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Introduction

ETRI has requested the COSIC Division of the Department of Electrical Engineering-
ESAT of the K.U.Leuven to perform an evaluation of the block cipher Aria. This report
summarizes the results of the analysis.

The study involved two aspects:

• An evaluation of the security of the block cipher against different types of attacks
and an examination of ETRI’s security evaluation.

• An efficiency evaluation of the block cipher, both in software and in hardware.

Implementation-based attacks such as timing attacks or power attacks are not considered
in this report. The security analysis is exclusively based on the mathematical description
of Aria, as specified in [14].

Document history

• Version 1.2, Jan. 7, 2003

• Version 1.1, Dec. 12, 2003

• Version 1.0, Nov. 15, 2003
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Chapter 1

Security Evaluation

In this chapter, the security of Aria with respect to different types of attacks is evaluated.
Both standard approaches and dedicated attacks will be discussed.

1.1 Short Description

Aria is a 128-bit block cipher accepting keys of 128, 192, or 256 bit. The cipher is a
substitution permutation network (SPN) and uses an involutional binary 16×16 matrix in
its diffusion layer. The substitution layer consists of sixteen 8× 8-bit S-boxes based on the
inversion in GF (28). The number of rounds is 10, 12, or 14, depending on the key length.
For a full description of the cipher, we refer to the specifications [14].

1.2 Classical Linear and Differential Cryptanalysis

The resistance of a block cipher to classical linear [12] and differential [2] cryptanalysis can
be estimated by analyzing the maximum probability of linear and differential trails. In the
case of SPN-ciphers, one can easily find a bound on these probabilities by considering the
branch number of the diffusion layer (8 in the case of Aria) and the maximum linear and
differential probabilities of the S-boxes (2−6). The resulting bounds, calculated by the de-
signers in [14], have been checked independently. From these results, one can conclude that
Aria contains no classical 6-round linear or differential trail with a probability exceeding
2−144 and that the best 5-round trail has a probability of at most 2−102. Considering the
128-bit block size, this suggests that 8-rounds of Aria provide sufficient resistance against
these two classical attacks.

Note that this conclusion neglects the fact that different trails might cluster (causing
differentials or linear hulls). This effect does occur in Aria, mainly because of its word-
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oriented structure. However, we do not believe that this will lead to significantly more
efficient attacks than the truncated differential and dedicated linear attacks of Sections 1.3
and 1.4 (which in fact cover this clustering effect to a certain degree).

1.3 Truncated Differential Cryptanalysis

Truncated differentials [11] have lead to some successful attacks on ciphers with a pro-
nounced word-oriented structure. Given that Aria has this property (just as most modern
ciphers), we investigate how these attacks apply to reduced-round versions of Aria.

1.3.1 Truncated Differentials of Type 1 → 7 → 1

The most straightforward class of truncated differentials in Aria, is of the type 1 → 7 →
1 → 7 . . . , where the numbers 1 and 7 designate the number of active S-boxes at each
round. For example:

∆P = A0000000 00000000 1 round 1

000BB0B0 BB000BB0 7

C0000000 00000000 1

000DD0D0 DD000DD0 7

. . .

000EE0E0 EE000EE0 7 round r

∆C = 000FG0H0 IJ000KL0

All patterns shown in the example represent differences between texts entering the S-box
layer, except for ∆C, which is taken at the output of the S-box layer.

The 1 → 7 transitions occur with probability 1, but the 7 → 1 transitions only take
place when all 7 non-zero byte differences remain equal after the S-box layer. Taking into
account the two different types of S-boxes S and S−1, the probability that this happens
is found1 to be about 2−(2·7+8+3·7) = 2−43. Using these two transitions, one could build a
7-round differential 1 → 7 . . . 1, or an 8-round differential 1 → 7 . . . 7, both with probability
2−129. However, this does not seem to suffice for mounting a successful attack, given that
the block size is 128 bits, and that the 1-byte difference at the top does not allow for
additional filtering.

1The derivation uses the fact that a fixed non-zero difference at the input of a given 8 × 8-bit S-box
can cause at most 27 different differences at the output. Consequently, the probability that two equal
differences entering two identical S-boxes remain equal is 2−7. This probability is 2−8 when the S-boxes
are different (and sufficiently independent).

3
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By shifting the previous pattern by one round, we find another 7-round differential of type
7 → 1 . . . 7, but with a slightly reduced probability of 2−134:

∆P = 000AB0C0 DE000FG0 7 round 1

H0000000 00000000 1

000II0I0 II000II0 7

J0000000 00000000 1

. . .

000KK0K0 KK000KK0 7 round 7

∆C = 000LM0N0 PQ000RS0

The probability reduction is due to the fact that we do not require the differences in the
7 active plaintext bytes to be equal, which makes the first 7 → 1 transition a bit more
expensive.

This time, the larger number of active bytes at the top allows the following 7-round attack:

• Encrypt 225 pools of 256 texts, which take on all the possible values in the 7 active
bytes and are constant in the rest (in total we need 281 chosen texts). These texts
contain about 225 ·2111 = 2136 pairs with a difference of the form 000AB0C0 DE000FG0,
and we would therefore expect that about 4 of these pairs satisfy the truncated
differential proposed above.

• For each pool, sort the ciphertexts according to the values of the 9 bytes corresponding
to the zeros in the output differential, and return all pairs with identical values in
these positions. In total, we expect to find 2136/272 = 264 candidate pairs.

• Each candidate pair suggests on average about 28 × 28 possible values for the 2 × 7
active key bytes used in the first and the last key addition. In total we get 280

suggestions for 14 key bytes (112 bits). Since 4 pairs satisfy the truncated differential,
we know that the correct key is suggested at least 4 times. The probability that any
other key appears 4 times is negligible.2

We make two remarks here. The first is that the 7-round truncated differential used in
this attack has probability considerably smaller than 2−128. Unlike regular differentials,
truncated differentials with such small probabilities can still be useful, however. This was
already demonstrated in [11].

A second remark concerns the success probability of the attack. We assumed that the
correct key suggestion would appear exactly four times. This will of course not always be

2The set of 280 key suggestions contains about 24·80/4! different quartets. Assuming that the suggestions
look random, the probability that such a quartet has four identical 112-bit values is 2−3·112. From this we
deduce that the probability of finding a quartet of identical keys in the set is about 2−3·112 ·24·80/4! ≈ 2−20.
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the case. In practice, we will proceed in a slightly different way: we will encrypt the pools
one by one, and repeatedly check if a suggestion appears for the fourth time. As soon
as this happens, we stop. The derivation given above shows that the average number of
pools needed is 225. This number can be slightly reduced by already checking suggestions
appearing only three or even two times. The time needed to test wrong suggestions will
be negligible compared to the full attack.

From the attack outlined above, we conclude that 14 round key bytes of 7-round Aria

can be recovered with an average data and time complexity of 281. Note however that
this attack requires a very large amount of memory to store the 280 key suggestions. This
memory could in principle be reduced if the key schedule allowed to find simple relations
between the round key bytes used before the first and after the seventh round. This does
not seem to be the case for Aria however.

1.3.2 Truncated Differentials of Type 4 → 4

A second interesting truncated differential propagates through 4 bytes of each round as
follows:3

∆P = ABCD0000 00000000 4 round 1

EEEE0000 00000000 4

FFFF0000 00000000 4

. . .

GGGG0000 00000000 4 round r

∆C = HIJK0000 00000000

The probability that 4 random differences in the plaintext yield equal differences after the
first S-box layer is 2−24. The probability hat this property is preserved in the next round
is 2−21 (note that the probability is increased by the fact that the active bytes enter 4
identical S-boxes). Since the transition in the last round of the differential trail occurs
with probability 1, we conclude that this truncated differential allows to cover r rounds
with a probability of 2−24−21·(r−2). For 7 rounds, we obtain 2−129, just as in the previous
subsection. This 7-round differential can be exploited in exactly the same way:

• Encrypt 5 · 266 pools of 232 texts, which take on all the possible values in the first
4 bytes and are constant in the others (in total we need about 2100 chosen texts).
These texts contain about 5 · 266 · 263 = 5 · 2129 ≈ 2131 pairs with a difference of the
form ABCD0000 00000000, and we would therefore expect that 5 of these pairs satisfy
the 7-round differential proposed above.

3The 1st four bytes may be replaced by other invariant subspaces.

5
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• For each pool, sort the ciphertexts according to the values of the 12 last bytes of the
ciphertexts, and return all pairs with identical values in these positions. In total, we
expect to find about 2131/296 = 235 candidate pairs.

• Each candidate pair suggests on average about 28 × 28 possible values for the 2 × 4
active key bytes used in the first and the last key addition. In total we get 251

suggestions for 8 key bytes (64 bits). Since 5 pairs satisfy the truncated differential,
we know that the correct key is suggested at least 5 times. The probability that any
other key appears 5 times is small (about 2−4·64 · 25·51/5! ≈ 2−8).

The attack described above is clearly less efficient than the previous one (data and time
complexity of 2100). It requires less memory, however (251 key suggestions need to be
stored).

1.3.3 Truncated Differentials — Multiset Approach

In this subsection, we discuss an alternative way of exploiting the truncated differential of
type 4 → 4. This time we also consider the values (and not only the differences) of the four
leading bytes. The alternative approach described in this subsection does not immediately
lead to a more efficient attack, but it illustrates some unexpected properties of Aria.

Let us first consider a single plaintext P0 which has 4 equal values AAAA in the first 4 bytes
at the input of the first S-box layer (i.e., after the first key addition). The probability that
this happens for a random plaintext is 2−24. Furthermore, let us assume that this special
property is repeated over r−1 consecutive rounds (probability 2−24·(r−1)). We now consider
a second plaintext P1 = P0 ⊕ ∆P with ∆P = DDDD0000 00000000. Due to the structure
of the diffusion layer, the plaintext P1 automatically inherits the special properties of P0,
and after r rounds we obtain two ciphertexts C0 and C1 with identical values in the last 12
bytes. The reason for this is that the values of the first 4 bytes of the intermediate texts
do not influence the last 12 bytes, as long as these 4 values are equal. This suggests the
following 6-round attack:

• Consider all 2120 plaintexts P0 with a constant value A in the first byte (e.g., A = 0).
On the average, we expect4 that 1 of these plaintexts will have the desired properties
for r = 6. For each P0, construct a corresponding plaintext P1 = P0 ⊕ ∆P with
∆P = DDDD0000 00000000 for a constant D (e.g., D = 1).

• Encrypt the 2120 plaintext pairs (P0, P1) and check whether the corresponding cipher-
texts C0 and C1 have equal values in the last 12 bytes. This will be the case for about

4Averaged over all keys, we expect 1 such “special” plaintext per key. However, these special plaintexts
might not exist for all keys. If no such plaintext is found, the attack can be repeated using four other
active S-boxes, e.g., ∆P = 0000DDDD 00000000.

6
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2−96 · 2120 = 224 pairs. In order to filter out all wrong pairs, construct 224 additional
plaintexts P2 = P0 ⊕ ∆P ′ with ∆P ′ = EEEE0000 00000000 and E 6= D (e.g., E = 2).
If P0 has the properties described above, then the last 12 bytes of C2 should remain
constant in this case as well. For a random plaintext this is extremely unlikely.

• The correct triple (C0, C1, C2) can be used to recover the first 4 key bytes of the final
key layer, and the value of P0 provides 24 bit of information about the first 4 key
bytes of the initial key addition.

The distinguisher used in this alternative 6-round attack is clearly much stronger than
necessary. It is therefore natural to try to extend the attack with an additional round.
A possible approach is inspired by multiset attacks (also known as square, saturation, or
integral attacks) and is based on the following observation: if we start from the special
plaintext P0 described above and encrypt a set of plaintexts PD = P0 ⊕ ∆PD with ∆PD =
DDDD0000 00000000 and D = 0, . . . , 255, then we obtain a set of ciphertexts with 4 saturated
and 12 constant bytes after 6 rounds. The constant bytes disappear after an additional
round, but the saturation of the first 4 bytes is preserved, and this can be detected. In
order to avoid having to encrypt 256 texts for all 2120 P0 candidates (which would require
the full codebook of 2128 texts), we proceed as follows:

• Consider all 2120 plaintexts P0 with a constant value A in the first byte (e.g., A = 0).
On the average, we expect that 1 of these plaintexts will have the desired properties
for r = 6. For each P0, construct a corresponding plaintext P1 = P0 ⊕ ∆P1 with
∆P1 = 11110000 00000000.

• Encrypt the 2120 plaintext pairs (P0, P1) and check whether the corresponding cipher-
texts C0 and C1 have equal values in any of the 4 first bytes. If a collision occurs, we
know that P0 does not have the desired properties.

• For all remaining pairs, encrypt an additional plaintext P2 = P0 ⊕ ∆P2 with ∆P2 =
22220000 00000000 and check again for collisions. Repeat this procedure until a
single pair remains.

It can be shown that the 7-round attack described above requires slightly less than 2124

adaptively chosen plaintexts. This is much more than in the previous attacks. Note
however that the distinguisher used in this attack is still much stronger than necessary.

The data complexity can be reduced by taking into account additional properties of the
diffusion layer. We again start from the multisets described above, but decrease the number
of round by 1, i.e., we want the 256 texts after the 4th diffusion layer to start with four equal
bytes, taking on all values x = 0 . . . 255. This happens with probability 2−96. Denoting
the 16 bytes of the texts after the 5th diffusion layer by y1, . . . , y16, we can write:

yi = S(x ⊕ ki) ⊕ ci , 1 ≤ i ≤ 4

yi = S(x ⊕ kmi
) ⊕ S(x ⊕ kni

) ⊕ ci , 5 ≤ i ≤ 16

7



K.U.Leuven January 7, 2004 FINAL REPORT

where the ci are constant for each multiset. This implies that the first four bytes of the
multisets are saturated (we already used this property above), but also that every value in
each of the 12 last bytes appears an even number of times (because yi(x) = yi(x⊕kmi

⊕kni
)).

This property is preserved after the 6th S-box layer and generates balanced bytes at the
input of the 7th S-box layer (cfr. SASAS [4]). This suggests the following 7-round attack:

• Consider 296 random plaintexts P0 with a constant value A in the first byte (e.g.,
A = 0). On the average, we expect that 1 of these plaintexts will have the desired
properties for r = 5. For each P0, construct a set of plaintexts PD = P0 ⊕ ∆PD with
∆PD = DDDD0000 00000000 and D = 0, . . . , 255.

• Encrypt the 28 · 296 plaintexts. For each multiset and for each byte of the ciphertext,
determine the value of the key byte used in the last round such that the corresponding
byte at the input of the 7the S-box layer is balanced. On the average, we expect that
each multiset will suggest one key. Finally check whether the suggested key results
in four saturated bytes after the 6th S-box layer. This is very unlikely to occur for a
random multiset.

The attack requires 2104 plaintexts and has a time complexity of about 2112. It seems that
the distinguisher in this attack is still very strong however, and this suggests that there
might be ways to extend the attack with one more round.

1.4 Dedicated Linear Attack

In this section we focus on the sum (in GF (28)) of the first four bytes of the state. The
core of the attack is a distinguisher based on the following observation: if we denote the
bytes at the input and the output of an S-box layer by xi and yi, respectively, then

P (
4

∑

i=1

yi = 0 |
4

∑

i=1

xi = 0) ≈ 3 · 2−8 = 2−8 + 2−7 . (1.1)

This property does not depend on the choice of the S-boxes and holds as long as the
4 S-boxes involved in the expression above are equal. This can easily be explained by
noting that, out of the 224 combinations (x0, x1, x2, x3) which satisfy x0 +x1 +x2 +x3 = 0,
about 3 · 216 are of the form (a, a, b, b), (a, b, a, b), or (a, b, b, a). These special patterns are
preserved by the S-box layer, such that the yi sum to 0 as well.

In order to build an r-round distinguisher based on the observation above, we also need
to cross diffusion layers and key additions. Analyzing the diffusion matrix used in Aria,
one can easily see that this transformation preserves the sum of the first four bytes, but in
order to cross the key additions, we need the first four bytes of the round keys to sum to
zero. This implies that the attack will only succeed for a limited number of weak keys.

8
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We first analyze the strength of a distinguisher spanning r S-box layers and r − 1 key
additions. The input bytes of the first S-box layer are denoted by x1

i , and the outputs after
the last S-box layer by yr

i . If the first 4 bytes of each of the r − 1 round keys sum to zero
— this happens with probability 2−(r−1)·8 for random round keys — one can recursively
derive that

P (
4

∑

i=1

yr
i = 0 |

4
∑

i=1

x1
i = 0) ≈ 2−8 + 2−r·7 . (1.2)

In a next step we append additional key layers at the top and the bottom of the dis-
tinguisher. The bytes of the round keys of these two layers are denoted by k0

i and kr
i

respectively. In order to distinguish the cipher from a random permutation, an attacker
could calculate s0 =

∑4
i=1 (x1

i + k0
i ) and sr =

∑4
i=1 (yr

i + kr
i ) for n known P/C (plain-

text/ciphertext) pairs, and construct a distribution table of (s0, sr). In the random case,
we would expect each pair (s0, sr) to occur with probability 2−16, but for Aria we can
deduce from (1.2) that

P (
4

∑

i=1

yr
i = 0 and

4
∑

i=1

x1
i = 0) ≈ 2−16 + 2−8 · 2−r·7 , (1.3)

which directly implies that the pair (
∑4

i=1 k0
i ,

∑4
i=1 kr

i ) has a slightly higher probability.
This causes a peak in the distribution table which will stick out of the surrounding noise
as soon as

2−8 · 2−r·7 > Q−1(2−16) ·

√

2−16

n
, (1.4)

or
n > 18 · 22·r·7 (1.5)

Since n is limited by the block size of 128 bits, we conclude that the distinguisher is in
principle effective up to r = 8 rounds. However, in order to be useful, the time complexity
of the attack cannot exceed the size of the weak key class (if it does, a simple exhaustive
search would be more efficient). Since the time complexity includes at least the time
required to encrypt the necessary data, we find the following additional condition for the
128-bit key version:

18 · 22·r·7 < 2128 · 2−(r−1)·8 , (1.6)

or r ≤ 5. Similarly, for the 192-bit and 256-bit version we obtain r ≤ 8 and r ≤ 11 (note
however that r cannot exceed 8 because of the block size).

We can now append two more rounds to the current distinguisher by guessing the first 4 key
bytes of two additional key layers at the top and the bottom of the cipher (64 bits in total).
For each guess, we can apply a partial encryption at the top and a partial decryption at
the bottom, and compute the distribution table described above. If no peak is observed,
we know that the guess was probably wrong. In order to filter out all wrong guesses, we

9
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need to strengthen the distinguisher. Considering the fact that the distinguisher is applied
264 times and that Q−1(2−16 · 2−64) ≈ 10, we find

n > 100 · 22·r·7 ≈ 22·r·7+7 . (1.7)

Hence, for attacking a 128-bit key version of Aria reduced to 7 rounds, using a 5-round
distinguisher, 277 known P/C pairs should suffice.

In order to avoid having to process all n plaintexts for each of the 264 key guesses, we will
build tables of counters and gradually transform them into distribution tables by guessing
the key bytes one by one and partially evaluating the sums s0 and sr. The first table
contains 264 entries and is constructed by running through the n P/C pairs and increasing
the counter corresponding to the value of the first 4 bytes of the plaintext and the ciphertext
(64 bits in total). In the next step, we guess the 2 first key bytes at the top, apply a partial
encryption, compute the sum of the first 2 terms of s0, and create a table containing 256

counters corresponding to the value of this sum, the 2 remaining bytes of the plaintext,
and the first 4 bytes of the ciphertext (56 bits in total). In the next step, one more key
byte is guessed and the previous table is used to compute a smaller table of 248 counters,
and so on. It can be shown that the total computational complexity of this approach is
about n + 264 · 224 (in stead of n · 264). The attack requires 264 counters to be stored in
memory.

The 7-round attack on the 128-bit key version provides the values of 2× 4 round key bytes
at the top and the bottom and recovers the sum of the first 4 key bytes used in the 6 inner
key layers (112 bits in total). Table 1.1 summarizes the complexities for different key sizes.

Table 1.1: Complexities of a dedicated linear attack.

Key length: 128 192 256
Rounds: 7 10 10
Weak keys: 296 2136 2200

Data: 277 2119 2119

Memorya: 264 264 264

Counting complexity: 288 288 288

Recovered round key bits: 112 136 136

aMeasured in number of counters. For the 128-bit version, 16-bit
counters should suffice. The 192-bit and 256-bit versions require 64-bit
counters.
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1.5 Boomerang Attacks

Boomerang attacks [15] are useful when a cipher contains (regular or truncated) differen-
tials with relatively high probability, but which cover only half the cipher and can not be
combined. This does not seem to be the case for Aria however: because of the involutional
structure, differentials are usually easy to combine. We therefore do not expect improve-
ments from boomerang attacks compared to normal (truncated) differential attacks. This
is also confirmed by the calculations made by the designers for boomerang attacks based
on regular differentials.

1.6 Square/Multiset/Collision Attacks

The best attacks on Rijndael are multiset attacks [9] and collision attacks [10]. Aria,
whose design has many similarities with Rijndael, seems to provide more resistance to
these attacks, however. Both attacks exploit the relatively slow diffusion in a single round
of Rijndael. Aria’s diffusion layer has a branch number of 8 (instead of 5 for Rijndael),
and this affects the multiset and collision attacks in two ways. First, the faster diffusion
does not allow a 3-round distinguisher as in Rijndael, and secondly, extending the (2-
round) distinguisher at the top and the bottom requires much more key bytes to be guessed.
Therefore, it seems unlikely that a classical multiset attack would be able to cover more
than 5 or 6 rounds depending on the key size.

Note however that the ideas of multiset attacks can be useful to extend other attacks, as
demonstrated in Section 1.3.3.

1.7 Slide Attacks

Regular slide attacks [3] do not seem to apply to Aria because of the irregular structure
of the key schedule. Twisted slide attack as applied to the involutional cipher Khazad [6]
are not likely to be efficient either: this attack would require at least two round keys to be
equal, which is very unlikely given the size of Aria’s round keys.

1.8 Algebraic Structure

The algebraic structure of Aria and Rijndael are very similar. Both ciphers use S-boxes
based on the inverse over GF (28), and the diffusion layers of both ciphers have very simple
representations in GF (28). As a result, Aria inherits most of the algebraic properties of
Rijndael, e.g.:
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Dual ciphers. Many different dual ciphers as described in [1, 5] can be constructed by
changing the affine transformations B and the constants CK1,...,3. Since Aria is not
self-dual in a non-trivial way, this observation does not affect the security of the cipher
as such. On the other hand, these dual ciphers can help to protect implementations
against side channel attacks.

Potential vulnerability against XSL. The rounds of Aria contain exactly the same
number of S-boxes as Rijndael, and the difference in the key schedule is small (48
vs. 40 S-boxes). Hence, if one could design a successful attack algorithm against
Rijndael based on XSL [7], it is very likely that it would apply to Aria as well.

Big Encryption Scheme (BES). Aria can be transformed into a 128-byte block cipher
composed out of very simple operations in GF (28) as described in [13]. This might
speed up a hypothetical XSL attack.

Despite its similarity with Rijndael, Aria might possibly introduce new weaknesses. One
interesting observation is that the cipher can be split into two parts with particularly simple
representations in GF (28) (see Figure 1.1). The construction starts from the observation
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Figure 1.1: Equivalent representation

that the left half of the output of the diffusion layer (y0, . . . , y7) depends on only four
independent linear combinations of the right half of the input (x8, . . . , x15). This follows
immediately from the fact that the upper right quarter of the binary diffusion matrix
has rank 4. The same holds for the interaction between the right half of the output and
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the left half of the input. This property allows the linear diffusion layer to be split into
two binary parts where all interaction between the parts goes through 4 bytes only (in
both directions). A second observation is that the linear transformations B and B−1 at
the output of the S-layers and at the input of the S−1-layers commute with the binary
operations of the diffusion layer, i.e., B(xi) + B(xj) + . . . + B(xk) = B(xi + xj + . . . + xk).
This also implies that an extra layer of B−1-transforms can be freely inserted at the inputs
of the left part of the diffusion layer, provided that a corresponding layer of B-transforms
is inserted at the outputs. Since these extra layers cancel out with the linear transforms at
the input and the output of the S-boxes, we obtain the construction shown in Figure 1.1.
The result is a cipher which has a very simple representation in GF (28), except for the
eight B/B−1-transforms in the middle.

Although we found some simple expressions relating inputs and outputs over three rounds
without involving any B/B−1-transforms5 (which could be used for mounting an interpo-
lation attack on a few rounds), we did not find a non-trivial way to exploit this property.

1.9 Key-Schedule Observation

The key-schedule of Aria consists of two phases:

1. a nonlinear expansion phase, in which a 128, 192, 256-bit key is expanded into four
128-bit words W0,W1,W2,W3;

2. a linear key-schedule phase in which the subkeys are derived via simple XORs and
rotates from the words Wi.

Given the nonlinearity of the first phase and the irregular mixing of the second phase, we
do not expect weak keys and related key attacks to be a serious threat. The key-schedule
is efficient and provides good key-agility, but it means also that from knowing parts of the
key-schedule other parts of the key-schedule may be recovered (note that the AES has a
similar weakness). One of the properties that could be undesirable, is that for the 10-round
version the subkey of the first and last rounds ek1, ek11 are computed from the same words
W0,W1. If an attack succeeds in recovering both subkeys (note that the two outer subkeys
are usually the most vulnerable ones), it would in principle be possible to extract W0 and
W1, which would allow to easily recover the master key.

We also stress the importance of the values of the constants CKi. For example, if all
constants were chosen to be 8-bit periodic (e.g., CK1 = 0x515151 . . . 51), then an 8-
bit periodic plaintext encrypted with an 8-bit periodic key would always result in an 8-bit

5For example, the (single) path connecting the first byte at the input of the first S-box layer and
the third byte at the output of the third S-box layer does not leave the left hand side of the equivalent
representation.
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periodic ciphertext. This is a consequence of the fact that all components in Aria preserve
8-bit periodicity, both in the key schedule and in the cipher itself.

1.10 Increasing the Number of Different S-boxes

In this section we briefly discuss a variant of Aria which was proposed by the designers
and uses four different S-boxes instead of two. The odd and even S-box layers in this
variant could for example be constructed as follows:
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Although we did not extensively study this variant, we believe that the proposed mod-
ification can only strengthen the cipher, provided that the S-boxes are well-chosen. We
roughly estimate that the complexities of the attacks presented in Section 1.3.1 and 1.3.2
will increase with a factor 24 to 26. More importantly, it seems that this modification will
prevent the dedicated attacks demonstrated in Section 1.3.3 and 1.4. It will also destroy
the “splitting” property described in Section 1.8.

One possible drawback of using many different S-boxes is that it might increase the amount
of memory required by the implementation. Note however that optimized 32-bit software
implementations will not be affected.
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Chapter 2

Efficiency Evaluation

In this chapter, the efficiency of Aria is estimated, both in software and hardware, and
compared to Rijndael.

2.1 Software

Aria, Rijndael, and Camellia were implemented in C and compiled with gcc 3.3.1
using the flags -O3 -fomit-frame-pointer.1 The three implementations were optimized
for 32-bit processors using 8 × 32-bit table lookups. In the case of Aria, the special
structure of the binary diffusion matrix was exploited as suggested in [14]. Table 2.1 lists
the encryption times in cycles/byte measured on different machines (all 32-bit processors,
except for the 64-bit PA-RISC) for the 128-bit key versions.

Table 2.1: Efficiency on 32/64-bit processors.

CPU OS Aria Rijndael Camellia

Pentium II (Klamath) 233MHz Linux 31.2 23.4 33.9
Pentium III (Coppermine) 1.00GHz Linux 31.1 23.3 33.4
Intel(R) Xeon(TM) 1.50GHz Linux 41.5 21.0 82.2
AMD Athlon(TM) XP 2000+ 1.66GHz Linux 28.2 25.0 31.0
Intel(R) Pentium(R) 4 2.40GHz Linux 40.8 30.5 83.9
PA-RISC 8500 400MHz HP-UX 28.7 19.0 34.2

1The experiments showed that this combination of flags produced the fastest code for all three im-
plementations. Note also that gcc is known to be slightly less efficient on the latest generation of Intel
processors. For this reason, the code for the Xeon processor was also compiled using Intel’s dedicated
compiler. The resulting code is approximately 10% faster for Aria and Rijndael and 30% faster for
Camellia.
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It is interesting to note that, although both Aria and Rijndael were intentionally im-
plemented in a very similar way, their behavior on some machines is rather different. The
most striking are the Athlon, where both algorithms are approximately as fast, and the
Xeon, where Rijndael is almost twice as fast as Aria. The most plausible explanation
for this effect is a difference in cache size/speed (the 32-bit implementation of Aria used
in this experiment requires twice as much lookup tables as the Rijndael implementation).

2.2 Hardware

This section compares hardware implementations of Aria and Rijndael. First the dif-
fusion layers are compared, subsequently individual rounds, the complete encryption and
decryption operations and then the key schedule. Finally an overview is presented of ASIC
and FPGA implementations of Rijndael.

2.2.1 Aria Diffusion Layer

In Section 2.2.2 in [14] each XOR operation consists of eight 2-input XOR gates. There
are 6 XOR operations for each yi, 0 ≤ i ≤ 15. Hence the number of 2-input XOR gates in
the Aria diffusion layer equals 8× 6× 16 = 768. However, if the architecture proposed in
Section 4.1 of [14] is used, the number of XOR gates can be reduced to 480.

The critical path of the diffusion layer of Aria is 3 2-input XOR gates.

2.2.2 Rijndael Diffusion Layer

Rijndael needs 4 XOR operations for each byte of the state, bi, 0 ≤ i ≤ 3. In addition, at
least one circuit for multiplying a four-byte column of the state with a fixed polynomial c(x)
modulo x4 +1 in MixColumn transformation needs to be implemented. The multiplication
circuit consists of 8 × 4 × 4 = 128 2-input XOR gates; this circuit can be used four times
in a loop (for the four columns of the state). Alternatively, we could unroll the circuit
completely (as in the Aria diffusion layer); in this case, the number of 2-input XOR gates
will be 128 × 4 = 512.

Multiplying each byte of the state with ‘02’ modulo m(x) = x8 + x4 + x3 + x + 1 requires
3 2-input XOR gates. Again it is possible to implement one circuit for this multiplication
and use it for all the bytes of the state. If we repeat instead the same circuit for all 16
bytes of the state then the number of 2-input XOR gates will be 48.

Hence the complete diffusion layer of Rijndael consists of 560 2-input XOR gates.

The critical path of the Rijndael MixColumn operation is 4 2-input XOR gates.
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2.2.3 Aria One Round

Aria has different odd and even rounds. However, implementing a single round of Aria

is sufficient, as this round can be iterated. Indeed, one can connect output bytes 1-8 of the
odd rounds to input bytes 9-16 of the same implementation, and output bytes 9-16 of the
even round to input bytes 1-8 of the odd round implementation.

Every round consists of three operations: AddRoundKey , S-box and diffusion layer . There-
fore, if a round is fully pipelined, there can be at most three stages. In this case the critical
path will be the same as the critical path of an S-box.

If the goal of the implementation is to make the clock frequency as high as possible, then
the best choice for Aria is a loop or unrolled architecture with three pipeline stages in
one round. A loop architecture requires 30 clock cycles for one encryption for the Aria

version with a 128-bit key. A completely unrolled implementation requires a larger area,
(the difference is created exclusively by the diffusion layers). The 128-bit version of Aria

(encryption only) requires 4 800 2-input XOR gates less than Rijndael.

2.2.4 Rijndael One Round

All the rounds of Rijndael are the same. So implementing only one round is sufficient for
a loop architecture without modified connections. Every round consists of three operations:
AddRoundKey , S-box and MixColumn. Therefore, if a round is fully pipelined, there can
be at most three stages. In this case the critical path will be the same as the critical path of
an S-box. A loop architecture requires 30 clock cycles for one encryption for the Rijndael

version with a 128-bit key, which is the same as for Aria.

2.2.5 Key Schedule

The key schedule is typically implemented using one of the following two methods: comput-
ing keys on-the-fly for every block of encrypted data or pre-computing them in advance and
storing them. The computation of keys on-the-fly has an obvious advantage of changing
keys fast with low or no delay.

In order to implement the key schedule on-the-fly the operation has to be finished in the
same number of clock cycles as one round. Hence depending on the way one round has
been implemented (pipelined/unrolled) the number of clock cycles available changes.

The smallest number of clock cycles that are used for one round will occur when an unrolled
architecture is used. Then, the key schedule has to be finished in one clock cycle.

The number of pipeline stages can be at most three for both Aria and Rijndael as
mentioned in Section 2.2.3 and Section 2.2.4. In this case the number of clock cycles to
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finish the key schedule can be three as well.

If the keys are pre-computed, it is possible to share S-boxes between the encryption and
key schedule circuits.

2.2.5.1 Aria Key Schedule

In order to produce the keys on-the-fly and for the unrolled architecture the “initializa-
tion” and “round key generation” parts of the operation have to be implemented all as a
combinational circuit. The critical path is 2Fo + Fe + 5XOR = 3 (S + 3XOR) + 5XOR =
3S + 14XOR.

When full pipelining is used in one round, the “initialization” part can be divided into
three steps. Then the critical path is Fo + 3XOR = (S + 3XOR) + 3XOR = S + 6XOR.

If an architecture for pre-computing the keys that computes 32-bits of the key material in
each clock is used, then in each clock cycle 32-bits of Wi, i = 1, 2, 3, can be computed. For
the 128-bit case, computing one Wi takes 4 clock cycles. Because there are three Wis to
compute, one round key can be computed in 12 clock cycles. The complete key schedule
execution takes 132 clock cycles, which is 3 times slower than a similar architecture that
is given in [44] for Rijndael.

2.2.5.2 Rijndael Key Schedule

For an on-the-fly architecture and the unrolled case the critical path for the Rijndael key
schedule (with an 128-bit key and 128-bit data blocks) is reported as 2S + 8XOR in [17].
This result is S + 6XOR shorter path than the critical path of Aria key schedule.

When full pipelining is used in one round, the architecture given in [17] can be divided
into three steps. Then the critical path is S +4XOR. Again this result is shorter than the
critical path of the Aria key schedule for the same choice.

The architecture for pre-computing the keys can be found in [44]. Their architecture
computes 32-bits of the key material per clock cycle. Therefore the key schedule execution
takes 44 clock cycles. By repeating the circuit given in [44] four times, it is possible to
decrease the number of clock cycles to 11.

2.2.6 Encryption and Decryption

An advantage of Aria over Rijndael is that Aria can use the same hardware for en-
cryption and decryption, as it is an involution. At first sight this will result in a savings
of 50% for Aria (or even more, since for Rijndael decryption is slightly more complex
than decryption).

18



K.U.Leuven January 7, 2004 FINAL REPORT

However, it is shown in [44] that it is not necessary to implement two different circuits
for encryption and decryption of Rijndael. A substantial part of the hardware can be
shared between both. According to [44] the area can be decreased by 75% through sharing
of circuits (compared with the total area of an encryption plus a decryption circuit); the
loss of throughput of this approach is only 25%.

If the key schedule is done in advance then the area of a circuit for encryption of Aria

will be smaller than Rijndael, because of the diffusion layer. The critical path for this
architecture is the same for both block ciphers. But the number of clock cycles needed to
compute the round keys is 3 times more in Aria.

If the key schedule is on-the-fly and the area used for the key schedule operation is the same
for both ciphers, the critical path for the Aria circuit is longer than for the Rijndael

circuit.

2.2.7 Rijndael Implementations

The properties of all the published ASIC implementations of Rijndael are listed in Ta-
ble 2.2, while Table 2.3 and Table 2.4 describe the published FPGA implementations of
Rijndael.
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Table 2.2: ASIC Implementations

Ref. Gate Count Clock Freq. Throughput Indicator Special Remarks
(103) (MHz) (Gb/s) (10−3 bits/gate)

[16] 612.834 15.243 1.950 0.209

• Fully unrolled
• Keys are generated and stored in
subkey registers before encryption
• No pipeline

[17] 173 100 1.82 0.105

• S-box is made by boolean functions
• 1 round is done in each clock cycle
• One encryption round is implemented
• Only encryption is implemented

[18] 256 32 7.5 0.915
• S-box uses composite field arithmetic
• Only encryption is implemented
• 1 round is done in each clock cycle

[19] 5.4 131 0.3 0.42

[20, 21] 173 125 1.6 0.07
• Non-pipelined encryption
• Key schedule on-the-fly

[22] 40 1.66
[23] 5.7 100 0.12 0.21

[24] 14.9 114 4.79 2.819
• S-box uses multiplicative inverter in GF (28)
• Multiplicative inversion is in composite fields
• Hardware is shared with Camellia

[25] 173 133 2.29 0.099
• Architecture is similar to [17]
• It is tested
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Table 2.3: FPGA Implementations

Ref. CLB BRAMs Nbr of Clock Freq. Throughput Special Remarks
Count LUT (MHz) (Gb/s)

[26] 5673 0.353 • S-box is LUT in ROM
[27, 28, 29, 30] 2507 0.414

[31] 8 780 • S-box is LUT

[32] 2 507 32 0.414 • Fully unrolled

[32] 2 057 8 99 1.265 • One round is pipelined

[32] 12 600 80 95 12.160 • Mixed with pipeline and unrolling
[33] 5 575 0.3
[34] 1 257 0.964 • S-box is LUT

[35] 2222 100 54.35 7

• 1 round in each clock cycle
• Fully pipelined
• Hardware for 10 encryption rounds
• S-box is in ROM (LUT)

[36] 20 2.5 7.6

• S-box is in ROM
• Keys are generated and stored in
44-word registers before encryption
• Fully pipelined
• Hardware for 10 encryption rounds

[37] 4 325 1 75 0.739
• Keys are generated and stored in
11 × 128-bit registers before encryption

[38] 5 350 80 Nbr of 45 2.5 • Totally unrolled
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Table 2.4: FPGA Implementations-Cont.

Ref. CLB BRAMs Nbr of Clock Freq. Throughput Special Remarks
Count LUT (MHz) (Gb/s)

[41] 2 358 22 0.259
[41] 17 314 28.5 3.65 • Using pipelining

[42] 2 580 38.8 0.451 • Key schedule is on-the-fly
[43] 702 0.755

[44] 222 3 50 0.139

• S-box is in BlockRAM
• MixColumns in 4-input LUTs
• Both for encryption and decryption
• Keys are generated and stored in
a single Block RAM before encryption

[44] 222 3 60 0.166
[45]

[46] 2784 100 3516 92 0.004
• S-box is in RAM
• unrolled architecture

[46] 542 10 877 119 1.45
• S-box is in RAM
• loop architecture

[46] 1767 2524 167 2.085
• S-box is by using composite fields
• loop architecture

[46] 2257 3846 169 2.008
• S-box is in LUT
• loop architecture
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Chapter 3

Conclusions

We have performed an independent security and efficiency evaluation of the Aria block
cipher. We have considered three versions, with 10, 12, and 14 rounds and with key lengths
respectively of 128, 192 and 256 bits. The main conclusion of our analysis is that we have
not found a practical or even a certificational weakness in any of the three versions of
Aria.

The performance of Aria in software is slightly worse than that of Rijndael; for hardware
the performance of the two algorithms is comparable (there are small differences based on
the specific requirements).

The Aria block cipher offers a considerable security margin; nevertheless, for a new cipher
that is designed for a long lifetime, a larger security margin (e.g., 2 additional rounds)
may be desirable. We have some concerns about the specific properties of the diffusion
matrix, but we have not been able to develop attacks that exploit these properties, except
for reduced-round versions and with impractical complexities for 7 rounds already.

Our most important observations can be summarized as follows:

• Similarity to AES-Rijndael. The current design is a 10-12-14 round 128-bit SPN
using two types of S-boxes (based on inverse functions over GF (28) as in Rijndael

followed by an affine mapping, which is different from the one used in Rijndael).
The diffusion mappings are based on binary self-inverse matrix multiplication. Due
to the similarity with Rijndael it is likely that Aria will inherit several strong
properties of Rijndael. However, if any serious weakness would be discovered in
Rijndael, it seems highly likely that it would apply to Aria as well. One such
potential threat would be the possibility of an ‘algebraic’ attack of some kind. This
means that Aria could be a suitable alternative to Rijndael, but may be less suited
if one would only want to use it as a backup algorithm in the case that Rijndael

would be broken.
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Table 3.1: Summary of attacks on reduced-round Aria.

Attack Key size Rounds Weak keys Plaintext Workload Memory
Truncated: 128–256 7 of 10–14 - 281 CP 281 280

128–256 7 of 10–14 - 2100 CP 2100 251

Tr./Multiseta: 128–256 7 of 10–14 - 2124 ACP 2124 28

128–256 7 of 10–14 - 2104 CP 2112 28

Lineara: 128 7 of 10 296 277 KP 288 264

192 10 of 12 2136 2119 KP 2119 264

256 10 of 14 2200 2119 KP 2119 264

aDedicated attacks exploiting the interaction between the diffusion matrix and the structure of the
S-box layer.

• Aria has very specific features (involutional diffusion, special structure of the ma-
trix), which may open avenues to new attack methods. As an example, the binary ma-
trix used by the cipher has very special properties. The attacker could exploit linear
subspaces corresponding to eigenvectors of the type: (1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0). This property, together with the fact that the corresponding active S-boxes are
identical, allows for dedicated attack approaches described in this report, that are
effective against reduced-round versions of Aria. However, in our analysis, we have
not been able to find a way to extend this to the full versions of Aria.

• Truncated differential attacks: due to the previous observation we found a truncated
differential attack on a variant of Aria reduced to 7 rounds. We recommend to
perform a deeper analysis of truncated differential attacks, since we were not yet
able to exploit all the structure identified during our analysis. Nevertheless, with
the current state of knowledge, it seems unlikely that further analysis will uncover a
practical attack on the full Aria.
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gorithm implementations. In Ç. K. Koç, D. Naccache, and C. Paar, editors, Pro-
ceedings of 3rd International Workshop on Cryptographic Hardware and Embedded
Systems (CHES), number 2162 in Lecture Notes in Computer Science, page 6576,
Paris, France, May 13-16 2001. Springer-Verlag.

[36] M. Alam, W. Badawy, and G. Jullien. A novel pipelined threads architecture for AES
encryption algorithm. In M. Schulte, S. Bhattacharyya, N. Burgess, and R. Schreiber,
editors, Proceedings of the IEEE International Conference on Application-Specific Sys-
tems, Architectures, and Processors (ASAP), pages 296–302, San Jose, CA, USA, July
17-19 2002. IEEE Computer Society Press.

[37] C. Chitu, D. Chien, C. Chien, I. Verbauwhede, and F. Chang. A hardware imple-
mentation in FPGA of the Rijndael algorithm. In Proceedings of the 45th Midwest
Symposium on Circuits and Systems (MWSCAS), pages 507–510, August 2002.

[38] T. Kerins, E. Popovici, A. Daly, and W. Marnane. Hardware encryption engines for
e-commerce. In Proceedings of ISSC, Cork, June 25-26 2002.

[39] O. Kwon, H. Seike, H. Kajisaki, and T. Kurokawa. Implementation of AES and Triple-
DES cryptography using a PCI-based FPGA board. In Proceedings of the International
Technical Conference On Circuits/Systems, Computers and Communications (ITC-
CSCC), 2002.

[40] R. Karri and Y. Kim. Field programmable gate array implementation of advanced
encryption standard Rijndael.

28



K.U.Leuven January 7, 2004 FINAL REPORT

[41] N. Sklavos and O. Koufopavlou. Architectures and VLSI implementations of the AES-
proposal Rijndael. IEEE Transactions on Computers, 51(12):1454–1459, December
2002.

[42] J. H. Shim, D. W. Kim, Y. K. Kang, T. W. Kwon, and J. R. Choi. A Rijndael
cryptoprocessor using shared on-the-fly key scheduler. In Proceedings of the third
IEEE Asia-Pacific Conference on ASICs, Taipei, Taiwan, August 6-8 2002.

[43] D. K. Y. Tong, P. S. Lo, K. H. Lee, and P. H. W. Leong. A system level implementation
of Rijndael on a memory-slot based FPGA card. 2002.

[44] P. Chodowiec and K. Gaj. Very compact FPGA implementation of the AES algo-
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Appendix A

Statistical tests

A.1 Overview

The Aria block cipher was submitted to a series of statistical tests. The test results did
not indicate a deviation from random behaviour.

Here is an overview of the tests that were performed:

• Block cipher tests:

– dependence

– findlinfacts

• Stream cipher tests (in CTR and OFB mode):

– collision

– correlation

– coupon

– fastspectral

– frequency

– gap

– lincompl

– maurer

– mtuple

– nonlincompl

– poker
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– rank

– run

– zivlempel
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A.2 Block cipher tests on Aria

A.2.1 Dependence Test

The dependence test evaluates the dependence matrix and the distance matrix of the
cipher. Furthermore, the degree of completeness, the degree of avalanche effect and the
degree of strict avalanche criterion of the cipher are computed. A cryptographic function
is complete if each output bit depends on each input bit. For a function to exhibit the
avalanche effect, an average of one half of the output bits should change whenever a single
input bit is complemented. A function satisfies the strict avalanche criterion if each output
bit changes with a probability of one half whenever a single input bit is complemented.

DEPENDENCE TEST for

ARIA Block Cipher

Number of inputs: 10000

Average number of output bits changed: 63.992001

Degree of completeness : 1.000000

Degree of avalanche effect : 0.999203

Degree of strict avalanche criterion : 0.991993

ANALYSIS OF THE DISTANCE MATRIX

Average fractions of inputs yielding distance j if one bit is complemented,

and the expected fractions for a random function

j 0 1 2 3 4 5 6 7

exp. 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

av. 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

j 8 9 10 11 12 13 14 15

exp. 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

av. 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

j 16 17 18 19 20 21 22 23

exp. 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

av. 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

j 24 25 26 27 28 29 30 31

exp. 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

av. 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

j 32 33 34 35 36 37 38 39

exp. 0.000000 0.000000 0.000000 0.000000 0.000000 0.000001 0.000001 0.000003

av. 0.000000 0.000000 0.000000 0.000000 0.000000 0.000002 0.000002 0.000005

j 40 41 42 43 44 45 46 47

exp. 0.000007 0.000016 0.000033 0.000067 0.000129 0.000240 0.000433 0.000756

av. 0.000013 0.000020 0.000028 0.000064 0.000130 0.000230 0.000436 0.000816

j 48 49 50 51 52 53 54 55

exp. 0.001276 0.002082 0.003290 0.005032 0.007452 0.010685 0.014841 0.019967

av. 0.001255 0.002038 0.003341 0.004912 0.007415 0.010720 0.014713 0.020001
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j 56 57 58 59 60 61 62 63

exp. 0.026029 0.032879 0.040248 0.047752 0.054915 0.061216 0.066153 0.069303

av. 0.026266 0.032885 0.040310 0.048091 0.054747 0.061049 0.066731 0.069120

j 64 65 66 67 68 69 70 71

exp. 0.070386 0.069303 0.066153 0.061216 0.054915 0.047752 0.040248 0.032879

av. 0.070433 0.069708 0.066130 0.060966 0.054583 0.047830 0.040223 0.032923

j 72 73 74 75 76 77 78 79

exp. 0.026029 0.019967 0.014841 0.010685 0.007452 0.005032 0.003290 0.002082

av. 0.025916 0.019716 0.014861 0.010630 0.007364 0.005139 0.003327 0.001995

j 80 81 82 83 84 85 86 87

exp. 0.001276 0.000756 0.000433 0.000240 0.000129 0.000067 0.000033 0.000016

av. 0.001248 0.000766 0.000427 0.000240 0.000112 0.000055 0.000036 0.000017

j 88 89 90 91 92 93 94 95

exp. 0.000007 0.000003 0.000001 0.000001 0.000000 0.000000 0.000000 0.000000

av. 0.000012 0.000003 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

j 96 97 98 99 100 101 102 103

exp. 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

av. 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

j 104 105 106 107 108 109 110 111

exp. 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

av. 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

j 112 113 114 115 116 117 118 119

exp. 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

av. 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

j 120 121 122 123 124 125 126 127

exp. 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

av. 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

j 128

exp. 0.000000

av. 0.000000

Application of the Chi-square test to the rows of the distance matrix

(% levels of significance)

row % row % row % row % row %

1 72.4 2 98.2 3 87.4 4 75.3 5 23.7

6 14.1 7 66.5 8 11.7 9 77.1 10 28.5

11 23.3 12 10.3 13 15.3 14 98.8 15 88.5

16 42.3 17 3.4 18 93.6 19 25.9 20 4.2

21 70.6 22 12.3 23 19.5 24 20.2 25 91.2

26 53.4 27 84.8 28 10.1 29 51.1 30 41.3

31 76.3 32 0.1 33 81.4 34 72.4 35 75.3

36 85.7 37 32.2 38 19.7 39 50.6 40 90.5

41 53.4 42 76.7 43 3.2 44 41.1 45 36.3

46 23.6 47 64.5 48 80.8 49 75.2 50 80.0

51 1.3 52 89.7 53 47.9 54 90.8 55 61.1

56 27.8 57 56.3 58 74.4 59 89.3 60 64.6

61 33.0 62 17.2 63 50.3 64 87.8 65 15.5

66 33.3 67 91.5 68 89.6 69 13.0 70 82.4

71 31.1 72 57.6 73 1.0 74 79.3 75 53.0

76 15.2 77 6.2 78 38.3 79 5.8 80 58.7

81 84.2 82 53.7 83 23.5 84 20.0 85 0.8

86 4.2 87 24.8 88 51.7 89 48.0 90 80.8

91 42.6 92 1.7 93 24.7 94 50.8 95 18.2
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96 99.7 97 33.3 98 26.6 99 20.1 100 83.4

101 19.1 102 33.9 103 41.6 104 84.8 105 76.6

106 48.7 107 34.8 108 42.9 109 6.0 110 30.2

111 42.4 112 52.0 113 41.2 114 85.1 115 88.4

116 72.4 117 0.4 118 72.8 119 60.3 120 18.9

121 15.2 122 80.7 123 42.2 124 72.7 125 64.9

126 18.1 127 50.8 128 46.0

ANALYSIS OF THE DEPENDENCE MATRIX

Row average of the dependence matrix

i i i i

1 0.499600 2 0.499853 3 0.499417 4 0.500339

5 0.500495 6 0.499591 7 0.500015 8 0.499119

9 0.499860 10 0.500397 11 0.499624 12 0.499425

13 0.499182 14 0.500255 15 0.500950 16 0.500385

17 0.500039 18 0.500380 19 0.499792 20 0.500355

21 0.499814 22 0.499298 23 0.499277 24 0.499466

25 0.500087 26 0.498973 27 0.500232 28 0.500692

29 0.500384 30 0.500005 31 0.499671 32 0.501041

33 0.499230 34 0.499784 35 0.499894 36 0.499709

37 0.499828 38 0.500027 39 0.499268 40 0.499491

41 0.500310 42 0.500305 43 0.500387 44 0.500791

45 0.499764 46 0.499959 47 0.499768 48 0.500176

49 0.499895 50 0.499977 51 0.499970 52 0.499901

53 0.500725 54 0.499869 55 0.499941 56 0.500775

57 0.498984 58 0.499819 59 0.499752 60 0.499948

61 0.500042 62 0.500727 63 0.499309 64 0.500712

65 0.499906 66 0.500535 67 0.499570 68 0.499928

69 0.499329 70 0.499352 71 0.500558 72 0.499899

73 0.499527 74 0.499383 75 0.499591 76 0.499331

77 0.499471 78 0.500041 79 0.500836 80 0.500261

81 0.500773 82 0.499359 83 0.500568 84 0.499727

85 0.499879 86 0.500132 87 0.499431 88 0.500915

89 0.499752 90 0.499938 91 0.499770 92 0.500292

93 0.500114 94 0.499525 95 0.500278 96 0.500183

97 0.499566 98 0.499508 99 0.499018 100 0.500310

101 0.500222 102 0.499934 103 0.500438 104 0.499673

105 0.499582 106 0.499702 107 0.499291 108 0.500427

109 0.499975 110 0.500016 111 0.499905 112 0.500518

113 0.500555 114 0.500211 115 0.499907 116 0.498889

117 0.498472 118 0.500251 119 0.499695 120 0.500164

121 0.499771 122 0.500520 123 0.500251 124 0.499914

125 0.500929 126 0.500190 127 0.499280 128 0.499713

Column average of the dep. matrix

i i i i

1 0.499224 2 0.500333 3 0.500255 4 0.499726

5 0.500292 6 0.499481 7 0.500495 8 0.500123

9 0.500256 10 0.499598 11 0.500160 12 0.500284

13 0.500209 14 0.499995 15 0.500297 16 0.500227

17 0.499446 18 0.500373 19 0.500345 20 0.500088

21 0.499009 22 0.499940 23 0.500608 24 0.500466

25 0.499510 26 0.500134 27 0.499271 28 0.499678

29 0.500292 30 0.499840 31 0.499370 32 0.499947

33 0.500195 34 0.499425 35 0.499127 36 0.500339

37 0.499769 38 0.500187 39 0.499159 40 0.500240

41 0.500633 42 0.498991 43 0.499258 44 0.500041

45 0.499979 46 0.500672 47 0.499760 48 0.499802

49 0.500410 50 0.499664 51 0.500800 52 0.499281
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53 0.500341 54 0.500686 55 0.499839 56 0.500366

57 0.500955 58 0.500104 59 0.498612 60 0.499921

61 0.499187 62 0.499575 63 0.499768 64 0.499784

65 0.499644 66 0.500432 67 0.500378 68 0.500041

69 0.500248 70 0.500587 71 0.499937 72 0.499890

73 0.499796 74 0.499916 75 0.499926 76 0.499396

77 0.499267 78 0.500051 79 0.499351 80 0.500723

81 0.500493 82 0.499631 83 0.499247 84 0.500334

85 0.500232 86 0.499370 87 0.499890 88 0.499995

89 0.499823 90 0.499836 91 0.499830 92 0.500062

93 0.500237 94 0.499944 95 0.500440 96 0.500541

97 0.499534 98 0.500345 99 0.500247 100 0.499857

101 0.500159 102 0.499520 103 0.499467 104 0.500513

105 0.501022 106 0.500083 107 0.500092 108 0.500130

109 0.500106 110 0.500015 111 0.499866 112 0.499547

113 0.500066 114 0.499176 115 0.499968 116 0.500827

117 0.499477 118 0.499957 119 0.499119 120 0.500211

121 0.499382 122 0.499354 123 0.499251 124 0.499573

125 0.499958 126 0.500313 127 0.499554 128 0.499691

A.2.2 Linear Factors Test

The linear factors test is used to find out whether there are any linear combinations of
output bits which, for all keys and plaintexts, are independent of one or more key or
plaintext bits. Such a linear combination is called a linear factor. It is practically impossible
to check a potential linear factor for all keys and plaintexts. Therefore, we only consider
for a sufficiently large number of pairs of random keys and random plaintexts.

For Aria, no linear factors were found.
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A.3 Aria in OFB Mode

A.3.1 Collision Test

The collision test splits up the bit sequence into subsequent, disjoint m-tuples of bits. The
test evaluates statistically how often such m-tuples occur more than once.

Collision Test for

ARIA Block Cipher in OFB mode

Number of bits generated and ignored before starting to test: 0

Number of bits used for testing: 10000000

Block size: 24

# of blocks: 416666 blocksize: 24 collisions: 5258

A.3.2 Correlation Test

The correlation test determines in how many places the original sequence and the sequence
shifted by n bits have the same value. This is done for all shifts n up to the length of
the original sequence. To support the interpretation of the results, for each shift the
probability for a sequence of random, independent, and uniformly distributed bits to have
this number or less coincidences with its shifted copy is determined. Only values where
these probabilities are close to 0 or 1 are printed. The print level is the maximal deviation
from 0 or 1 for these probabilities in order to be printed.

Correlation Test for

ARIA Block Cipher in OFB mode

Number of bits generated and ignored before starting to test: 0

Number of bits used for testing: 1000000

Printlevel: 0.000010

shift:0 equal: 1000000 probability: 1.0000000 0e+00

shift:78002 equal: 497824 probability: 0.0000068 7e-06

shift:166724 equal: 497816 probability: 0.0000063 6e-06

shift:260279 equal: 502208 probability: 0.9999950 5e-06

shift:288114 equal: 502224 probability: 0.9999957 4e-06

shift:293064 equal: 502383 probability: 0.9999991 9e-07

shift:298759 equal: 502311 probability: 0.9999981 2e-06

shift:317583 equal: 497759 probability: 0.0000037 4e-06

shift:333656 equal: 502241 probability: 0.9999963 4e-06

shift:372626 equal: 502194 probability: 0.9999943 6e-06

shift:456563 equal: 497702 probability: 0.0000022 2e-06

shift:510811 equal: 497740 probability: 0.0000031 3e-06

shift:555239 equal: 497748 probability: 0.0000034 3e-06

shift:650228 equal: 497623 probability: 0.0000010 1e-06

shift:653155 equal: 502202 probability: 0.9999947 5e-06

shift:705989 equal: 502452 probability: 0.9999995 5e-07

shift:714809 equal: 502137 probability: 0.9999904 1e-05

shift:736026 equal: 502140 probability: 0.9999907 9e-06

shift:750269 equal: 502137 probability: 0.9999904 1e-05

shift:753153 equal: 502283 probability: 0.9999975 2e-06

shift:762585 equal: 502172 probability: 0.9999930 7e-06

shift:785731 equal: 502314 probability: 0.9999982 2e-06

shift:837853 equal: 502133 probability: 0.9999901 1e-05

shift:930146 equal: 502136 probability: 0.9999904 1e-05
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shift:936972 equal: 497783 probability: 0.0000047 5e-06

shift:938343 equal: 497714 probability: 0.0000024 2e-06

A.3.3 Coupon Collector’s Test

The coupon collector’s test splits up the bit sequence into subsequent, disjoint m-tuples
of bits. m is called the word length of the test. In the test, the number of subsequent
m-tuples it takes until all possible 2m m-tuples have appeared, is evaluated statistically.
The coupon collector’s test is also applied to cyclic shifts of the original sequence.

COUPON COLLECTOR’S TEST for

ARIA Block Cipher in OFB mode

Sequencelength = 10000000 bits Wordlength = 8 bits

Ideal distribution: mean variance

1567.8323 105979.0660

Real distribution:

The results are for cyclic shifts

Shift: 0 1 2 3 4 5 6 7

------------------------------------------------------------------------

mean: 1564.018 1557.151 1563.635 1556.137 1573.928 1570.389 1553.832 1563.620

error: -0.24% -0.68% -0.27% -0.75% 0.39% 0.16% -0.89% -0.27%

variance: 96552 100397 101294 97483 99609 104829 100415 91931

error: -8.89% -5.27% -4.42% -8.02% -6.01% -1.09% -5.25% -13.26%

p= 52.73% 23.15% 8.14% 10.45% 23.91% 51.24% 64.06% 56.51%

p gives the percentage level of acceptance of the chi-square test

This percentage level gives the probability that a truly random

sequence has a chi-square value greater than the chi-square value

observed in this execution of the test.

A.3.4 Fast Spectral Test

The fast spectral test applies the fast Walsh transform to the given sequence. It uses two
values derived from the transform to assess the randomness of the sequence.

Fast Spectral Test for

ARIA Block Cipher in OFB mode

The results are:

The statistic D(4) = 1.109035E-01; percentage level of significance: 54.4%

The statistic D(6) = 3.319439E-01; percentage level of significance: 63.0%

A.3.5 Frequency Test

The frequency test splits up the bit sequence into subsequent, disjoint m-tuples of bits. m
is called the blocksize of the test. The frequencies of the occurrences of these m-tuples are
counted and evaluated statistically. This test is performed for various values of m.
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Frequency Test for

ARIA Block Cipher in OFB mode

Number of bits generated and ignored before starting to test: 0

Number of bits used for testing: 10000000

Block size: 1

sequencelength= 10000000 blocksize= 1

block: 0 count: 4999131

block: 1 count: 5000869

chisquare = 0.302064 nu= 1

Percentage Level of Acceptance: 58.26

Frequency Test for

ARIA Block Cipher in OFB mode

Number of bits generated and ignored before starting to test: 0

Number of bits used for testing: 10000000

Block size: 2

sequencelength= 10000000 blocksize= 2

block: 0 count: 1250113

block: 1 count: 1248498

block: 2 count: 1249284

block: 3 count: 1252105

chisquare = 5.769963 nu= 3

Percentage Level of Acceptance: 12.34

Frequency Test for

ARIA Block Cipher in OFB mode

Number of bits generated and ignored before starting to test: 0

Number of bits used for testing: 10000000

Block size: 3

sequencelength= 10000000 blocksize= 3

block: 0 count: 416471

block: 1 count: 416642

block: 2 count: 416992

block: 3 count: 416992

block: 4 count: 416770

block: 5 count: 417074

block: 6 count: 415999

block: 7 count: 416393

chisquare = 2.274835 nu= 7

Percentage Level of Acceptance: 94.31

Frequency Test for

ARIA Block Cipher in OFB mode

Number of bits generated and ignored before starting to test: 0

Number of bits used for testing: 10000000

Block size: 4

sequencelength= 10000000 blocksize= 4

block: 0 count: 156215

block: 1 count: 155865

block: 2 count: 155908

block: 3 count: 155533

block: 4 count: 156951

block: 5 count: 156513

block: 6 count: 156182

block: 7 count: 155926

block: 8 count: 156307

block: 9 count: 156814

block: 10 count: 155977

block: 11 count: 156337

block: 12 count: 156042

block: 13 count: 156415

block: 14 count: 156393
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block: 15 count: 156622

chisquare = 13.334003 nu= 15

Percentage Level of Acceptance: 57.65

Frequency Test for

ARIA Block Cipher in OFB mode

Number of bits generated and ignored before starting to test: 0

Number of bits used for testing: 10000000

Block size: 5

sequencelength= 10000000 blocksize= 5

block: 0 count: 62336

block: 1 count: 62375

block: 2 count: 62264

block: 3 count: 62464

block: 4 count: 62761

block: 5 count: 62364

block: 6 count: 62678

block: 7 count: 62527

block: 8 count: 62710

block: 9 count: 62411

block: 10 count: 62534

block: 11 count: 62123

block: 12 count: 62672

block: 13 count: 62674

block: 14 count: 62129

block: 15 count: 62742

block: 16 count: 62110

block: 17 count: 62413

block: 18 count: 62768

block: 19 count: 62378

block: 20 count: 62960

block: 21 count: 62627

block: 22 count: 62784

block: 23 count: 62238

block: 24 count: 62485

block: 25 count: 62499

block: 26 count: 62443

block: 27 count: 63158

block: 28 count: 62646

block: 29 count: 62044

block: 30 count: 62224

block: 31 count: 62459

chisquare = 32.589888 nu= 31

Percentage Level of Acceptance: 38.86

Frequency Test for

ARIA Block Cipher in OFB mode

Number of bits generated and ignored before starting to test: 0

Number of bits used for testing: 10000000

Block size: 6

sequencelength= 10000000 blocksize= 6

chisquare = 69.839738 nu= 63

Percentage Level of Acceptance: 25.87

Frequency Test for

ARIA Block Cipher in OFB mode

Number of bits generated and ignored before starting to test: 0

Number of bits used for testing: 10000000

Block size: 7

sequencelength= 10000000 blocksize= 7

chisquare = 158.224356 nu= 127

Percentage Level of Acceptance: 3.15
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Frequency Test for

ARIA Block Cipher in OFB mode

Number of bits generated and ignored before starting to test: 0

Number of bits used for testing: 10000000

Block size: 8

sequencelength= 10000000 blocksize= 8

chisquare = 272.999424 nu= 255

Percentage Level of Acceptance: 20.94

Frequency Test for

ARIA Block Cipher in OFB mode

Number of bits generated and ignored before starting to test: 0

Number of bits used for testing: 10000000

Block size: 12

sequencelength= 10000000 blocksize= 12

chisquare = 4093.920571 nu= 4095

Percentage Level of Acceptance: 50.18

Frequency Test for

ARIA Block Cipher in OFB mode

Number of bits generated and ignored before starting to test: 0

Number of bits used for testing: 10000000

Block size: 16

sequencelength= 10000000 blocksize= 16

chisquare = 65566.778061 nu= 65535

Percentage Level of Acceptance: 46.43

A.3.6 Gap Test

The gap test splits up the bit sequence into subsequent, disjoint m-tuples of bits. m is
called the word length of the test. The m-tuples are interpreted as binary representations
of numbers, and the lengths of gaps, where the numbers are not within a numerical range
given as a parameter of the test, are registered and evaluated statistically. The gap test is
also applied to cyclic shifts of the original sequence.

GAP TEST for

ARIA Block Cipher in OFB mode

Sequencelength = 10000000 bits Wordlength = 10 bits

Length of gaps between occurences in the range 256 - 768

Ideal distribution: mean variance

1.000 2.000

Real distribution:

Shift: 0 1 2 3 4 5 6 7 8 9

--------------------------------------------------------------------------------

mean: 1.002 1.001 1.001 1.003 1.000 1.001 1.001 1.004 1.001 0.998

error: 0.25% 0.11% 0.11% 0.31% -0.02% 0.11% 0.07% 0.38% 0.11% -0.22%

variance: 2.001 2.006 2.012 2.006 2.004 1.997 2.007 2.000 1.995 1.988

error: 0.06% 0.29% 0.61% 0.31% 0.20% -0.17% 0.33% -0.02% -0.25% -0.59%

p= 15.36% 49.85% 20.86% 38.82% 22.11% 3.33% 84.54% 12.38% 20.80% 80.39%

p gives the percentage level of acceptance of the chi-square test

This percentage level gives the probability that a truly random

sequence has a chi-square value greater than the chi-square value

observed in this execution of the test.
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499383 499722 499718 499224 500050 499727 499834 499054 499713 500559

--------------------------------------------------------------------------------

0 5.00e-01 249377 249812 250084 249169 250496 249198 249736 248681 249685 250488

1 2.50e-01 124363 125008 124604 124905 124490 125415 125387 124779 124729 125057

2 1.25e-01 63111 62337 62374 62463 62476 62831 62271 62855 62383 62604

3 6.25e-02 31210 31217 31341 31221 31324 31159 31079 31467 31803 31279

4 3.12e-02 15766 15481 15536 15699 15630 15553 15595 15729 15570 15668

5 1.56e-02 7834 7961 7883 7956 7666 7704 7872 7879 7745 7757

6 7.81e-03 3777 4026 3947 3856 3934 3946 3969 3838 3954 3899

7 3.91e-03 1995 1919 2002 1962 2032 1971 1970 1872 1964 1877

8 1.95e-03 974 970 950 989 1035 1000 972 981 966 973

9 9.77e-04 487 516 478 529 512 504 474 479 449 476

10 4.88e-04 261 239 269 266 237 193 256 245 228 238

11 2.44e-04 102 110 110 106 112 116 112 117 120 125

12 1.22e-04 64 70 64 50 51 68 74 57 52 53

13 6.10e-05 32 24 36 26 32 39 35 45 35 35

14 3.05e-05 14 18 18 16 13 16 15 14 15 21

15 1.53e-05 7 8 6 6 3 3 9 8 5 5

16 7.63e-06 6 4 9 2 6 8 5 5 2 3

17 3.81e-06 1 1 5 1 1 2 0 2 4 0

18 1.91e-06 2 1 1 2 0 1 3 1 3 1

19 9.54e-07 0 0 0 0 0 0 0 0 1 0

20 9.54e-07 0 0 1 0 0 0 0 0 0 0

A.3.7 Linear Complexity Test

The linear complexity test uses the Berlekamp Massey algorithm to determine the length
of the shortest linear feedback shift register which can produce the given bit sequence. For
the linear complexity profile, this is done for the first 1, 2, 3, . . . bits of the sequence. Some
properties of this profile are evaluated.

Linear Complexity Test for

ARIA Block Cipher in OFB mode

-------------------- Final results ------------------

N= 100000 L= 50000 X= 4

N is the number of input bits.

L is the linear complexity.

X-1 is the number of bits which has been treated since

the last change of linear complexity.

------------------------- End -----------------------

The linear complexity profile:

Jumps in the linear complexity profile:

ssl = 99999.000 ssqsl = 500217.000

msl = 4.000 varsl = 4.009

41



K.U.Leuven January 7, 2004 FINAL REPORT

ssh = 50000.000 ssqsh = 149770.000

msh = 2.000 varsh = 1.991

ssl is the sum of the sl’s

ssqsl is the sum of the squares of the sl’s

msl is the mean of the sl’s

varsl is the variance of the sl’s

The number of jumps used in the calculation of msl and varsl is: 25000

The first sl is not counted because it is 0

ssh is the sum of the sh’s

ssqsh is the sum of the squares of the sh’s

msh is the mean of the sh’s

varsh is the variance of the sh’s

The number of jumps used in the calculation of msh and varsh is: 25000

maximal step-height 15.000000

sl is the steplength

sh is the stepheigth

nj is the number of jumps

A.3.8 Maurer Test

The universal Maurer test splits up the bit sequence into subsequent, disjoint m-tuples
of bits. m is called the blocksize of the test. The test evaluates statistically how many
m-tuples later an m-tuple re-appears in the sequence. The test result of the Maurer test
is closely related to the entropy of the bit sequence.

Maurer Test for

ARIA Block Cipher in OFB mode

Number of bits generated and ignored before starting to test: 0

Number of bits used for testing: 1000000

Block size: 8

Initial Blocks= 10000

blocks tested (including initial blocks): 125000

Maurer Test Value: 7.186465

A.3.9 Overlapping m-tuple Test

The overlapping m-tuple test splits up the bit sequence into m-tuples of words. Each word
contains a fixed number of bits. In the overlapping m-tuple test, the m-tuples are not
disjoint; to take the next m-tuple, an m-word-window on the original sequence is shifted
by one word. So the next m-tuple consists of m − 1 shifted words of the previous m-
tuple and one new word. Since subsequent m-tuples are not independent, the statistical
evaluation is more involved than in the case of the frequency test, but this is handled by
the test program. This test is also applied to cyclic shifts of the original sequence.
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OVERLAPPING M-TUPLE TEST for

ARIA Block Cipher in OFB mode

Sequencelength = 10000000 bits Wordlength = 5 bits

m = 2

Shift p

--------------

0 76.91%

1 51.17%

2 10.98%

3 49.59%

4 91.45%

p gives the percentage level of acceptance of the chi-square test

This percentage level gives the probability that a truly random

sequence has a chi-square value greater than the chi-square value

observed in this execution of the test.

A.3.10 Maximum Order Complexity Test

The maximum order complexity test determines the length of the shortest possibly non-
linear feedback shift register which can produce the given bit sequence. For the MOC
profile, this is done for the first 1, 2, 3, . . . bits of the sequence. The changes in this profile
are studied.

Maximum Order Complexity (MOC) Test for

ARIA Block Cipher in OFB mode

The changes in the MOC profile:

2 1 ( 2.00)

4 2 ( 4.00)

7 4 ( 5.61)

16 6 ( 8.00)

20 7 ( 8.64)

30 13 ( 9.81)

207 15 (15.39)

306 17 (16.51)

467 18 (17.73)

1066 20 (20.12)

2137 21 (22.12)

3135 23 (23.23)

3160 24 (23.25)

6240 26 (25.21)

8833 27 (26.22)

12573 28 (27.24)

34820 30 (30.18)

40466 31 (30.61)

79864 32 (32.57)

176634 34 (34.86)

297505 38 (36.37)

The number of inputcharacters: 1000000

The number of nodes: 1999958

The number of edges: 2754619

The MOC is: 38
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A.3.11 Poker Test

The poker test splits up the bit sequence into subsequent, disjoint m-tuples of bits. m is
called the word length of the test. The sequence of m-tuples is split up into subsequent,
disjoint k-tuples of m-tuples. The poker test evaluates statistically how many of the m-
tuples in a k-tuple are equal. The poker test is also applied to cyclic shifts of the original
sequence.

POKER TEST for

ARIA Block Cipher in OFB mode

Sequencelength = 9999360 bits Wordlength = 8 bits

Elements in a k-tuple: 128

Ideal distribution: mean variance

100.8801 13.9923

Real distribution:

Shift: 0 1 2 3 4 5 6 7

----------------------------------------------------------------

mean: 100.924 100.891 100.846 100.845 100.877 100.901 100.884 100.928

error: 0.04% 0.01% -0.03% -0.04% -0.00% 0.02% 0.00% 0.05%

variance: 14.094 13.906 13.974 13.788 13.884 13.798 13.889 13.889

error: 0.73% -0.61% -0.13% -1.46% -0.77% -1.39% -0.73% -0.74%

p= 61.02% 39.95% 59.36% 32.05% 25.75% 51.71% 77.19% 78.63%

p gives the percentage level of acceptance of the chi-square test

This percentage level gives the probability that a truly random

sequence has a chi-square value greater than the chi-square value

observed in this execution of the test.

n= 9765

----------------------------------------------------------------

65 0.0 0 0 0 0 0 0 0 0

66 0.0 0 0 0 0 0 0 0 0

67 0.0 0 0 0 0 0 0 0 0

68 0.0 0 0 0 0 0 0 0 0

69 0.0 0 0 0 0 0 0 0 0

70 0.0 0 0 0 0 0 0 0 0

71 0.0 0 0 0 0 0 0 0 0

72 0.0 0 0 0 0 0 0 0 0

73 0.0 0 0 0 0 0 0 0 0

74 0.0 0 0 0 0 0 0 0 0

75 0.0 0 0 0 0 0 0 0 0

76 0.0 0 0 0 0 0 0 0 0

77 0.0 0 0 0 0 0 0 0 0

78 0.0 0 0 0 0 0 0 0 0

79 0.0 0 0 0 0 0 0 0 0

80 0.0 0 0 0 0 0 0 0 0

81 0.0 0 0 0 0 0 0 0 0

82 0.0 0 0 0 0 0 0 0 0

83 0.0 0 0 0 0 0 0 0 0

84 0.1 0 0 0 0 0 0 0 0

85 0.2 0 0 0 0 0 0 0 0

86 0.5 0 0 0 0 1 1 0 0

87 1.4 1 1 0 0 3 1 2 2

88 3.4 5 3 0 4 5 3 4 7

89 7.9 5 7 5 4 6 14 9 5

90 17.1 9 18 19 22 16 17 13 10

91 34.6 33 28 31 34 31 28 39 32

92 65.6 77 63 72 74 63 63 56 62

93 116.4 106 124 125 108 147 106 118 132

94 193.7 207 190 200 200 173 196 182 188
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95 301.5 300 293 298 316 289 294 291 282

96 439.3 420 423 470 425 445 413 439 430

97 598.4 582 629 575 556 574 570 589 590

98 761.8 781 752 790 807 768 790 811 746

99 905.7 947 921 923 901 900 941 914 907

100 1004.9 983 991 1006 1023 1037 1015 993 982

101 1039.5 993 1048 1017 1107 1038 1042 1068 1057

102 1001.7 963 988 1013 1014 1001 994 1035 1045

103 898.3 910 924 856 840 917 880 834 875

104 748.7 768 743 783 713 725 801 729 779

105 579.2 566 583 546 577 581 541 567 577

106 415.3 447 442 389 437 440 440 422 408

107 275.6 290 234 289 266 247 268 299 296

108 168.9 182 158 170 167 188 164 166 170

109 95.5 101 108 100 87 84 87 98 90

110 49.6 52 45 50 52 56 55 44 54

111 23.7 22 21 21 17 16 28 28 22

112 10.3 9 19 12 8 10 8 11 8

113 4.1 5 7 3 4 3 3 1 7

114 1.5 1 1 2 2 1 2 2 2

115 0.5 0 1 0 0 0 0 1 0

116 0.1 0 0 0 0 0 0 0 0

117 0.0 0 0 0 0 0 0 0 0

118 0.0 0 0 0 0 0 0 0 0

119 0.0 0 0 0 0 0 0 0 0

120 0.0 0 0 0 0 0 0 0 0

121 0.0 0 0 0 0 0 0 0 0

122 0.0 0 0 0 0 0 0 0 0

123 0.0 0 0 0 0 0 0 0 0

124 0.0 0 0 0 0 0 0 0 0

125 0.0 0 0 0 0 0 0 0 0

126 0.0 0 0 0 0 0 0 0 0

127 0.0 0 0 0 0 0 0 0 0

128 0.0 0 0 0 0 0 0 0 0

A.3.12 Rank Test

In the rank test, the bits of the sequence to test are used to fill square matrices. The bits
are treated as elements of the field GF (2), and the ranks of the matrices are evaluated
statistically.

Rank test for

ARIA Block Cipher in OFB mode

Number of bits generated and ignored before starting to test: 0

Number of bits used for testing: 10000000

Order of the matrix: 16

Number of ranks counted individually: 3

11308 matrices with rank 16, expected: 11280.8

22398 matrices with rank 15, expected: 22561.3

5142 matrices with rank 14, expected: 5013.5

214 matrices with rank 13 or less, expected: 206.4

chisquare = 4.819368 nu = 3

Percentage level of acceptance 18.55
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A.3.13 Run Test

The run test splits up the bit sequence into subsequent, disjoint m-tuples of bits. m is
called the word length of the test. The m-tuples are interpreted as binary representations
of numbers. The lengths of subsequences of consecutive, strictly increasing numbers are
evaluated statistically.

Run Test for

ARIA Block Cipher in OFB mode

Number of bits generated and ignored before starting to test: 0

Number of bits used for testing: 10000000

Block size: 16

Maximal run length registered individually: 5

Total of 229976 runs

115081 runs of length 1 expected: 114989.8

76502 runs of length 2 expected: 76658.7

28919 runs of length 3 expected: 28746.1

7582 runs of length 4 expected: 7665.3

1548 runs of length 5 expected: 1596.8

344 runs of length 6 or more expected: 319.3

chisquare = 5.735269 nu = 5

Percentage level of acceptance 33.28

A.3.14 Ziv Lempel Test

The Ziv Lempel complexity test measures how well a bit sequence can be reconstructed
from earlier parts of the bit sequence.

ARIA Block Cipher in OFB mode1000000 input bits of the input file have been handled.

The Ziv Lempel complexity equals 50722.

((1000000 / log2(1000000)) = 50171.665944)

A sequence of length n is considered to be a good pseudo-random

sequence if its Ziv Lempel complexity is greater than n/log2(n).

The maximum length of a component in the history equals 34.

(log2(1000000) = 19.931569)
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A.4 Aria in CTR Mode

(For a short explanation of the tests, we refer to Section A.3.)

A.4.1 Collision Test

Collision Test for

ARIA Block Cipher in CTR mode

Number of bits generated and ignored before starting to test: 0

Number of bits used for testing: 10000000

Block size: 24

# of blocks: 416666 blocksize: 24 collisions: 5037

A.4.2 Correlation Test

Correlation Test for

ARIA Block Cipher in CTR mode

Number of bits generated and ignored before starting to test: 0

Number of bits used for testing: 1000000

Printlevel: 0.000010

shift:0 equal: 1000000 probability: 1.0000000 0e+00

shift:54885 equal: 502136 probability: 0.9999904 1e-05

shift:140731 equal: 502204 probability: 0.9999948 5e-06

shift:171111 equal: 497510 probability: 0.0000003 3e-07

shift:251253 equal: 497660 probability: 0.0000014 1e-06

shift:265161 equal: 502193 probability: 0.9999942 6e-06

shift:292623 equal: 497834 probability: 0.0000074 7e-06

shift:332018 equal: 502512 probability: 0.9999997 3e-07

shift:483799 equal: 497713 probability: 0.0000024 2e-06

shift:531567 equal: 502174 probability: 0.9999932 7e-06

shift:547000 equal: 502161 probability: 0.9999923 8e-06

shift:571434 equal: 497844 probability: 0.0000081 8e-06

shift:712586 equal: 502141 probability: 0.9999908 9e-06

shift:847853 equal: 497843 probability: 0.0000081 8e-06

shift:883874 equal: 497827 probability: 0.0000070 7e-06

shift:892412 equal: 497782 probability: 0.0000046 5e-06

shift:959250 equal: 502222 probability: 0.9999956 4e-06

shift:994331 equal: 502138 probability: 0.9999905 9e-06

A.4.3 Coupon Collector’s Test

COUPON COLLECTOR’S TEST for

ARIA Block Cipher in CTR mode

Sequencelength = 10000000 bits Wordlength = 8 bits

Ideal distribution: mean variance

1567.8323 105979.0660

Real distribution:

The results are for cyclic shifts

Shift: 0 1 2 3 4 5 6 7

------------------------------------------------------------------------

mean: 1568.305 1577.630 1577.013 1557.544 1551.794 1577.855 1546.583 1575.942

error: 0.03% 0.62% 0.59% -0.66% -1.02% 0.64% -1.36% 0.52%

variance: 101936 104888 111366 102445 101865 103196 97178 101377

error: -3.82% -1.03% 5.08% -3.33% -3.88% -2.63% -8.30% -4.34%
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p= 25.78% 76.83% 38.74% 94.13% 60.54% 2.45% 79.23% 90.74%

p gives the percentage level of acceptance of the chi-square test

This percentage level gives the probability that a truly random

sequence has a chi-square value greater than the chi-square value

observed in this execution of the test.

A.4.4 Fast Spectral Test

Fast Spectral Test for

ARIA Block Cipher in CTR mode

The results are:

The statistic D(4) = 2.563838E-01; percentage level of significance: 60.1%

The statistic D(6) = 1.710740E-01; percentage level of significance: 56.8%

A.4.5 Frequency Test

Frequency Test for

ARIA Block Cipher in CTR mode

Number of bits generated and ignored before starting to test: 0

Number of bits used for testing: 10000000

Block size: 12

sequencelength= 10000000 blocksize= 12

chisquare = 4044.719399 nu= 4095

Percentage Level of Acceptance: 70.90

Frequency Test for

ARIA Block Cipher in CTR mode

Number of bits generated and ignored before starting to test: 0

Number of bits used for testing: 10000000

Block size: 16

sequencelength= 10000000 blocksize= 16

chisquare = 65672.264806 nu= 65535

Percentage Level of Acceptance: 35.17

Frequency Test for

ARIA Block Cipher in CTR mode

Number of bits generated and ignored before starting to test: 0

Number of bits used for testing: 10000000

Block size: 1

sequencelength= 10000000 blocksize= 1

block: 0 count: 4996829

block: 1 count: 5003171

chisquare = 4.022096 nu= 1

Percentage Level of Acceptance: 4.49

Frequency Test for

ARIA Block Cipher in CTR mode

Number of bits generated and ignored before starting to test: 0

Number of bits used for testing: 10000000

Block size: 2

sequencelength= 10000000 blocksize= 2
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block: 0 count: 1248111

block: 1 count: 1251196

block: 2 count: 1250787

block: 3 count: 1249906

chisquare = 4.501554 nu= 3

Percentage Level of Acceptance: 21.22

Frequency Test for

ARIA Block Cipher in CTR mode

Number of bits generated and ignored before starting to test: 0

Number of bits used for testing: 10000000

Block size: 3

sequencelength= 10000000 blocksize= 3

block: 0 count: 416774

block: 1 count: 416268

block: 2 count: 416447

block: 3 count: 417067

block: 4 count: 417602

block: 5 count: 417038

block: 6 count: 416692

block: 7 count: 415445

chisquare = 6.923578 nu= 7

Percentage Level of Acceptance: 43.69

Frequency Test for

ARIA Block Cipher in CTR mode

Number of bits generated and ignored before starting to test: 0

Number of bits used for testing: 10000000

Block size: 4

sequencelength= 10000000 blocksize= 4

block: 0 count: 156542

block: 1 count: 155889

block: 2 count: 156863

block: 3 count: 156415

block: 4 count: 156146

block: 5 count: 155621

block: 6 count: 156211

block: 7 count: 156038

block: 8 count: 156445

block: 9 count: 156250

block: 10 count: 156139

block: 11 count: 156511

block: 12 count: 156238

block: 13 count: 156465

block: 14 count: 156000

block: 15 count: 156227

chisquare = 8.315942 nu= 15

Percentage Level of Acceptance: 91.05

Frequency Test for

ARIA Block Cipher in CTR mode

Number of bits generated and ignored before starting to test: 0

Number of bits used for testing: 10000000

Block size: 5

sequencelength= 10000000 blocksize= 5

block: 0 count: 62778

block: 1 count: 62388

block: 2 count: 62392

block: 3 count: 62733

block: 4 count: 62780

block: 5 count: 62300

block: 6 count: 62432
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block: 7 count: 62642

block: 8 count: 62530

block: 9 count: 62118

block: 10 count: 62345

block: 11 count: 62439

block: 12 count: 62898

block: 13 count: 62225

block: 14 count: 62430

block: 15 count: 62442

block: 16 count: 62487

block: 17 count: 62844

block: 18 count: 62449

block: 19 count: 62439

block: 20 count: 62630

block: 21 count: 62775

block: 22 count: 62416

block: 23 count: 62527

block: 24 count: 62803

block: 25 count: 62218

block: 26 count: 61925

block: 27 count: 62757

block: 28 count: 62454

block: 29 count: 62564

block: 30 count: 62352

block: 31 count: 62488

chisquare = 24.595776 nu= 31

Percentage Level of Acceptance: 78.55

Frequency Test for

ARIA Block Cipher in CTR mode

Number of bits generated and ignored before starting to test: 0

Number of bits used for testing: 10000000

Block size: 6

sequencelength= 10000000 blocksize= 6

chisquare = 61.602166 nu= 63

Percentage Level of Acceptance: 52.63

Frequency Test for

ARIA Block Cipher in CTR mode

Number of bits generated and ignored before starting to test: 0

Number of bits used for testing: 10000000

Block size: 7

sequencelength= 10000000 blocksize= 7

chisquare = 107.662165 nu= 127

Percentage Level of Acceptance: 89.23

Frequency Test for

ARIA Block Cipher in CTR mode

Number of bits generated and ignored before starting to test: 0

Number of bits used for testing: 10000000

Block size: 8

sequencelength= 10000000 blocksize= 8

chisquare = 253.698662 nu= 255

Percentage Level of Acceptance: 51.12

A.4.6 Gap Test

GAP TEST for

ARIA Block Cipher in CTR mode
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Sequencelength = 10000000 bits Wordlength = 10 bits

Length of gaps between occurences in the range 256 - 768

Ideal distribution: mean variance

1.000 2.000

Real distribution:

Shift: 0 1 2 3 4 5 6 7 8 9

--------------------------------------------------------------------------------

mean: 1.001 1.001 0.999 0.996 1.003 1.001 1.000 0.998 1.003 1.002

error: 0.05% 0.09% -0.06% -0.40% 0.26% 0.10% -0.05% -0.19% 0.30% 0.22%

variance: 2.004 2.005 1.997 1.982 2.004 2.007 1.992 1.989 2.015 2.014

error: 0.22% 0.26% -0.16% -0.92% 0.18% 0.36% -0.39% -0.56% 0.76% 0.70%

p= 82.00% 65.96% 77.71% 45.91% 2.61% 48.22% 50.56% 44.18% 18.59% 25.38%

p gives the percentage level of acceptance of the chi-square test

This percentage level gives the probability that a truly random

sequence has a chi-square value greater than the chi-square value

observed in this execution of the test.

499867 499781 500139 500992 499353 499758 500121 500487 499250 499452

--------------------------------------------------------------------------------

0 5.00e-01 249908 250177 249923 250457 249047 249883 249972 250038 249240 249481

1 2.50e-01 125207 124391 125312 125871 125236 125081 125130 125699 124995 125050

2 1.25e-01 62120 62579 62593 62515 62609 62135 62468 62326 62327 62341

3 6.25e-02 31285 31218 31005 31334 30972 31182 31226 31540 31395 31320

4 3.12e-02 15671 15662 15685 15375 15653 15816 15852 15359 15631 15525

5 1.56e-02 7785 7929 7917 7691 8118 7729 7739 7798 7724 7739

6 7.81e-03 3934 3879 3821 3889 3889 4011 3920 3837 3887 4013

7 3.91e-03 1973 2042 1961 1952 1857 1965 1912 1955 2027 1952

8 1.95e-03 990 959 940 961 992 973 933 971 1017 997

9 9.77e-04 499 470 488 472 485 485 502 479 505 498

10 4.88e-04 259 231 239 230 257 254 228 242 229 287

11 2.44e-04 131 118 124 129 112 128 128 125 133 125

12 1.22e-04 48 61 70 61 63 63 48 54 59 59

13 6.10e-05 32 32 28 32 28 22 27 35 48 30

14 3.05e-05 12 19 18 10 22 10 18 16 16 23

15 1.53e-05 9 5 5 8 5 11 12 4 8 4

16 7.63e-06 1 3 4 0 4 5 4 6 4 4

17 3.81e-06 1 3 3 2 2 3 1 2 4 1

18 1.91e-06 1 1 1 2 1 0 1 1 0 2

19 9.54e-07 1 1 1 1 0 1 0 0 1 1

20 9.54e-07 0 1 1 0 1 1 0 0 0 0

A.4.7 Linear Complexity Test

Linear Complexity Test for

ARIA Block Cipher in CTR mode

-------------------- Final results ------------------

N= 100000 L= 50000 X= 2

N is the number of input bits.

L is the linear complexity.

X-1 is the number of bits which has been treated since

the last change of linear complexity.

------------------------- End -----------------------

The linear complexity profile:
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Jumps in the linear complexity profile:

ssl = 99999.000 ssqsl = 500385.000

msl = 4.005 varsl = 4.000

ssh = 50000.000 ssqsh = 149742.000

msh = 2.003 varsh = 1.987

ssl is the sum of the sl’s

ssqsl is the sum of the squares of the sl’s

msl is the mean of the sl’s

varsl is the variance of the sl’s

The number of jumps used in the calculation of msl and varsl is: 24967

ssh is the sum of the sh’s

ssqsh is the sum of the squares of the sh’s

msh is the mean of the sh’s

varsh is the variance of the sh’s

The number of jumps used in the calculation of msh and varsh is: 24966

maximal step-height 16.000000

sl is the steplength

sh is the stepheigth

nj is the number of jumps

A.4.8 Maurer Test

Maurer Test for

ARIA Block Cipher in CTR mode

Number of bits generated and ignored before starting to test: 0

Number of bits used for testing: 1000000

Block size: 8

Initial Blocks= 10000

blocks tested (including initial blocks): 125000

Maurer Test Value: 7.186712

A.4.9 Overlapping m-tuple Test

OVERLAPPING M-TUPLE TEST for

ARIA Block Cipher in CTR mode

Sequencelength = 10000000 bits Wordlength = 5 bits

m = 2

Shift p

--------------

0 33.43%

1 66.34%

2 81.14%

3 98.08%
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4 92.39%

p gives the percentage level of acceptance of the chi-square test

This percentage level gives the probability that a truly random

sequence has a chi-square value greater than the chi-square value

observed in this execution of the test.

A.4.10 Maximum Order Complexity Test

Maximum Order Complexity (MOC) Test for

ARIA Block Cipher in CTR mode

The changes in the MOC profile:

4 3 ( 4.00)

8 4 ( 6.00)

13 6 ( 7.40)

21 8 ( 8.78)

70 10 (12.26)

100 12 (13.29)

203 15 (15.33)

471 16 (17.76)

1480 18 (21.06)

1609 21 (21.30)

2569 25 (22.65)

4117 26 (24.01)

18566 28 (28.36)

53522 29 (31.42)

68436 30 (32.12)

73208 36 (32.32)

337039 37 (36.73)

The number of inputcharacters: 1000000

The number of nodes: 1999963

The number of edges: 2755189

The MOC is: 37

A.4.11 Poker Test

POKER TEST for

ARIA Block Cipher in CTR mode

Sequencelength = 9999360 bits Wordlength = 8 bits

Elements in a k-tuple: 128

Ideal distribution: mean variance

100.8801 13.9923

Real distribution:

Shift: 0 1 2 3 4 5 6 7

----------------------------------------------------------------

mean: 100.874 100.879 100.862 100.965 100.942 100.908 100.893 100.929

error: -0.01% -0.00% -0.02% 0.08% 0.06% 0.03% 0.01% 0.05%

variance: 13.897 13.803 13.815 13.935 13.527 13.766 13.760 13.715

error: -0.68% -1.35% -1.27% -0.41% -3.32% -1.62% -1.66% -1.98%

p= 68.77% 39.08% 83.46% 17.98% 74.42% 43.26% 26.80% 7.68%

p gives the percentage level of acceptance of the chi-square test
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This percentage level gives the probability that a truly random

sequence has a chi-square value greater than the chi-square value

observed in this execution of the test.

n= 9765

----------------------------------------------------------------

65 0.0 0 0 0 0 0 0 0 0

66 0.0 0 0 0 0 0 0 0 0

67 0.0 0 0 0 0 0 0 0 0

68 0.0 0 0 0 0 0 0 0 0

69 0.0 0 0 0 0 0 0 0 0

70 0.0 0 0 0 0 0 0 0 0

71 0.0 0 0 0 0 0 0 0 0

72 0.0 0 0 0 0 0 0 0 0

73 0.0 0 0 0 0 0 0 0 0

74 0.0 0 0 0 0 0 0 0 0

75 0.0 0 0 0 0 0 0 0 0

76 0.0 0 0 0 0 0 0 0 0

77 0.0 0 0 0 0 0 0 0 0

78 0.0 0 0 0 0 0 0 0 0

79 0.0 0 0 0 0 0 0 0 0

80 0.0 0 0 0 0 0 0 0 0

81 0.0 0 0 0 0 0 0 0 0

82 0.0 0 0 0 0 0 0 0 0

83 0.0 0 0 0 0 0 0 0 0

84 0.1 0 0 0 0 0 0 0 0

85 0.2 0 0 0 0 0 0 0 0

86 0.5 0 2 0 0 0 0 0 0

87 1.4 3 0 3 1 3 1 1 0

88 3.4 4 3 5 9 2 2 4 1

89 7.9 5 8 9 10 7 4 10 5

90 17.1 14 13 11 14 17 14 17 15

91 34.6 41 43 28 33 26 32 24 34

92 65.6 77 71 70 64 68 51 51 73

93 116.4 110 130 125 111 102 112 138 129

94 193.7 198 179 198 174 188 190 177 178

95 301.5 310 274 291 316 302 299 310 246

96 439.3 413 423 407 423 390 444 410 401

97 598.4 562 608 620 542 594 610 592 632

98 761.8 775 732 758 728 717 766 783 751

99 905.7 943 888 925 917 921 958 896 925

100 1004.9 978 1057 1004 1004 1034 976 1016 1035

101 1039.5 1049 1068 1067 1039 1070 1028 1092 1085

102 1001.7 1014 1024 1010 1017 1011 1051 1049 981

103 898.3 936 911 922 886 909 812 822 878

104 748.7 725 752 750 820 780 748 739 748

105 579.2 580 601 571 612 593 607 589 602

106 415.3 412 370 370 399 435 410 431 408

107 275.6 253 270 262 272 258 291 265 295

108 168.9 186 148 172 181 163 174 161 150

109 95.5 100 94 92 111 96 98 95 94

110 49.6 44 50 50 52 44 48 50 54

111 23.7 18 23 28 19 20 21 26 30

112 10.3 8 15 12 6 9 12 11 8

113 4.1 4 6 1 1 5 6 6 4

114 1.5 3 0 3 2 1 0 0 2

115 0.5 0 1 0 0 0 0 0 1

116 0.1 0 1 1 1 0 0 0 0

117 0.0 0 0 0 1 0 0 0 0

118 0.0 0 0 0 0 0 0 0 0

119 0.0 0 0 0 0 0 0 0 0

120 0.0 0 0 0 0 0 0 0 0

121 0.0 0 0 0 0 0 0 0 0

122 0.0 0 0 0 0 0 0 0 0

123 0.0 0 0 0 0 0 0 0 0
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124 0.0 0 0 0 0 0 0 0 0

125 0.0 0 0 0 0 0 0 0 0

126 0.0 0 0 0 0 0 0 0 0

127 0.0 0 0 0 0 0 0 0 0

128 0.0 0 0 0 0 0 0 0 0

A.4.12 Rank Test

Rank test for

ARIA Block Cipher in CTR mode

Number of bits generated and ignored before starting to test: 0

Number of bits used for testing: 10000000

Order of the matrix: 16

Number of ranks counted individually: 3

11154 matrices with rank 16, expected: 11280.8

22619 matrices with rank 15, expected: 22561.3

5071 matrices with rank 14, expected: 5013.5

218 matrices with rank 13 or less, expected: 206.4

chisquare = 2.880692 nu = 3

Percentage level of acceptance 41.04

A.4.13 Run Test

Run Test for

ARIA Block Cipher in CTR mode

Number of bits generated and ignored before starting to test: 0

Number of bits used for testing: 10000000

Block size: 16

Maximal run length registered individually: 5

Total of 230147 runs

115236 runs of length 1 expected: 115075.3

76813 runs of length 2 expected: 76715.7

28648 runs of length 3 expected: 28767.5

7568 runs of length 4 expected: 7671.0

1571 runs of length 5 expected: 1598.0

311 runs of length 6 or more expected: 319.6

chisquare = 2.914010 nu = 5

Percentage level of acceptance 71.32

A.4.14 Ziv Lempel Test

ARIA Block Cipher in CTR mode1000000 input bits of the input file have been handled.

The Ziv Lempel complexity equals 50787.

((1000000 / log2(1000000)) = 50171.665944)

A sequence of length n is considered to be a good pseudo-random

sequence if its Ziv Lempel complexity is greater than n/log2(n).

The maximum length of a component in the history equals 39.

(log2(1000000) = 19.931569)
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