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Changes with respect to Round 1 submission

Very few changes were made between the round 1 version and the round 2 version of Saber.
The only changes made are as follows:

• Transposing matrixAAA: in Saber.PKE.KeyGen given in Algorithm 1, the matrixAAA is now
transposed in line 5. On the other hand, in Saber.PKE.Enc given in Algorithm 2 the
matrix AAA is used without transpose in line 5. In the first round submission, this was
the exact opposite: we used AAA in KeyGen, whereas AAAT was used in Enc. The advantage
of the new approach is that it allows to speed-up encryption.

• The parameter T : to simplify the description of the algorithms we introduced a pa-
rameter T which equals 2t in the first round submission. This has no impact on the
actual implementation.

• Simplification of the specification: the round 2 version of Saber has a much simpler
specification than the round 1 version by working entirely in the interval [0, q[ and
never resorting to the centered interval [−q/2, q/2]. This has no impact on the actual
implementation.

• The constant polynomial h has been removed and replaced by two new constant poly-
nomials h1 and h2. This is needed to provably reduce the security of Saber to Mod-LWR
and it slightly changes the implementation.

Changes with respect to Round 2 submission

• There are no changes to the specification of the scheme, all parameters are the same
as in round 2.

• We updated the security estimates of Saber to account for an error in the Round 2
submission document as reported on the mailing list. To provide confidence the security
estimate is calculated using three independent scripts.

• We thoroughly refactored the Saber reference implementation, making it easier to work
with and reducing the codebase.

• We included an appendix containing two alternate instantiations of Saber (these are
not part of the main submission):

– Uniform Saber or uSaber: the distribution of the secret key vector is now uni-
formly random. This allows for more efficient secret key vector generation and
might have advantages from a side-channel security point of view.

– Saber-90s: replaces the hashing and pseudorandom number generating functions
with well established functions for which there is widespread hardware support.
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• Efficient implementations of Saber on a wide range of platforms have been added in
Section 5.

• We have added a description of a masked implementation of Saber decapsulation on
ARM Cortex-M4 in Section 5.2.1.

• We added a discussion on the concrete side-channel security of Saber in 6.4.
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1 Introduction

Lattice based cryptography is one of the most promising cryptographic families that is
believed to offer resistance to quantum computers. We introduce Saber [18], a family of
cryptographic primitives that rely on the hardness of the Module Learning With Rounding
problem (Mod-LWR). We first describe Saber.PKE, an IND-CPA secure encryption scheme,
and transform it into Saber.KEM, an IND-CCA secure key encapsulation mechanism, using
a version of the Fujisaki-Okamoto transform. The design goals of Saber were simplicity,
efficiency and flexibility resulting in the following choices: all integer moduli are powers
of 2 avoiding modular reduction and rejection sampling entirely; the use of LWR halves the
amount of randomness required compared to LWE based schemes and reduces bandwidth;
the module structure provides flexibility by reusing one core component for multiple security
levels.

2 General algorithm specification (part of 2.B.1)

2.1 Notation

We denote with Zq the ring of integers modulo an integer q with representants in [0, q) and
for an integer z, we denote with z mod q the reduction of z in [0, q). Rq is the quotient ring
Zq[X]/(Xn + 1) with n a fixed power of 2 (we only need n = 256). For any ring R, Rl×k

denotes the ring of l × k-matrices over R. For p | q, the mod p operator is extended to
(matrices over) Rq by applying it coefficient-wise. Single polynomials are written without
markup, vectors are bold lower case and matrices are denoted with bold upper case. If χ is a
probability distribution over a set S, then x← χ denotes sampling x ∈ S according to χ. If χ
is defined on Zq, XXX ← χ(Rl×k

q ) denotes sampling the matrix XXX ∈ Rl×k
q , where all coefficients

of the entries in XXX are sampled from χ. The randomness that is used to generate the
distribution can be specified as follows: XXX ← χ(Rl×k

q ; r), which means that the coefficients
of the entries in matrix XXX ∈ Rl×k

q are sampled deterministically from the distribution χ
using seed r. U denotes the uniform distribution and βµ is a centered binomial distribution
with parameter µ (where µ is even and the samples are in the interval [−µ/2, µ/2]) with
probability mass function P [x|x← βµ] = µ!

(µ/2+x)!(µ/2−x)!2
−µ.

The bitwise shift operations � and � have the usual meaning when applied to an integer
and are extended to polynomials and matrices by applying them coefficient-wise.

2.2 Parameter space

The parameters for Saber are:

• n, l: The degree n = 256 of the polynomial ring Zq[X]/(Xn + 1) and the rank l of
the module which determine the dimension of the underlying lattice problem as l · n.
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Increasing the dimension of the lattice problem increases the security, but reduces the
correctness.

• q, p, T : The moduli involved in the scheme are chosen to be powers of 2, in particular
q = 2εq , p = 2εp and T = 2εT with εq > εp > εT , so we have T | p | q. A higher choice
for parameters p and T , will result in lower security, but higher correctness. A python
script that calculates optimal values for p and T is part of the submission.

• µ: The coefficients of the secret vectors sss and sss′ are sampled according to a centered
binomial distribution βµ(Rl×1

q ) with parameter µ, where µ < p. A higher value for µ
will result in a higher security, but a lower correctness of the scheme.

• F , G, H: The hash functions that are used in the protocol. Functions F and H are
implemented using SHA3-256 (with specified input length), while G is implemented
using SHA3-512.

• gen: The extendable output function that is used in the protocol to generate a pseu-
dorandom matrix AAA ∈ Rl×l

q from a seed seedAAA. It is implemented using SHAKE-128. It
might be possible that a non-cryptographic pseudorandomness generator or a SHAKE-
128 variant with a limited number of rounds suffices for security, which would speed
up computations. However, as a thorough security evaluation of these options lacks,
the more conservative SHAKE-128 is chosen.

2.3 Constants

The algorithm uses three constants: a constant polynomial h1 ∈ Rq with all coefficients set
equal to 2εq−εp−1, a constant vector hhh ∈ Rl×1

q where each polynomial is equal to h1 and a
constant polynomial h2 ∈ Rq with all coefficients set equal to (2εp−2 − 2εp−εT−1 + 2εq−εp−1).
These constants are used to replace rounding operations by a simple bit shift. The values
of h1 and h2 are further tweaked to allow a provable reduction to the underlying Mod-LWR
problem as explained in [22].

2.4 Saber Public Key Encryption

Saber.PKE is the public key encryption scheme consisting of the triplet of algorithms
(Saber.PKE.KeyGen, Saber.PKE.Enc, Saber.PKE.Dec) as described in Algorithms 1, 2 and
3 respectively. The more detailed technical specifications are given in Section 8.
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2.4.1 Saber.PKE Key Generation

The Saber.PKE key generation is specified by the following algorithm.

Algorithm 1: Saber.PKE.KeyGen()

1 seedAAA ← U({0, 1}256)
2 AAA = gen(seedAAA) ∈ Rl×l

q

3 r = U({0, 1}256)
4 sss = βµ(Rl×1

q ; r)

5 bbb = ((AAATsss+ hhh) mod q)� (εq − εp) ∈ Rl×1
p

6 return (pk := (seedAAA, bbb), sss)

2.4.2 Saber.PKE Encryption

The Saber.PKE Encryption is specified by the following algorithm, with optional argument r.

Algorithm 2: Saber.PKE.Enc(pk = (bbb, seedAAA),m ∈ R2; r)

1 AAA = gen(seedAAA) ∈ Rl×l
q

2 if r is not specified then
3 r = U({0, 1}256)
4 s′s′s′ = βµ(Rl×1

q ; r)

5 bbb′ = ((AAAsss′ + hhh) mod q)� (εq − εp) ∈ Rl×1
p

6 v′ = bbbT (sss′ mod p) ∈ Rp

7 cm = (v′ + h1 − 2εp−1m mod p)� (εp − εT ) ∈ RT

8 return c := (cm, b
′b′b′)

2.4.3 Saber.PKE Decryption

The Saber.PKE Decryption is specified by the following algorithm.

Algorithm 3: Saber.PKE.Dec(sss, c = (cm, b
′b′b′))

1 v = bbb′T (sss mod p) ∈ Rp

2 m′ = ((v − 2εp−εT cm + h2) mod p)� (εp − 1) ∈ R2

3 return m′

2.5 Saber Key-Encapsulation Mechanism

Saber.KEM is the key-encapsulation mechanism consisting of the triplet of algorithms
(Saber.KEM.KeyGen, Saber.KEM.Enc, Saber.KEM.Dec) as described in Algorithms 4, 5
and 6 respectively. The more detailed technical specifications are given in Section 8.
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2.5.1 Saber.KEM Key Generation

The Saber key generation is specified by the following algorithm.

Algorithm 4: Saber.KEM.KeyGen()

1 (seedAAA, bbb, sss) = Saber.PKE.KeyGen()
2 pk = (seedAAA, bbb)
3 pkh = F(pk)
4 z = U({0, 1}256)
5 return (pk := (seedAAA, bbb), sk := (z, pkh, pk,sss))

2.5.2 Saber.KEM Key Encapsulation

The Saber key encapsulation is specified by the following algorithm and makes use of
Saber.PKE.Enc as specified in Algorithm 2.

Algorithm 5: Saber.KEM.Encaps(pk := (seedAAA, bbb))

1 m← U({0, 1}256)
2 (r, K̂) = G(F(pk),m)
3 c = Saber.PKE.Enc(pk,m; r)

4 K = H(H(c), K̂)
5 return (c,K)

2.5.3 Saber.KEM Key Decapsulation

The Saber key decapsulation is specified by the following algorithm and makes use of
Saber.PKE.Dec as specified in Algorithm 3.

Algorithm 6: Saber.KEM.Decaps(sk := (z, pkh, pk,sss))

1 m′ = Saber.PKE.Dec(sss, c)

2 (r′, K̂ ′) = G(pkh,m′)
3 c′ = Saber.PKE.Enc(pk,m′; r′)
4 if c = c′ then

5 return K = H(H(c), K̂ ′)
6 else
7 return K = H(H(c), z)
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3 List of parameter sets (part of 2.B.1)

In this section we list the parameter sets for Saber.PKE and Saber.KEM, together with their
security estimate, failure probability and bandwidth.

The security of Saber is expressed in core-SVP, i.e. based on only one execution of the
SVP-oracle. We use the following estimates for the complexity of the state-of-the-art SVP
solver in high dimensions as 20.292b, which can be lowered to 20.265b using Grover’s search
algorithm, where b is the BKZ block size required. We report the security as estimated by
the “leaky-LWE-estimator” [16], by the “estimate all the {LWE/NTRU} schemes” effort [2]
and by a program written by D. J. Bernstein [11]. All estimators returned the same security
in core-SVP up to small rounding differences.

The failure probability is estimated by exhaustively calculating the distribution of the error
term and subsequently determining the probability of a failure as a sum of all values that
exceed the decryption threshold. An exact formulation can be found in theorem 6.2 and
python scripts to determine the failure probability are given in the submission package.

3.1 Saber.PKE parameter sets

For Saber.PKE, we define the following parameters sets with corresponding security levels
in Table 1. The secret key can be compressed by only storing the dlog2(µ + 1)e LSB for
each coefficient in the entries of sss. The values for a compressed secret key can be found in
brackets.

Table 1: Security and correctness of Saber.PKE.

Security Failure Classical Quantum pk (B) sk (B) ct (B)
Category Probability Core-SVP Core-SVP

LightSaber-PKE: l = 2, n = 256, q = 213, p = 210, T = 23, µ = 10

1 2−120 2118 2107 672 832 (256) 736

Saber-PKE: l = 3, n = 256, q = 213, p = 210, T = 24, µ = 8

3 2−136 2189 2172 992 1248 (384) 1088

FireSaber-PKE: l = 4, n = 256, q = 213, p = 210, T = 26, µ = 6

5 2−165 2260 2236 1312 1664 (384) 1472

3.2 Saber.KEM parameter sets

For Saber.KEM, we define the following parameters sets with corresponding security levels
in Table 2. The secret key can be compressed by only storing the dlog2(µ + 1)e LSB for
each coefficient in the entries of sss. The values for a compressed secret key can be found in
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brackets. Note that only the secret key size (sk) differs from the Saber.PKE table due to
the inclusion of the public key hash and the random value z.

Table 2: Security and correctness of Saber.KEM.

Security Failure Classical Quantum pk (B) sk (B) ct (B)
Category Probability Core-SVP Core-SVP

LightSaber-KEM: l = 2, n = 256, q = 213, p = 210, T = 23, µ = 10

1 2−120 2118 2107 672 1568 (992) 736

Saber-KEM: l = 3, n = 256, q = 213, p = 210, T = 24, µ = 8

3 2−136 2189 2172 992 2304 (1440) 1088

FireSaber-KEM: l = 4, n = 256, q = 213, p = 210, T = 26, µ = 6

5 2−165 2260 2236 1312 3040 (1760) 1472

Core-SVP vs. Gates to break AES

To qualify for the different security categories (I, III, V), the NIST call for proposals states
that “Any attack that breaks the relevant security definition must require computational
resources comparable to or greater than those required for key search on a block cipher with
a 128/192/256-bit key” [30], and in particular, it lists the following number of classical gates
for an attack on AES-128/192/256: 2143, 2207 and 2272.

The differences with the (classical) core-SVP metric given in the above tables are therefore
225, 218 and 212, and labelling LightSaber as Category I thus relies on the assumption that
this factor 225 can be accounted for. At this moment it is simply impossible to provide
a definite and precise answer to this question, and more research is required to settle this
matter.

However, to illustrate that this is not an unreasonable assumption we provide the following
non-asymptotic reasoning, where we take LightSaber as an example:

• The 2118 core-SVP was derived from dimension β = 404.

• Using the dimensions for free estimate f = 11.5 + 0.075β = 42 from [3] we require a
sieve of dimension 362 = 404− 42.

• From the raw data accompanying [4], we obtain an estimate of 2134 gates for one
iteration of the nearest neighbour search in dimension 362. We underestimate the
total cost by ignoring the fact that more than one iteration is necessary in the sieve.

• Combining this with the estimate that BKZ-β requires 2d calls to SVP-β, i.e. roughly
210 calls, we obtain an overall gate count of 2144 gates (where we ignored the required
number of iterations within the sieve).

More precise estimates for the missing terms are required to assess the exact security margin.
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4 Design rationale (part of 2.B.1)

Our design combines several existing techniques resulting in a very simple implementation,
that reduces both the amount of randomness and the bandwidth required.

• Learning with Rounding (LWR) [6]: schemes based on (variants of) LWE require
sampling from noise distributions which needs randomness. Furthermore, the noise is
included in public keys and ciphertexts resulting in higher bandwidth (which can be
mitigated by the use of compression techniques akin to LWR). In LWR based schemes,
the noise is deterministically obtained by scaling down from a modulus q to a modulus
p. This naturally reduces the size of the public keys and ciphertexts, lowers the overall
number of secret polynomials that need to be sampled, and in turn reduces the time
spent in hashing operations to generate pseudorandom bits. This becomes especially
beneficial for masked implementations, where the overhead of both masking the hashing
operation and masking the generation of the noise distribution is significantly higher
than that of masking other operations.

• Modules [27, 14]: the module versions of the problems allow to interpolate between
the original pure LWE/LWR problems and their ring versions, lowering computational
complexity and bandwidth in the process. We use modules to protect against attacks
on the ring structure of Ring-LWE/LWR and to provide flexibility. By increasing the
rank of the module, it is easy to move to higher security levels without any need to
change the underlying arithmetic.

• Encryption: we use a simple LWR version of Regev’s LWE encryption scheme [35],
where the encryption part is compressed (using the parameter T ) to save on bandwith.

• Choice of moduli: all integer moduli in the scheme are powers of 2. This has several
advantages: there is no need for explicit modular reduction; sampling uniformly modulo
a power of 2 is trivial and thus avoids rejection sampling or other complicated sampling
routines, which is important for constant time implementations; we immediately have
that the moduli p | q in LWR, which implies that the scaling operation maps the
uniform distribution modulo q to the uniform distribution modulo p.

The main disadvantage of using such moduli is that they do not natively support
the number theoretic transform (NTT) for polynomial multiplication. In Saber, the
polynomials are of small size (256 coefficients) and hence ‘asymptotically’ slower generic
polynomial multiplication algorithms do not cause a noticeable slowdown and can
even lead to faster results. Additionally, designers can choose the right polynomial
multiplication algorithm depending on the platform, implementation strategy, and
optimization goals.

Note that in Saber we never require a multiplication of two random elements; we
only require the multiplication of a random element by a small element. Instead of
implementing this using general purpose multiplication techniques, this can also be
implemented using simple shifts and additions/subtractions. Such approach is not

13



possible for submissions that work mostly in the NTT domain, since the smallness of
elements is lost during the NTT. Finally, we remark that using a compression technique
requires one to move back to the polynomial representation (the ‘time domain’), so
if low bandwidth is a design goal, a scheme that works purely in the NTT-domain
(‘frequency domain’) is not possible.

5 Implementations and performance analysis (2.B.2)

Saber has been designed taking into account both security and implementation aspects. It is
designed to be easy to understand and implement on a wide variety of platforms. Unnecessary
complexities that could lead to dangerous implementation mistakes have been avoided to the
best of our knowledge. Saber is constant-time by design and only uses simple operations.
Therefore even a basic implementation of Saber will be relatively efficient and secure.

5.1 Performance on Intel Haswell platform

On modern Intel platforms, we can utilize AVX2 SIMD instructions to speedup Saber. Per-
formance benchmark results of our AVX2-optimized implementation of Saber on Intel Xeon
E3-1220 v3 (3100 MHz) Hiphop from Supercop [12] are shown in Table 3. The software
includes optimization techniques from [18, 9].

Table 3: Cycle counts for AVX2-optimized implementation of Saber on Intel Xeon E3-1220
v3 (3100 MHz) Hiphop from Supercop [12].

Scheme Keygen Encapsulation Decapsulation

LightSaber 45,232 62,236 62,624

Saber 80,340 103,204 103,092

FireSaber 126,220 153,832 155,700

Around 50-70% of the overall computation time in Saber is spent on pseudorandom number
generation using the Keccak-based extendable output function SHAKE-128. On vector pro-
cessing platforms, such as processors with SIMD, faster pseudorandom number generation
is possible by using a vectorized implementation of SHAKE-128 along with multiple seeds.
In Saber, a pseudorandom string is generated by calling SHAKE-128 serially, starting from
a single seed. This design decision makes Saber’s implementation easier and simpler on all
kinds of platforms.

An additional implementation [37], which is called ‘SaberX4’, batches four Saber KEM op-
erations and processes them simultaneously utilizing four 64-bit slots of AVX256. It achieves
a higher throughput (i.e., more KEM operations per second) compared to the original Saber
software on platforms with AVX2 SIMD support. SaberX4 can be used on a server platform
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where high throughput (e.g., thousands of KEMs per second) is desired. Note that SaberX4
is not a variant of Saber; it is just a batched implementation of Saber (i.e., generates the
same known answer test responses) that targets higher utilization of SIMD platforms. Per-
formance improvements using SaberX4 are shown in Table 4. In a similar way, ’SaberX8’ can
be realized to achieve even higher throughput by batching eight Saber operations on state-of-
the-art Intel platforms with AVX512. We anticipate that, in the future the relative latency
as well as throughput of a batched Saber software will only improve with improvements in
computer architecture technologies.

Table 4: Performance comparisons between SaberX4 and Saber on Intel Xeon E3-1220 v3
(3100 MHz) Hiphop from Supercop [12].

Scheme Operation Latency Throughput
(cycles) (ops/sec at 3.1GHz)

Saber Keygen 80,340 38,586
computes 1 KEM Encapsulation 103,204 30,037

Decapsulation 103,092 30,070

SaberX4 Keygen 205,248 60,414
computes 4 KEMs Encapsulation 251,248 49,353

Decapsulation 271,096 45,740

5.2 Performance on ARM Cortex-M4 microcontroller

As discussed in Sec. 4, due to use of power-of-two moduli we can not use NTT based polyno-
mial multiplication and therefore used a combination of Toom-Cook-Karatsuba-schoolbook
polynomial multiplication. Since these techniques are asymptotically slower than NTT based
polynomial multiplications, we devised techniques to speed-up this polynomial multiplica-
tion. Since the schoolbook multiplication is at the bottom of our hybrid multiplication
scheme, it is called most frequently. In [25], we proposed a fast SIMD schoolbook multi-
plication using the DSP instructions of Cortex-M4 microcontrollers. Using this technique
the number of instructions required to perform a single schoolbook multiplication decreases
by 34%. We also proposed a vertical Toom-Cook evaluation and interpolation technique to
speed-up our polynomial multiplication further at the expense of some extra memory usage.
In [9], we also propose a lazy-interpolation based Toom-Cook polynomial multiplication and
use precomputation to further speed-up our scheme.

Module-lattice based cryptography is known to require more storage to store their public-
keys than their ring-lattice based counterparts. This is particularly problematic for small
resource constrained devices such as Cortex-M4 microcontrollers. Most of this large storage
requirement comes from the storage of public matrix AAA which in our case consists of l2

polynomials of degree n − 1. For example, for Saber (l = 3) the memory required to store
the public matrix is approximately 3.8kB. We proposed a just-in-time memory optimization
technique that interleaves the Keccak squeeze stages to generate the polynomials one at a
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time. This strategy reuses the memory required to hold the previous polynomial. Using this
technique the space required for holding the public matrix AAA reduces to only 280 bytes. We
also used an in-place Karatsuba multiplication to reduce the storage cost. We propose a
compact representation of secret keys in Saber to reduce the size of secret keys and further
reduce the storage cost.

Table 5 shows memory usage and cycles for the most balanced implementation of Saber in
terms of speed and memory combining different optimization strategies described above.

Table 5: Cycle counts and RAM utilization of Saber on ARM Cortex-M4 microcontrollers

Scheme Operation Latency Memory
(cycles) (bytes)

Keygen 444,965 6,456
LightSaber Encapsulation 623,817 6,048

Decapsulation 634,268 6,056

Keygen 846,136 7,488
Saber Encapsulation 1,098,472 6,560

Decapsulation 1,112,393 6,568

Keygen 1,360,577 8,512
FireSaber Encapsulation 1,674,409 7,072

Decapsulation 1,703,896 7,080

5.2.1 Masked implementation

We also targeted the ARM-Cortex M4 for a masked implementation of Saber decapsula-
tion [7]. This implementation was shown secure against Differential Power Analysis (DPA)
for 100,000 collected power traces using the well-known Test Vector Leakage Assessment
(TVLA). More information on the concrete security of Saber against side-channel attacks is
given in Section 6.4.

The masked implementation starts from the most balanced implementation of Saber in
terms of speed and memory, which was described above. By using arithmetic masking
for the polynomial operations, the polynomial multiplication and addition routines can be
completely reused. Coefficient-wise shifting of polynomials used in the rounding operations
are most easily protected using Boolean masking. Therefore, targeting Saber, we proposed a
novel operation that integrates masked logical shifting together with arithmetic to Boolean
mask conversion in a single operation. For masked binomial sampling we reused a sampler
from [39] and modified it to additionally benefit from Saber’s power-of-two moduli.

Ultimately, we showed that Saber is very efficient to mask, with only a factor 2.54× CPU
cycles overhead and 1.77× increased dynamic memory consumption over an unmasked im-
plementation as shown in Table 6. This is mostly due to two key properties of Saber. The
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use of power-of-two moduli allows Saber to use simple and efficient conversion algorithms
between Boolean and arithmetic masking, and Saber’s choice for LWR replaces very costly
masked noise sampling with significantly more efficient masked logical shifting. For compar-
ison, a similar work targeting NewHope KEM — LWE with prime moduli — has a CPU
cycles overhead factor of 5.74× [31].

Table 6: Cycles counts and RAM utilization of masked Saber on ARM Cortex-M4 micro-
controllers.

Scheme Operation Latency Memory
cycles overhead bytes overhead

Saber Masked Decapsulation 2,833,348 2.54× 11,656 1.77×

5.3 Performance on hardware platforms

The modular nature of Saber and use of power-of-two modului make Saber flexible and
very efficient on hardware platforms. Two HW/SW codesigns [10, 17] and two complete
HW [41, 46] implementations of Saber have been reported in the literature. Their speed and
area requirements are reported in Table 7.

The first fully-in-hardware implementation [41] is public-domain. It takes advantage of the
power-of-two moduli and small secret-size to realize a highly parallel polynomial multiplier
(based on the schoolbook algorithm) that computes a polynomial multiplication in only 256
cycles. The implementation is an instruction-set coprocessor architecture that offers pro-
grammability and flexibility to computes all KEM operations (key generation, encapsulation
and decapsulation) in hardware. The simple architecture of the polynomial multiplier and
the flexibility of the coprocessor greatly simplifies the development of other implementations,
such as a lightweight one.

The second hardware implementation [46] uses a tightly-coupled architecture and computes
polynomial multiplication via the Karatsuba algorithm. This allows it to achieve very low
computation times, at the cost of higher area consumption and less flexibility. In particular,
the polynomial multiplier reduces the number of computations by up to 90% using an 8-level
Karatsuba algorithm. This drastically reduces the cycle count, but the clock frequency is
also lower. The same design was also implemented on an ASIC, where the clock frequency
is higher and can achieve 4× performance compared to the FPGA results. Note that this
implementation only computes Saber.PKE.

From a hardware implementation perspective, the serial execution of SHAKE-128 during
pseudorandom number generation in the Saber algorithm does not cause any performance
issues. Instead, it simplifies hardware implementations and reduces area requirements. This
is due to the high speed of Keccak on hardware platforms [1]. For example, the public-
domain high-speed implementation of the Keccak core by the Keccak Team [43] computes
‘state-permutations’ at a gap of only 28 cycles, thus generating 1,344 bits of pseudo-random
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string every 28 cycles during the extraction-phase. Furthermore, one instance of the Keccak
core consumes a large area, thus indicating that implementing a vectorized Keccak core
would make the implementation both area-expensive and more complex. Additionally, as
the Keccak core is already very fast in hardware, the use of parallel cores would be of little
help in improving the speed in hardware.

Table 7: Performance of CCA-secure Saber (module dimension 3) on hardware platforms.
Entries denoted by a ∗ are estimated based on the timings of PKE functions.

Ref. Platform Time in µs Frequency Area
(KeyGen./Encaps./ (MHz) (LUT/FF/DSP/BRAM)

Decaps.) (or mm2 for ASIC)

[10] Artix-7 (HW/SW) 3.2K/4.1K/3.8K 125 7.4K/7.3K/28/2

[17] UltraScale+ (HW/SW) -/60/65 322 12.5K/11.6K/256/4

[41] UltraScale+ 21.8/26.5/32.1 250 23.6K/9.8K/0/2

[46]∗ UltraScale+ -/14.0/16.8 100 34.9k/9.9K/85/6

[46]∗ ASIC 2.60/3.49/4.21 400 0.35 mm2

5.4 Saber on RSA coprocessor

Secure smart cards, microcontrollers, and trusted platform modules or hardware security
modules come with dedicated coprocessors for accelerating RSA. Such coprocessors contain
long integer multipliers for computing modular multiplications in the RSA algorithm. [44]
accelerates polynomial multiplications in Saber using long integer multipliers. The authors
report that, for polynomials with 256 coefficients, one polynomial multiplication takes 97K
and 85K clock cycles for powers of 2 moduli 8192 and 1024 respectively on a ESP32 platform.
Whereas, on the same platform NTT-based polynomial multiplications takes 244K clock
cycles when the modulus is a prime 7681. Their work shows that Saber can benefit from
long integer multipliers present in secured devices with RSA coprocessors.

6 Expected strength (2.B.4) in general

6.1 Security

The IND-CPA security of Saber.PKE can be reduced from the decisional Mod-LWR problem
as shown by the following theorem:

Theorem 6.1. In the random oracle model, where gen is assumed to be a random oracle, for
any adversary A, there exist three adversaries B0, B1 and B2 with roughly the same running
time as A, such that Advind-cpaSaber.PKE(A) 6 Advprf

gen()(B0) + Advmod-lwr
l,l,ν,q,p (B1) + Advmod-lwr

l+1,l,ν,q,q/ζ(B2),

where ζ = min ( q
p
, p
T

).
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The correctness of Saber.PKE can be calculated using the python scripts included in the
submission, following theorem 6.2:

Theorem 6.2. Let AAA be a matrix in Rl×l
q and sss,sss′ two vectors in Rl×1

q sampled as in
Saber.PKE. Define eee and eee′ as the rounding errors introduced by scaling and rounding AAATsss
and AAAsss′, i.e. ((AAATsss+hhh) mod q)� (εq− εp) = p

q
AAATsss+eee and ((AAAsss′+hhh) mod q)� (εq− εp) =

p
q
AAAsss′ + e′e′e′. Let er ∈ Rq be a polynomial with uniformly distributed coefficients with range

[−p/2T, p/2T ]. If we set

δ = Pr[||(sss′Teee− eee′Tsss+ er) mod p||∞ > p/4]

then after executing the Saber.PKE protocol, both communicating parties agree on a n-bit
key with probability 1− δ.

For these calculations, the failure probabilities of the different coefficients of (sss′Teee−eee′Tsss+er)
can be assumed independent, as discussed in [21].

This IND-CPA secure encryption scheme is the basis for the IND-CCA secure KEM
Saber.KEM=(Encaps, Decaps), which is obtained by using an appropriate transformation.
Recently, several post-quantum versions [23, 42, 38, 24] of the Fujisaki-Okamoto transform
with corresponding security reductions have been developed. At this point, the FO6⊥ transfor-
mation in [23] with post-quantum reduction from Jiang et al. [24] gives the tightest reduction
for schemes with non-perfect correctness. However, other transformation could be used to
turn Saber.PKE into a CCA secure KEM.

6.1.1 Security in the Random Oracle Model

By modeling the hash functions G and H as random oracles, a lower bound on the CCA
security can be proven. We use the security bound of Hofheinz et al. [23], which considers
a KEM variant of the Fujisaki-Okamoto transform that can also handle a small failure
probability δ of the encryption scheme. This failure probability should be cryptographically
negligibly small for the security to hold. Using Theorem 3.2 and Theorem 3.4 from [23], we
get the following theorems for the security and correctness of our KEM in the random oracle
model:

Theorem 6.3. In the random oracle model, where G and H are assumed to be random
oracles, for a IND-CCA adversary B, making at most qH and qG queries to respectively the
random oracle G and H, and qD queries to the decryption oracle, there exists an IND-CPA
adversary A with approximately the same running time as adversary B, such that:

Advind-ccaSaber.KEM(B) 6 3Advind-cpaSaber.PKE(A) + qGδ +
2qG + qH + 1

2256
.

6.1.2 Security in the Quantum Random Oracle Model

Jiang et al. [24] provide a security reduction against a quantum adversary in the quan-
tum random oracle model from IND-CCA security to OW-CPA security. IND-CPA with a
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sufficiently large message space M implies OW-CPA [23, 13], as is given by following lemma:

Theorem 6.4. For an OW-CPA adversary B, there exists an IND-CPA adversary A with
approximately the same running time as adversary B, such that:

Advow-cpaSaber.PKE(B) 6 Advind-cpaSaber.PKE(A) + 1/|M |

Therefore, we can reduce the IND-CCA security of Saber.KEM from the IND.CPA security
of the underlying public key encryption:

Theorem 6.5. In the quantum random oracle model, where G and H are assumed to be
random oracles, for any IND-CCA quantum adversary B, making at most qH and qG queries
to respectively the random quantum oracle G and H, and qD many (classical) queries to the
decryption oracle, there exists an adversary A, with approximately the same running time as
B, such that:

Advind-ccaSaber.KEM(B) 6 2qH
1√
2256

+ 4qG
√
δ + 2(qG + qH)

√
Advind-cpaSaber.PKE(A) + 1/|M |

In all attack scenarios we assume that the depth of quantum computation is limited to 264

quantum gates.

Using recent results [26], it is likely that the square root loss can be avoided, but more
research is required to evaluate whether Saber satisfies the conditions required by [26].

6.2 Multi-target protection

As described in [14], hashing the public key into K̂ has two beneficial effects: it makes sure
that K depends on the input of both parties, and it offers multi-target protection. Hashing
pk into K̂ ensures that an attacker is not able to use precomputed ‘weak’ values of m on
multiple targets when searching for decryption failures as will be addressed in next section.

6.3 Decryption failure attack

Instead of solving the Mod-LWR problem, an attacker can mount an attack that uses de-
cryption failures. In this scenario, the adversary uses Grover’s algorithm to precompute m
that have a relatively high failure probability. Once messages m are found that trigger a
decryption failure, they can be used to estimate the secret. This attack strategy is covered
by the 4qG

√
δ term of the quantum IND-CCA security reduction.

The best known attack was described in [20] and the follow up work [19]. In a single target
setting this attack requires an impractical number of decryption queries far above 264. It
is possible to reduce the number of decryption queries required by the attack by doing
additional preprocessing or by mounting a multi-target attack where a number of victims T
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are targeted of which only one will be broken, in which case the attacker can perform 264 ·T
queries to find the first failing ciphertext. Note that due to the multi-target protection an
attacker can not reuse ciphertexts over multiple victims and needs to generate each ciphertext
independently. Both attacks are more costly than breaking the Mod-LWR problem of the
public keys.

If future cryptanalysis in this direction would threaten the security of Saber, one could
increase the parameter T to reduce the failure probability and thus increase the security at
the cost of additional bandwidth.

6.4 Side-channel attacks

Timing analysis Information about the timing of certain calculations can be used to
extract information about the long-term secret key. Constant-time execution is a well-known
countermeasure against such attacks. As mentioned before, the design choices of Saber allow
simple constant-time implementations. The use of power-of-two moduli avoids variable-time
operations, such as rejection sampling or modular reduction with a prime modulus. All
implementations of Saber described in Section 5 are constant-time.

Differential analysis Differential power or electromagnetic radiation analysis allows an
attacker to infer the intermediate data that a device is processing through statistical anal-
ysis. These attacks are particularly powerful, requiring only minimal signal-to-noise ratios
and limited knowledge of the underlying device. Such attacks are possible on all operations
that are influenced by the long-term secret key (e.g., [33, 45]), notably also including the
applications of error correcting codes and CCA-transform [34]. In a scenario where such
attacks are possible, i.e. the attacker has physical access to the device, masked implementa-
tions are a popular countermeasure. Since Saber does not use any error correcting code, it
avoids any complications related to masking an error correcting block.

We have described a first-order masked implementation of Saber decapsulation in Sec-
tion 5.2.1, based on our work in [7]. The implementation is shown secure against first-order
DPA on an STM32 microcontroller featuring the popular ARM Cortex-M4. Again, Saber is
shown very efficient to protect due to its choice for power-of-two moduli. Additionally, for
a masked implementation, the choice for rounding (LWR) instead of error sampling (LWE)
offers additional efficiency.

In [7], we also briefly discuss extending the implementation to higher-order masking, since
the first-order design is still vulnerable to higher-order differential analysis. We expect a
higher-order masked implementation of Saber to benefit from its design choices in the same
way, and to significantly outperform LWE-based schemes with prime moduli as well.

Single-trace attacks Implementations secure against differential analysis can still be bro-
ken using other side-channel attack methods. In particular, single-trace attacks can be used
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to break masked implementations. These attacks process a power or EM trace horizon-
tally, and the horizontal information of a single trace still contains information on both
of the shares. Such attacks have recently been shown to be feasible on implementations
of NewHope [5], Frodo [15], Kyber [32], and Saber [40]. Polynomial or matrix multiplica-
tion with the secret key are typical targets for these attacks. A popular countermeasure
is randomized shuffling. Randomness is used to shuffle the order of operations or intro-
duce dummy operations, which can be applied on top of masked implementations. These
techniques increase the noise level to harden an implementation against higher-order DPA
attacks as well. Shuffling was included in the linear operations of a masked implementation
of NewHope KEM [31] at an extra overhead cost of only 1.01×, but this does not yet protect
against attacks that target the non-linear NTT [32]. For Saber, which uses a combination
of Toom-Cook, Karatsuba and schoolbook multiplication, further research is necessary to
assess the exact granularity and overall cost of including shuffling operations.

7 Advantages and limitations (2.B.6)

Advantages:

• No modular reduction: since all moduli are powers of 2 we do not require explicit
modular reduction. Furthermore, sampling a uniform number modulo a power of 2 is
trivial in that it does not require any rejection sampling or more complicated sampling
routines. This is especially important when considering constant time implementations.

• Modular structure and flexibility: the core component consists of arithmetic in the
fixed polynomial ring Z213 [X]/(X256 +1) for all security levels. To change security, one
simply uses a module of higher rank.

• Less pseudorandomness required: due to the use of Mod-LWR, our algorithm requires
less pseudorandomness since no error sampling is required as in (Mod-)LWE. More
specifically, instead of generating 2k + 1 secret polynomials as would be the case in
(Mod-)LWE schemes, our design only needs to generate k secret polynomials. This
is especially beneficial in masked implementations, where due to the non-linearity the
cost of the secret polynomial sampling increases sharply with the masking order.

• Use of powers of 2 moduli p and q, and T simplifies scaling and rounding operations
significantly.

• Low bandwidth: again due to the use of Mod-LWR, the bandwidth required is lower
than similar systems based on (Mod-)LWE.

• Generic polynomial multiplication: since Saber does not make any specific algorithm
an integral part of the protocol, implementers can choose the best polynomial multi-
plication algorithm depending on the platform and application constraints. This has
allowed efficient implementations of Saber on a wide range of platforms: high-end
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platforms such as Intel Haswell, resource-constrained and low power microcontrollers
such as Arm Cortex M4 and M0, smart cards containing RSA coprocessors, FPGA
platforms, and ASIC.

• No full multiplications: all multiplications that occur in the algorithms are multiplying
a random element in Rq by a small element sampled from βµ(Rq). Since the small
element has coefficients bounded by µ/2 in absolute value, it is possible to replace the
full multiplication of random elements in Rq by simple circular shifts and additions.
We note that this is not possible when using NTT since the smallness of elements from
βµ(Rq) is lost due to the NTT.

• Good for anonymous communication: execution is constant-time over different public
keys and communication is uniformly random. As a result of the power-of-two moduli,
the public key and ciphertext of Saber are distributed as a uniformly random bitstring
as opposed to schemes with prime-moduli, which have a specific distribution of these
terms due to modular reduction. The lack of modular reduction additionally implies
that Saber is naturally constant time over different public keys in contrast to prime-
moduli schemes where the generation time of AAA will depend on the public key. 1

• Very efficient masking: Saber’s choice for Mod-LWR and power-of-two moduli proves
to be very efficient to mask. Power-of-two moduli allow Saber to use simple and
efficient mask conversion routines between arithmetic and Boolean masking. LWR as
the underlying primitive replaces very costly masked noise sampling with significantly
more efficient masked logical shifting.

Limitations:

• The use of two-power moduli makes NTT-like polynomial multiplication not natively
supported. Asymptotically slower polynomial multiplication algorithms such as Toom-
Cook, Karatsuba, Schoolbook, or hybrids of them are used in Saber. Since the polyno-
mials are of small size (256 coefficients only), the asymptotic superiority of NTT over
the above mentioned generic algorithms does not play a big role role in performance.
On some platforms, generic algorithms even outperform NTT-based polynomial multi-
plications. Additionally, as stated earlier, there is no need for multiplying two random
elements in Rq, so a complete polynomial multiplier is not strictly required.

• The functionality is limited to an encryption scheme and a KEM. No signature scheme
is provided.

8 Technical Specifications (2.B.1)

This section provides technical specifications for implementing Saber. For more details, the
reader may read the C source code present in the reference implementation package.

1We would like to thank Peter Schwabe for bringing this to our attention
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8.1 Implementation constants

The values of the implementation constants used in the algorithms are provided in Table 8.

Table 8: Implementation constants

Constants LightSaber Saber FireSaber
SABER L 2 3 4
SABER EQ 13 13 13
SABER EP 10 10 10
SABER ET 3 4 6
SABER SEEDBYTES 32 32 32
SABER NOISE SEEDBYTES 32 32 32
SABER KEYBYTES 32 32 32
SABER HASHBYTES 32 32 32
SABER INDCPA PUBLICKEYBYTES 672 992 1312
SABER INDCPA SECRETKEYBYTES 832 1248 1664
SABER PUBLICKEYBYTES 672 992 1312
SABER SECRETKEYBYTES 1568 2304 3040
SABER BYTES CCA DEC 736 1088 1472

8.2 Data Types and Conversions

8.2.1 Bit Strings and Byte Strings

A bit is an element of the set {0, 1} and a bit string is an ordered sequence of bits. In a bit
string the rightmost or the first bit is the least significant bit and the leftmost or the last bit
is the most significant bit. A byte is a bit string of length 8 and a byte string is an ordered
array of bytes. Following the same convention, the rightmost or the first byte is the least
significant byte and the leftmost or the last byte is the most significant byte.

For example, consider the byte string of length three: 3d 2c 1b. The most significant byte is
3d and the least significant byte is 1b. This byte string corresponds to the bit string 0011
1101 0010 1100 0001 1011. The least significant bit of the byte string is 1 and the most
significant bit is 0.

8.2.2 Concatenation of Bit Strings

Concatenation of two bit strings b0 to b1 is denoted by b1 ‖ b0 where b0 is present in the least
significant part and b1 is present in the most significant part. The length of the concatenated
bit string is the sum of the lengths of b0 and b1.

Similarly concatenation of n bit strings b0 to bn−1 is denoted by bn−1 ‖ bn−2 ‖ . . . ‖ b1 ‖ b0
where b0 is present in the least significant part and bn−1 is present in the most significant
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part. Naturally the length of the concatenated bit string is the sum of the lengths of b0 to
bn−1.

8.2.3 Concatenation of Byte Strings

Concatenation of two byte strings B0 to B1 is denoted by B1 ‖ B0 where B0 is present in
the least significant part and B1 is present in the most significant part. The length of the
concatenated byte string is the sum of the lengths of B0 and B1.

Similarly concatenation of n byte strings B0 to Bn−1 is denoted by Bn−1 ‖ Bn−2 ‖ . . . ‖ B1 ‖
B0 where B0 is present in the least significant part and Bn−1 is present in the most significant
part. Naturally the length of the concatenated byte string is the sum of the lengths of B0

to Bn−1.

8.2.4 Polynomials

For a modulus N = 2k we denote with R = ZN [x]/(xn + 1) the polynomial ring modulo
xn + 1 with coefficients in ZN . We will only require n = 256, so such polynomials will be
represented as an array of 256 elements in ZN . For N we will the following values:

• N = q = 213, so each coefficient occupies 13 bits

• N = p = 210, so each coefficient occupies 10 bits

• N = T = 2εT , so each coefficient occupies εT bits, depending on which version of Saber
is implemented

• N = 2, so each coefficient occupies 1 bits

The i-th coefficient of a polynomial object, say pol, is accessed by pol[i]. In the following
example

pol = c255x
255 + . . .+ c1x+ c0 (1)

the constant coefficient c0 is accessed by pol[0] and the highest-degree (i.e. x255) coefficient
c255 is accessed by pol[255].

• SHIFTLEFTN : This function takes a polynomial in RN and shifts each coefficient to
the left over s positions. The algorithm is shown in Alg. 7

• SHIFTRIGHTN : This function takes a polynomial in RN and shifts each coefficient to
the right over s positions. The algorithm is shown in Alg. 8

8.2.5 Vectors

A vector in Rl×1
N is an ordered collection of l polynomials from RN . The i-th element of a

vector object, say vvv ∈ Rl×1
N , is accessed by vvv[i], where (0 ≤ i ≤ l − 1).
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Algorithm 7: Algorithm SHIFTLEFTN
Input: pin: polynomial in RN , shift s
Output: pout: polynomial in RN .

1 for (i = 0, i < 256, i = i+ 1) do
2 pout[i] = (pin[i]� s)

3 return pout

Algorithm 8: Algorithm SHIFTRIGHTN
Input: pin: polynomial in RN , shift s
Output: pout: polynomial in RN .

1 for (i = 0, i < 256, i = i+ 1) do
2 pout[i] = (pin[i]� s)

3 return pout

8.2.6 Matrices

A matrix in Rl×m
N is a collection of l ×m polynomials in row-major order. The polynomial

present in the i-th row and j-th column a matrix object, say MMM , is accessed by MMM [i, j]. Here
(0 ≤ i ≤ l − 1) and (0 ≤ j ≤ m− 1).

8.2.7 Data conversion algorithms

The data conversion algorithms allow to map byte strings to elements or vectors of elements
of the ring ZN for N = 2k. The different N we use in the algorithm were specified in
Subsection 8.2.4.

• BS2POLN : This function takes a byte string of length k × 256/8 where N = 2k and
transforms it into a polynomial in RN . The algorithm is shown in Alg. 9.

Algorithm 9: Algorithm BS2POLN

Input: BS : byte string of length k × 256/8 with N = 2k

Output: polN : polynomial in RN

1 Interpret BS as a bit string of length k × 256.
2 Split it into bit strings each of length k and obtain (bs255 ‖ . . . ‖ bs0) = BS.
3 for (i = 0, i < 256, i = i+ 1) do
4 polN [i] ← bs i

5 return pol

• POLN2BS: This function takes a polynomial from RN and transforms it into a byte
string of length k × 256/8 with N = 2k. The algorithm is shown in Alg. 10.
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Algorithm 10: Algorithm POLN2BS

Input: polN : polynomial in RN

Output: BS : byte string of length k × 256/8 with N = 2k

1 Interpret the coefficients of pol q as bit strings, each of length k.
2 Concatenate the coefficients and obtain the bit string bs = (polN [255] ‖ . . . ‖ polN [0])

of length k × 256.
3 Interpret the bit string bs as the byte string BS of length k × 256/8.
4 return BS

• BS2POLVECN : This function takes a byte string of length l × k × 256/8 with N = 2k

and transforms it into a vector in Rl×1
N . The algorithm is shown in Alg. 11.

Algorithm 11: Algorithm BS2POLVECN
Input: BS : byte string of length l × k × 256/8
Output: vvv: vector into Rl×1

N

1 Split BS into l byte strings of length k× 256/8 and obtain (BSl−1 ‖ . . . ‖ BS0) = BS
2 for (i = 0, i < l, i = i+ 1) do
3 vvv[i] = BS2POLN(BSi)

4 return vvv

• POLVECN2BS: This function takes a vector from Rl×1
N and transforms it into a byte

string of length l × k × 256/8 with N = 2k. The algorithm is shown in Alg. 12.

Algorithm 12: Algorithm POLVECN2BS

Input: vvv: vector in Rl×1
N

Output: BS : byte string of length l × k × 256/8
1 Instantiate the byte strings BS0 to BSl−1 each of length k × 256/8.
2 for (i = 0, i < l, i = i+ 1) do
3 BSi = POLN2BS(vvv[i])

4 Concatenate these byte strings and get the byte string BS = (BSl−1 ‖ . . . ‖ BS0).
5 return BS

8.3 Supporting Functions

8.3.1 SHAKE-128

SHAKE-128, standardized in FIPS-202, is used as the extendable-output function. It receives
the input byte string from the byte array input byte string of length ‘input length’ and
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generates the output byte string of length ‘output length’ in the byte array output byte string
as described below.

SHAKE-128(output byte string, output length, input byte string, input length) (2)

8.3.2 SHA3-256

SHA3-256, standardized in FIPS-202, is used as a hash function. It receives the input
byte string from the byte array input byte string of length ‘input length’ and generates the
output byte string of length 32 in the byte array output byte string as described below. It
is important that any implementation of Saber enforces the input lengths of SHA3-256 as
specified in Table 8 to avoid domain-separation attacks [8].

SHA3-256(output byte string, input byte string, input length) (3)

8.3.3 SHA3-512

SHA3-512, standardized in FIPS-202, is used as a hash function. It receives the input byte
string from the byte array input byte string of length ‘input length’ and generates the output
byte string of length 64 in the byte array output byte string as described below.

SHA3-512(output byte string, input byte string, input length) (4)

8.3.4 Modulo

The modulo operation y = x mod q performs a coefficient-wise modulo operation on the
input x as defined in Subsection 2.1. As the divisor q is a power of two in our design, this
operation can be implemented as a bitmasking operation.

8.3.5 HammingWeight

This function returns the Hamming weight of the input bit string. For example,

w = HammingWeight(a) (5)

returns the Hamming weight of the input bit string a to the integer w. Naturally, Hamming-
Weight always returns non-negative integers.
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8.3.6 Randombytes

This function outputs a random byte string of a specified length. The following ex-
ample shows how to use randombytes to generate a random byte string seed of length
SABER SEEDBYTES.

randombytes(seed, SABER SEEDBYTES)

8.3.7 PolyMul

This function performs polynomial multiplications in Rp and Rq. For two polynomials a and
b in Rp, their product c ∈ Rp is computed using PolyMul as follows:

c = PolyMul(a, b, p) .

Similarly, for two polynomials a′ and b′ in Rq, their product c′ ∈ Rq is computed using
PolyMul as follows:

c′ = PolyMul(a′, b′, q) .

8.3.8 MatrixVectorMul

This function performs multiplication of a matrix, say MMM ∈ Rl×l
q , and a vector vvv ∈ Rl×1

q and
returns the product vector mvmvmv = MMM ∗ vvv ∈ Rl×1

q . The algorithm is described in Alg. 13. The
function is used in the following way.

mvmvmv = MatrixVectorMul(MMM,vvv, q)

Algorithm 13: Algorithm MatrixVectorMul

Input: MMM : matrix in Rl×l
q ,

vvv: vector in Rl×1
q ,

q: coefficient modulus
Output: mvmvmv: vector in Rl×1

q

1 Instantiate polynomial object c
2 for (i = 0, i < l, i = i+ 1) do
3 c = 0
4 for (j = 0, j < l, j = j + 1) do
5 c = c+ PolyMul(MMM [i, j], vvv[j], q)

6 mvmvmv[i] = c mod q

7 return mvmvmv
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8.3.9 InnerProd

This function takes a vector vvva ∈ Rl×1
p and a vector vvvb ∈ Rl×1

p and computes the inner
product of vvva and vvvb, which is a polynomial c ∈ Rp. The algorithm is described in Alg. 14.
The function is used in the following way.

c = InnerProd(vvva, vvvb, p)

Algorithm 14: Algorithm InnerProd

Input: vvva: vector in Rl×1
p ,

vvvb: vector in Rl×1
p ,

p: coefficient modulus
Output: c: polynomial in Rp

1 c← 0
2 for (i = 0, i < l, i = i+ 1) do
3 c = c+ PolyMul(vvva[i], vvvb[i], p)

4 return c mod p

8.3.10 Verify

This function compares two byte strings of the same length and outputs a binary bit. The
output bit is ‘0’ if the byte strings are equal; otherwise it is ‘1’. The following example shows
how to use Verify to compare the byte strings BS0 and BS1 of length ’input length’.

c = Verify(BS0,BS1, input length) (6)

If BS0 = BS1 then c = 0; otherwise c = 1.

8.3.11 GenMatrix

This function generates a matrix in Rl×l
q from a random byte string (called seed) of length

SABER SEEDBYTES. The steps are described in the algorithm GenMatrix in Alg. 15. The use
of GenMatrix to generate the matrix AAA ∈ Rl×l

q from the seed seedAAA is as follows.

AAA = GenMatrix(seedAAA)

8.3.12 GenSecret

This function takes a random byte string (called seed) of length SABER NOISE SEEDBYTES

as input and outputs a secret which is a vector in Rl×1
q with coefficients sampled from a
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Algorithm 15: Algorithm GenMatrix for generation of matrix AAA ∈ Rl×l
q

Input: seedAAA: random seed of length SABER SEEDBYTES

Output: AAA: matrix in Rl×l
q

1 Instantiate byte string object buf of length l2 × n× εq/8
2 SHAKE-128(buf, l2 × n× εq/8, seedAAA, SABER SEEDBYTES)
3 Split buf into l2 × n equal bit strings of bit length εq and obtain

(bufl2n−1 ‖ . . . ‖ buf0) = buf
4 k = 0
5 for (i1 = 0, i1 < l, i1 = i1 + 1) do
6 for (i2 = 0, i2 < l, i2 = i2 + 1) do
7 for (j = 0, j < n, j=j+1) do
8 AAA[i1, i2][j] = bufk
9 k = k + 1

10 return AAA ∈ Rl×l
q

centered binomial distribution βµ. The steps are described in the algorithm GenSecret in
Alg. 16 The use of GenSecret to generate a secret sss ∈ Rl×1

q from a random seed seedsss is
shown as follows.

sss = GenSecret(seedsss)

Algorithm 16: Algorithm GenSecret for generation of secret sss ∈ Rl×1
q

Input: seedsss: random seed of length SABER NOISE SEEDBYTES

Output: sss: vector in Rl
q

1 Instantiate a byte string object buf of length l × n× µ/8
2 SHAKE-128(buf, l × n× µ/8, seedsss, SABER NOISE SEEDBYTES)
3 Split buf into 2× l × n bit strings of length µ/2 bits and obtain

(buf2ln−1 ‖ . . . ‖ buf0) = buf
4 k = 0
5 for (i = 0, i < l, i = i+ 1) do
6 for (j = 0, j < n, j = j + 1) do
7 sss[i][j] = HammingWeight(bufk)− HammingWeight(bufk+1) mod q
8 k = k + 2

9 return sss ∈ Rl
q

8.4 IND-CPA encryption

The IND-CPA encryption consists of 3 components,
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• Saber.PKE.KeyGen, returns public key and the secret key to be used in the encryption.

• Saber.PKE.Enc, returns the ciphertext obtained by encrypting the message.

• Saber.PKE.Dec, returns a message obtained by decrypting the ciphrtext.

8.4.1 Saber.PKE.KeyGen

This function generates public and secret key pair as byte strings of length
SABER INDCPA PUBKEYBYTES and SABER INDCPA SECRETKEYBYTES respectively. The details
of Saber.PKE.KeyGen are provided in Alg. 17.

Algorithm 17: Algorithm Saber.PKE.KeyGen for IND-CPA public and secret key
pair generation

Output: PublicKeycpa: byte string of public key,
SecretKeycpa: byte string of secret key

1 randombytes(seedAAA, SABER SEEDBYTES)
2 SHAKE-128(seedAAA, SABER SEEDBYTES, seedAAA, SABER SEEDBYTES)
3 randombytes(seedsss, SABER NOISE SEEDBYTES)
4 AAA = GenMatrix(seedAAA)
5 sss = GenSecret(seedsss)
6 bbb = MatrixVectorMul(AAAT , sss, q) + hhh mod q // Here AAAT is transpose of AAA
7 for (i = 0, i < l, i = i+ 1) do
8 bbbp[i] = SHIFTRIGHT(bbb[i], EQ− EP)

9 SecretKeycpa = POLVECq2BS(sss)

10 pk = POLVECp2BS(bbbp)
11 PublicKeycpa = seedAAA ‖ pk
12 return (PublicKeycpa, SecretKeycpa)

8.4.2 Saber.PKE.Enc

This function receives a 256-bit message m, a random seed seedenc of length SABER SEEDBYTES

and the public key PublicKeycpa as the inputs and computes the corresponding ciphertext
CipherTextcpa. The steps are described in Alg. 18.

8.4.3 Saber.PKE.Dec

This function receives Saber.PKE.Enc generated CipherTextcpa and Saber.PKE.KeyGen gen-
erated SecretKeycpa as inputs and computes the decrypted message m. The steps are shown
in Alg. 19.
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Algorithm 18: Algorithm Saber.PKE.Enc for INC-CPA encryption

Input: m: message bit string of length 256,
seeds′s′s′ : random byte string of length SABER SEEDBYTES,
PublicKeycpa: public key generated using Saber.PKE.KeyGen

Output: CipherTextcpa: byte string of ciphertext

1 Extract pk and seedAAA from PublicKeycpa = (seedAAA ‖ pk)

2 AAA = GenMatrix(seedAAA)
3 s′s′s′ = GenSecret(seedsss′)
4 b′b′b′ = MatrixVectorMul(AAA,s′s′s′, q) + hhh mod q
5 for (i = 0, i < l, i = i+ 1) do
6 b′b′b′[i] = SHIFTRIGHT(b′b′b′[i], EQ− EP)

7 bbb = BS2POLVECp(pk)
8 v′ = InnerProd(bbb, s′s′s′ mod p, p)
9 mp = BS2POL2(m)

10 mp = SHIFTLEFT(mp, EP− 1)
11 cm = SHIFTRIGHT(v′ −mp + h1 mod p, EP− ET)
12 CipherTextcpa = (POLT2BS(cm) ‖ POLVECp2BS(b′b′b′))

13 return CipherTextcpa

Algorithm 19: Algorithm Saber.PKE.Dec for IND-CPA decryption

Input: CipherTextcpa: byte string of ciphertext generated using Saber.PKE.Enc,
SecretKeycpa: byte string of secret key generated using Saber.PKE.KeyGen

1 Output: m: decrypted message bit string of length 256
2 sss = BS2POLVECq(SecretKeycpa)

3 (cm ‖ ct) = CipherText
4 cm = BS2POLT (cm)
5 cm = SHIFTLEFT(cm, EP− ET)
6 b′b′b′ = BS2POLVECp(ct)
7 v = InnerProd(b′b′b′, sss mod p, p)
8 m′ = SHIFTRIGHT(v − cm + h2 mod p, EP− 1)
9 m = POL22BS(m′)

10 return (m)

8.5 IND-CCA KEM

The IND-CCA KEM consists of 3 algorithms.

• Saber.KEM.KeyGen, returns public key and the secret key to be used in the key encap-
sulation.

• Saber.KEM.Encaps, this function takes the public key and generates a session key and
the ciphertext of the seed of the session key.
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• Saber.KEM.Decaps, this function receives the ciphertext and the secret key and returns
the session key corresponding to the ciphertext.

8.5.1 Saber.KEM.KeyGen

This function returns the public key and the secret key in two separate byte arrays of size
SABER PUBLICKEYBYTES and SABER SECRETKEYBYTES respectively. The function is
described in Alg. 20.

Algorithm 20: Algorithm Saber.KEM.KeyGen for generating public and private key
pair.

Output: PublicKeycca: public key for encapsulation,
SecretKeycca: secret key for decapsulation

1 (PublicKeycpa, SecretKeycpa) = Saber.PKE.KeyGen()

2 SHA3-256(hash pk,PublicKeycpa, SABER INDCPA PUBKEYBYTES)

3 randombytes(z, SABER KEYBYTES)
4 SecretKeycca = (z ‖ hash pk ‖ PublicKeycpa ‖ SecretKeycpa)

5 PublicKeycca = PublicKeycpa
6 return (PublicKeycca, SecretKeycca)

8.5.2 Saber.KEM.Encaps

This function generates a session key and the ciphertext corresponding the key. The algo-
rithm is described in Alg 21.

Algorithm 21: Algorithm Saber.KEM.Encaps for generating session key and cipher-
text.

Input: PublicKeycca: public key generated by Saber.KEM.KeyGen
Output: SessionKeycca: session key,

CipherTextcca: cipher text corresponding to the session key
1 randombytes(m, SABER KEYBYTES)
2 SHA3-256(m, m, SABER KEYBYTES)
3 SHA3-256(hash pk, PublicKeycca, SABER INDCPA PUBKEYBYTES )
4 buf = (hash pk ‖ m)
5 SHA3-512(rk, buf , 2×SABER KEYBYTES)
6 Split rk in two equal chunks of length SABER KEYBYTES and obtain (r ‖ k) = rk
7 CipherTextcca = Saber.PKE.Enc(m, r,PublicKeycca)
8 SHA3-256(r′, CipherTextcca, SABER BYTES CCA DEC)
9 rk′ = (r′ ‖ k)

10 SHA3-256(SessionKeycca, rk
′, 2×SABER KEYBYTES)

11 return (SessionKeycca, CipherTextcca)
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8.5.3 Saber.KEM.Decaps

This function returns a secret key by decapsulating the received ciphertext. The algorithm
is described in Alg 22.

Algorithm 22: Algorithm Saber.KEM.Decaps for recovering session key from ci-
phertext

Input: CipherTextcca: cipher text generated by Saber.KEM.Encaps,
SecretKeycca: public key generated by Saber.KEM.KeyGen

Output: SessionKeycca: session key
1 Extract (z ‖ hash pk ‖ PublicKeycpa ‖ SecretKeycpa) = SecretKeycca
2 m = Saber.PKE.Dec(CipherTextcca, SecretKeycpa)
3 buf ← hash pk ‖ m
4 SHA3-512(rk, buf , 2×SABER KEYBYTES)
5 Split rk in two equal chunks of length SABER KEYBYTES and obtain (r ‖ k)
6 CipherText’cca = Saber.PKE.Enc(m, r,PublicKeycpa)

7 c = Verify(CipherText’cca,CipherTextcca, SABER BYTES CCA DEC)
8 SHA3-256(r′,CipherTextcca, SABER BYTES CCA DEC)
9 if c = 0 then

10 temp = (r′ ‖ k)
11 else
12 temp = (r′ ‖ z)
13 SHA3-256(SessionKeycca, temp, 2×SABER KEYBYTES)
14 return SessionKeycca

A Alternate Instantiations

In this appendix we explore the parameter space of Saber and report on two alternate
instantiations of the Saber design: the first explores the parameter space of Saber and
highlights some interesting parameter sets that merit further attention, e.g. from an efficiency
and side-channel security point of view, whereas the second provides a 90s-version of our
scheme.

A.1 Exploring the parameter space

In Figure 1, we have plotted the results of an exhaustive exploration of the Saber parameter
space, where we vary q, p and T , and sample the secret key either from the binomial dis-
tribution βµ(Rl×1

q ) for varying µ (plotted in blue) or from the centered uniform distribution
Uu(Rl×1

q ) for varying u (plotted in red), where Uu denotes the uniform distribution over the
range [−2u−1, 2u−1 − 1].
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It is obvious that the main parameter that determines security is the rank l of the module
being used, corresponding to the three clusters of parameter sets that are clearly visible.
Within each group, there is a trade-off between security, failure probability and ciphertext
size. A larger secret key variance results in higher security, but also in a higher failure
probability. The parameter T can be used to lower decryption failures at the expense of
larger ciphertexts.

Figure 1: Parameter options for Saber. Binomial secret Saber parameter sets are in blue,
uniform secret Saber parameter sets are in red.

A.2 uSaber

uSaber, or uniform-Saber, is a variant of Saber that samples the secret vectors sss and sss′ from
the centered uniform distribution Uu(Rl×1

q ) instead of the binomial distribution βµ(Rl×1
q ).

Correspondingly, the secret coefficients in uSaber are in the interval [−2u−1, 2u−1−1], instead
of the interval [−µ/2, µ/2].

The advantage of this choice is that the secret generation becomes more efficient as sampling
from Uu is simpler than sampling from βµ. Firstly, the number of pseudorandom bits required
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for a similar secret variance is greatly reduced since a possible value for u is two bits,
compared to six/eight/ten bits for µ. This has a beneficial impact on the time spent hashing.
Secondly, the Hamming weight computation on the µ bits, previously given in Algorithm 16,
is replaced by a simple sign extension of the u bits. Especially in a masked implementation
where these two operations in masked form are increasingly dominant in the calculations,
taking a uniform distribution results in a faster implementation. At the same time, the
required masked primitive for uniform sampling is much simpler, resulting in an altogether
more streamlined design. In hardware implementations, uniform sampling is faster and
consumes a smaller area, mainly due to µ being a non-power-of-two in LightSaber and
FireSaber.

The main problem of uSaber is that the availability of suitable parameter sets is limited.
We propose to set u = 2 and thus sample the secrets coefficients from the interval [−2, 1]
for all three security levels, which are called uLightSaber, uSaber and uFireSaber. This has
consequences on the other parameters, since a smaller range for the secret coefficients implies
a lower security as well as a lower failure probability. To accommodate for this, we reduce
the modulus q to 12-bits2. Note that uSaber offers slightly lower security than the regular
variant of Saber, and it is currently unclear whether uLightSaber really satisfies Category I
according to the classical gates requirement set out by NIST. Table 9 reports the parameters
and the security of uLightSaber, uSaber and uFireSaber. The other parameters, l, n, p and
T , are left unchanged. A reference implementation of uSaber is part of our submission in
the “Variants” subdirectory. Table 10 contains a comparison of the performance of uSaber
and regular Saber.

While uSaber is not part of the main submission at this point, it would be an interesting
option if NIST decides that a classical coreSVP security of 2111 would be enough to fit
security Category I. Also, in case of a mayor breakthrough in lattice reduction, a parameter
set based on uSaber might be more efficient than a Saber based one.

Table 9: Security and correctness of uSaber KEM.

Security Failure Classical Quantum pk (B) sk (B) ct (B)
Category Probability Core SVP Core SVP

uLightSaber-KEM: l = 2, n = 256, q = 212, p = 210, T = 23, u = 2

1 (?) 2−184 2111 2101 672 1504 (864) 736

uSaber-KEM: l = 3, n = 256, q = 212, p = 210, T = 24, u = 2

3 2−167 2182 2165 992 2208 (1248) 1088

uFireSaber-KEM: l = 4, n = 256, q = 212, p = 210, T = 26, u = 2

5 2−152 2256 2232 1312 2912 (1632) 1472

2further reducing the time spent on hashing operations, such as the pseudorandom generation of AAA.
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Table 10: Average cycle counts for reference implementations compiled with gcc 7.5.0 of
Saber and uSaber on Intel Core i7-4510U CPU (2.00 GHz). Note that the comparison is
between reference implementations, the comparison between optimized implementations may
be partially different.

Scheme Keygen Encapsulation Decapsulation

LightSaber 54,013 72,244 78,251

uLightSaber 48,234 63,800 69,979

Saber 107,339 132,889 149,678

uSaber 98,647 124,376 133,952

FireSaber 185,251 210,159 229,370

uFireSaber 155,112 188,131 201,991

A.3 Saber-90s

The software implementations of Saber spend the majority of their running time computing
the Keccak function. By the time that post-quantum protocols are standardized and become
mainstream, it is expected that there will be widespread hardware support for Keccak. Thus,
the impact of Keccak and the overall running time of Saber will significantly decrease.

However, current implementations cannot yet utilize hardware-supported Keccak. It could
be convenient, especially when experimenting with Saber in practical situations (e.g. within
TLS), to replace the Keccak-based hashing and pseudorandom number generating functions
with more well-established ones, such as SHA2 and AES. To avoid the spread of different
and incompatible versions of Saber based on such functions, we propose a reference version.
Following the trend set by other post-quantum schemes, such as Kyber-90s [36], we call this
variant Saber-90s.

More in detail, we propose to use SHA2 to replace SHA3 (for both the 256 and 512 bits
variants) and AES CTR DRBG to replace SHAKE-128. This corresponds to replacing the
following parameters:

• F ,G,H: The hash functions that are used in the protocol. Functions F and H are
implemented using SHA2-256, while G is implemented using SHA2-512.

• gen: The extendable output function that is used in the protocol to generate a pseu-
dorandom matrix AAA ∈ Rl×l

q from a seed seedAAA. It is implemented using AES-256 in
CTR mode, where seedAAA is used as the key and the nonce is equal to 0. The counter
of CTR mode is initialized to zero as well.

All the functions introduced in Saber-90s are NIST standards [29, 28]. Our submission
package contains a reference implementation of Saber-90s in the “Variants” subdirectory.
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Furthermore, since the goal of Saber-90s is to take advantage of dedicated hardware instruc-
tions we also provide an optimized implementation for modern Intel platforms with support
for AVX2 instructions. Table 11 illustrates the performance advantage of such hardware
support comparing the performance of an AVX2-optimized implementation of Saber and
Saber-90s running on the same platform.

Table 11: Average cycle counts for AVX2-optimized implementations compiled with gcc 7.5.0
of Saber and Saber-90s on Intel Core i7-4510U CPU (2.00 GHz).

Scheme Keygen Encapsulation Decapsulation

LightSaber 42,152 49,948 47,852

LightSaber-90s 28,928 35,491 35,123

Saber 66,727 79,064 76,612

Saber-90s 36,315 45,575 46,380

FireSaber 100,959 117,151 116,095

FireSaber-90s 57,144 70,335 72,797
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