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ABSTRACT

The combination of high-contrast imaging and high-dispersion spectroscopy, which has successfully been use to detect
the atmosphere of a giant planet, is one of the most promising potential probes of the atmosphere of Earth-size worlds.
The forthcoming generation of extremely large telescopes (ELTs) may obtain sufficient contrast with this technique to
detect O2 in the atmosphere of those worlds that orbit low-mass M dwarfs. This is strong motivation to carry out a
census of planets around cool stars for which habitable zones can be resolved by ELTs, i.e. for M dwarfs within ∼5
parsecs. Our HARPS survey has been a major contributor to that sample of nearby planets. Here we report on our
radial velocity observations of Ross 128 (Proxima Virginis, GJ447, HIP 57548), an M4 dwarf just 3.4 parsec away from
our Sun. This source hosts an exo-Earth with a projected mass m sin i = 1.35M⊕ and an orbital period of 9.9 days.
Ross 128 b receives ∼1.38 times as much flux as Earth from the Sun and its equilibrium ranges in temperature between
269 K for an Earth-like albedo and 213 K for a Venus-like albedo. Recent studies place it close to the inner edge of the
conventional habitable zone. An 80-day long light curve from K2 campaign C01 demonstrates that Ross 128 b does not
transit. Together with the All Sky Automated Survey (ASAS) photometry and spectroscopic activity indices, the K2
photometry shows that Ross 128 rotates slowly and has weak magnetic activity. In a habitability context, this makes
survival of its atmosphere against erosion more likely. Ross 128 b is the second closest known exo-Earth, after Proxima
Centauri b (1.3 parsec), and the closest temperate planet known around a quiet star. The 15 mas planet-star angular
separation at maximum elongation will be resolved by ELTs (> 3λ/D) in the optical bands of O2.

Key words. stars: individual: Ross 128 – stars: planetary systems – stars: late-type – technique: radial velocity –

1. Introduction

Clever observing strategies and techniques, together with
technological progress, are moving comparative exoplane-
tology towards increasingly Earth-like planets. The coolest
stars, in particular, offer clear observational advantages:
compared to FGK stars, and everything else being equal,
planets around M dwarfs have larger reflex motions, deeper
transits (for well-aligned systems), and more favourable
star-planet contrast ratios. This has long motivated our
radial velocity (RV) search for planets around M dwarfs,
which started with the discovery of the first planet around
such a star (GJ876b; Delfosse et al. 1998)1. This now

? Based on observations made with the HARPS instru-
ment on the ESO 3.6 m telescope under the programme IDs
072.C-0488(A), 183.C-0437(A), and 191.C-0873(A) at Cerro La
Silla (Chile). Radial velocity data (Table 5) are available in
electronic form at the CDS via anonymous ftp to cdsarc.u-
strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-
bin/qcat?J/A+A/

1 also detected by Marcy et al. (1998)

amounts to almost 40 detections, which include a few
Earth-mass planets and a few super-Earths located in
the habitable zones of their host (e.g. Astudillo-Defru
et al. 2017b). M dwarfs have also been the focus of sev-
eral other planet searches with spectacular discoveries,
including Proxima Cen b (Anglada-Escudé et al. 2016),
TRAPPIST-1 planets (Gillon et al. 2017), and LHS1140b
(Dittmann et al. 2017).

Considering their number and their well-characterised
selection function, these detections provide us with statis-
tical insights into planet formation (Bonfils et al. 2013). At
the same time, many of these individual detections, and all
the more so when the planetary properties such as liquid
water might exist on their surface, call for follow-up studies
to characterise their atmosphere and constrain their struc-
ture, composition, and chemistry.

For the subset of planets that transit, transmission and
occultation spectroscopy are the characterisation methods
of choice. James Webb Space Telescope (JWST) trans-
mission spectroscopy of a few dozen coadded transits of
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the TRAPPIST-1 planets b, c, and d, for instance, is ex-
pected to have sufficient sensitivity to detect O3 in puta-
tive Earth-like atmospheres for these planets (Barstow &
Irwin 2016). This makes these planets strong candidates
for a biomarker detection within the next few years, but
one should remember that the TRAPPIST-1 star emits in-
tense extreme ultraviolet (XUV) radiation and frequently
produces powerful stellar flares, which together might have
sterilised, if not completely stripped out, the atmospheres of
at least its closer-in planets (Bourrier et al. 2017; Vida et al.
2017). With stellar activity factored in, the quiet M dwarf
LHS1140 and its temperate super-Earth become an appeal-
ing alternative. Both TRAPPIST-1 and LHS1140 have been
given top priority for JWST Guaranteed Time observing.

Planets that do not transit are generally more difficult
to characterise, but can be found closer to our Sun. This
translates into both increased brightness and wider angular
separation and the closest non-transiting exo-Earths might
thus be amenable to characterisation. The maximum angu-
lar separation between Proxima Cen and its b planet, for
instance, is 37 milli-arcsec and can be resolved at visible
wavelength by an 8 m class telescope. To match the daunt-
ing 10−7 planet-to-star contrast ratio, Lovis et al. (2017)
have proposed to couple the SPHERE extreme adaptive
optics system and the ESPRESSO high-resolution spec-
trograph, which combines the contrast enhancements that
one can achieve with high-resolution spectroscopy and high-
contrast imaging (Snellen et al. 2014, 2015). Under slightly
optimistic assumptions, Lovis et al. (2017) have concluded
that a few dozen observing nights at the VLT would de-
tect O2, H2O, and possibly CH4, which like TRAPPIST-1
represents a historic opportunity to detect biomarkers in
the near future. Like TRAPPIST-1, however, Proxima Cen
flares strongly and often, which likewise challenges the hab-
itability of its planet (Davenport et al. 2016).

In that context, we report the detection of a planet or-
biting a 21⁄2 times more distant but much quieter M dwarf,
Ross 128. The planet is only slightly more massive than
our Earth, is temperate, and orbits a very nearby, slowly
rotating, quiet M dwarf. We discuss the properties of the
star in Sect. 2, present the data in Sect. 3, and use archive
photometry in Sect. 4 to determine the stellar rotation pe-
riod. In Sect. 5, we analyse the RVs and demonstrate the
presence of a planet and an additional periodicity likely
caused by stellar activity. The final model parameters are
derived from a Markov Chain Monte Carlo (MCMC) al-
gorithm with Gaussian processes in Sect. 6. In Sect. 7, we
conclude that, although K2 photometry excludes transit,
the low stellar activity and moderate distance from Earth
make Ross 128 b a good target for biomarker searches with
forthcoming telescopes.

2. Star

Ross 128 entered the literature as the 128th entry in the
Ross (1926) catalogue of high-proper motion stars, and has
since acquired denominations including Proxima Virginis,
FY Virginis, GJ 447, HIP 57548, and LHS 315. The spec-
tral type of this object is M4 and, owing to its proximity,
it is one of the brightest representatives of this subclass
(Vmag=11.15, Jmag=6.51, Hmag=5.95, Kmag=5.65). With
a distance of just 3.4 parsec (π = 295.80± 0.54 mas; GAIA
2016), Ross 128 is the closest star in the Virgo constel-
lation (α=11h47m44.4s, δ=+00o48′16.4′′; Epoch=2000).

Table 1. Observed and inferred stellar parameters for Ross
128.

Spectral type(1) M4

Epoch(2) 2000

Right ascension, α(2) 11h47m44.3974s

Declination, δ(2) +00o48′16.395′′

Parallaxe, π(2) [mas] 295.80± 0.54

Distance, d(2) [pc] 3.3806± 0.0064
Stellar photometry

V(3) [mag] 11.15

J(4) [mag] 6.505± 0.023

H(4) [mag] 5.945± 0.024

K(4) [mag] 5.654± 0.024

Effective temperature, T
(5)
eff [K] 3192±60

Mass, M
(5)
? [M�] 0.168±0.017

Radius, R
(5)
? [R�] 0.1967±0.0077

Metallicity, [M/H](5) −0.02± 0.08
Luminosity, L? [L�] 0.00362± 0.00039

log(R′HK)(6) −5.573± 0.082

Rotation period, P
(6,7,8)
Rot [days] 101, 121, 123

Age, τ (9) [Gyr] &5
(1): Henry et al. (2002); (2): GAIA 2016; (3) Landolt (1992);
(4): Cutri et al. (2003); (5): Mann et al. (2015); (6) Astudillo-
Defru et al. (2017a); (7): this work using ASAS photometry (see
Sect. 4); (8): this work from RV (see Sect. 5) (9) Newton et al.
(2016) given PRot;

Including brown dwarfs, it is the 13th closest (sub-)stellar
system to the Sun. Ross 128 is moving towards us and will
actually become our closest neighbour in just 71,000 years
from now (Dca = 1.9 pc; Garćıa-Sánchez et al. 2001).

Mann et al. (2015) have derived its effective temperature
Teff = 3192± 60 K, mass M? = 0.168± 0.017, radius R? =
0.1967 ± 0.0077, and metallicity [Fe/H] = −0.02 ± 0.08.
Accordingly, its luminosity is L? = 0.00362 ± 0.00039 L�.
In Astudillo-Defru et al. (2017a), we measured a low Ca ii
emission level log(R′HK) = −5.573± 0.082. The calibration
between log(R′HK) and the stellar rotation period Prot in
the same paper converts this low calcium-line emission to
an estimated rotation period of approximately 100 days,
which is indicative of an age of the order of a few Gyr
(Newton et al. 2016).

3. Data

From July 26, 2005 (BJD=2453578.46) to April 26, 2016
(BJD=2457504.7), we collected 157 observations with the
HARPS spectrograph (Mayor et al. 2003; Pepe et al.
2004). Exposure times were fixed to 900 sec. We dis-
carded the 158th measurement that appears in the ESO
archives, which is a just a 5 second exposure (March 23,
2015; BJD=2456740.68). We used the high-resolution mode
(R=115’000), with the scientific fibre illuminated by the
target and calibration fibre either unused or illuminated by
the sky. The data reduction followed the same steps as in
all our recent papers. Spectral extraction and calibration
relied on the on-line pipeline (Lovis & Pepe 2007), which
also gives an initial guess for the RV. An offline processing
then refines the RV measurements and their uncertainties
(e.g. Astudillo-Defru et al. 2015, 2017b). The line spread
function changed significantly when the May 2015 upgrade
of HARPS replaced its fibre link with octogonal fibres. In
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this work, we treat the pre- and post-upgrade data as in-
dependent time series, which appear in the figures in red
and blue, respectively. Table 5 (only available electron-
ically) gives the RV time series in the barycentric refer-
ence frame. Before proceeding to the next section, however,
we removed the small but significant secular acceleration
(dRV/dt = 0.14 m/s/yr), which we computed using the
distance and proper motion of Ross 128 (µα = 0.60526′′/yr,
µδ = −1.21926′′/yr; van Leeuwen 2007) and Eq. 2 of
Zechmeister et al. (2009).

To complement our HARPS observations, we used
archive photometry from both ASAS and K2. The All Sky
Automated Survey (ASAS; Pojmanski 1997) observed Ross
128 for over nine years. We retrieved its V-band photome-
try extracted through the smallest ASAS aperture, ASAS
MAG 0. The K2 mission (Howell et al. 2014) observed Ross
128 for 82 days in its Campaign 1. We retrieved the K2
light curves detrended with the EVEREST (Luger et al.
2016) and POLAR (Barros et al. 2016) pipelines from the
Mikulski Archive for Space Telescopes (MAST)2.

4. Stellar rotation

Since inhomogeneities such as spots, plages, or inhibition
of the convection at the surface of a rotating star can in-
duce apparent Doppler shifts, prior knowledge of the stel-
lar rotation helps eliminate false positive planets. The low
log(R′HK) of Ross 128 already indicates that its rotation
period is long, ∼100 days. Here, we used ASAS and K2
photometry to refine its value.

We only retained the last seven years of the more than
nine years of ASAS photometry, since Ross 128 was sam-
pled infrequently prior to BJD=2452500. We subtracted the
median value of each observing season, clipped out all 4σ
outliers, and computed the generalised Lomb-Scargle pe-
riodogram (GLS; Zechmeister & Kürster 2009). As seen
in Fig. 1 (top panel), the GLS has obvious power excess
for periods around 121 days with power pmax = 0.08. We
evaluated the power threshold for a given false alarm prob-
ability (FAP) on virtual data sets generated by bootstrap
with replacement. The 1% FAP threshold is p1% = 0.07
and the 121 days periodic signal is therefore significant.
The phased photometry (middle panel of Fig. 1) shows a
∼ 1% semi-amplitude.

The K2 photometry has orders of magnitude better pre-
cision than the ground-based measurements and provides
quasi-continuous observations during 80 days, but does not
cover a full stellar rotation. The ∼0.4% trend of this pho-
tometry over 80 days is compatible with ∼1% variations on
a 121 day period (bottom panel of Fig. 1).

5. Evidence for an orbiting planet and additional
stellar activity

The raw pre- and post-upgrade RV time series (Fig. 2,
top panel) have r.m.s. dispersions of 2.1 and 3.0 m/s, re-
spectively, i.e. well in excess of the ∼ 1.2 m/s expected
from the photon noise on the individual measurements,
and a constant model has a Bayesian information criterion
BIC=618. The GLS periodogram shows a prominent power
excess around period of 9.9 days and several other signif-
icant peaks (Fig. 2, middle panel). The maximum power

2 https://archive.stsci.edu/k2/
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Fig. 1. Photometry of Ross 128. Top: periodogram of the ASAS
V-band photometry. Middle : ASAS photometry phase-folded
to P=121.2 days. Grey filled circles are median values in 0.1-
phase bins. Bottom : K2 photometry extracted with the Everest
pipeline (Luger et al. 2016) as a function of time. We only show
corrected photometry FCOR with the highest quality flag.

pmax = 0.28 is well in excess of the 1% FAP threshold
p1% = 0.17 and the detection of a periodic signal is thus
highly significant. For a visual sanity check, we phase the
RVs to a 9.9 day period (Fig 1, bottom panel) and see that
the signal is well sampled at every phase.

The 9.9 day period is comfortably away from the
121 day stellar rotation period (Sect. 4) and its first
few harmonics, which by itself already lends considerable
confidence to its interpretation as a planet detection. A
Levenberg-Marqardt adjustment of a Keplerian model has
r.m.s. residuals of 1.9 and 2.6 m/s for the two time se-
ries and an overall BIC=429. The planet’s orbital period is
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Pb = 9.9 days, RV semi-amplitude is K1 = 1.7 m/s, and
eccentricity is compatible with zero.

The residuals from the 9.9 day Keplerian model thus
remain well in excess of the dispersion expected from
pure photon noise, and we searched for periodicities in
those residuals using both GLS and Keplerian-GLS (KGLS;
Zechmeister & Kürster 2009) periodograms. Whereas the
GLS measures the power of a sine fit at each period, the
KGLS does so for Keplerian signals, therefore exploring pe-
riodicities for a wider range of functional shapes. The GLS
(Fig. 3, top panel) has its maximum power, pmax = 0.23, at
a P = 51.8 day period, and multiple other peaks above the
1% FAP threshold. The ∼52 days peak remains significant
in the KGLS (Fig. 3, middle panel), but the most powerful
peak (pmax = 0.28) is now at P = 123 days. This period is
very close to the ∼ 121 day stellar rotation period inferred
from the ASAS photometry (Sect. 4), and is certainly com-
patible with it after accounting for the effect of differential
rotation. The residuals phase-folded with a P = 123 day pe-
riod (bottom panel of Fig. 3) suggest a coherent signal at
that period with an approximate symmetry around phase
0.5. This approximate symmetry predicts excess power in
the 123/2 day second harmonic of the rotation period, as
is indeed observed, and the ∼52 day peak of the GLS addi-
tionally matches a 1 year alias of 123/2 days. The power ex-
cess in the residuals of the Keplerian fit is therefore entirely
consistent with two-spotted stellar activity modulated by
stellar rotation with a ∼120 day period. Since the spot con-
figuration is likely to have evolved over the ∼11 years of the
HARPS measurements, the next section models the effect of
this configuration using Gaussian process regression rather
than a deterministic physical model.

6. Modelling

Our model of the HARPS RVs consists of a single Keplerian
function representing the effect of the planetary companion,
and we explore the effect of including an additional distant
body modelled as a linear velocity drift. Since the RV time
series contains additional signals with frequencies close to
the rotational rate of the star, its harmonics, and aliases, we
modelled the error term as a multivariate Gaussian distri-
bution with a covariance matrix produced by an appropri-
ate kernel function. This includes the effect of correlation
between the data points into the model.

For the kernel function, we chose a quasi-periodic kernel,

kQP(ti, tj) = A2 exp

(
− (ti − tj)2

2τ2
− 2

ε
sin2

(
π(ti − tj)
P

))
,

which is known to represent adequately the covariance pro-
duced by active regions rotating in and out of view (e.g.
Haywood et al. 2014; Rajpaul et al. 2015). This kernel
function has four hyperparameters, corresponding to the
amplitude of the covariance term (A), rotational period of
the star (P), covariance decay time (τ), and shape param-
eter (ε). To test the robustness of our results with respect
to the choice of kernel function, we also explored models
employing the simpler squared-exponential kernel,

kSE(ti, tj) = A2 exp

(
−1

2

(ti − tj)2

τ2

)
,

with only two hyperparameters, A and τ , and no periodic
term. In addition, an extra white noise component was
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Fig. 2. HARPS radial velocities: as a function of time (top), pe-
riodogram (middle) and phase-folded to P=9.9 days (bottom).
The red and blue points represent pre- and post-upgrade mea-
surements, respectively.

added to the model by adding the following term to each
of the previous kernels:

kWN(ti, tj) = δij

[
σ2
i + Siσ

2
J + S+

i

(
σ+
J

)2]
,

where δij is the Kronecker delta function, σi is the inter-
nal incertitude of the data point taken at time ti; σJ and
σ+
J are the width of the additional noise component for the

pre-, and post-upgrade data, respectively; and Si is an in-
dicator variable, whose value is one if observation i is taken
before the HARPS fibre upgrade and zero otherwise, and
vice versa for S+

i .
In summary, four models were tested and were con-

structed by combining the two variants for the data model,
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Fig. 3. Radial velocity residuals after subtraction of the best-fit
Keplerian and drift. Top: GLS periodogram is shown. Middle:
KGLS periodogram is shown. Bottom: Residuals phase-folded to
a P = 123 days period are shown. The vertical red dashed line
indicates the 121 day rotation period inferred from the ASAS
photometry. The red and blue points represent pre- and post-
upgrade measurements, respectively.

i.e. a single Keplerian (k1) or a Keplerian plus a linear
velocity drift (k1d1), and the two options for the noise
term model, i.e the squared-exponential kernel (sek) and
quasi-periodic kernel (qpk). For the Bayesian inference of
the model parameters, we set the priors listed in Table 2.
The pre- and post-upgrade velocities were treated indepen-
dently with a different extra white noise amplitude for each,
and an offset between these velocities.

The model parameters were sampled using the MCMC
algorithm described in Goodman & Weare (2010) and im-
plemented by Foreman-Mackey et al. (2013). The initial
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Fig. 4. Transit search in the K2 photometry.

positions of 300 walkers were randomly drawn from the
prior distribution. The algorithm was run for 40’000 iter-
ations, and the walkers were evolved to different posterior
maxima. The separate maxima were identified by clustering
the samples in parameter space and the marginal likelihood
of each mode was estimated using the importance sampling
estimator described by Perrakis et al. (2014). In all cases,
a single mode exhibited overwhelming evidence with re-
spect to all other secondary maxima. The walkers in the
secondary maxima were then replaced by new walkers ini-
tiated in the main maximum and the algorithm was run
until no further evolution of the samplers was seen. This
step took between 15’000 and 40’000 iterations, depending
on the model. Then 100’000 additional steps were run, on
which the final inference was performed.

Results are reported in Table 3 for each tested model.
The inferred results on most planet parameters are inde-
pendent of the choice of model (see e.g. the marginal poste-
rior of the velocity amplitude in Fig. 5). The most notable
exception is the orbital period, which exhibits a bimodal
distribution, with modes centred on 9.86 and 9.88 days,
in which the difference relative weight of the modes de-
pends on whether the model includes a linear drift or not
(Fig. 5). The other parameters that change slightly with
the inclusion of a linear drift are the velocity zero-point, the
mean longitude at epoch, the amplitude of the covariance,
A, and the offset between pre- and post-upgrade velocities.
The evolution timescale hyperparameter τ marginal distri-
bution varies significantly between models with different
kernel functions.

The relative merits of each model was studied by es-
timating the marginal likelihood of each model using the
importance sampling estimator of Perrakis et al. (2014).
This is a biased estimator, so we explored the evolution
of the estimation for each model as the size of the sample
increased (Fig. 6). After around 5000 samples, the estima-
tor seems to have converged. All models are approximately
equally good at explaining the data with a slight prefer-
ence for the squared-exponential kernel. The final inference
on the model parameters was carried out by combining
the samples from the four models weighted by their pos-
terior probability; this probability was, in turn, computed
assuming all four tested models form an exhaustive set, i.e.
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their probabilities add up to the value one. The results are
listed in table 4 and the MAP velocity model is presented
in Fig. 7.

Table 2. Prior distribution for the model parameters.
U(xmin, xmax) is the uniform distribution and J (xmin, xmax)
is the Jeffreys distribution (log-flat) between xmin and xmax.
N (µ, σ) is the normal distribution with mean µ and scale σ,
and MJ (a0, xmax) is the modified Jeffreys distributiona .

Parameter & units Prior distribution

Zero-point, offset and drift

γ0
b [m/s] U(−20, 20)

γ1
c [m/s/yr] N (0, 3)

δ12 [m/s] U(−10, 10)

Noise model parameters

σJ [m/s] MJ (1, 10)
σ+
J [m/s] MJ (1, 10)

A [m/s] MJ (1, 10)
log τ [days] U(1, 3)
Pd [days] J (1, 1000)
εd U(0.5, 10)

Planet parameters

P [days] J (1, 100)
K [m/s] MJ (1, 10)√
e. sin(ω) U(−1, 1)√
e. cos(ω) U(−1, 1)

λ0 U(−π, π)
e U(0, 1)

Notes.
(a) The modified Jeffreys distribution is defined as

f(a0, xmax;x)dx =
dx

a0 (1 + x/a0)

1

log (1 + x/a0)
.

(b) Around HARPS mean velocity, −30.8907 km/s.
(c) Only in models with a linear drift.
(d) Only in models with quasi-periodic kernel.
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Fig. 5. Marginal posterior distribution of the orbital period (left) and RV semi-amplitude (right) for the four tested models and
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7. Discussion

The m sin i = 1.35 m⊕ Ross 128 b planet orbits Ross 128
with a 9.86 day period, and at 0.049 AU is ∼ 20 times
closer to its star than the Earth is to the Sun. Since the
star is ∼ 280 times less luminous than the Sun, Ross 128 b
receives just 1.38 times more energy than our Earth. For
assumed albedos of 0.100, 0.367, or 0.750, its equilibrium
temperature would thus be 294, 269, or 213 K. Using the-
oretically motivated albedos, the Kopparapu et al. (2017)
criteria place the planet firmly outside the habitable zone,
while Kopparapu et al. (2013), Yang et al. (2014), and
Kopparapu et al. (2016) find it outside, inside and just at
the inner edge of the habitable zone. The precise location of
the inner edge is therefore still uncertain, as it depends on
subtle cloud-albedo feedbacks and on fine details in com-
plex GCM models. The habitable zone most likely will not
be firmly constrained until liquid water is detected (or in-
ferred) at the surface of many planets. Meanwhile, it is
probably preferable to refer to Ross 128 b as a temperate
planet rather than as a habitable zone planet.

A planet just 3.4 parsecs away either having liquid wa-
ter or just shy of having some makes an extremely ap-
pealing characterisation target. From the occurrence rate
of temperate planets measured by Kepler, Dressing &
Charbonneau (2015) estimated that the closest habitable
zone planet that transits its star is approximately 11 par-
secs away. Yet, a stroke of luck could certainly align a closer
temperate planet to undergo transits from our position in
space, and all RV detections are therefore worth following
up with photometry. As for Ross 128 b, existing K2 photom-
etry readily answers whether it transits or not. We phase-
folded the de-trended, low-frequency filtered, POLAR K2
photometry (Barros et al. 2016) to the ephemeris computed
in the previous section (Fig. 4). Ross 128 b unfortunately
does not transit, with central transits of any planet bigger
than 0.19 R⊕ excluded at least at the 99% confidence level.
Non-grazing transits of a more realistic 0.5- or a 1.0-R⊕
planet are excluded with very high confidence.

Transit spectroscopy being excluded, we turn to the po-
tential of measuring phase curves. Snellen et al. (2017) esti-
mated that five days of JWST observations could detect the
putative atmosphere of Proxima Cen b (see also Kreidberg
& Loeb 2016). Ross 128 b is not as favorable however, since
its host star is 1.4 times larger and, at near- or mid-infrared
wavelengths, 3 − 4 times fainter than Proxima Centauri.
Similar JWST observations for Ross 128 b are thus likely
to be prohibitively expensive.

The best odds of characterising Ross 128 b are
most likely through combining the contrast improvements
achieved with high-angular resolution and with high-
spectral dispersion (Sparks & Ford 2002). Snellen et al.
(2015) investigated the potential of this strategy for rocky
planets around our nearest neighbours and found that a pu-
tative temperate exo-Earth orbiting Proxima Cen could be
detected in just 10 hours on the European ELT (E-ELT). A
year later, (Anglada-Escudé et al. 2016) detected an actual
planet with very similar properties using RV measurements,
and the technique was immediately contemplated to char-
acterise that planet. Lovis et al. (2016) proposed to upgrade
the SPHERE adaptive optics system of the VLT and inject
light from the location of the planet into the ESPRESSO
high-resolution spectrograph to detect the planet in few
tens of nights, and possibly detect its atmospheric O2 with

60 nights of observations. Ross 128 b again is not quite as
favorable as Prox Cen b, since it cannot be resolved by a
10 m-class telescope. Its 15 mas angular separation, how-
ever, will be resolved by the 39 m E-ELT at optical wave-
lengths (> 3λ/D in the O2 bands) and its expected con-
trast is similar to that of Prox Cen b, owing to their similar
radii and semi-major axes. The two host stars have similar
optical apparent magnitudes, leading to similar planetary
apparent magnitudes. A realistic investment of E-ELT re-
sources can therefore most likely detect Ross 128 b with
high-angular resolution plus high-dispersion spectroscopy,
although not as easily as Prox Cen b.

On the flip side, Ross 128 is one of the quietest stars
to host a temperate exo-Earth. Newton et al. (2017) mea-
sured an Hα equivalent width EW Hα = −0.068 Å Hα

which makes Ross 128 one the most quiescent M dwarfs.
They classified stars as active when EW Hα < −1Å and,
for comparison, measured EW Hα = −4.709Å for Proxima
Cen b. Stellar activity is probably the highest concern re-
garding the emergence of life, and even the survival of an
atmosphere, on planets orbiting M dwarfs. Restricting the
target list to quiet stars would disqualify Proxima Cen b
and leave Ross 128 b as the best temperate planet known
to date. This will certainly make this new temperate exo-
Earth a top target for characterisation with the ELTs.
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Table 5. Radial velocity time series of Ross 128, given in the barycentric reference frame of the solar system. The secular
acceleration due to Ross 128’s proper motion is not removed. Fourth column indicates whether data were collected before (1) or
after (2) the HARPS fiber upgrade.

BJD-2400000.0 RV [km/s] σRV[km/s] Instr.
53578.459205 -30.89613 0.00089 1
53814.759070 -30.89297 0.00088 1
53815.772088 -30.89331 0.00082 1
53830.713844 -30.89168 0.00088 1
54170.722180 -30.89046 0.00085 1
54196.763646 -30.89200 0.00102 1
55233.790844 -30.89109 0.00113 1
55963.836166 -30.89281 0.00105 1
56353.830518 -30.88954 0.00121 1
56356.786912 -30.89003 0.00105 1
56363.759284 -30.88795 0.00118 1
56373.666619 -30.88824 0.00127 1
56385.560103 -30.89119 0.00139 1
56386.590515 -30.89128 0.00115 1
56387.719406 -30.89053 0.00103 1
56388.639447 -30.89016 0.00119 1
56389.629716 -30.89349 0.00114 1
56390.632899 -30.89019 0.00148 1
56391.724678 -30.88946 0.00127 1
56393.680865 -30.88953 0.00145 1
56394.638315 -30.89063 0.00129 1
56395.633389 -30.89138 0.00112 1
56396.628948 -30.89108 0.00143 1
56397.608592 -30.89522 0.00141 1
56398.606879 -30.89266 0.00125 1
56399.601854 -30.89100 0.00121 1
56400.586042 -30.88995 0.00108 1
56401.563689 -30.89130 0.00119 1
56402.585338 -30.89168 0.00138 1
56408.621117 -30.89394 0.00135 1
56409.620951 -30.89190 0.00338 1
56410.604605 -30.89056 0.00148 1
56414.606088 -30.89055 0.00143 1
56415.537112 -30.88813 0.00247 1
56415.629409 -30.89121 0.00169 1
56416.659510 -30.89153 0.00130 1
56451.481081 -30.88581 0.00104 1
56452.498147 -30.88507 0.00110 1
56454.504932 -30.88830 0.00123 1
56455.500043 -30.88895 0.00149 1
56458.523950 -30.88758 0.00105 1
56673.866608 -30.89142 0.00143 1
56691.786236 -30.88944 0.00116 1
56692.804280 -30.89116 0.00126 1
56693.813456 -30.88891 0.00110 1
56694.854936 -30.88904 0.00101 1
56695.814952 -30.88857 0.00119 1
56696.774954 -30.88998 0.00116 1
56697.788917 -30.88485 0.00204 1
56712.791363 -30.89005 0.00116 1
56713.781551 -30.88995 0.00124 1
56714.770625 -30.88473 0.00263 1
56715.784792 -30.88797 0.00118 1
56716.764372 -30.88684 0.00130 1
56717.787019 -30.88737 0.00162 1
56718.737567 -30.88565 0.00136 1
56719.746495 -30.88772 0.00110 1
56720.776348 -30.88973 0.00130 1
56721.840783 -30.88778 0.00129 1
56722.767771 -30.88847 0.00119 1
56723.831797 -30.88682 0.00125 1
56724.664996 -30.88941 0.00128 1
56724.819142 -30.88879 0.00118 1
56725.819715 -30.88813 0.00123 1
56726.705643 -30.88647 0.00126 1
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Table 5. continued.

BJD-2400000.0 RV [km/s] σRV[km/s] Instr.
56726.808723 -30.88786 0.00108 1
56727.745772 -30.88608 0.00115 1
56728.721606 -30.88951 0.00113 1
56729.726790 -30.89097 0.00110 1
56740.679336 -30.90639 0.03978 1
56740.745134 -30.89164 0.00107 1
56741.657045 -30.89344 0.00108 1
56742.695366 -30.89306 0.00123 1
56745.614222 -30.88996 0.00121 1
56746.716007 -30.88856 0.00117 1
56763.638265 -30.88783 0.00127 1
56764.608497 -30.89042 0.00107 1
56765.530894 -30.88836 0.00138 1
56766.534987 -30.88642 0.00131 1
56767.619700 -30.88468 0.00139 1
56768.627806 -30.88677 0.00101 1
56778.540910 -30.88720 0.00103 1
56779.600943 -30.88803 0.00114 1
56781.530809 -30.88966 0.00124 1
56782.511550 -30.89000 0.00118 1
56783.631955 -30.88936 0.00146 1
56784.587602 -30.88998 0.00116 1
56822.454912 -30.88729 0.00203 1
56823.454293 -30.88836 0.00165 1
56826.493163 -30.88722 0.00155 1
56827.493656 -30.88811 0.00122 1
56828.501242 -30.88858 0.00108 1
56837.492926 -30.88681 0.00144 1
56838.474070 -30.88716 0.00111 1
56839.478407 -30.88815 0.00137 1
56857.460518 -30.88438 0.00142 1
56858.477550 -30.88551 0.00119 1
57018.844391 -30.89066 0.00125 1
57019.868509 -30.89089 0.00119 1
57020.843780 -30.89092 0.00117 1
57021.844886 -30.88909 0.00130 1
57022.874432 -30.88835 0.00121 1
57044.845249 -30.88874 0.00129 1
57045.860911 -30.88990 0.00088 1
57046.828490 -30.89055 0.00104 1
57047.803082 -30.89231 0.00109 1
57048.829182 -30.89254 0.00133 1
57049.837861 -30.89265 0.00129 1
57050.823874 -30.89159 0.00105 1
57051.845202 -30.88941 0.00101 1
57052.837984 -30.88863 0.00115 1
57053.822872 -30.88650 0.00131 1
57055.827529 -30.89145 0.00134 1
57056.823768 -30.89151 0.00103 1
57057.817621 -30.88991 0.00136 1
57063.818028 -30.88817 0.00122 1
57064.868448 -30.88906 0.00107 1
57065.836178 -30.89025 0.00115 1
57066.729781 -30.89169 0.00167 1
57075.795269 -30.88753 0.00108 1
57076.810866 -30.88904 0.00097 1
57077.795256 -30.88760 0.00143 1
57078.810387 -30.88767 0.00108 1
57079.752863 -30.88821 0.00127 1
57080.788778 -30.88635 0.00158 1
57082.794062 -30.88618 0.00119 1
57085.791436 -30.88668 0.00102 1
57100.761528 -30.89111 0.00131 1
57101.701955 -30.88956 0.00189 1
57102.669638 -30.88868 0.00200 1
57117.697316 -30.89240 0.00132 1
57135.656832 -30.88756 0.00091 1
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Table 5. continued.

BJD-2400000.0 RV [km/s] σRV[km/s] Instr.
57137.559269 -30.88902 0.00112 1
57138.658439 -30.88755 0.00122 1
57139.662591 -30.88568 0.00123 1
57146.687254 -30.88700 0.00148 1
57211.512772 -30.89313 0.00137 2
57405.772480 -30.89452 0.00087 2
57413.766190 -30.89358 0.00113 2
57423.748994 -30.89608 0.00097 2
57424.726953 -30.89226 0.00091 2
57425.788480 -30.89341 0.00096 2
57446.740198 -30.88723 0.00081 2
57447.698608 -30.88601 0.00104 2
57448.660142 -30.88604 0.00119 2
57450.646377 -30.88654 0.00116 2
57451.638971 -30.88771 0.00085 2
57456.745843 -30.88835 0.00119 2
57470.797926 -30.88901 0.00138 2
57472.802257 -30.89190 0.00095 2
57479.768521 -30.89012 0.00097 2
57486.592394 -30.88839 0.00119 2
57486.751671 -30.88854 0.00116 2
57487.557776 -30.88713 0.00115 2
57487.714020 -30.88698 0.00187 2
57488.609334 -30.88882 0.00086 2
57488.773309 -30.88808 0.00106 2
57489.577410 -30.88887 0.00157 2
57504.718573 -30.88342 0.00509 2
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