription Fragment 1 Subscription Fragment including id, type and any other
context source registration subscription field to be changed

Response Body

Data Type Cardinality Response Codes Remarks
N/A 204 No Content
ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request

or its content is incorrect, see
clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails [10] 0..1 404 Not Found It is used when a client provided a
subscription identifier (URI) not known
to the system, see clause 6.3.2.

6.13.3.3 DELETE

This method is associated to the operation "Delete Context Source Registration Subscription" and shall exhibit the
behaviour defined by clause 5.11.6. The subscription identifier is the value of the resource URI variable
"subscriptionId". Figure 6.13.3.3-1 shows the Delete Context Source Registration Subscription interaction and
table 6.13.3.3-1 describes the request body and possible responses.

Figure 6.13.3.3-1: Delete Context Source Registration Subscription interaction

Table 6.13.3.3-1: Delete Context Source Registration Subscription request body
and possible responses

Request Body
Data Type Cardinality Remarks

N/A

Response
Body

Data Type Cardinality Response Codes Remarks
N/A 204 No Content
ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request or its

content is incorrect, see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

ProblemDetails [10] 0..1 404 Not Found It is used when a client provided a
subscription identifier (URI) not known to
the system, see clause 6.3.2.

6.14 Resource: entityOperations/create

6.14.1 Description

A sub-resource, pertaining to the entityOperations/ resource, intended to enable batch entity creation for the NGSI-LD
API.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)151

6.14.2 Resource definition

Resource URI:

• /entityOperations/create

6.14.3 Resource methods

6.14.3.1 POST

This method is associated to the operation "Batch Entity Creation" and shall exhibit the behaviour defined by
clause 5.6.7. Figure 6.14.3.1-1 shows the operation interaction and table 6.14.3.1-1 describes the request body and
possible responses.

Figure 6.14.3.1-1: Batch Entity Creation Interaction

Table 6.14.3.1-1: Batch Entity Creation Interaction and possible responses

Request Body
Data Type Cardinality Remarks

Entity[] 1 Array of entities to be created

Response
Body

Data Type Cardinality Response Code Remarks
String [] 1 201 Created If all entities have been successfully

created, an array of Strings containing URIs
is returned in the response. Each URI
represents the Entity Id of a created entity.
There is no restriction as to the order of the
Entity Ids.

BatchOperationResult 1 207 Multi Status If only some or none of the entities have
been successfully created, a response body
containing the result of each operation
contained in the batch is returned in a
BatchOperationResult structure. It contains
two arrays. The first array ('success')
contains the URIs of the successfully
created entities, while the second array
('errors') contains information about the
error for each of the entities that could not
be created. There is no restriction as to the
order of the Entity Ids in the arrays.

ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request or its
content is incorrect, see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)152

6.15 Resource: entityOperations/upsert

6.15.1 Description

A sub-resource, pertaining to the entityOperations/ resource, intended to enable batch entity creation or update for the
NGSI-LD API.

6.15.2 Resource definition

Resource URI:

• /entityOperations/upsert

6.15.3 Resource methods

6.15.3.1 POST

This method is associated to the operation "Batch Entity Creation or Update (Upsert)" and shall exhibit the behaviour
defined by clause 5.6.8. Figure 6.15.3.1-1 shows the operation interaction and table 6.15.3.1-1 describes the request
body and possible responses.

The "options" query parameter for this request can take the following values:

• "replace". Indicates that all the existing Entity content shall be replaced (default mode).

• "update". Indicates that existing Entity content shall be updated.

Figure 6.15.3.1-1: Batch Entity Creation or Update Interaction

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)153

Table 6.15.3.1-1: Batch Entity Creation or Update Interaction and possible responses

Request Body
Data Type Cardinality Remarks

Entity[] 1 Array of entities to be created/updated

Response
Body

Data Type Cardinality Response Code Remarks
String [] 1 201 Created If all entities not existing prior to this request

have been successfully created and the
others have been successfully updated, an
array of String (with the URIs representing
the Entity Ids of the created entities only) is
returned in the response. There is no
restriction as to the order of the Entity Ids.
The merely updated entities do not take
part in the response (corresponding to 204
No Content returned in the case of
updates).

 204 No Content If all entities already existed and are
successfully updated, there is no payload
body in the response.

BatchOperationResult 1 207 Multi Status If only some or none of the entities have
been successfully created or updated, a
response body containing the result of each
operation contained in the batch is returned
in a BatchOperationResult structure. It
contains two arrays. The first array
('success') contains the URIs of the
successfully created or updated entities,
while the second array ('errors') contains
information about the error for each of the
entities that could not be created or
updated. There is no restriction as to the
order of the Entity Ids in the arrays.

ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request or its
content is incorrect, see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

6.16 Resource: entityOperations/update

6.16.1 Description

A sub-resource, pertaining to the entityOperations/ resource, intended to enable batch entity update for the NGSI-LD
API.

6.16.2 Resource definition

Resource URI:

• /entityOperations/update

6.16.3 Resource methods

6.16.3.1 POST

This method is associated to the operation "Batch Entity Update" and shall exhibit the behaviour defined by
clause 5.6.9. Figure 6.16.3.1-1 shows the operation interaction and table 6.16.3.1-1 describes the request body and
possible responses.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)154

The "options" query parameter for this request can take the following values:

• "noOverwrite". Indicates that no attribute overwrite shall be performed.

Figure 6.16.3.1-1: Batch Entity Update Interaction

Table 6.16.3.1-1: Batch Entity Update Interaction and possible responses

Request Body
Data Type Cardinality Remarks

Entity[] 1 Array of Entities to be updated

Response
Body

Data Type Cardinality Response Code Remarks
 204 No Content If all entities have been successfully

updated, there is no payload body in the
response.

BatchOperationResult 1 207 Multi Status If only some or none of the entities have
been successfully updated, a response
body containing the result of each operation
contained in the batch is returned in a
BatchOperationResult structure. It contains
two arrays. The first array ('success')
contains the URIs of the successfully
updated entities, while the second array
('errors') contains information about the
error for each of the entities that could not
be updated. There is no restriction as to the
order of the Entity Ids in the arrays.

ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request or its
content is incorrect, see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

6.17 Resource: entityOperations/delete

6.17.1 Description

A sub-resource, pertaining to the entityOperations/ resource, intended to enable batch entity deletion for the NGSI-LD
API.

6.17.2 Resource definition

Resource URI:

• /entityOperations/delete

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)155

6.17.3 Resource methods

6.17.3.1 POST

This method is associated to the operation "Batch Entity Delete" and shall exhibit the behaviour defined by
clause 5.6.10. Figure 6.17.3.1-1 shows the operation interaction and table 6.17.3.1-1 describes the request body and
possible responses.

Figure 6.17.3.1-1: Batch Entity Delete Interaction

Table 6.17.3.1-1: Batch Entity Delete Interaction and possible responses

Request Body
Data Type Cardinality Remarks

Entity[] 1 Array of Entities to be updated

Response
Body

Data Type Cardinality Response Code Remarks
 204 No Content If all entities already existed and have been

successfully deleted, there is no payload
body in the response.

BatchOperationResult 1 207 Multi Status If some or all of the entities have not been
successfully deleted, or did not exist, a
response body containing the result of each
operation contained in the batch is returned
in a BatchOperationResult structure. It
contains two arrays. The first array
(‘success’) contains the URIs of the
successfully deleted entities, while the
second array (‘errors’) contains information
about the error for each of the entities that
could not be deleted. There is no restriction
as to the order of the Entity Ids in the
arrays.

ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request or its
content is incorrect, see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

6.18 Resource: temporal/entities/

6.18.1 Description

This resource represents the temporal evolution of Entities known to an NGSI-LD system.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)156

6.18.2 Resource definition

Resource URI:

• /temporal/entities/

6.18.3 Resource methods

6.18.3.1 POST

This method is associated to the operation "Create or Update Temporal Representation of Entities" and shall exhibit the
behaviour defined by clause 5.6.11, taking the temporal representation of entity to be created from the HTTP request
payload body. Figure 6.18.3.1-1 shows this interaction (for creation) and table 6.18.3.1-1 describes the request body and
possible responses.

Figure 6.18.3.1-1: Create Temporal Representation of Entity interaction

Figure 6.18.3.1-2: Update Temporal Representation of Entity interaction

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)157

Table 6.18.3.1-1: Post EntityTemporal request body and possible responses

Request Body

Data Type Cardinality Remarks
NGSI-LD
EntityTemporal

1 Payload body in the request contains a JSON-LD object
which represents the temporal representation of the entity
that is to be created (or updated).

Response Body

Data Type Cardinality Response Codes Remarks
N/A N/A 201 Created Upon creation success, the HTTP

response shall include a "Location"
HTTP header that contains the
resource URI of the created entity
resource.

 204 No Content Upon update success
ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request

or its content is incorrect, see
clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" member should
convey more information about the
error.

ProblemDetails [10] 0..1 422 Unprocessable
Entity

It is used to indicate that the operation
is not available, see clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

6.18.3.2 GET

This method is associated to the operation "Query Temporal Evolution of Entities" and shall exhibit the behaviour
defined by clause 5.7.4, providing the temporal evolution of the matching Entities as part of the HTTP response payload
body. In addition to this method, an alternative way to perform "Query Temporal Evolution of Entities" operations via
POST is defined in clause 6.24. Figure 6.18.3.2-1 shows this interaction.

Figure 6.18.3.2-1: Query Temporal Evolution of Entities interaction

The query parameters that shall be supported by implementations are those defined in table 6.18.3.2-1 and
table 6.18.3.2-2 describes the request body and possible responses.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)158

Table 6.18.3.2-1: Temporal Evolution Query parameters

Name Data Type Cardinality Remarks
id Comma separated list of

URIs
0..1 List of entity ids to be retrieved

type Comma separated list of
entity type names

0..1
It shall be 1 if attrs is not
present

List of entity types to be retrieved

idPattern Regular expression as
defined by [11]

0..1 Regular expression that shall be matched
by entity ids

attrs Comma separated list of
attribute names (Properties
or Relationships)

0..1
It shall be 1 if type is not
present

List of Attributes
(Properties or Relationships) to be
retrieved

q String 0..1 Query as per clause 4.9
csf String 0..1 Context Source filter as per clause 4.9
georel String 0..1

It shall be 1 if geometry or
coordinates are present

Geo relationship as per clause 4.10

geometry String 0..1
It shall be 1 if georel or
coordinates are present

Geometry as per clause 4.10

coordinates String 0..1
It shall be one if georel or
geometry are present

Coordinates serialized as a string as per
clause 4.10

geoproperty String representing a
Property Name

0..1
It shall be ignored if no geo-
query is present

The name of the Property that contains the
geospatial data that will be used to resolve
the geo-query. By default, will be location.
(See clause 4.7)

timeproperty String representing a
Property Name

0..1 The name of the Property that contains the
temporal data that will be used to resolve
the temporal query. By default, will be
observedAt. (See clause 4.8)

timerel String representing the
temporal relationship as
defined by clause 4.11

1 Allowed values: "before", "after", "between"

timeAt String representing the
timeAt parameter as defined
by clause 4.11

1 It shall be a DateTime

endTimeAt String representing the
endTimeAt parameter as
defined by clause 4.11

0..1 It shall be a DateTime. Cardinality shall be
1 if timerel is equal to "between"

lastN Positive integer 0..1 Only the last n instances, per Attribute, per
Entity (under the specified time interval)
shall be retrieved

Table 6.18.3.2-2: Query Entities History request body and possible responses

Request Body
Data Type Cardinality Remarks

N/A

Response Body

Data Type Cardinality Response Codes Remarks
NGSI-LD
EntityTemporal[]

1 200 OK Upon success, a response body
containing the query result as a list of
temporal representation of Entities.

ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request or its
content is incorrect, see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)159

6.19 Resource: temporal/entities/{entityId}

6.19.1 Description

This resource is associated to the temporal representation of an Entity known to an NGSI-LD system.

6.19.2 Resource definition

Resource URI:

• /temporal/entities/{entityId}

Resource URI variables for this resource are defined in table 6.19.2-1.

Table 6.19.2-1: URI variables

Name Definition
entityId Id (URI) of the entity to be retrieved

6.19.3 Resource methods

6.19.3.1 GET

This method is associated to the operation "Retrieve temporal evolution of an Entity" and shall exhibit the behaviour
defined by clause 5.7.3. The Entity identifier is the value of the resource URI variable entityId. Figure 6.19.3.1-1 shows
the retrieve temporal representation of an entity interaction.

Figure 6.19.3.1-1: Retrieve Temporal evolution of an Entity interaction

The query parameters that shall be supported are those defined in table 6.19.3.1-1 and table 6.19.3.1-2 describes the
request body and possible responses.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)160

Table 6.19.3.1-1: Query parameters

Name Data Type Cardinality Remarks
attrs Comma separated list of

attribute names (Properties or
Relationships)

0..1 List of Attributes to be retrieved. If not specified, all
Attributes related to the temporal representation of an
entity shall be retrieved.

timeproperty String representing a Property
Name

0..1 The name of the Property that contains the temporal
data that will be used to resolve the temporal query.
By default, will be observedAt (see clause 4.8).

timerel String representing the
temporal relationship as defined
by clause 4.11

0
It shall be 1 if
timeAt is
present

Allowed values: "before", "after", "between".

timeAt String representing the timeAt
parameter as defined by
clause 4.11

0..1
It shall be 1 if
timerel is
present

It shall be a DateTime.

endTimeAt String representing the
endTimeAt parameter as
defined by clause 4.11

0..1
It shall be 1 if
timerel is equal
to "between"

It shall be a DateTime.

lastN Positive integer 0..1 Only the last n Attribute instances (under the
concerned time interval) shall be retrieved.

Table 6.19.3.1-2: Get Temporal Representation of Entity request body and possible responses

Request Body
Data Type Cardinality Remarks

N/A

Response
Body

Data Type Cardinality Response Codes Remarks
NGSI-LD
EntityTemporal

1 200 OK Upon success, a response body
containing the JSON-LD temporal
representation of the target entity
containing the selected Attributes.

ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request or its
content is incorrect, see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

ProblemDetails [10] 0..1 404 Not Found It is used when a client provided an entity
identifier (URI) not known to the system,
see clause 6.3.2.

6.19.3.2 DELETE

This method is associated to the operation "Delete Temporal Representation of an Entity" and shall exhibit the
behaviour defined by clause 5.6.16. The Entity identifier is the value of the resource URI variable entityId.
Figure 6.19.3.2-1 shows the delete entity interaction and table 6.19.3.2-1 describes the request body and possible
responses.

Figure 6.19.3.2-1: Delete Temporal Representation of Entity interaction

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)161

Table 6.19.3.2-1: Delete Temporal Representation of Entity request body and possible responses

Request Body
Data Type Cardinality Remarks

N/A

Response
Body

Data Type Cardinality Response Codes Remarks
N/A 204 No Content
ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request or

its content is incorrect, see clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails [10] 0..1 404 Not Found It is used when a client provided an
entity identifier (URI) not known to the
system, see clause 6.3.2.

6.20 Resource: temporal/entities/{entityId}/attrs/

6.20.1 Description

This resource represents all the Attributes (Properties or Relationships) of a Temporal Representation of an NGSI-LD
Entity.

6.20.2 Resource definition

Resource URI:

• /temporal/entities/{entityId}/attrs/

Resource URI variables for this resource are defined in table 6.20.2-1.

Table 6.20.2-1: URI variables

Name Definition
entityId Id (URI) of the concerned entity

6.20.3 Resource methods

6.20.3.1 POST

This method is bound to the "Add Attributes to Temporal Representation of an Entity" operation and shall exhibit the
behaviour defined by clause 5.6.12. The Entity identifier is the value of the resource URI variable entityId. The data to
be added shall be contained in the HTTP request payload body. Figure 6.20.3.1-1 shows the add entity attributes
interaction and table 6.20.3.1-1 describes the request body and possible responses.

Figure 6.20.3.1-1: Add Attributes to Temporal Representation of an Entity interaction

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)162

Table 6.20.3.1-1: Post Add Attributes to Temporal Representation of
an Entity request body and possible responses

Request Body

Data Type Cardinality Remarks
NGSI-LD
EntityTemporal
Fragment

1 EntityTemporal Fragment containing a complete representation
of the Attribute instances to be added.

Response Body

Data Type Cardinality Response Codes Remarks
N/A 204 No content All the Attributes were added

successfully.
ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request or

its content is incorrect, see clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails [10] 0..1 404 Not Found It is used when a client provided an
entity identifier (URI) not known to the
system, see clause 6.3.2.

6.21 Resource: temporal/entities/{entityId}/attrs/{attrId}

6.21.1 Description

This resource represents an Attribute (Property or Relationship) of a Temporal Representation of an NGSI-LD Entity.

6.21.2 Resource definition

Resource URI:

• /temporal/entities/{entityId}/attrs/{attrId}

Resource URI variables for this resource are defined in table 6.21.2-1.

Table 6.21.2-1: URI variables

Name Definition
entityId Id (URI) of the concerned entity
attrId Attribute name (Property or Relationship)

6.21.3 Resource methods

6.21.3.1 DELETE

This method is associated to the operation "Delete Attribute from Temporal Representation of an Entity" and shall
exhibit the behaviour defined by clause 5.6.13. The Entity identifier is the value of the resource URI variable entityId.
The Attribute Name is the value of the resource URI variable attrId. Figure 6.21.3.1-1 shows the Delete Attribute from
Temporal Representation of an Entity interaction, table 6.21.3.1-1 shows the delete parameters to be supported and
table 6.21.3.1-2 describes the request body and possible responses.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)163

Figure 6.21.3.1-1: Delete Attribute from Temporal Representation of an Entity interaction

Table 6.21.3.1-1: Delete parameters

Name Data Type Cardinality Remarks
deleteAll boolean 0..1 If true, all attribute instances are deleted. Otherwise (default) only the Attribute

instance specified by the datasetId is deleted. In case neither the deleteAll flag
nor a datasetId is present, the default Attribute instance is deleted.

datasetId URI 0..1 Specifies the datasetId of the dataset to be deleted.

Table 6.21.3.1-2: Delete Attribute from Temporal Representation of
an Entity request body and possible responses

Request Body
Data Type Cardinality Remarks

N/A

Response Body

Data Type Cardinality Response Codes Remarks
N/A 204 No Content
ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request

or its content is incorrect, see
clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails [10] 0..1 404 Not Found It is used when a client provided an
entity identifier (URI) or Attribute
Name not known to the system. See
clause 6.3.2.

6.22 Resource: temporal/entities/{entityId}/attrs/{attrId}/
{instanceId}

6.22.1 Description

This resource represents an Attribute (Property or Relationship) instance of a Temporal Representation of an NGSI-LD
Entity.

6.22.2 Resource definition

Resource URI:

• /temporal/entities/{entityId}/attrs/{attrId}/{instanceId}

Resource URI variables for this resource are defined in table 6.22.2-1.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)164

Table 6.22.2-1: URI variables

Name Definition
entityId Id (URI) of the concerned entity
attrId Attribute Name (Property or Relationship)
instanceId Id (URI) identifying a particular Attribute instance

6.22.3 Resource methods

6.22.3.1 PATCH

This method is associated to the operation "Modify attribute instance from Temporal Representation of an Entity" and
shall exhibit the behaviour defined by clause 5.6.14. The Entity identifier is the value of the resource URI variable
entityId. The attribute name is the value of the resource URI variable attrId. The instance identifier is the value of the
resource URI variable instanceId. Figure 6.22.3.1-1 shows the Modify Entity Attribute instance interaction and
table 6.22.3.1-1 describes the request body and possible responses.

Figure 6.22.3.1-1: Modify Entity Attribute instance from Temporal Representation interaction

Table 6.22.3.1-1: Modify Entity Attribute instance from
Temporal Representation request body and possible responses

Request Body
Data Type Cardinality Remarks

N/A

Response Body

Data Type Cardinality Response Codes Remarks
N/A 204 No Content
ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request

or its content is incorrect, see
clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails [10] 0..1 404 Not Found It is used when a client provided an
entity identifier (URI), attribute name
or instance identifier not known to the
system. See clause 6.3.2.

6.22.3.2 DELETE

This method is associated to the operation "Delete Attribute instance from Temporal Representation of an Entity" and
shall exhibit the behaviour defined by clause 5.6.15. The Entity identifier is the value of the resource URI variable
entityId. The Attribute Name is the value of the resource URI variable attrId. The instance identifier is the value of the
resource URI variable instanceId. Figure 6.22.3.2-1 shows the Delete Entity Attribute instance interaction and
table 6.22.3.2-1 describes the request body and possible responses.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)165

Figure 6.22.3.2-1: Delete Entity Attribute instance from Temporal Representation interaction

Table 6.22.3.2-1: Delete Entity Attribute instance from
Temporal Representation request body and possible responses

Request Body
Data Type Cardinality Remarks

N/A

Response Body

Data Type Cardinality Response Codes Remarks
N/A 204 No Content
ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request

or its content is incorrect, see
clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails [10] 0..1 404 Not Found It is used when a client provided an
entity identifier (URI), attribute name
or instance identifier not known to the
system. See clause 6.3.2.

6.23 Resource: entityOperations/query

6.23.1 Description

A sub-resource, pertaining to the entityOperations/ resource, intended to enable querying for entities by means of a
POST method. The behaviour of this clause mirrors the one in clause 6.4.3.2, which performs the "Query Entity"
operation (defined by clause 5.7.2) by means of a GET method. The reason to provide an alternative via POST is that,
using GET:

a) The client may end up assembling very long URLs, due to the URI parameters for 'id', 'q'‚ type', 'attrs', etc.
being included in the URL. Problems with too long URLs may arise with some applications that cut URLs to a
maximum length.

b) There is a need to URL-encode the resulting URL. By using POST, there's no need to url-encode.

6.23.2 Resource definition

Resource URI:

• /entityOperations/query

6.23.3 Resource methods

6.23.3.1 POST

This method is associated to the operation "Query Entities" and shall exhibit the behaviour defined by clause 5.7.2.
Figure 6.23.3.1-1 shows the operation interaction and table 6.23.3.1-1 describes the request body and possible
responses.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)166

Figure 6.23.3.1-1: Query Entity via POST Interaction

Table 6.23.3.1-1: Query Entity via POST Interaction and possible responses

Request Body
Data Type Cardinality Remarks

Query 1 Payload body in the request contains a JSON-LD object which
represents the query to be performed.

Response Body

Data Type Cardinality Response Codes Remarks
NGSI-LD Entity[] 1 200 OK Upon success, a response body

containing the query result as a list of
Entities.

ProblemDetails (see
reference [10])

0..1 400 Bad Request It is used to indicate that the request or its
content is incorrect, see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

6.24 Resource: temporal/entityOperations/query

6.24.1 Description

A sub-resource, pertaining to the temporal/entityOperations/ resource, intended to enable temporal querying for entities
by means of a POST method. The behaviour of this clause mirrors the one in clause 6.18.3.2, which performs the
"Query Temporal Evolution of Entities" (defined by clause 5.7.4) operation by means of a GET method. The reason to
provide an alternative via POST is that, using GET:

a) The client may end up assembling very long URLs, due to the URI parameters for 'id', 'q'‚ type', 'attrs', etc,
being included in the URL. Problems with too long URLs may arise with some applications that cut URLs to a
maximum length.

b) there is a need to URL-encode the resulting URL. By using POST, there's no need to url-encode.

6.24.2 Resource definition

Resource URI:

• /temporal/entityOperations/query

6.24.3 Resource methods

6.24.3.1 POST

This method is associated to the operation "Query Temporal Evolution of Entities" and shall exhibit the behaviour
defined by clause 5.7.4. Figure 6.24.3.1-1 shows the operation interaction and table 6.24.3.1-1 describes the request
body and possible responses.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)167

Figure 6.24.3.1-1: Temporal Query Entity via POST Interaction

Table 6.24.3.1-1: Temporal Query Entity via POST Interaction and possible responses

Request Body
Data Type Cardinality Remarks

Query 1 Payload body in the request contains a JSON-LD object which
represents the query to be performed.

Response Body

Data Type Cardinality Response Codes Remarks
NGSI-LD Entity[] 1 200 OK Upon success, a response body

containing the query result as a list of
Entities.

ProblemDetails (see
reference [10])

0..1 400 Bad Request It is used to indicate that the request or its
content is incorrect, see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

6.25 Resource: types/

6.25.1 Description

This resource represents the entity types available in an NGSI-LD system.

6.25.2 Resource definition

Resource URI:

• /types/

6.25.3 Resource methods

6.25.3.1 GET

This method is associated to the operations "Retrieve Available Entity Types" and "Retrieve Details of Available Entity
Types" (if the "details" parameter is set to true) and shall exhibit the behaviour defined by clauses 5.7.5 and 5.7.6
respectively.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)168

Figure 6.25.3.1-1: Retrieve Available Entity Types interaction

The request parameters that shall be supported are those defined in table 6.25.3.1-1 and table 6.25.3.1-2 describes the
request body and possible responses.

Table 6.25.3.1-1: Retrieve Available Entity Types: optional parameter

Name Data Type Cardinality Remarks
details boolean 0..1 If true, then detailed entity type information represented as an array with elements

of the Entity Type data structure (clause 5.2.25) is to be returned

Table 6.25.3.1-2: Retrieve Available Entity Types request body and possible responses

Request Body
Data Type Cardinality Remarks

N/A

Response
Body

Data Type Cardinality Response Codes Remarks
EntityTypeList 1 200 OK Upon success, a response body

containing the JSON-LD representation of
the EntityTypeList (clause 5.2.24) is to be
returned, unless details=true is specified

EntityType[] 1 200 OK If details=true is specified, upon success,
a response body containing a JSON-LD
array with elements of the Entity Type
data structure (clause 5.2.25) is to be
returned

ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request or its
content is incorrect, see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

6.26 Resource: types/{type}

6.26.1 Description

This resource represents the specified entity type for which entity instances are available in an NGSI-LD system.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)169

6.26.2 Resource definition

Resource URI:

• /types/{type}

Resource URI variables for this resource are defined in table 6.26.2-1.

Table 6.26.2-1: URI variables

Name Definition
type Name of the entity type for which detailed information is to be retrieved. The Fully Qualified Name (FQN) as

well as the short name can be used, given that the latter is part of the JSON-LD @context provided.

6.26.3 Resource methods

6.26.3.1 GET

This method is associated to the operation "Retrieve Available Entity Type Information" and shall exhibit the behaviour
defined by clause 5.7.7. The entity type is the value of the resource URI variable "type". Figure 6.26.3.1-1 shows the
retrieve available entity type interaction.

Figure 6.26.3.1-1: Retrieve Available Entity Type interaction

Table 6.26.3.1-1 describes the request body and possible responses.

Table 6.26.3.1-1: Retrieve Available Entity Type request body and possible responses

Request Body
Data Type Cardinality Remarks

N/A

Response
Body

Data Type Cardinality Response Codes Remarks
EntityTypeInfo 1 200 OK Upon success, a response body

containing the JSON-LD representation of
the detailed information about the
available entity type.

ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request or its
content is incorrect, see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

ProblemDetails [10] 0..1 404 Not Found It is used when a client provided an entity
type not known to the system, see
clause 6.3.2.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)170

6.27 Resource: attributes/

6.27.1 Description

This resource represents the attributes available in an NGSI-LD system.

6.27.2 Resource definition

Resource URI:

• /attributes/

6.27.3 Resource methods

6.27.3.1 GET

This method is associated to the operations "Retrieve Available Attributes" and "Retrieve Details of Available
Attributes" (if the "details" parameter is set to true) and shall exhibit the behaviour defined by clauses 5.7.8 and 5.7.9
respectively.

Figure 6.27.3.1-1: Retrieve Available Attributes interaction

The request parameters that shall be supported are those defined in table 6.27.3.1-1 and table 6.27.3.1-2 describes the
request body and possible responses.

Table 6.27.3.1-1: Retreive Available Attributes: optional parameter

Name Data Type Cardinality Remarks
details boolean 0..1 If true, then detailed attribute information represented as an array with elements of

the Attribute data structure (clause 5.2.28) is to be returned

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)171

Table 6.27.3.1-2: Retrieve Available Attributes request body and possible responses

Request Body
Data Type Cardinality Remarks

N/A

Response
Body

Data Type Cardinality Response Codes Remarks
AttributeList 1 200 OK Upon success, a response body

containing the JSON-LD representation of
the AttributeList (clause 5.2.27) is to be
returned, unless details=true is specified

Attribute[] 1 200 OK If details=true is specified, upon success,
a response body containing a JSON-LD
array with elements of the Attribute data
structure (clause 5.2.28) is to be returned

ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request or its
content is incorrect, see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

6.28 Resource: attributes/{attrId}

6.28.1 Description

This resource represents the specified attribute that belongs to entity instances existing within the NGSI-LD system.

6.28.2 Resource definition

Resource URI:

• /attributes/{attrId}

Resource URI variables for this resource are defined in table 6.28.2-1.

Table 6.28.2-1: URI variables

Name Definition
attrId Name of the attribute for which detailed information is to be retrieved. The Fully Qualified Name (FQN) as well

as the short name can be used, given that the latter is part of the JSON-LD @context provided.

6.28.3 Resource methods

6.28.3.1 GET

This method is associated to the operation "Retrieve Available Attribute Information" and shall exhibit the behaviour
defined by clause 5.7.10. The attribute is the value of the resource URI variable "attrId". Figure 6.28.3.1-1 shows the
retrieve available attribute information interaction.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)172

Figure 6.28.3.1-1: Retrieve Available Attribute Information interaction

Table 6.28.3.1-1 describes the request body and possible responses.

Table 6.28.3.1-1: Retrieve Available Attribute Information request body and possible responses

Request Body
Data Type Cardinality Remarks

N/A

Response
Body

Data Type Cardinality Response Codes Remarks
Attribute 1 200 OK Upon success, a response body

containing the JSON-LD representation of
the detailed information about the
available attribute.

ProblemDetails [10] 0..1 400 Bad Request It is used to indicate that the request or its
content is incorrect, see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

ProblemDetails [10] 0..1 404 Not Found It is used when a client provided an
attribute name not known to the system,
see clause 6.3.2.

7 API MQTT notification binding

7.1 Introduction
This clause defines the optional support of the NGSI-LD API for sending notifications via the MQTT protocol
[24] and [25]. The subscriptions are handled using the HTTP binding as described in clause 6, but instead of an HTTP
endpoint, an MQTT endpoint is provided.

7.2 Notification behaviour
In case a subscription received via HTTP specifies an MQTT endpoint in the "notification.endpoint.uri" member of the
subscription structure (defined by clauses 5.2.12, 5.2.14 and 5.2.15), and the MQTT notification binding is supported by
the NGSI-LD implementation, notifications related to this subscription shall be sent via the MQTT protocol.

The syntax of an MQTT endpoint URI is
mqtt[s]://[<username>][:<password>]@<host>[:<port>]/<topic>[/<subtopic>]* and follows an existing convention for
representing an MQTT endpoint as a URI [i.19].

Username and password can be optionally specified as part of the endpoint URI. If the port is not explicitly specified,
the default MQTT port is 1883 for MQTT over TCP and 8883 for mqtts, i.e. Secure MQTT over TLS. MQTT supports
the structuring of topics as a hierarchy with any number of subtopic levels, which can be specified as part of the
endpoint URI.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)173

In MQTT, all non-protocol information has to be included into the MQTT message. This means that the actual
notification as specified in clause 5.3.1, as well as additional information like MIME type, possibly the link to the
@context and additional user-specified information, which in the HTTP case is provided as headers, has to be included
into the MQTT message. The MQTT notification message shall be provided as a JSON Object with the two elements
"metadata" and "body". The actual notification, as specified in clause 5.3.1 is the value of "body", whereas any
additional information is provided as key-value pairs in "metadata".

For the MQTT protocol, there are currently two versions supported, MQTTv3.1.1 [24] and MQTTv5.0 [25]. Also, there
are three levels of quality of service:

• at most once (0);

• at least once (1); and

• exactly once (2).

These can be specified in the subscription as part of the optional array of KeyValuePair type (defined by clause 5.2.22)
"notification.endpoint.notifierInfo". The MQTT protocol parameters can be found in table 7.2-1. If not present, the
given default value is used.

Table 7.2-1: Protocol parameters for MQTT in notifierInfo

Key Possible Values Default Source Description
MQTT-
Version

mqtt3.1.1, mqtt5.0 mqtt5.0 Subsciption's
notification.endpoint.notifierInfo

Version of MQTT protocol

MQTT-QoS 0,1,2 0 Subsciption's
notification.endpoint.notifierInfo

MQTT Quality of service, at
most once (0), at least once (1)
and exactly once (2)

The MIME type associated with the notification shall be "application/json" by default. However, this can be changed to
application/ld+json by means of the "endpoint.accept" member. The MIME type is specified as Content-Type in the
"metadata" element of the MQTT message. If the target MIME type is "application/json" then the reference to the
JSON-LD @context is provided as Link in the "metadata" element of the MQTT message, following the specification
of the HTTP Link header as as mandated by the JSON-LD specification [2], clause 6.8 (to the default JSON-LD
@context if none available). Table 7.2-2 lists these "receiver side" metadata parameters.

Table 7.2-2: Parameters for MQTT in "metadata"

Key Possible Values Default Source Description
Content-
Type

application/json,
application/ld+json

application/json Subscription's
notification.endpoint.accept

MIME type of the notification
included in the "body" element of
the MQTT message

Link Same format as
specified in JSON-LD
specification [2],
clause 6.8 for the
HTTP Link header

 Link Header provided in
Subscription

Contains the reference to the
@context in case Content-Type is
application/json. Example:
<http://myhost.org/mycontext>;
rel="http://www.w3.org/ns/json-
ld#context";
type="application/ld+json"

Additionally, if the optional array of KeyValuePair type (defined by clause 5.2.22) "notification.endpoint.receiverInfo"
of the subscription is present, then a new entry for each member named "key" of the key, value pairs that make up the
array shall be generated and added to the "metadata" element of the MQTT message. The content of each entry shall be
set equal to the content of the corresponding "value" member of the KeyValuePair.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)174

Annex A (normative):
NGSI-LD identifier considerations

A.1 Introduction
The purpose of identifiers is to allow uniquely identifying NGSI-LD elements (Entities, Context Subscriptions or
Context Source Registrations) within an NGSI-LD system. This annex is intended to clarify the different issues around
the design of identifiers in NGSI-LD.

A.2 Entity identifiers
In order to enable the participation of NGSI-LD in linked data scenarios, all Entities are identified by URIs. If those
URIs are expected to participate in external linked data relationships they should be dereferenceable.

It is noteworthy that the identifier from the point of view of NGSI-LD is different from the inherent identifier that a
specific Entity may have. For instance, an NGSI-LD Entity of Type Vehicle may have a Property named
licencePlateNumber, which it is actually a unique identifier from the point of view of the Entity domain, as it uniquely
identifies the specific vehicle instance. However, from the point of view of the NGSI-LD system, it may have another
identifier which might or might not include such licence plate number identifier.

A.3 NGSI-LD namespace
NGSI-LD defines a specific URN [9] namespace intended to help API users to design readable, clean and simple
identifiers. As it is based on URNs, the usage of this identification approach is not recommended when dereferenceable
URIs are needed (fully-fledged linked data scenarios).

The referred namespace is defined as follows (to be registered with IANA):

• Namespace identifier: NID = "ngsi-ld"

• Namespace specific string: NSS = EntityTypeName ":" EntityIdentificationString

EntityTypeName shall be an Entity Type Name which can be expanded to a URI as per the @context.

EntityIdentificationString shall be a string that allows uniquely identifying the subject Entity in combination with the
other items being part of the NSS.

EXAMPLE: urn:ngsi-ld:Person:28976543.

It is recommended that applications use this URN namespace when applicable.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)175

Annex B (normative):
Core NGSI-LD @context definition
Below is the definition of the Core NGSI-LD @context which shall be supported by implementations.

Such definition has been tested using [i.7].

{
 "@context": {

 "ngsi-ld": "https://uri.etsi.org/ngsi-ld/",
 "geojson": "https://purl.org/geojson/vocab#",
 "id": "@id",
 "type": "@type",

 "Attribute": "ngsi-ld:Attribute",
 "AttributeList": "ngsi-ld:AttributeList",
 "ContextSourceNotification": "ngsi-ld:ContextSourceNotification",
 "ContextSourceRegistration": "ngsi-ld:ContextSourceRegistration",
 "Date": "ngsi-ld:Date",
 "DateTime": "ngsi-ld:DateTime",
 "EntityType": "ngsi-ld:EntityType",
 "EntityTypeInfo": "ngsi-ld:EntityTypeInfo",
 "EntityTypeList": "ngsi-ld:EntityTypeList",
 "Feature": "geojson:Feature",
 "FeatureCollection": "geojson:FeatureCollection",
 "GeoProperty": "ngsi-ld:GeoProperty",
 "GeometryCollection": "geojson:GeometryCollection",
 "LineString": "geojson:LineString",
 "MultiLineString": "geojson:MultiLineString",
 "MultiPoint": "geojson:MultiPoint",
 "MultiPolygon": "geojson:MultiPolygon",
 "Notification": "ngsi-ld:Notification",
 "Point": "geojson:Point",
 "Polygon": "geojson:Polygon",
 "Property": "ngsi-ld:Property",
 "Relationship": "ngsi-ld:Relationship",
 "Subscription": "ngsi-ld:Subscription",
 "TemporalProperty": "ngsi-ld:TemporalProperty",
 "Time": "ngsi-ld:Time",

 "accept": "ngsi-ld:accept",
 "attributeCount": "attributeCount",
 "attributeDetails": "attributeDetails",
 "attributeList": {
 "@id": "ngsi-ld:attributeList",
 "@type": "@vocab"
 },
 "attributeName": {
 "@id": "ngsi-ld:attributeName"
 "@type": "@vocab"
 },
 "attributeNames": {
 "@id": "ngsi-ld:attributeNames",
 "@type": "@vocab"
 },
 "attributeTypes": {
 "@id": "ngsi-ld:attributeTypes",
 "@type": "@vocab"
 },
 "attributes": {
 "@id": "ngsi-ld:attributes",
 "@type": "@vocab"
 },
 "bbox": {
 "@container": "@list",
 "@id": "geojson:bbox"
 },
 "coordinates": {
 "@container": "@list",
 "@id": "geojson:coordinates"
 },
 "createdAt": {
 "@id": "ngsi-ld:createdAt",
 "@type": "DateTime"

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)176

 },
 "csf": "ngsi-ld:csf",
 "data": "ngsi-ld:data",
 "datasetId": {
 "@id": "ngsi-ld:datasetId",
 "@type": "@id"
 },
 "description": "http://purl.org/dc/terms/description",
 "detail": "ngsi-ld:detail",
 "endAt": {
 "@id": "ngsi-ld:endAt",
 "@type": "DateTime"
 },
 "endTimeAt": {
 "@id": "ngsi-ld:endTimeAt",
 "@type": "DateTime"
 },
 "endpoint": "ngsi-ld:endpoint",
 "entities": "ngsi-ld:entities",
 "entityCount": "ngsi-ld:entityCount",
 "entityId": {
 "@id": "ngsi-ld:entityId",
 "@type": "@id"
 },
 "error": "ngsi-ld:error",
 "errors": "ngsi-ld:errors",
 "expiresAt": {
 "@id": "ngsi-ld:expiresAt",
 "@type": "DateTime"
 },
 "features": {
 "@container": "@set",
 "@id": "geojson:features"
 },
 "format": "ngsi-ld:format",
 "geoQ": "ngsi-ld:geoQ",
 "geometry": "geojson:geometry",
 "geoproperty": "ngsi-ld:geoproperty",
 "georel": "ngsi-ld:georel",
 "idPattern": "ngsi-ld:idPattern",
 "information": "ngsi-ld:information",
 "instanceId": {
 "@id": "ngsi-ld:instanceId",
 "@type": "@id"
 },
 "isActive": "ngsi-ld:isActive",
 "lastFailure": {
 "@id": "ngsi-ld:lastFailure",
 "@type": "DateTime"
 },
 "lastNotification": {
 "@id": "ngsi-ld:lastNotification",
 "@type": "DateTime"
 },
 "lastSuccess": {
 "@id": "ngsi-ld:lastSuccess",
 "@type": "DateTime"
 },
 "location": "ngsi-ld:location",
 "managementInterval": "ngsi-ld:managementInterval",
 "modifiedAt": {
 "@id": "ngsi-ld:modifiedAt",
 "@type": "DateTime"
 },
 "notification": "ngsi-ld:notification",
 "notifiedAt": {
 "@id": "ngsi-ld:notifiedAt",
 "@type": "DateTime"
 },
 "object": {
 "@id": "ngsi-ld:hasObject",
 "@type": "@id"
 },
 "objects": {
 "@id": "ngsi-ld:hasObjects",
 "@type": "@id",
 "@container": "@list"
 },

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)177

 "observationInterval": "ngsi-ld:observationInterval",
 "observationSpace": "ngsi-ld:observationSpace",
 "observedAt": {
 "@id": "ngsi-ld:observedAt",
 "@type": "DateTime"
 },
 "operationSpace": "ngsi-ld:operationSpace",
 "properties": "geojson:properties",
 "propertyNames": {
 "@id": "ngsi-ld:propertyNames",
 "@type": "@vocab"
 },
 "q": "ngsi-ld:q",
 "reason": "ngsi-ld:reason",
 "registrationName": "ngsi-ld:registrationName",
 "relationshipNames": {
 "@id": "ngsi-ld:relationshipNames",
 "@type": "@vocab"
 },
 "startAt": {
 "@id": "ngsi-ld:startAt",
 "@type": "DateTime"
 },
 "status": "ngsi-ld:status",
 "subscriptionId": {
 "@id": "ngsi-ld:subscriptionId",
 "@type": "@id"
 },
 "subscriptionName": "ngsi-ld:subscriptionName",
 "success": {
 "@id": "ngsi-ld:success",
 "@type": "@id"
 },
 "temporalQ": "ngsi-ld:temporalQ",
 "throttling": "ngsi-ld:throttling",
 "timeAt": {
 "@id": "ngsi-ld:timeAt",
 "@type": "DateTime"
 },
 "timeInterval": "ngsi-ld:timeInterval",
 "timeproperty": "ngsi-ld:timeproperty",
 "timerel": "ngsi-ld:timerel",
 "timesSent": "ngsi-ld:timesSent",
 "title": "http://purl.org/dc/terms/title",
 "triggerReason": "ngsi-ld:triggerReason",
 "typeList": {
 "@id": "ngsi-ld:typeList",
 "@type": "@vocab"
 },
 "typeName": {
 "@id": "ngsi-ld:typeName",
 "@type": "@vocab"
 },
 "typeNames": {
 "@id": "ngsi-ld:typeNames",
 "@type": "@vocab"
 },
 "unchanged": "ngsi-ld:unchanged",
 "unitCode": "ngsi-ld:unitCode",
 "updated": "ngsi-ld:updated",
 "uri": "ngsi-ld:uri",
 "value": "ngsi-ld:hasValue",
 "values": {
 "@id": "ngsi-ld:hasValues",
 "@container": "@list"
 },
 "watchedAttributes": {
 "@id": "ngsi-ld:watchedAttributes",
 "@type": "@vocab"
 },
 "@vocab": "https://uri.etsi.org/ngsi-ld/default-context/"
 }
}

NOTE: Implementers can take advantage of prefixed terms, i.e. in the form ngsi-ld:term, to provide a terser
representation of the Core @context.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)178

Annex C (informative):
Examples of using the API

C.1 Introduction
This annex is informative and is intended to show in action the JSON-LD representation defined by NGSI-LD.

JSON representations of the examples shown in this annex can be found at [i.15].

C.2 Entity Representation

C.2.1 Property Graph
Figure C.2.1-1 shows a diagram representing a property graph to be used for the examples discussed in this clause.

Figure C.2.1-1: Reference example

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)179

As per the algorithms described above and as per the rules for generating the JSON-LD representation of NGSI-LD
entities the above graph will result in the following JSON-LD representations. The syntax has been checked using the
JSON-LD Playground tool [i.5].

C.2.2 Vehicle Entity
Below there is a representation of an Entity of Type "Vehicle". It can be observed that the @context is composed of
different parts, namely the Core @context and several vocabulary-specific @contexts.

It is noteworthy that the @context corresponding to the Parking domain is included as it is referenced through the
isParked Relationship.

{
 "id": "urn:ngsi-ld:Vehicle:A4567",
 "type": "Vehicle",
 "brandName": {
 "type": "Property",
 "value": "Mercedes"
 },
 "isParked": {
 "type": "Relationship",
 "object": "urn:ngsi-ld:OffStreetParking:Downtown1",
 "observedAt": "2017-07-29T12:00:04Z",
 "providedBy": {
 "type": "Relationship",
 "object": "urn:ngsi-ld:Person:Bob"
 }
 },
 "@context": [
 "http://example.org/ngsi-ld/latest/commonTerms.jsonld",
 "http://example.org/ngsi-ld/latest/vehicle.jsonld",
 "http://example.org/ngsi-ld/latest/parking.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.3.jsonld"
]
}

Simplified representation

The simplified representation is a collapsed representation of an Entity, which focuses on Property Values and
Relationship objects present at the first level of the graph.

{
 "id": "urn:ngsi-ld:Vehicle:A4567",
 "type": "Vehicle",
 "brandName": "Mercedes",
 "isParked": "urn:ngsi-ld:OffStreetParking:Downtown1",
 "@context": [
 "http://example.org/ngsi-ld/latest/commonTerms.jsonld",
 "http://example.org/ngsi-ld/latest/vehicle.jsonld",
 "http://example.org/ngsi-ld/latest/parking.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.3.jsonld"
]
}

Multiple attribute example

Below is an example, where the speed of the car is provided by two different sources. As both may be relevant at the
same time, there are two individual attribute instances for speed; each is identified by a datasetId and is represented in
NGSI-LD by an Attribute Name with an index. The datasetId enables individually creating, updating and deleting a
particular instance without affecting the instance from another source.

{
 "id": "urn:ngsi-ld:Vehicle:A4567",
 "type": "Vehicle",
 "speed": [{
 "type": "Property",
 "value": 55,
 "source": {
 "type": "Property",
 "value": "Speedometer"
 },
 "datasetId": "urn:ngsi-ld:Property:speedometerA4567-speed"

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)180

 },
 {
 "type": "Property",
 "value": 54.5,
 "source": {
 "type": "Property",
 "value": "GPS"
 },
 "datasetId": "urn:ngsi-ld:Property:gpsBxyz123-speed"
 }],
 "@context": [
 {
 "Vehicle": "http://example.org/Vehicle",
 "speed": "http://example.org/speed",
 "source": "http://example.org/hasSource"
 },
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.3.jsonld"
]
}

C.2.3 Parking Entity
Below there is a representation of an Entity of Type "OffStreetParking". It can be observed that the @context is
composed of two different elements, the Core one and the vocabulary-specific one.

{
 "id": "urn:ngsi-ld:OffStreetParking:Downtown1",
 "type": "OffStreetParking",
 "name": {
 "type": "Property",
 "value": "Downtown One"
 },
 "availableSpotNumber": {
 "type": "Property",
 "value": 121,
 "observedAt": "2017-07-29T12:05:02Z",
 "reliability": {
 "type": "Property",
 "value": 0.7
 },
 "providedBy": {
 "type": "Relationship",
 "object": "urn:ngsi-ld:Camera:C1"
 }
 },
 "totalSpotNumber": {
 "type": "Property",
 "value": 200
 },
 "location": {
 "type": "GeoProperty",
 "value": {
 "type": "Point",
 "coordinates": [-8.5, 41.2]
 }
 },
 "@context": [
 "http://example.org/ngsi-ld/latest/parking.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.3.jsonld"
]
}

Simplified representation

The Simplified Representation (a.k.a. keyValues) is a collapsed representation of an Entity, which focuses on Property
Values and Relationship objects present at the first level of the graph.

{
 "id": "urn:ngsi-ld:OffStreetParking:Downtown1",
 "type": "OffStreetParking",
 "name": "Downtown One",
 "availableSpotNumber": 121,
 "totalSpotNumber": 200,
 "location": {
 "type": "Point",

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)181

 "coordinates": [-8.5, 41.2]
 },
 "@context": [
 "http://example.org/ngsi-ld/latest/parking.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.3.jsonld"
]
}

GeoJSON Representation

The GeoJSON representation of a single Entity is defined as a single GeoJSON Feature object as follows:

{
 "id": "urn:ngsi-ld:OffStreetParking:Downtown1",
 "type": "Feature",
 "geometry": {
 "type": "Point",
 "coordinates": [-8.51, 41.1]
 },
 "properties": {
 "type": "OffStreetParking",
 "name": {
 "type": "Property",
 "value": "Downtown One"
 },
 "availableSpotNumber": {
 "type": "Property",
 "value": 121,
 "observedAt": "2017-07-29T12:05:02Z",
 "reliability": {
 "type": "Property",
 "value": 0.7
 },
 "providedBy": {
 "type": "Relationship",
 "object": "urn:ngsi-ld:Camera:C1"
 }
 },
 "location": {
 "type": "Point",
 "coordinates": [-8.51, 41.11]
 },
 "totalSpotNumber": {
 "type": "Property",
 "value": 200
 },
 "@context": [
 "http://example.org/ngsi-ld/latest/parking.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.3.jsonld"
]
 }
}

The GeoJSON representation of multiple Entities is defined as a GeoJSON FeatureCollection object containing an array
of GeoJSON features corresponding to the individual Entity representations.

{
 "type": "FeatureCollection",
 "features": [
 {
 "id": "urn:ngsi-ld:OffStreetParking:Downtown1",
 "type": "Feature",
 "geometry": {
 "type": "Point",
 "coordinates": [-8.5, 41.1]
 },
 "properties": {
 "type": "OffStreetParking",
 "name": {
 "type": "Property",
 "value": "Downtown One"
 },
 "availableSpotNumber": {
 "type": "Property",
 "value": 121,
 "observedAt": "2017-07-29T12:05:02Z",
 "reliability": {

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)182

 "type": "Property",
 "value": 0.7
 },
 "providedBy": {
 "type": "Relationship",
 "object": "urn:ngsi-ld:Camera:C1"
 }
 },
 "totalSpotNumber": {
 "type": "Property",
 "value": 200
 },
 "location": {
 "type": "Point",
 "coordinates": [-8.51, 41.11]
 }
 }
 },
 {
 "id": "urn:ngsi-ld:OffStreetParking:Downtown2",
 "type": "Feature",
 "geometry": {
 "type": "Point",
 "coordinates": [-8.51, 41.11]
 },
 "properties": {
 "type": "OffStreetParking",
 "name": {
 "type": "Property",
 "value": "Downtown Two"
 },
 "availableSpotNumber": {
 "type": "Property",
 "value": 99,
 "observedAt": "2017-07-29T12:05:02Z",
 "reliability": {
 "type": "Property",
 "value": 0.8
 },
 "providedBy": {
 "type": "Relationship",
 "object": "urn:ngsi-ld:Camera:C2"
 }
 },
 "totalSpotNumber": {
 "type": "Property",
 "value": 100
 },
 "location": {
 "type": "Point",
 "coordinates": [-8.51, 41.11]
 }
 }
 }
],
 "@context": [
 "http://example.org/ngsi-ld/latest/parking.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.3.jsonld"
]
}

Simplified GeoJSON Representation

The simplified GeoJSON representation of a single Entity is defined as a single GeoJSON Feature object where the
properties represent a collapsed representation of the Entity, which focuses on Property Values and Relationship objects
present at the first level of the graph.

{
 "id": "urn:ngsi-ld:offstreetparking:Downtown1",
 "type": "Feature",
 "geometry": {
 "type": "Point",
 "coordinates": [-8.51, 41.11]
 },
 "properties": {
 "type": "OffStreetParking",
 "name": "Downtown One",

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)183

 "availableSpotNumber": 121,
 "totalSpotNumber": 200,
 "location": {
 "type": "Point",
 "coordinates": [-8.51, 41.11]
 }
 },
 "@context": [
 "http://example.org/ngsi-ld/latest/parking.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.3.jsonld"
]
}

The simplified GeoJSON representation of multiple Entities is defined as a GeoJSON FeatureCollection object
containing an array of GeoJSON features corresponding to the individual Entity representations in simplified GeoJSON
format.

{
 "type": "FeatureCollection",
 "features": [
 {
 "id": "urn:ngsi-ld:OffStreetParking:Downtown1",
 "type": "Feature",
 "geometry": {
 "type": "Point",
 "coordinates": [-8.5, 41.2]
 },
 "properties": {
 "type": "OffStreetParking",
 "name": "Downtown One",
 "availableSpotNumber": 121,
 "totalSpotNumber": 200,
 "location": {
 "type": "Point",
 "coordinates": [-8.5, 41.2]
 }
 }
 },
 {
 "id": "urn:ngsi-ld:OffStreetParking:Downtown2",
 "type": "Feature",
 "geometry": {
 "type": "Point",
 "coordinates": [-8.51, 41.21]
 },
 "properties": {
 "type": "OffStreetParking",
 "name": "Downtown Two",
 "availableSpotNumber": 99,
 "totalSpotNumber": 100,
 "location": {
 "type": "Point",
 "coordinates": [-8.51, 41.11]
 }
 }
],
 "@context": [
 "http://example.org/ngsi-ld/latest/parking.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.3.jsonld"
]
}

C.2.4 @context
The disposition of the @context can be as an inline JSON object, as a dereferenceable URI or as a (multiple)
combination of both. In the examples above the @context is provided through several dereferenceable URIs. The
resulting @context (obtained by merging the content of the resource referenced by the referred URIs) is shown below.

NOTE 1: For brevity reasons the @context does not contain the API terms defined by clause 5.2.

NOTE 2: Some extra terms are defined because they will be used in examples later presented.

{
 "id": "@id",

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)184

 "type": "@type",
 "Property": "https://uri.etsi.org/ngsi-ld/Property",
 "Relationship": "https://uri.etsi.org/ngsi-ld/Relationship",
 "value": "https://uri.etsi.org/ngsi-ld/hasValue",
 "object": {
 "@type": "@id",
 "@id": "https://uri.etsi.org/ngsi-ld/hasObject"
 },
 "observedAt": {
 "@type": "https://uri.etsi.org/ngsi-ld/DateTime",
 "@id": "https://uri.etsi.org/ngsi-ld/observedAt"
 },
 "datasetId": {
 "@id": "https://uri.etsi.org/ngsi-ld/datasetId",
 "@type":"@id"
 },
 "location": "https://uri.etsi.org/ngsi-ld/location",
 "GeoProperty": "https://uri.etsi.org/ngsi-ld/GeoProperty",
 "Vehicle": "http://example.org/vehicle/Vehicle",
 "brandName": "http://example.org/vehicle/brandName",
 "speed": "http://example.org/vehicle/speed",
 "isParked": {
 "@type": "@id",
 "@id": "http://example.org/common/isParked"
 },
 "OffStreetParking": "http://example.org/parking/OffStreetParking",
 "availableSpotNumber": "http://example.org/parking/availableSpotNumber",
 "totalSpotNumber": "http://example.org/parking/totalSpotNumber",
 "isNextToBuilding": {
 "@type": "@id",
 "@id": "http://example.org/common/isNextToBuilding"
 },
 "reliability": "http://example.org/common/reliability",
 "providedBy": {
 "@type": "@id",
 "@id": "http://example.org/common/providedBy"
 },
 "name": "http://example.org/common/name"
}

C.3 Context Source Registration
Below there is an example representation of a Context Source Registration. It makes use of the @context formerly
described.

{
 "id": "urn:ngsi-ld:ContextSourceRegistration:csr1a3456",
 "type": "ContextSourceRegistration",
 "information": [
 {
 "entities": [
 {
 "id": "urn:ngsi-ld:Vehicle:A456",
 "type": "Vehicle"
 }
],
 "propertyNames": ["brandName","speed"],
 "relationshipNames": ["isParked"]
 },
 {
 "entities": [
 {
 "idPattern": ".*downtown$",
 "type": "OffStreetParking"
 },
 {
 "idPattern": ".*47$",
 "type": "OffStreetParking"
 }
],
 "propertyNames": ["availableSpotNumber","totalSpotNumber"],
 "relationshipNames": ["isNextToBuilding"]
 }
],
 "endpoint": "http://my.csource.org:1026",

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)185

 "location": {
 "type": "Polygon",
 "coordinates": [
 [[100.0, 0.0], [101.0, 0.0], [101.0, 1.0],
 [100.0, 1.0], [100.0, 0.0]]]
 },
 "timestamp": {
 "startAt": " 2017-11-29T14:53:15Z"
 },
 "@context": [
 "http://example.org/ngsi-ld/latest/commonTerms.jsonld",
 "http://example.org/ngsi-ld/latest/vehicle.jsonld",
 "http://example.org/ngsi-ld/latest/parking.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.3.jsonld"
]
}

The Registration is referring to a Context Source capable of providing information from Entities of type Vehicle and
OffStreetParking, meeting certain id requirements. More concretely, it can only provide the referenced Properties and
Relationships. In addition, the Registration example covers a particular geographical area and a temporal scope which
starts at a point in time.

C.4 Context Subscription
Below there is an example of a Context Subscription. It makes use of the @context formerly described.

{
 "id": "urn:ngsi-ld:Subscription:mySubscription",
 "type": "Subscription",
 "entities": [
 {
 "type": "Vehicle"
 }
],
 "watchedAttributes": ["speed"],
 "q": "speed>50",
 "geoQ": {
 "georel": "near;maxDistance==2000",
 "geometry": "Point",
 "coordinates": [-1,100]
 },
 "notification": {
 "attributes": ["speed"],
 "format": "keyValues",
 "endpoint": {
 "uri": "http://my.endpoint.org/notify",
 "accept": "application/json"
 }
 },
 "@context": [
 "http://example.org/ngsi-ld/latest/vehicle.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.3.jsonld"
]
}

The subject of the Context Subscription are Entities of Type Vehicle which speed is greater than 50, and located close to
a certain area defined by a reference spatial point. Every time the speed (watched Attribute) of a concerned vehicle,
changes, a new notification (including the new speed value) will be received in the specified endpoint.

C.5 HTTP REST API Examples

C.5.1 Introduction
This clause introduces some simple usage examples of the NGSI-LD API (HTTP REST binding). They are not intended
to be exhaustive but just a sample for helping readers to understand better the present document. Nonetheless, it is the
intention of ETSI ISG CIM to publish in the near future a Developer's Primer with much more examples.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)186

C.5.2 Create Entity of Type Vehicle

C.5.2.1 HTTP Request

POST /ngsi-ld/v1/entities/

Content-Type: application/ld+json

Content-Length: 556

<Insert Here the JSON-LD representation of a Vehicle as described by clause C.2.2 Vehicle Entity>

C.5.2.2 HTTP Response

201 Created

Location: /ngsi-ld/v1/entities/urn:ngsi-ld:Vehicle:A4567

C.5.3 Query Entities

C.5.3.1 Introduction

Please give me all the Entities of type Vehicle which brand name is not "Mercedes". Only tell me the brand name and
please provide the data in the NGSI-LD Simplified Format.

C.5.3.2 HTTP Request

GET /ngsi-ld/v1/entities/?type=Vehicle&q=brandName!=Mercedes&options=keyValues

Accept: application/ld+json

Link: <http://example.org/ngsi-ld/latest/aggregatedContext.jsonld>; rel="http://www.w3.org/ns/json-ld#context";
type="application/ld+json"

C.5.3.3 HTTP Response

200 OK

Content-Type: application/ld+json

[
 {
 "id": "urn:ngsi-ld:Vehicle:B9211",
 "type": "Vehicle",
 "brandName": "Volvo",
 "@context": [
 "http://example.org/ngsi-ld/latest/vehicle.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.3.jsonld"
]
 }
]

C.5.4 Query Entities (Pagination)

C.5.4.1 Introduction

Please give me all the Entities of type Vehicle. Only tell me the brand name attribute and please provide the data in the
NGSI-LD Simplified Format. Limit the number of entities retrieved to 2.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)187

C.5.4.2 HTTP Request

GET /ngsi-ld/v1/entities/?type=Vehicle&options=keyValues&limit=2

Accept: application/ld+json

Link: <http://example.org/ngsi-ld/latest/aggregatedContext.jsonld>; rel="http://www.w3.org/ns/json-ld#context";
type="application/ld+json"

C.5.4.3 HTTP Response

200 OK

Content-Type: application/ld+json

Link: </ngsi-ld/v1/entities/?type=Vehicle&options=keyValues&limit=2&offset=2>; rel="next";
type="application/ld+json"

[
 {
 "id": "urn:ngsi-ld:Vehicle:B9211",
 "type": "Vehicle",
 "brandName": "Volvo",
 "@context": [
 "http://example.org/ngsi-ld/latest/vehicle.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.3.jsonld"
]
 },
 {
 "id": "urn:ngsi-ld:Vehicle:A456",
 "type": "Vehicle",
 "brandName": "Mercedes",
 "@context": [
 "http://example.org/ngsi-ld/latest/vehicle.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.3.jsonld"
]
 }
]

C.5.5 Temporal Query

C.5.5.1 Introduction

Please give me all the temporal evolution of the attribute "speed" of Entities of type Vehicle which brand name is not
"Mercedes" between the 1st of August at noon and the 1st of August at 01 PM.

C.5.5.2 HTTP Request

GET /ngsi-
ld/v1/temporal/entities/?type=Vehicle&q=brandName!=Mercedes&attrs=speed,brandName&timerel=between&tim
eAt=2018-08-01:12:00:00Z&endTimeAt=2018-08-01:13:00:00Z

Accept: application/ld+json

Link: <http://example.org/ ngsi-ld /latest/aggregatedContext.jsonld>; rel="http://www.w3.org/ns/json-ld#context";
type="application/ld+json"

C.5.5.3 HTTP Response

200 OK

Content-Type: application/ld+json

[
 {

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)188

 "id": "urn:ngsi-ld:Vehicle:B9211",
 "type": "Vehicle",
 "brandName": [
 {
 "type": "Property",
 "value": "Volvo",
 }
],
 "speed": [
 {
 "type": "Property",
 "value": 120,
 "observedAt": "2018-08-01T12:03:00Z"
 },
 {
 "type": "Property",
 "value": 80,
 "observedAt": "2018-08-01T12:05:00Z"
 },
 {
 "type": "Property",
 "value": 100,
 "observedAt": "2018-08-01T12:07:00Z"
 }
],
 "@context": [
 "http://example.org/ngsi-ld/latest/vehicle.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.3.jsonld"
]
 }
]

C.5.6 Temporal Query (Simplified Representation)

C.5.6.1 Introduction

Please give me all the speed history of Entities of type Vehicle which brand name is not "Mercedes" between the 1st of
August at noon and the 1st of August at 01 PM. Simplified representation is required.

C.5.6.2 HTTP Request

GET /ngsi-
ld/v1/temporal/entities/?type=Vehicle&q=brandName!=Mercedes&attrs=speed,brandName&timerel=between&tim
eAt=2018-08-01:12:00:00Z&endTimeAt=2018-08-01:13:00:00Z&options=temporalValues

Accept: application/ld+json

Link: <http://example.org/ngsi-ld/latest/aggregatedContext.jsonld>; rel="http://www.w3.org/ns/json-ld#context";
type="application/ld+json"

C.5.6.3 HTTP Response

200 OK

Content-Type: application/ld+json

[
 {
 "id": "urn:ngsi-ld:Vehicle:B9211",
 "type": "Vehicle",
 "brandName": {
 "type": "Property",
 "values": [
 ["Volvo",""]
]
 },
 "speed": {
 "type": "Property",
 "values": [

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)189

 [120,"2018-08-01T12:03:00Z"],
 [80,"2018-08-01T12:05:00Z"],
 [100,"2018-08-01T12:07:00Z"]
]
 },
 "@context": [
 "http://example.org/ngsi-ld/latest/vehicle.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.3.jsonld"
]
 }
]

C.5.7 Retrieve Available Entity Types

C.5.7.1 Introduction

Please give me all entity types for which entity instances are currently available in the NGSI-LD system.

C.5.7.2 HTTP Request

GET /ngsi-ld/v1/types

Accept: application/json

Link: <http://example.org/ngsi-ld/latest/aggregatedContext.jsonld>; rel="http://www.w3.org/ns/json-ld#context";
type="application/ld+json"

C.5.7.3 HTTP Response

200 OK

Content-Type: application/json

Link: <http://example.org/ngsi-ld/latest/aggregatedContext.jsonld>; rel="http://www.w3.org/ns/json-ld#context";
type="application/ld+json"

{
 "id": "urn:ngsi-ld:EntityTypeList:34534657",
 "type": "EntityTypeList",
 "typeList": [
 "Vehicle",
 "OffStreetParking",
 "http://example.org/parking/ParkingSpot",
]
}

NOTE: All entity types that can be found in the provided @context are given as short names, the others as Fully
Qualified Names (FQN).

C.5.8 Retrieve Details of Available Entity Types

C.5.8.1 Introduction

Please give me the details of all entity types for which entity instances are currently available in the NGSI-LD system.

C.5.8.2 HTTP Request

GET /ngsi-ld/v1/types?details=true

Accept: application/json

Link: <http://example.org/ngsi-ld/latest/aggregatedContext.jsonld>; rel="http://www.w3.org/ns/json-ld#context";
type="application/ld+json"

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)190

C.5.8.3 HTTP Response

200 OK

Content-Type: application/json

Link: <http://example.org/ngsi-ld/latest/aggregatedContext.jsonld>; rel="http://www.w3.org/ns/json-ld#context";
type="application/ld+json"

[
 {
 "id": "http://example.org/vehicle/Vehicle",
 "type": "EntityType",
 "typeName": "Vehicle",
 "attributeNames": ["brandName", "isParked", "location", "speed"]
 },
 {
 "id": "http://example.org/parking/OffStreetParking",
 "type": "EntityType",
 "typeName": "OffStreetParking",
 "attributeNames": ["availableSpotNumber", "isNextToBuilding", "location",
 "totalSpotNumber"]
 },
 {
 "id": "http://example.org/parking/ParkingSpot",
 "type": "EntityType",
 "typeName": "http://example.org/parking/ParkingSpot",
 "attributeNames": ["location",
 "http://example.org/parking/status"]
 }
]

NOTE: The type name of all entity types and all attribute names that can be found in the provided @context are
given as short names, the others as Fully Qualified Names (FQN). The id is always an FQN.

C.5.9 Retrieve Available Entity Type Information

C.5.9.1 Introduction

Please give me the details of entity type "Vehicle" (for which entity instances are currently available in the NGSI-LD
system).

C.5.9.2 HTTP Request

GET /ngsi-ld/v1/types/Vehicle

[Alternative with FQN: GET /ngsi-ld/v1/attributes/http%3A%2F%2Fexample.org%2Fvehicle%2FVehicle]

Accept: application/json

Link: <http://example.org/ngsi-ld/latest/aggregatedContext.jsonld>; rel="http://www.w3.org/ns/json-ld#context";
type="application/ld+json"

C.5.9.3 HTTP Response

200 OK

Content-Type: application/json

Link: <http://example.org/ngsi-ld/latest/aggregatedContext.jsonld>; rel="http://www.w3.org/ns/json-ld#context";
type="application/ld+json"

{
 "id": "http://example.org/vehicle/Vehicle",
 "type": "EntityTypeInfo",
 "typeName": "Vehicle",
 "entityCount": 2,

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)191

 "attributeDetails": [
 {
 "id": "http://example.org/vehicle/brandName",
 "type": "Attribute",
 "attributeName": "brandName",
 "attributeTypes": ["Property"]
 },
 {
 "id": "http://example.org/vehicle/isParked",
 "type": "Attribute",
 "attributeName": "isParked",
 "attributeTypes": ["Relationship"]
 },
 {
 "id": "https://uri.etsi.org/ngsi-ld/location",
 "type": "Attribute",
 "attributeName": "location",
 "attributeTypes": ["GeoProperty"]
 },
 {
 "id": "http://example.org/vehicle/speed",
 "type": "Attribute",
 "attributeName": "speed",
 "attributeTypes": ["Property"]
 }
 }

C.5.10 Retrieve Available Attributes

C.5.10.1 Introduction

Please give me all attribute names for which entity instances are currently available in the NGSI-LD system that have
an attribute with the respective name.

C.5.10.2 HTTP Request

GET /ngsi-ld/v1/attributes

Accept: application/json

Link: <http://example.org/ngsi-ld/latest/aggregatedContext.jsonld>; rel="http://www.w3.org/ns/json-ld#context";
type="application/ld+json"

C.5.10.3 HTTP Response

200 OK

Content-Type: application/json

Link: <http://example.org/ngsi-ld/latest/aggregatedContext.jsonld>; rel="http://www.w3.org/ns/json-ld#context";
type="application/ld+json"

{
 "id": "urn:ngsi-ld:AttributeList:56534657",
 "type": "AttributeList",
 "attributeList": [
 "brandName",
 "isParked",
 "location",
 "speed",
 "http://example.org/parking/status"
]
}

NOTE: The attribute names that can be found in the provided @context are given as short names, the others as
fully qualified names (FQN).

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)192

C.5.11 Retrieve Details of Available Attributes

C.5.11.1 Introduction

Please give me the details of all attributes for which entity instances are currently available in the NGSI-LD system to
which an attribute with the respective attribute name belongs.

C.5.11.2 HTTP Request

GET /ngsi-ld/v1/attributes?details=true

Accept: application/json

Link: <http://example.org/ngsi-ld/latest/aggregatedContext.jsonld>; rel="http://www.w3.org/ns/json-ld#context";
type="application/ld+json"

C.5.11.3 HTTP Response

200 OK

Content-Type: application/json

Link: <http://example.org/ngsi-ld/latest/aggregatedContext.jsonld>; rel="http://www.w3.org/ns/json-ld#context";
type="application/ld+json"

[
 {
 "id": "http://example.org/vehicle/brandName",
 "type": "Attribute",
 "attributeName": "brandName",
 "typeNames": ["Vehicle"]
 },
 {
 "id": "http://example.org/vehicle/isParked",
 "type": "Attribute",
 "attributeName": "isParked",
 "typeNames": ["Vehicle"]
 },
 {
 "id": "https://uri.etsi.org/ngsi-ld/location",
 "type": "Attribute",
 "attributeName": "location",
 "typeNames": ["Vehicle", "OffStreetParking", "http://example.org/parking/ParkingSpot"]
 },
 {
 "id": "http://example.org/vehicle/speed",
 "type": "Attribute",
 "attributeName": "speed",
 "typeNames": ["Vehicle"]
 },
 {
 "id": "http://example.org/parking/status",
 "type": "Attribute",
 "attributeName": "http://example.org/parking/status",
 "typeNames": ["http://example.org/parking/ParkingSpot"]
 }
]

NOTE: The attribute name and all type names that can be found in the provided @context are given as short
names, the others as Fully Qualified Names (FQN). The id is always an FQN.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)193

C.5.12 Retrieve Available Attribute Information

C.5.12.1 Introduction

Please give me the details of the attribute named "brandName" (for which entity instances with an attribute of this
name are currently available in the NGSI-LD system).

C.5.12.2 HTTP Request

GET /ngsi-ld/v1/attributes/brandName

[Alternative with FQN: GET /ngsi-ld/v1/attributes/http%3A%2F%2Fexample.org%2Fvehicle%2FbrandName]

Accept: application/json

Link: <http://example.org/ngsi-ld/latest/aggregatedContext.jsonld>; rel="http://www.w3.org/ns/json-ld#context";
type="application/ld+json"

C.5.12.3 HTTP Response

200 OK

Content-Type: application/json

Link: <http://example.org/ngsi-ld/latest/aggregatedContext.jsonld>; rel="http://www.w3.org/ns/json-ld#context";
type="application/ld+json"

{
 "id": "http://example.org/vehicle/brandName",
 "type": "Attribute",
 "attributeName": "brandName",
 "attributeTypes": ["Property"],
 "typeNames": ["Vehicle"],
 "attributeCount": 2
}

C.6 Date Representation
The following example shows how to represent time values (Date, Time, or DateTime) in NGSI-LD using the syntax
offered by JSON-LD. User-defined Properties whose value is a time value (Date, DateTime or Time) are defined as
Property, not as TemporalProperty, and are serialized in NGSI-LD use the @value syntax structure, as shown by the
example below:

{
 "id": "urn:ngsi-ld:Vehicle:B9211",
 "type": "Vehicle",
 "testedAt": {
 "type": "Property",
 "value": {
 "@type": "DateTime",
 "@value": "2018-12-04T12:00:00Z"
 }
 },
 "@context": [
 "http://example.org/ngsi-ld/latest/vehicle.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.3.jsonld"
]
}

In addition, it is recommended that in the @context JSON-LD declaration of Properties which value is a time value to
include a declaration of the form:

"testedAt": {
 "@type": "https://uri.etsi.org/ngsi-ld/DateTime",
 "@id": "http://example.org/test/P1"

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)194

}

For simplicity reasons, a TemporalProperty is represented only by its Value, i.e. no Properties of TemporalProperty nor
Relationships of TemporalProperty can be conveyed. In more formal language, a TemporalProperty does not allow
reification. It is important to remark that the term TemporalProperty has been reserved for the semantic tagging of
non-reified structural timestamps (observedAt, createdAt, modifiedAt), which capture the temporal evolution of Entity
Attributes. Only such structural timestamps can be used as timeproperty in Temporal Queries as mandated by
clause 4.11.

C.7 @context utilization clarifications
When expanding or compacting JSON-LD terms, the JSON-LD @context to be used is always the one provided in the
current API request. For the benefit of users and implementers the following examples illustrate this concept:

The scenario starts with the creation of an Entity using a JSON-LD @context as follows:

POST /ngsi-ld/v1/entities/

Content-Type: application/ld+json

Content-Length: 200

{
 "id": "urn:ngsi-ld:OffStreetParking:Downtown1",
 "type": "OffStreetParking",
 "name": {
 "type": "Property",
 "value": "Downtown One"
 },
 "availableSpotNumber": {
 "type": "Property",
 "value": 121,
 "observedAt": "2017-07-29T12:05:02Z"
 },
 "totalSpotNumber": {
 "type": "Property",
 "value": 200
 },
 "@context": [
 "http://example.org/ngsi-ld/latest/parking.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.3.jsonld"
]
}

The content of the @context utilized for the referred Entity creation (at http://example.org/ngsi-ld/latest/parking.jsonld)
is as follows:

{
"OffStreetParking": "http://example.org/parking/OffStreetParking",
"availableSpotNumber": "http://example.org/parking/availableSpotNumber",
"totalSpotNumber": "http://example.org/parking/totalSpotNumber",

}

At Entity creation time the implementation will perform the expansion of terms using the JSON-LD @context depicted
above.

Now it is needed to retrieve our initial Entity. For retrieving such Entity, this time, a different JSON-LD @context is
going to be utilized, as follows:

{
"OffP": "http://example.org/parking/OffStreetParking",
"ava": "http://example.org/parking/availableSpotNumber",
"total": "http://example.org/parking/totalSpotNumber",

}

This new @context, even though it makes use of the same set of Fully Qualified Names, is defining new short strings as
terms. The reasons for that could be to multiple: to facilitate data consumption by clients, to save some bandwidth, to
enable a more (or less) human-readable response payload body in a language different than English, etc.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)195

In this particular case, the result of the Entity retrieval will be as depicted below. It can be observed that the terms
defined by the JSON-LD @context provided at retrieval time are used to render the Entity content (compaction), and
not the terms that were provided at creation time (which may be no longer known by the NGSI-LD Broker).

It is also interesting to note that the @context array of the response payload body contains, indeed, our header-supplied
@context:

GET /ngsi-ld/v1/entities/urn:ngsi-ld:OffStreetParking:Downtown1

Accept: application/ld+json

Link: <http://example.org/ngsi-ld/latest/parking-abbreviated.jsonld>; rel="http://www.w3.org/ns/json-ld#context";
type="application/ld+json"

{
 "id": "urn:ngsi-ld:OffStreetParking:Downtown1",
 "type": "OffP",
 "name": {
 "type": "Property",
 "value": "Downtown One"
 },
 "ava": {
 "type": "Property",
 "value": 121,
 "observedAt": "2017-07-29T12:05:02Z"
 },
 "total": {
 "type": "Property",
 "value": 200,
 },
 "@context": [
 "http://example.org/ngsi-ld/latest/parking-abbreviated.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.3.jsonld"
]
}

Another interesting case to note is the one when an @context with no matching terms or no @context at all is supplied.
See the following example:

GET /ngsi-ld/v1/entities/urn:ngsi-ld:OffStreetParking:Downtown1

Accept: application/ld+json

{
 "id": "urn:ngsi-ld:OffStreetParking:Downtown1",
 "type": "http://example.org/parking/OffStreetParking",
 "name": {
 "type": "Property",
 "value": "Downtown One"
 },
 "http://example.org/parking/availableSpotNumber": {
 "type": "Property",
 "value": 121,
 "observedAt": "2017-07-29T12:05:02Z"
 },
 "http://example.org/parking/totalSpotNumber": {
 "type": "Property",
 "value": 200,
 },
 "@context": "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.3.jsonld"
}

In this particular case it can be observed that the user names (Entity Type, Attributes) in the response payload body
have not been compacted, and as a result the Fully Qualified Names are included. However, the core API terms have
been compacted, as the Core @context is always implicit (and that is why it is included in the JSON-LD response
payload body, as mandated by the specification). Please note that the term "name" has been compacted as it is part of
the Core @context.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)196

C.8 Link header utilization clarifications
The JSON-LD Specification [2] states clearly that only one HTTP Link header with the link relationship
<http://www.w3.org/ns/json-ld#context> is required to appear. Such statement has implications in terms of providing
the JSON-LD @context when using the NGSI-LD API. The main implication is that if the @context is a compound
one, i.e. an @context which references multiple individual @context, served by resources behind different URIs, then a
wrapper @context has to be created and hosted. The final aim is that only one @context is referenced from the
JSON-LD Link header. This can be illustrated with an example:

Imagine that it is desired to create an Entity providing @context terms which are defined in two different JSON-LD
@context resources:

• http://example.org/vehicle/v1/vehicle-context.jsonld

• https://schema.org

If a developer wants to reference these two @context resources from a Link header, a wrapper @context can be easily
created as follows:

{
 "@context": [
 "http://example.org/vehicle/v1/vehicle-context.jsonld",
 "https://schema.org",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.3.jsonld"
]
}

As such wrapper @context needs to be referenced from a Link header by using a URI, then it will have to be hosted at
some place on the Web. Usually, developers will host @context using popular and simple solutions such as Github or
Gitlab pages. As a result, developers will be able to use @context in queries or when using "application/json" as main
content type managed by their applications.

It is a good practice to include the Core @context in the wrapper @context so it can be used, off-the-shelf, by
external JSON-LD processing tools. However, it should be noted this is not necessary for NGSI-LD, as the Core
@context is always implicitly included.

Then, using such wrapper @context, (in our example hosted at https://hosting.example.com/ngsi-ld/v1/wrapper-
context.jsonld), the developer will be able to issue requests like:

POST /ngsi-ld/v1/entities/

Content-Type: application/json

Content-Length: 200

Link: <https://hosting.example.com/ngsi-ld/v1/wrapper-context.jsonld>; rel="http://www.w3.org/ns/json-
ld#context"; type="application/ld+json"

{
 "id": "urn:ngsi-ld:Vehicle:V1",
 "type": "Vehicle",
 "builtYear": {
 "type": "Property",
 "value": "2014"
 },
 "speed": {
 "type": "Property",
 "value": 121,
 "observedAt": "2017-07-29T12:05:02Z"
 }
}

201 Created

Location: /ngsi-ld/v1/entities/urn:ngsi-ld:Vehicle:V1

Link: < https://hosting.example.com/ngsi-ld/v1/wrapper-context.jsonld >; rel="http://www.w3.org/ns/json-
ld#context"; type="application/ld+json"

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)197

GET /ngsi-ld/v1/entities/urn:ngsi-ld:Vehicle:V1

Accept: application/ld+json

Link: <https://hosting.example.com/ngsi-ld/v1/wrapper-context.jsonld>; rel="http://www.w3.org/ns/json-
ld#context"; type="application/ld+json"

200 OK

Content-Type: application/ld+json

{
 "id": "urn:ngsi-ld:Vehicle:V1",
 "type": "Vehicle",
 "builtYear": {
 "type": "Property",
 "value": "2014"
 },
 "speed": {
 "type": "Property",
 "value": 121,
 "observedAt": "2017-07-29T12:05:02Z"
 },
 "@context": "https://hosting.example.com/ngsi-ld/v1/wrapper-context.jsonld"
}

Observe that in this case the NGSI-LD Broker is responding with the same wrapper @context in the Link header of the
HTTP Response or within the JSON-LD response payload body (when MIME type accepted is "application/ld+json").
However, that could not be always the case, as there could be situations where the NGSI-LD Broker could need to
provide a wrapper @context hosted by itself, for instance, when there are inline @context terms or when the Core
@context has not been previously included by the wrapper @context (not recommended) provided within developer's
requests.

C.9 @context processing clarifications
JSON-LD 1.0 Specification [2] says that "If a term is redefined within a context, all previous rules associated with the
previous definition are removed". In addition, it is stated that "Multiple contexts may be combined using an array,
which is processed in order".

In contrast to the JSON-LD Specification, the NGSI-LD specification states that the Core @context is protected and has
to remain immutable. This essentially means that the Core @context has final precedence and, therefore, is always be
processed as the last one in the @context array. For clarity, data providers should place the Core @context in the final
position.

From the point of view of Data providers, care has to be taken so that there are no unexpected or undesired term
expansions. See the following example:

{
 "id": "urn:ngsi-ld:Building:B1",
 "type": "Building",
 "name": {
 "type": "Property",
 "value": "Empire State"
 },
 "openingHours": {
 "type": "Property",
 "value": "Mo-Fr 10am-7pm Sa 10am-22pm Su 10am-21pm"
 },
 "@context": [
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.3.jsonld",
 "https://schema.org"
]
}

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)198

The main caveat of the example above is that the term "name" could have been defined in multiple elements of the
@context and the last one takes final precedence for the expansion. In these situations, the solution is to prefix the
conflicting terms, so that there cannot be any clashing. Therefore, if the intent is to refer to https://schema.org/name
throughout, the example above can be modified as shown below:

{
 "id": "urn:ngsi-ld:Building:B1",
 "type": "Building",
 "schema:name": {
 "type": "Property",
 "value": "Empire State"
 },
 "openingHours": {
 "type": "Property",
 "value": "Mo-Fr 10am-7pm Sa 10am-22pm Su 10am-21pm"
 },
 "@context": [
 "https://schema.org",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.3.jsonld"
]
}

Note that the Core @context has been placed in the last position of the @context array. NGSI-LD implementations are
required to render content following this approach, which has been undertaken in order to maximize compatibility with
JSON-LD processing tools. This example works because the "schema:" prefix has already been defined by the
schema.org @context.

https://schema.org/name

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)199

Annex D (informative):
Transformation Algorithms

D.1 Introduction
These algorithms are informative but NGSI-LD implementations should aim at either implementing them as they are
described here or devising similar algorithms which take exactly the same input and provides exactly the same output
(or an equivalent one as per the JSON-LD specification [2]).

D.2 Algorithm for transforming an NGSI-LD Entity into a
JSON-LD document (ALG1)

This algorithm takes as input an NGSI-LD graph which top level node is a particular Entity and returns as output a
JSON-LD document which represents all the data associated to the entity. The JSON-LD document (and its associated
@context) corresponds to a representation of the Entity in JSON-LD as per the NGSI-LD Information Model.

NOTE: An early implementation of this algorithm can be found at [i.5].

Let:

• G be a graph defined as follows:

- Let N be G's top level node.

- N is an Entity instance of type T. Type Name is "AliasT", N's identifier is I.

- N has 0 or more associated Property. Each Property (Psi) is defined as follows:

 Property type identifier is Pi.

 Property Name is "AliasPi".

 Property Value is Vi.

 Property Value's associated data type is Di.

- N is the subject of 0 or more Relationship. Each Relationship is defined as follows:

 Relationship type identifier is Ri.

 Relationship nNme is "AliasRi".

 Relationship target object identifier is Robji.

• O be a JSON object initialized to the empty object ({}).

• C be a JSON-LD @context initialized as described by annex B.

The algorithm should run as follows, provided all the preconditions defined above are satisfied:

1) Add to C a new member <"AliasT", T>.

2) Add to O two new members:

a) <"id", I>.

b) <"type", "AliasT">.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)200

3) For each Property Psi (Pi, "AliasP", Vi, Di) associated to N:

a) Run Algorithm ALG1.1 taking the following inputs:

 Ps → Psi.

 O → O.

 C → C.

4) For each Relationship Rs (Ri, AliasRi, Robji) associated to N:

a) Run Algorithm ALG1.2 taking the following inputs:

 Rs → Rsi.

 O → O.

 C → C.

5) Return (O, C) and end of the algorithm.

D.3 Algorithm for transforming an NGSI-LD Property into
JSON-LD (ALG1.1)

Let Ps be the Property that has to be transformed. It is defined by (P, "AliasP", V, D), where P denotes a Property Type
Id, "AliasP" is the Property Name, V is the Property Value and D is the Property Value's data type.

Ps might be associated to extra Properties or Relationships.

Let O be the output JSON-LD object and C the associated JSON-LD context:

1) Execute the following steps:

a) If no member with "AliasP" is present in O, add a new member to O with key "AliasP" and value an
object structure, let it be named Opas defined in the following. Otherwise, add all existing members with
"AliasP" to a JSON-LD array and in addition put the object structure Op as defined in the following:

 <"type", "Property">.

 If D is not a native JSON data type add a new member to Op with name "value" and which value
has to be an object structure as follows:

1) <"@type", D>.

2) <"@value", V>.

 Else If D is a native JSON data type add a new member to Op as follows:

1) <"value", V>.

b) Add a new member to C as follows:

 <"AliasP", P>.

c) For each Property associated to Ps (Pss) recursively run the present algorithm (ALG1.1) taking the
following inputs:

 Ps → Pss.

 O → Op.

 C → C.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)201

d) For each Relationship associated to Ps (Rss) run algorithm ALG1.2 taking the following inputs:

 Rs → Rss.

 O → Op.

 C → C.

2) Return (O,C) and end of the algorithm.

D.4 Algorithm for transforming an NGSI-LD Relationship
into JSON-LD (ALG1.2)

Let Rs be the Relationship that has to be transformed. It is defined by (R, "AliasR", Robj), where R denotes a
Relationship Type Id, "AliasR" is the Relationship's Name and Robj is the identifier of the target object of the
Relationship.

Rs might be associated to extra Properties or Relationships.

Let O be the output JSON-LD object and C the current JSON-LD context:

1) Execute the following statements:

a) If no member with "AliasR" is present in O, add a new member to O with key "AliasR" and value an
object structure, let it be named Or, and defined as in the following. Otherwise, add all existing members
with "AliasR" to a JSON-LD array and in addition put the object structure Or as defined in the following:

 <"object", Robj>.

 <"type", "Relationship">.

b) For each Property associated to Rs (Pss) run the algorithm ALG1.1 taking the following inputs:

 Ps → Pss.

 O → Or.

 C → C.

c) For each Relationship associated to Rs (Rss) recursively run the present algorithm ALG1.2 taking the
following inputs:

 Rs → Rss.

 O → Or.

 C → C.

2) Return (O,C) and end of the algorithm.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)202

Annex E (informative):
RDF-compatible specification of NGSI-LD meta-model
The content of this annex is now in ETSI GS CIM 006 [i.8].

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)203

Annex F (informative):
Conventions and syntax guidelines
When new concepts or terms are defined they are marked in bold.

EXAMPLE 1: NGSI-LD Entity, Query Term, observedAt.

API Parameter names are always in lowercase.

EXAMPLE 2: options.

Entity Types, JSON-LD node types and Data Types are defined using lowercase but with a starting capital letter.

EXAMPLE 3: Vehicle, Property, Relationship, DateTime.

JSON-LD terms are always defined using camel case notation starting with lower case.

EXAMPLE 4: createdAt, value, unitCode.

When referring to special terms or words, defined previously in the present document or by other referenced
specifications, italics format is used.

EXAMPLE 5: GeoProperty, Geometry, Second, Number.

When referring to literal strings double quotes are used.

EXAMPLE 6: "application/json", "Subscription".

When referring to the JSON-LD Context the mnemonic text string @context is used as a placeholder.

All the dates and times are given in UTC format.

EXAMPLE 7: 2018-02-09T11:00:00Z.

The measurement units used in the API are those defined by the International System of Units.

EXAMPLE 8: The distance in geo-queries is provided in meters.

When defining application-specific elements or API extensions the same conventions and syntax guidelines should be
followed.

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)204

Annex G (informative):
Change history

Date Version Information about changes
February 2020 1.2.10 Early draft copied from API version 1.2.1.

February 2020 1.2.11
Unicode characters. Query Language syntax changes to Attribute path, and extension
to accept specifying just Query or Geoquery when Querying Entities.
Acknowledgements to EU projects. Lightweight Figures.

March 2020 1.2.12

Extending to other interactions the above changes to query entities interaction.
Changes to ABNF Query Language syntax to access complex objects value of
properties more easily.
Generalized Notification Headers, in order to carry authentication etc… info
Novel &option=count and associated Header to indicate number of Entities in
response to a query.
Novel/entityOperations/query and/temporal/entityOperations/query endpoints to
perform query via POST.
Clarified attrs URL parameter behaviour.
Support for Multiple Attributes.
Support for Multiple Tenants.

May 2020 Candidate
1.2.13

from 101r1: Multi-Attribute-Support-fix-in-4.5.5
from 102r1: Batch_Operation_Error_Codes
from 110r1: JSON LD Validation Clause
from 112r1: IRI Support for International Characters
from 115r2: More Core Context Changes
from 130: Entity Types
MQTT Notifications
GeoJSON Representation

9 Juy 2020 V1.3.1 Technical Officer verifications for submission to editHelp! publication pre-processing

ETSI

ETSI GS CIM 009 V1.3.1 (2020-08)205

History
Document history

V1.1.1 January 2019 Publication

V1.2.1 October 2019 Publication

V1.2.2 February 2020 Publication

V1.3.1 August 2020 Publication

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	Executive summary
	Introduction
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 Context Information Management Framework
	4.1 Introduction
	4.2 NGSI-LD Information Model
	4.2.1 Introduction
	4.2.2 NGSI-LD Meta Model
	4.2.3 Cross Domain Ontology
	4.2.4 NGSI-LD domain-specific models and instantiation
	4.2.5 UML representation

	4.3 NGSI-LD Architectural considerations
	4.3.1 Introduction
	4.3.2 Centralized architecture
	4.3.3 Distributed architecture
	4.3.4 Federated architecture

	4.4 Core NGSI-LD @context
	4.5 NGSI-LD Data Representation
	4.5.1 NGSI-LD Entity Representation
	4.5.2 NGSI-LD Property Representation
	4.5.3 NGSI-LD Relationship Representation
	4.5.4 Simplified Representation
	4.5.5 Multi-Attribute Support
	4.5.6 Temporal Representation of an Entity
	4.5.7 Temporal Representation of a Property
	4.5.8 Temporal Representation of a Relationship
	4.5.9 Simplified Temporal Representation of an Entity
	4.5.10 Entity Type List Representation
	4.5.11 Detailed Entity Type List Representation
	4.5.12 Entity Type Information Representation
	4.5.13 Attribute List Representation
	4.5.14 Detailed Attribute List Representation
	4.5.15 Attribute Information Representation
	4.5.16 GeoJSON Representation of Entities
	4.5.16.0 Foreword
	4.5.16.1 Top-level "geometry" field selection algorithm
	4.5.16.2 GeoJSON Representation of an individual Entity
	4.5.16.3 GeoJSON Representation of Multiple Entities

	4.5.17 Simplified GeoJSON Representation of Entities
	4.5.17.0 Foreword
	4.5.17.1 Simplified GeoJSON Representation of an individual Entity
	4.5.17.2 Simplified GeoJSON Representation of multiple Entities

	4.6 Data Representation Restrictions
	4.6.1 Supported text encodings
	4.6.2 Supported names
	4.6.3 Supported data types for Values
	4.6.4 Supported Entity Content

	4.7 Geospatial Properties
	4.7.1 GeoJSON Geometries
	4.7.2 Representation of GeoJSON Geometries in JSON-LD

	4.8 Temporal properties
	4.9 NGSI-LD Query Language
	4.10 NGSI-LD Geo-query language
	4.11 NGSI-LD Temporal Query language
	4.12 NGSI-LD Query pagination
	4.13 Counting the Number of Results
	4.14 Supporting Multiple Tenants

	5 API Operation Definition
	5.1 Introduction
	5.2 Data Types
	5.2.1 Introduction
	5.2.2 Common members
	5.2.3 @context
	5.2.4 Entity
	5.2.5 Property
	5.2.6 Relationship
	5.2.7 GeoProperty
	5.2.8 EntityInfo
	5.2.9 CsourceRegistration
	5.2.10 RegistrationInfo
	5.2.11 TimeInterval
	5.2.12 Subscription
	5.2.13 GeoQuery
	5.2.14 NotificationParams
	5.2.14.1 NotificationParams data type definition
	5.2.14.2 Additional members

	5.2.15 Endpoint
	5.2.16 BatchOperationResult
	5.2.17 BatchEntityError
	5.2.18 UpdateResult
	5.2.19 NotUpdatedDetails
	5.2.20 EntityTemporal
	5.2.21 TemporalQuery
	5.2.22 KeyValuePair
	5.2.23 Query
	5.2.24 EntityTypeList
	5.2.25 EntityType
	5.2.26 EntityTypeInfo
	5.2.27 AttributeList
	5.2.28 Attribute
	5.2.29 Feature
	5.2.30 FeatureCollection
	5.2.31 FeatureProperties

	5.3 Notification data types
	5.3.1 Notification
	5.3.2 CsourceNotification
	5.3.3 TriggerReasonEnumeration

	5.4 NGSI-LD Fragments
	5.5 Common behaviours
	5.5.1 Introduction
	5.5.2 Error types
	5.5.3 Error response payload body
	5.5.4 General NGSI-LD validation
	5.5.5 Default @context assignment
	5.5.6 Operation execution
	5.5.7 Term to URI expansion or compaction
	5.5.8 JSON-LD Merge Patch Behaviour
	5.5.9 Pagination Behaviour
	5.5.10 Multi-Tenant Behaviour

	5.6 Context Information Provision
	5.6.1 Create Entity
	5.6.1.1 Description
	5.6.1.2 Use case diagram
	5.6.1.3 Input data
	5.6.1.4 Behaviour
	5.6.1.5 Output data

	5.6.2 Update Entity Attributes
	5.6.2.1 Description
	5.6.2.2 Use case diagram
	5.6.2.3 Input data
	5.6.2.4 Behaviour
	5.6.2.5 Output data

	5.6.3 Append Entity Attributes
	5.6.3.1 Description
	5.6.3.2 Use case diagram
	5.6.3.3 Input data
	5.6.3.4 Behaviour
	5.6.3.5 Output data

	5.6.4 Partial Attribute update
	5.6.4.1 Description
	5.6.4.2 Use case diagram
	5.6.4.3 Input data
	5.6.4.4 Behaviour
	5.6.4.5 Output data

	5.6.5 Delete Entity Attribute
	5.6.5.1 Description
	5.6.5.2 Use case diagram
	5.6.5.3 Input data
	5.6.5.4 Behaviour
	5.6.5.5 Output data

	5.6.6 Delete Entity
	5.6.6.1 Description
	5.6.6.2 Use case diagram
	5.6.6.3 Input data
	5.6.6.4 Behaviour
	5.6.6.5 Output data

	5.6.7 Batch Entity Creation
	5.6.7.1 Description
	5.6.7.2 Use case diagram
	5.6.7.3 Input data
	5.6.7.4 Behaviour
	5.6.7.5 Output data

	5.6.8 Batch Entity Creation or Update (Upsert)
	5.6.8.1 Description
	5.6.8.2 Use case diagram
	5.6.8.3 Input data
	5.6.8.4 Behaviour
	5.6.8.5 Output data

	5.6.9 Batch Entity Update
	5.6.9.1 Description
	5.6.9.2 Use case diagram
	5.6.9.3 Input data
	5.6.9.4 Behaviour
	5.6.9.5 Output data

	5.6.10 Batch Entity Delete
	5.6.10.1 Description
	5.6.10.2 Use case diagram
	5.6.10.3 Input data
	5.6.10.4 Behaviour
	5.6.10.5 Output data

	5.6.11 Create or Update Temporal Representation of an Entity
	5.6.11.1 Description
	5.6.11.2 Use case diagram
	5.6.11.3 Input data
	5.6.11.4 Behaviour
	5.6.11.5 Output data

	5.6.12 Add Attributes to Temporal Representation of an Entity
	5.6.12.1 Description
	5.6.12.2 Use case diagram
	5.6.12.3 Input data
	5.6.12.4 Behaviour
	5.6.12.5 Output data

	5.6.13 Delete Attribute from Temporal Representation of an Entity
	5.6.13.1 Description
	5.6.13.2 Use case diagram
	5.6.13.3 Input data
	5.6.13.4 Behaviour
	5.6.13.5 Output data

	5.6.14 Partial update Attribute instance in Temporal Representation of an Entity
	5.6.14.1 Description
	5.6.14.2 Use case diagram
	5.6.14.3 Input data
	5.6.14.4 Behaviour
	5.6.14.5 Output data

	5.6.15 Delete Attribute instance from Temporal Representation of an Entity
	5.6.15.1 Description
	5.6.15.2 Use case diagram
	5.6.15.3 Input data
	5.6.15.4 Behaviour
	5.6.15.5 Output data

	5.6.16 Delete Temporal Representation of an Entity
	5.6.16.1 Description
	5.6.16.2 Use case diagram
	5.6.16.3 Input data
	5.6.16.4 Behaviour
	5.6.16.5 Output data

	5.7 Context Information Consumption
	5.7.1 Retrieve Entity
	5.7.1.1 Description
	5.7.1.2 Use case diagram
	5.7.1.3 Input data
	5.7.1.4 Behaviour
	5.7.1.5 Output data

	5.7.2 Query Entities
	5.7.2.1 Description
	5.7.2.2 Use case diagram
	5.7.2.3 Input data
	5.7.2.4 Behaviour
	5.7.2.5 Output data

	5.7.3 Retrieve temporal evolution of an Entity
	5.7.3.1 Description
	5.7.3.2 Use case diagram
	5.7.3.3 Input data
	5.7.3.4 Behaviour
	5.7.3.5 Output data

	5.7.4 Query temporal evolution of Entities
	5.7.4.1 Description
	5.7.4.2 Use case diagram
	5.7.4.3 Input data
	5.7.4.4 Behaviour
	5.7.4.5 Output Data

	5.7.5 Retrieve Available Entity Types
	5.7.5.1 Description
	5.7.5.2 Use case diagram
	5.7.5.3 Input data
	5.7.5.4 Behaviour
	5.7.5.5 Output data

	5.7.6 Retrieve Details of Available Entity Types
	5.7.6.1 Description
	5.7.6.2 Use case diagram
	5.7.6.3 Input data
	5.7.6.4 Behaviour
	5.7.6.5 Output data

	5.7.7 Retrieve Available Entity Type Information
	5.7.7.1 Description
	5.7.7.2 Use case diagram
	5.7.7.3 Input data
	5.7.7.4 Behaviour
	5.7.7.5 Output data

	5.7.8 Retrieve Available Attributes
	5.7.8.1 Description
	5.7.8.2 Use case diagram
	5.7.8.3 Input data
	5.7.8.4 Behaviour
	5.7.8.5 Output data

	5.7.9 Retrieve Details of Available Attributes
	5.7.9.1 Description
	5.7.9.2 Use case diagram
	5.7.9.3 Input data
	5.7.9.4 Behaviour
	5.7.9.5 Output data

	5.7.10 Retrieve Available Attribute Information
	5.7.10.1 Description
	5.7.10.2 Use case diagram
	5.7.10.3 Input data
	5.7.10.4 Behaviour
	5.7.10.5 Output data

	5.7.11 Architecture-related aspects of retrieval of entity types and attributes

	5.8 Context Information Subscription
	5.8.1 Create Subscription
	5.8.1.1 Description
	5.8.1.2 Use case diagram
	5.8.1.3 Input data
	5.8.1.4 Behaviour
	5.8.1.5 Output data

	5.8.2 Update Subscription
	5.8.2.1 Description
	5.8.2.2 Use case diagram
	5.8.2.3 Input data
	5.8.2.4 Behaviour
	5.8.2.5 Output data

	5.8.3 Retrieve Subscription
	5.8.3.1 Description
	5.8.3.2 Use case diagram
	5.8.3.3 Input data
	5.8.3.4 Behaviour
	5.8.3.5 Output data

	5.8.4 Query Subscriptions
	5.8.4.1 Description
	5.8.4.2 Use case diagram
	5.8.4.3 Input data
	5.8.4.4 Behaviour
	5.8.4.5 Output data

	5.8.5 Delete Subscription
	5.8.5.1 Description
	5.8.5.2 Use case diagram
	5.8.5.3 Input data
	5.8.5.4 Behaviour
	5.8.5.5 Output data

	5.8.6 Notification behaviour

	5.9 Context Source Registration
	5.9.1 Introduction
	5.9.2 Register Context Source
	5.9.2.1 Description
	5.9.2.2 Use case diagram
	5.9.2.3 Input data
	5.9.2.4 Behaviour
	5.9.2.5 Output data

	5.9.3 Update Context Source Registration
	5.9.3.1 Description
	5.9.3.2 Use case diagram
	5.9.3.3 Input data
	5.9.3.4 Behaviour
	5.9.3.5 Output data

	5.9.4 Delete Context Source Registration
	5.9.4.1 Description
	5.9.4.2 Use case diagram
	5.9.4.3 Input data
	5.9.4.4 Behaviour
	5.9.4.5 Output data

	5.10 Context Source Discovery
	5.10.1 Retrieve Context Source Registration
	5.10.1.1 Description
	5.10.1.2 Use case diagram
	5.10.1.3 Input data
	5.10.1.4 Behaviour
	5.10.1.5 Output data

	5.10.2 Query context source registrations
	5.10.2.1 Description
	5.10.2.2 Use case diagram
	5.10.2.3 Input data
	5.10.2.4 Behaviour
	5.10.2.5 Output data

	5.11 Context Source Registration Subscription
	5.11.1 Introduction
	5.11.2 Create Context Source Registration Subscription
	5.11.2.1 Description
	5.11.2.2 Use case diagram
	5.11.2.3 Input data
	5.11.2.4 Behaviour
	5.11.2.5 Output data

	5.11.3 Update Context Source Registration Subscription
	5.11.3.1 Description
	5.11.3.2 Use case diagram
	5.11.3.3 Input data
	5.11.3.4 Behaviour
	5.11.3.5 Output data

	5.11.4 Retrieve Context Source Registration Subscription
	5.11.4.1 Description
	5.11.4.2 Use case diagram
	5.11.4.3 Input data
	5.11.4.4 Behaviour
	5.11.4.5 Output data

	5.11.5 Query Context Source Registration Subscriptions
	5.11.5.1 Description
	5.11.5.2 Use case diagram
	5.11.5.3 Input data
	5.11.5.4 Behaviour
	5.11.5.5 Output data

	5.11.6 Delete Context Source Registration Subscriptions
	5.11.6.1 Description
	5.11.6.2 Use case diagram
	5.11.6.3 Input data
	5.11.6.4 Behaviour
	5.11.6.5 Output data

	5.11.7 Notification behaviour

	5.12 Matching Context Source Registrations

	6 API HTTP binding
	6.1 Introduction
	6.2 Global definitions and resource structure
	6.3 Common behaviours
	6.3.1 Introduction
	6.3.2 Error types
	6.3.3 Reporting errors
	6.3.4 HTTP request preconditions
	6.3.5 JSON-LD @context resolution
	6.3.6 HTTP response common requirements
	6.3.7 Simplified representation of entities
	6.3.8 Notification behaviour
	6.3.9 Csource Notification behaviour
	6.3.10 Pagination behaviour
	6.3.11 Including system-generated attributes
	6.3.12 Simplified temporal representation of entities
	6.3.13 Counting number of results
	6.3.14 Tenant specification
	6.3.15 GeoJSON representation of spatially bound entities

	6.4 Resource: entities/
	6.4.1 Description
	6.4.2 Resource definition
	6.4.3 Resource methods
	6.4.3.1 POST
	6.4.3.2 GET

	6.5 Resource: entities/{entityId}
	6.5.1 Description
	6.5.2 Resource definition
	6.5.3 Resource methods
	6.5.3.1 GET
	6.5.3.2 DELETE

	6.6 Resource: entities/{entityId}/attrs/
	6.6.1 Description
	6.6.2 Resource definition
	6.6.3 Resource methods
	6.6.3.1 POST
	6.6.3.2 PATCH

	6.7 Resource: entities/{entityId}/attrs/{attrId}
	6.7.1 Description
	6.7.2 Resource definition
	6.7.3 Resource methods
	6.7.3.1 PATCH
	6.7.3.2 DELETE

	6.8 Resource: csourceRegistrations/
	6.8.1 Description
	6.8.2 Resource definition
	6.8.3 Resource methods
	6.8.3.1 POST
	6.8.3.2 GET

	6.9 Resource: csourceRegistrations/{registrationId}
	6.9.1 Description
	6.9.2 Resource definition
	6.9.3 Resource methods
	6.9.3.1 GET
	6.9.3.2 PATCH
	6.9.3.3 DELETE

	6.10 Resource: subscriptions/
	6.10.1 Description
	6.10.2 Resource definition
	6.10.3 Resource methods
	6.10.3.1 POST
	6.10.3.2 GET

	6.11 Resource: subscriptions/{subscriptionId}
	6.11.1 Description
	6.11.2 Resource definition
	6.11.3 Resource methods
	6.11.3.1 GET
	6.11.3.2 PATCH
	6.11.3.3 DELETE

	6.12 Resource: csourceSubscriptions/
	6.12.1 Description
	6.12.2 Resource definition
	6.12.3 Resource methods
	6.12.3.1 POST
	6.12.3.2 GET

	6.13 Resource: csourceSubscriptions/{subscriptionId}
	6.13.1 Description
	6.13.2 Resource definition
	6.13.3 Resource methods
	6.13.3.1 GET
	6.13.3.2 PATCH
	6.13.3.3 DELETE

	6.14 Resource: entityOperations/create
	6.14.1 Description
	6.14.2 Resource definition
	6.14.3 Resource methods
	6.14.3.1 POST

	6.15 Resource: entityOperations/upsert
	6.15.1 Description
	6.15.2 Resource definition
	6.15.3 Resource methods
	6.15.3.1 POST

	6.16 Resource: entityOperations/update
	6.16.1 Description
	6.16.2 Resource definition
	6.16.3 Resource methods
	6.16.3.1 POST

	6.17 Resource: entityOperations/delete
	6.17.1 Description
	6.17.2 Resource definition
	6.17.3 Resource methods
	6.17.3.1 POST

	6.18 Resource: temporal/entities/
	6.18.1 Description
	6.18.2 Resource definition
	6.18.3 Resource methods
	6.18.3.1 POST
	6.18.3.2 GET

	6.19 Resource: temporal/entities/{entityId}
	6.19.1 Description
	6.19.2 Resource definition
	6.19.3 Resource methods
	6.19.3.1 GET
	6.19.3.2 DELETE

	6.20 Resource: temporal/entities/{entityId}/attrs/
	6.20.1 Description
	6.20.2 Resource definition
	6.20.3 Resource methods
	6.20.3.1 POST

	6.21 Resource: temporal/entities/{entityId}/attrs/{attrId}
	6.21.1 Description
	6.21.2 Resource definition
	6.21.3 Resource methods
	6.21.3.1 DELETE

	6.22 Resource: temporal/entities/{entityId}/attrs/{attrId}/ {instanceId}
	6.22.1 Description
	6.22.2 Resource definition
	6.22.3 Resource methods
	6.22.3.1 PATCH
	6.22.3.2 DELETE

	6.23 Resource: entityOperations/query
	6.23.1 Description
	6.23.2 Resource definition
	6.23.3 Resource methods
	6.23.3.1 POST

	6.24 Resource: temporal/entityOperations/query
	6.24.1 Description
	6.24.2 Resource definition
	6.24.3 Resource methods
	6.24.3.1 POST

	6.25 Resource: types/
	6.25.1 Description
	6.25.2 Resource definition
	6.25.3 Resource methods
	6.25.3.1 GET

	6.26 Resource: types/{type}
	6.26.1 Description
	6.26.2 Resource definition
	6.26.3 Resource methods
	6.26.3.1 GET

	6.27 Resource: attributes/
	6.27.1 Description
	6.27.2 Resource definition
	6.27.3 Resource methods
	6.27.3.1 GET

	6.28 Resource: attributes/{attrId}
	6.28.1 Description
	6.28.2 Resource definition
	6.28.3 Resource methods
	6.28.3.1 GET

	7 API MQTT notification binding
	7.1 Introduction
	7.2 Notification behaviour

	Annex A (normative): NGSI-LD identifier considerations
	A.1 Introduction
	A.2 Entity identifiers
	A.3 NGSI-LD namespace

	Annex B (normative): Core NGSI-LD @context definition
	Annex C (informative): Examples of using the API
	C.1 Introduction
	C.2 Entity Representation
	C.2.1 Property Graph
	C.2.2 Vehicle Entity
	C.2.3 Parking Entity
	C.2.4 @context

	C.3 Context Source Registration
	C.4 Context Subscription
	C.5 HTTP REST API Examples
	C.5.1 Introduction
	C.5.2 Create Entity of Type Vehicle
	C.5.2.1 HTTP Request
	C.5.2.2 HTTP Response

	C.5.3 Query Entities
	C.5.3.1 Introduction
	C.5.3.2 HTTP Request
	C.5.3.3 HTTP Response

	C.5.4 Query Entities (Pagination)
	C.5.4.1 Introduction
	C.5.4.2 HTTP Request
	C.5.4.3 HTTP Response

	C.5.5 Temporal Query
	C.5.5.1 Introduction
	C.5.5.2 HTTP Request
	C.5.5.3 HTTP Response

	C.5.6 Temporal Query (Simplified Representation)
	C.5.6.1 Introduction
	C.5.6.2 HTTP Request
	C.5.6.3 HTTP Response

	C.5.7 Retrieve Available Entity Types
	C.5.7.1 Introduction
	C.5.7.2 HTTP Request
	C.5.7.3 HTTP Response

	C.5.8 Retrieve Details of Available Entity Types
	C.5.8.1 Introduction
	C.5.8.2 HTTP Request
	C.5.8.3 HTTP Response

	C.5.9 Retrieve Available Entity Type Information
	C.5.9.1 Introduction
	C.5.9.2 HTTP Request
	C.5.9.3 HTTP Response

	C.5.10 Retrieve Available Attributes
	C.5.10.1 Introduction
	C.5.10.2 HTTP Request
	C.5.10.3 HTTP Response

	C.5.11 Retrieve Details of Available Attributes
	C.5.11.1 Introduction
	C.5.11.2 HTTP Request
	C.5.11.3 HTTP Response

	C.5.12 Retrieve Available Attribute Information
	C.5.12.1 Introduction
	C.5.12.2 HTTP Request
	C.5.12.3 HTTP Response

	C.6 Date Representation
	C.7 @context utilization clarifications
	C.8 Link header utilization clarifications
	C.9 @context processing clarifications

	Annex D (informative): Transformation Algorithms
	D.1 Introduction
	D.2 Algorithm for transforming an NGSI-LD Entity into a JSON-LD document (ALG1)
	D.3 Algorithm for transforming an NGSI-LD Property into JSON-LD (ALG1.1)
	D.4 Algorithm for transforming an NGSI-LD Relationship into JSON-LD (ALG1.2)

	Annex E (informative): RDF-compatible specification of NGSI-LD meta-model
	Annex F (informative): Conventions and syntax guidelines
	Annex G (informative): Change history
	History

