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ABSTRACT Deep convolutional neural networks have quickly become the standard for medical image
analysis. Although there are many frameworks focusing on training neural networks, there are few that focus
on high performance inference and visualization of medical images. Neural network inference requires an
inference engine (IE), and there are currently several IEs available including Intel’s OpenVINO, NVIDIA’s
TensorRT, and Google’s TensorFlow which supports multiple backends, including NVIDIA’s cuDNN,
AMD’s ROCm and Intel’s MKL-DNN. These IEs only work on specific processors and have completely
different application programming interfaces (APIs). In this paper, we presents methods for extending
FAST, an open-source high performance framework for medical imaging, to use any IE with a common
programming interface. Thereby making it easier for users to deploy and test their neural networks on
different processors. This article provides an overview of current IEs and how they can be combined
with existing software such as FAST. The methods are demonstrated and evaluated on three performance
demanding medical use cases: real-time ultrasound image segmentation, computed tomography (CT) volume
segmentation, and patch-wise classification of whole slide microscopy images. Runtime performance was
measured on the three use cases with several different IEs and processors. This revealed that the choice of
IE and processor can affect performance of medical neural network image analysis considerably. In the
most extreme case of processing 171 ultrasound frames, the difference between the fastest and slowest
configuration were half a second vs. 24 seconds. For volume processing, using the CPU or the GPU, showed
a difference of 2 vs. 53 seconds, and for processing an whole slide microscopy image, the difference was
81 seconds vs. almost 16 minutes. Source code, binary releases and test data can be found online on GitHub
at https://github.com/smistad/FAST/.

INDEX TERMS Deep learning, inference, neural networks, medical imaging, high performance.

I. INTRODUCTION

Deep convolutional neural networks (NNs) have shown great
results for several medical image processing tasks, such as
image classification, segmentation, image-to-image transfor-
mation, reconstruction and registration [1]. Although there
are many libraries for training NNs, there are few that focus
on high performance inference for medical imaging. There
is a need for easy-to-use, high performance medical image
computing frameworks which support NN inference as well
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as medical image formats and visualizations. NN training
is primarily done using the Python programming language,
which is not well suited for large-scale software development,
deployment and real-time processing. Currently, one of the
most popular NN frameworks is Google’s TensorFlow [2].
Although TensorFlow is primarily written in C++-, their main
focus is on the Python API. Therefore the TensorFlow C++
API can be difficult to use due to its complexity and lack of
examples. Furthermore, processor companies such as AMD,
Intel and NVIDIA are making their own high performance
inference libraries, called inference engines (IEs), which can
accelerate NN inference on specific processors. Each of these
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IEs are developed in C++ using completely different APIs,
which makes it difficult to test and deploy to all platforms.

FAST (Framework for Heterogeneous Medical Image
Computing and Visualization) was proposed in Smistad [3] as
an open-source cross-platform framework with the main goal
of making it easier to do efficient processing and visualization
of medical images on heterogeneous systems. Heterogeneous
systems are machines with multiple processors for different
purposes such as CPUs, integrated GPUs, dedicated GPUs
and vision processing units (VPUs). FAST has been used
successfully in several projects such as ultrasound-guided
regional anesthesia assistant [4], [5], automatic echocardiog-
raphy image analysis [6], [7] and the ultrasound robot frame-
work EchoBot [8]. In these projects, FAST is used to create
complete software which can handle all necessary steps:
data streaming/import/export, processing, visualization, and
graphical user interface.

This article is intended to give the reader an overview
of NN IEs and present methods for combining them with
existing software for medical image processing and visual-
ization such as FAST. Three different medical use cases are
investigated with high performance in focus:

Case 1 - Real-Time Ultrasound Image Segmentation:
Ultrasound is a real-time imaging modality which can provide
a stream of many images per second. In this case, real-time
data streaming, inference and visualization is often essential
and very demanding in terms of implementation. Medical
ultrasound images are typically grayscale, noisy and have a
small size of less than 1000 x 1000 pixels. Most medical
ultrasound images are in 2D, but 3D is also possible.

Case 2 - CT Volume Segmentation: The typical size of
CT and MRI images is about 512 x 512 x 512 grayscale
pixels. This large size means that most processors do not have
enough memory available for a neural network to process the
entire volume at once. Therefore it is necessary to split the
volume into subvolumes, often called patches, then perform
inference on every patch independently, and finally stitch the
results back together.

Case 3 - Patch-Wise Classification of a Whole Slide
Image: Whole slide microscopy images (WSIs) used in dig-
ital pathology are often extremely large. A typical 40x WSI
has approximately 200k x 100k color pixels resulting in an
uncompressed size of ~ 56 gigabytes [9]. As these images
often exceed the amount of memory available on a machine,
virtual memory is needed to load, process and visualize these
images. As with case 2, this limits processing to one patch at
a time.

A. RELATED WORK

As mentioned, there are many libraries for training NNs but
few that focus on high performance inference for medical
imaging. Compared to other computer vision and image anal-
ysis tasks, medical imaging have many different modalities
which are often stored in unconventional image formats such
as DICOM, metaimage and pyramidal tiled TIFFs. Medical
imaging libraries also need to be able to process and visualize
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3D images which are common in medicine. And since these
3D images and WSIs can be very large, medical imaging
libraries require processor and memory efficient analysis and
visualization. In this section, a few relevant frameworks are
described and compared to the proposed methods with FAST.

The popular open-source computer vision library OpenCV
has NN inference support in the latest major release (ver-
sion 4) [10]. The primary inference engine used in OpenCV is
the OpenVINO toolkit by Intel [11]. Unlike FAST, OpenCV
does not focus on medical imaging, but computer vision
in general, and therefore lack support for specific medical
image formats such as DICOM, metaimage and WSI formats.
OpenCV is primarily made for 2D images, and therefore need
additional steps for processing 3D images while FAST has
generic support for 2D and 3D images. While OpenCV has
support for some GPU accelerated algorithms as an optional
module, FAST uses parallel and GPU computing at its core,
thereby removing the need for explicitly moving data back
and forth to the GPU. The benefits of OpenCV are its large
number of features, user base and good Python bindings.

NVIDIA has launched a collection of healthcare Al tools
called NVIDIA Clara Al which currently focus on medical
imaging and genomics [12]. Comparing Clara to FAST show
that most NVIDIA tools are not open-source and only work
on NVIDIA GPUs. While Clara has tools for importing med-
ical image data and visualization, these tools are currently
provided through third party software such as MITK [13],
while FAST provides all of this in one software package.
Clara uses TensorRT for inference, which is also supported
in FAST.

DeeplInfer is an open-source deep learning toolkit specif-
ically designed for medical data analysis [14]. This toolkit
is basically a collection of Docker containers with models,
libraries and code needed to run each model. Deeplnfer also
includes a plugin to the popular medical processing and visu-
alisation software Slicer, enabling users to run these Docker
containers from a graphical user interface and view the results
in Slicer. With this approach, Deeplnfer can in theory, like
FAST, use any IE. The downside with such an approach
is performance loss due to multiple data transfers between
Slicer making for instance real-time ultrasound processing
and visualization challenging. It also requires users to make
Docker images, while FAST only requires the model to be
exported to a single file. Another downside with Deeplnfer,
is code fragmentation, as the visualization and data loading
happens in Slicer, while inference happens in the Docker
container. With FAST everything happens in one software
package. The benefit with DeeplInfer is that by using Docker,
different models can use different libraries and driver ver-
sions on the same system. Also, to our knowledge, Slicer
does not support processing and visualization of whole slide
microscopy images.

B. CONTRIBUTIONS
The main contributions of this article is an optimized neural
network inference module for FAST including:
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« A generic plugin system enabling any inference engine
to be used and loaded at runtime. The complex C++
code of each inference engine is hidden from the user
by providing a common interface.

o Support for several different IEs: Intel’s OpenVINO,
NVIDIA’s TensorRT and Google’s TensorFlow with
CPU, CUDA and ROCm backends.

« Highly efficient pipelines using parallel and GPU com-
puting enabling real-time streaming and NN inference.

o Performance comparison on three use cases, using dif-
ferent medical data (ultrasound, CT and WSI), IEs and
processors.

« Easy to set up pipelines: only a few lines of code are
needed as shown in the Appendix.

o Tensor data structures in FAST allowing processing of
any N-dimensional data.

o Support for complex NNs with multiple inputs and/or
outputs, batch and sequence processing, and patch gen-
eration and stitching.

o Concurrent GPU based visualization of classification
and segmentation.

Il. METHODS

This section starts with describing how FAST, neural net-
works and IEs work and how they were combined. Finally,
the data and the pipelines used for each use case are described.

A. FAST

FAST uses a demand-driven execution pipeline similar to the
visualization toolkit (VTK) and the insight toolkit (ITK). This
means that each process step is contained in a process object
(PO). Each PO can have an arbitrary number of input and
output data ports. An output port can be connected to another
PO’s input port, creating a data channel in which data can
flow between POs. Several POs can be connected to form
complex pipelines such as shown in figures 2, 3 and 4. The
pipelines are executed on demand, while doing so, each PO
is executed in order.

Pipelines are only executed when a PO has new input
data, or a parameter has changed. Due to this generic setup,
both static and streamed data can be processed without any
code changes. Thus, the same pipeline can be used to process
a stream of ultrasound images coming from a scanner as a
single ultrasound image stored on disk. Such data streams can
be processed using only the latest frame, potentially accepting
data loss, which is often desirable in real-time scenarios were
the goal is to always process the latest frame. Data streams
can also be processed for every frame, potentially creating
a queue which needs synchronization due to the producer-
consumer problem, which is solved in FAST using multi-
threading and semaphores.

Data, such as images and geometric meshes, are repre-
sented by abstract data objects which handle both organi-
zation and synchronization of this data in different memory
such as CPU and GPU RAM. Most processing and visualiza-
tion in FAST are implemented to run on the GPU for high
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performance using the libraries Open Computing Library
(OpenCL) and Open Graphics Library (OpenGL).

A typical FAST pipeline consists of data sources, pro-
cessing steps, and data sinks. Data sources can be images
stored on disk, or streamed images from a ultrasound scan-
ner or camera. Processing steps can be anything including
image filters, segmentation, registration and neural network
inference. Data sinks are typically renderers which visualize
data on screen, or exporters which store data on disk.

B. NEURAL NETWORKS

Modern neural networks typically use an N-dimensional data
structure called a fensor. A scalar is a OD tensor, a list of
numbers is a 1D tensor, an image a 2D tensor, a volume a
3D tensor and so on. The number of dimensions and the size
of each dimension is referred to as the shape of the tensor.
In general, neural networks operate on input tensors of a fixed
size. A neural network can process a set of samples at a time,
namely a batch. When performing inference on trained neural
network, the batch size is usually 1.

A neural network which needs an 2D image as input,
requires a 4D tensor as input, where the four dimensions are
sample, y, x and channel in that order. Thus the shape of
the tensor for a single color image of size W x H would be
(1, H, W, 3). In this case, the last dimension is the number of
channels, this is called channel last (CL) ordering. Some IEs
require the channel dimension right after the batch dimension
instead, which is called channel first (CF) ordering. With
CF ordering, the tensor shape of the color image would be
(1,3, H, W). For 3D images of size W x H x D, another
dimension is simply added to the data tensor resulting in a
shape (1, D, H, W, C).

Feedforward neural networks consist of a set of layers
which are connected together to form a graph. Each layer
usually have several hyperparameters set by the user, and a
large set of weights which are learned during the training
process. During execution, the layers are processed in order
with input data from the previous layer. The layer setup
is defined before training. After training, a neural network
model consisting of the layer setup and the learned weights
are produced. This model can be stored in one or more files
on disk for later use.

C. INFERENCE ENGINES

In this work, five IEs are considered: OpenVINO, TensorRT
and TensorFlow with CPU, CUDA and ROCm backends. The
API of each IE is different, but the following is assumed to
be common for all:

1) A trained NN can be loaded from a file stored on disk.

2) A NN has one or more input and output nodes repre-
sented as N-dimensional tensors.

3) A NN can be executed on demand by providing a NN
definition and input tensors. Data from output nodes
can be read after execution.
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TABLE 1. An overview of the inference engines investigated, highlighting some of their major differences. The application footprint refers to the size of

binaries and the number of dependencies.

Inference engine  TensorFlow 1.14

Dimension ordering  CL default, CF optional
Input/output node detection  Only input
Input/output shape detection  Yes

CPUgs, NVIDIA GPUs
(cuDNN) and AMD GPUs
(ROCm)

Yes (Apache 2.0)
Application footprint  High

Processors supported

Open-source (license)

Implemented standard layers  All

Storage file formats  Google Protobuf (.pb)

Many, 3D not supported.

Intel Intermediate Repre-
sentation (.xml + .bin)

OpenVINO 2019 R1 TensorRT 5.1
CF

Yes No

Yes No

CPUs and Intel GPUs, NVIDIA GPUs

VPUs, FPGAs

Yes (Apache 2.0) No

Low Low

Few, 3D not supported.
Caffe (txt + protobuf), ONNX and UFF

What varies between the IE APIs are 1) the tensor dimen-
sion ordering (channel last or channel first), 2) whether input
and output nodes are detected automatically or if they have to
be set manually by the user, 3) whether the shape of the input
and output nodes are detected automatically or if they have to
be set manually by the user, 4) which processors the IE can
execute on, 5) which layers and file formats are supported
and 6) if it is open source or not. The differences for each
investigated IE are listed in Table 1. To hide the differences
and complexity of each IE, an abstract interface for IEs was
created in FAST. This interface was implemented for each
of the five IEs used here, but in general any new IE could
potentially be added to FAST using this interface.

The next sections describe each of the IEs in more detail.

1) TENSORFLOW

Google’s TensorFlow [2], together with Keras, is perhaps the
most popular machine learning framework at the moment.
This framework is open-source and has several thousand
contributors on GitHub. The main target of the framework is
to facilitate training in Python, however, the framework also
has a C++ APIL TensorFlow has implementations of most,
if not all, neural network layers and operations. Due to large
number of features in TensorFlow, its application footprint is
quite large with many third-party dependencies which can be
a downside when developing a production ready application.

High performance training and inference in TensorFlow
is normally achieved by NVIDIA’s proprietary CUDA and
cuDNN frameworks which only works with GPUs from
NVIDIA. TensorFlow does also support normal CPU exe-
cution, CPU execution with Intel’s Math Kernel Library for
Deep Neural Networks (MKL-DNN) [15], SYCL using the
ComputeCpp compiler from Codeplay, NVIDIA’s TensorRT
and also recently support for AMD CPUs and GPUs using
ROCm and MIOpen.

In this work, we have added support in FAST for three
versions of TensorFlow: 1) using CPU and no extra libraries,
2) with CUDA and cuDNN and 3) ROCm, thus covering
CPUs, and GPUs from both NVIDIA and AMD. TensorFlow
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can be compiled to support several of these in one build, but
the binary would then require all dependencies to be present
on the system to run. Therefore a separate IE for each of the
three builds of TensorFlow were created in FAST.

The CMake superbuild system of FAST downloads Ten-
sorFlow automatically and builds the entire C++4 library
and links it with FAST. In this article, TensorFlow
version 1.14 was used with CUDA 10.0, cuDNN 7.6, and
ROCm 2.6.

2) OPENVINO

The OpenVINO toolkit [11] from Intel enables inference on
different processors from Intel using a C++ API. This toolkit
can execute neural networks on multi-core CPUs, the inte-
grated GPUs (HD graphics), as well as the neural compute
stick, a USB stick with a dedicated vision processing unit
(VPU).

OpenVINO is open-source with an Apache 2.0 license.
When targeting GPUs, OpenVINO uses OpenCL and a
library called cIDNN to perform inference. For CPUs, Intel’s
MKL library is used.

The OpenVINO toolkit can only be used for inference, not
training. Thus you need a trained model, e.g. a protobuf file
from TensorFlow, which you have to convert to an interme-
diate format consisting of an .xml and a .bin file using the
model optimizer tool included in the toolkit. In this article,
the 2019 R1 version of OpenVINO was used.

3) TENSORRT

NVIDIA’s proprietary TensorRT [16] platform enables high
performance inference on NVIDIA’s GPUs using several
optimizations such as precision calibration, layer fusing and
kernel auto-tuning.

The current version of TensorRT, version 5.1, only sup-
ports reading files stored in Caffe, UFF or ONNX format.
Thus, if you have TensorFlow models stored in the pro-
tobuf format, you will first need to convert to the UFF
format. Also, TensorRT requires channel first dimension
ordering, but currently the model converter can not do this
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FIGURE 1. A block diagram of the libraries involved. Each inference engine implements a common inference engine interface and is compiled as a
separate library which links the FAST core library. The inference engine manager in FAST load the inference engines at runtime. Each inference engine can

have several external dependencies as illustrated with orange boxes.

automatically. You therefore have to train your model with
the channel first ordering in order to use TensorRT.

‘When the model is loaded in FAST with the TensorRT IE,
a kernel auto tuning will be performed the first time. This
takes a lot of time, and therefore FAST will automatically
store a cached version on disk of the optimized model which
will be loaded instead of the original model while it is
unchanged.

D. INFERENCE ENGINE MANAGER

Each IE has several library dependencies, some of which have
to be installed separately by the user and cannot be distributed
with FAST. Linking all dependencies to FAST at compile
time would make it only possible to run FAST on a system
that has all IEs and their dependencies installed on the system.
Thus an inference engine plugin system was created in FAST
in which every engine is compiled as a separate dynamic
library. Each engine then link to FAST and their respective
dependencies as shown in Fig. 1. When a neural network is
set up in FAST, an inference engine manager will try to load
all the inference engines during runtime. If an IE is missing
any of its dependencies, it will simply register that IE as
unavailable. The inference engine manager can then be used
to query which IEs are available, and load a specific or the
best available IE.

E. FAST NEURAL NETWORK IMPLEMENTATION

A neural network process object was added to FAST with
methods for loading a neural network from disk, setting
input/output nodes, specifying input normalization schemes
and also specifying which IE to use in case several IEs are
available on the system. The neural network process object is
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completely generic in the sense that it accepts any number of
input/output nodes of any tensor shape. To reduce the amount
of code needed to setup a neural network, specialized process
object for two common networks types were created. These
are ImageClassificationNetwork, and SegmentationNetwork
which are neural networks that perform image classification
and segmentation respectively. The ImageClassificationNet-
work takes an input image and outputs a list of confidence
values for each possible image class. A list of image class
names can be provided to this class for convenience. The
SegmentationNetwork takes an input image and outputs the
segmentation either as a label image, where each pixel has
a positive integer value representing its class which may be
visualized with the SegmentationRenderer, or as a tensor with
confidence values for each class which can be visualized as a
heatmap using the HeatmapRenderer.

1) TENSORS

FAST already has a data object for representing 2D and 3D
images. This data object can store images as OpenCL buffers,
images/textures on the GPU or as a 1D array in CPU memory.
To support any N-dimensional data used for neural network
input and output, a tensor data object was added to FAST. This
object in FAST uses channel last ordering since this is the
same used in OpenCL and OpenGL which FAST uses. The
network process object accepts both tensor and image data
objects, but internally images are converted to tensors before
execution. At the same time as the tensor conversion, inten-
sity normalization is performed such as converting pixels to
a 0-1 range, subtracting mean and dividing by a standard
deviation, and also converting to the required dimension
ordering of the selected IE. This conversion all happens on the
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GPU using OpenCL and the tensors can be read on the GPU
using OpenCL buffers and on the CPU as Eigen tensors. After
the conversion, the tensor data is given to the selected IE.
After inference, the output is converted to FAST tensor data
objects and may be passed on to other process objects or ren-
derers for visualization.

2) BATCH PROCESSING

Most often during inference, only one sample is processed
at a time, while in some cases, there is a need to process
several. Processing several samples at the same time can pro-
vide a performance gain in terms of samples/seconds when
using GPUs. To support this, a new data object Batch was
added to FAST which simply is a list of tensors or images.
During inference, a Batch data object is converted to a tensor
of shape (B, X) where X is the shape of the tensors in the
Batch object, which all must have the exact same shape.

3) MULTI-INPUT AND MULTI-OUTPUT NETWORKS

Most neural networks have only one input and one out-
put, but in some cases neural networks will have multiple
inputs or outputs, for instance in the case of multi-task learn-
ing. In FAST, an input and output data port is created for each
input and output node of the neural network. Thus, complex
pipelines can be created by connecting various processing
objects with these input/output ports. Each input and output
port is identified by a port ID (a positive integer) and a
name. Depending on which IE used, it may be necessary to
define the input/output nodes and/or their shapes manually in
code, while some IEs can automatically detect this from the
network definition file. In case of batch processing, the batch
sizes has to be the same for all input nodes.

4) SEQUENCE DATA

A sequence of data can for instance be image frames in a
video, or a set of slices in a volume. For this kind of data
another FAST data object called Sequence is made, which is
a list of tensors. If one sequence of S images of size H x W
and C channels is sent to a neural network, it is converted to a
tensor of shape (1, S, H, W, C)or (1, S, C, H, W) depending
on dimension ordering.

5) PATCH PROCESSING

To facilitate patch processing, which is necessary in cases
where the input image or volume is too large to be processed
directly, two process objects are used, a patch generator and
a patch stitcher. The patch generator creates a separate thread
of execution which creates a stream of patches from the
original full image/volume. The use of multi-threading here,
enables patches to be generated during network inference and
other processing. After, network inference, the patch stitcher
converts the stream of patches into a full image. In order to do
this, the patch stitcher need information such as: 1) the size of
the original image, 2) the size of the patches 3) the position of
the given patch, and 4) the pixel spacing. All this information
is embedded as frame data in the data object of each patch.
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This frame data is always copied from input to output data
after being processed by a process object. The patch stitcher
keeps a copy of the image it is creating from the patches, and
updates it continuously until the patch generator has stopped
producing patches.

F. USE CASES
Three different medical use cases were investigated with high
performance inference in focus. In this section, the neural net-
work, data, and pipeline used for each use case are described.
Example code for setting up these pipeline in FAST are
provided in appendix A, B and C. This code is included to
give the reader an impression of how little code is needed to
set up these kind of pipelines in FAST.

1) CASE 1 - REAL-TIME ULTRASOUND IMAGE
SEGMENTATION

In this use case, a neural network for segmentation of the
carotid artery and jugular vein from B-mode ultrasound
images was used. The network is a fully convolutional
encoder-decoder architecture with skip-connections, 3 x 3
convolutions and ReL.U activations. Max pooling was used
in the encoder, while upsampling was used in the decoder.
For the TensorRT IE, upsampling is not currently supported,
and was therefore replaced with transposed convolution. The
final layer is a pixelwise softmax activation with 3 channels.
The size of the input and output is a 256 x 256 image and
the input is normalized to a 0-1 range before inference. The
network has about 2 million parameters.

Figure 2 shows the FAST pipeline for this use case.
An ultrasound image streamer produces a stream of images
either directly from an ultrasound scanner or from disk. The
images are passed directly to a neural network for segmenta-
tion. The ultrasound images and the segmentations are ren-
dered together to visualize the segmentation on top of the
ultrasound image.

2) CASE 2 - CT VOLUME SEGMENTATION
This use case focus on volumetric segmentation of lung
nodules from thoracic CT volumes. CT volumes have a
large intensity range and were therefore clipped to the
range [—1200, 400] Hounsfield units and then normalized to
a 0-1 range. The network used is similar to the one in case 1,
but in 3D instead using 3D convolutions. Due to memory
constraints, the network process 32 slices per sample. Thus,
the input and output size is 32 x 256 x 256. The model has
~ 5.9 million parameters. The network was trained using the
The Lung Image Database Consortium and Image Database
Resource Initiative (LIDC-IDRI) dataset [17]. A thoracic CT
image of patient 72 from this dataset was used for inference
in this use case. The image has 305 slices of size 512 x 512.
Figure 3 shows the FAST pipeline for this use case.
The volume is first imported from a DICOM file using the
DCMTK library [18], and passed on to the patch genera-
tor. The patch generator generates a stream of subvolumes
that are passed on to the neural network for segmentation.
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FIGURE 2. Case 1 - Real-time ultrasound image segmentation: An ultrasound image streamer produces a stream of images either directly from an
ultrasound scanner or from disk. The images are passed directly to a neural network for segmentation and the result is rendered with transparent colors
on top of the ultrasound image. A video of this is available online in the supplementary material and on YouTube https://youtu.be/iuevRnZMDgg.

FIGURE 3. Case 2 - CT Volume segmentation: The volume is imported from a DICOM file, and passed on to the patch generator and the volume renderer.
The patch generator generates a stream of subvolumes that are passed on to the neural network for segmentation. This is necessary because there is
usually not a enough GPU memory to process the entire volume in one go. After neural network processing, the volume patch is stitched to create a
volume of the same size as the CT volume. Finally, the segmented lung tumour is rendered using a threshold volume renderer shown here in green. A
video of this is available online in the supplementary material and on YouTube https://youtu.be/iuevRnZMDgg.

After the neural network processing, the volume patch is
stitched to create a volume of the same size as the input
volume. Finally, the CT volume and the segmentation volume
are rendered using a GPU-based ray casting volume renderer.

3) CASE 3 - PATCH-WISE CLASSIFICATION OF A WHOLE
SLIDE IMAGE

In this use case, a convolutional neural network for patch-
wise classification of whole slide microscopy images was
used. These kind of images are usually stored as tiled image
pyramids, in various proprietary formats. FAST uses the
OpenSlide [19] library to load WSIs from disk. As with
use case 2, due to memory constraints, the neural net-
work is forced to process patches. A modified Inception
v3 network [20], using 64 hidden neurons in the first fully-
connected layer and a dropout rate of 0.5, was trained on
the Grand Challenge on Breast Cancer Histology Images
(BACH) dataset [21]. Input to the network are RGB color
patches of size 512 x 512, extracted from the 20x opti-
cal magnification level and RGB intensities normalized
to 0-1. The model classifies breast tissue into the four classes:
normal tissue, benign lesion, in-situ carcinoma and invasive
carcinoma. In the last layer, a softmax activation function
with 4 channels was used. The model has ~ 21.9 million
parameters. The test image used for inference is A0S from
the BACH dataset. It is a H&E stained brightfield image of
~ 52k x 43k pixels.
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Figure 4 illustrates the FAST pipeline for this use case. The
large WSI is imported using OpenSlide and virtual memory.
Like with use case 2, the image is processed through the patch
generator which generates patches which are passed on to the
neural network for classification. The patch classifications
are passed on to the patch stitcher which merges the results to
form a result image which is renderer as a colored heatmap,
where each color represents a different class, and the opacity
represents the class confidence. Since WSIs often contain
many pixels corresponding to the glass slide and not actual
tissue, a rough tissue segmentation was first performed. This
segmentation is used as a mask in the patch generator such
that the generator only creates patches were there is tissue.

Due to the parallel nature of GPUs, these processors can
batch process several samples in parallel, thereby increasing
throughput by processing several images per second. For this
purpose, an image to batch generator was made and tested
in this use case. This generator takes in a stream of images
and converts them to a stream of batches, where B number of
images are put into a Batch data object.

IIl. RESULTS

Runtime for each use case was measured with different
IEs and processors and collected in tables 2, 3 and 4.
For the neural network step, the runtime of three parts
were measured: 1) Pre-processing and transfer of input data
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Optional

FIGURE 4. Case 3 - Patch-wise classification of a whole slide image: A large whole slide microscopy image is imported using virtual memory. Like the
CT volume, these images are also too large to process in one go, and a patch generator and stitcher is used. To speed up the processing, an optional
tissue segmentation and image to batch generator can be used. Finally, a visualization is created using an image pyramid renderer, and a heatmap
renderer displaying the class of each patch with specific class colors overlaid on the microscopy image. A video of this is available online in the
supplementary material and on YouTube https://youtu.be/iuevRnZMDgg.

TABLE 2. Runtime measurements of Case 1 - Ultrasound image segmentation. The total includes everything except rendering, such as loading data
from disk and neural network processing of 171 ultrasound frames. The total average and standard deviation was calculated based on 10 consecutive
runs. The neural network input, inference and output are reported as the average per frame.

Runtime (ms)

Inference engine Processor
NN input NN inference NN output Total

TensorFlow CPU Intel i5-4460 1+0 140 £+ 30 0+0 24,193 £ 1,226
TensorFlow CUDA  NVIDIA GTX 1080 Ti 1+0 7+33 0+0 1,547 £17
TensorFlow ROCm  AMD Radeon R9 Fury 1£0 12+ 34 1+0 2,364 + 23
OpenVINO Intel i7-7990 1+0 105 £+ 10 1+0 18,222 4+ 2,708

Intel HD Graphics 620 1+0 32+1 1+0 5,898 + 26

Intel Neural Compute Stick 2 2+1 85+1 2+1 15,145 + 52
TensorRT NVIDIA GTX 1080 Ti 1£0 240 0+0 545 £ 22

TABLE 3. Runtime measurements of Case 2 - CT volume segmentation. OpenVINO and TensorRT are not included here as they do not support 3D
convolutions. Also, the TensorFlow ROCm failed to run this use case. The total includes everything except rendering, such as loading data from disk and
neural network processing of the entire CT volume. The total average and standard deviation was calculated based on 10 consecutive runs. The patch
generator, stitcher and neural network input, inference and output are reported as the average per patch.

Runtime (ms)

Inference engine Processor

Patch generator NN input NN Inference NN output  Patch stitcher Total
TensorFlow CPU Intel i5-4460 26 + 32 1440 10,441 £ 145 12+0 67+ 113 53,296 £ 278
TensorFlow CUDA  NVIDIA GTX 1080 Ti 25+ 31 14+1 302 £ 139 12+0 67 + 112 2,477+6

to the IE, 2) the actual inference time, and 3) post-processing
and transfer of output data from the IE to FAST. These
runtime measurements were included to give an impression of
how quickly different data can be processed with NNs using
FAST and which processing steps take most time.

For use case 2 and 3, the runtime of the patch generator and
stitcher were calculated as the average time to process gener-
ate/stitch one patch. The total runtime of use case 2 includes
all steps necessary to process the entire volume, except the
rendering which runs in real-time. For this use case, only the
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TensorFlow IE was used, since it is the only IE that supports
3D convolutions at the moment. Also, the TensorFlow ROCm
failed to run this use case. Similarly, the total runtime of use
case 3 includes all steps necessary to process the entire WSI,
except rendering, using all 3,320 patches classified as tissue
using tissue segmentation.

The total runtime average and standard deviation was
calculated using 10 consecutive runs. The neural network
input, inference and output, as well as the patch generator
and stitcher, are reported as the average per frame/patch.
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TABLE 4. Runtime measurements of Case 3 - Patch-wise classification of a whole slide image. The total includes everything except rendering, such as
loading data from disk and neural network processing of the entire image. The total average and standard deviation was calculated based on
10 consecutive runs. The patch generator, stitcher and neural network input, inference and output are reported as the average per patch of 3,320 patches

classified as tissue.

Runtime (ms)

Inference engine Processor
Patch NN NN NN Patch Total
generator input inference  output  stitcher
TensorFlow CPU Intel i5-4460 29+5 2+£0 15219 0%0 0£0 510,564 £ 1,044
TensorFlow CUDA  NVIDIA GTX 1080 Ti 25+4 2+£0 19 £ 26 0£0 0£0 84,686 = 1,033
TensorFlow ROCm  AMD Radeon R9 Fury 24+4 1+£0 29 £ 26 0+0 0+0 102, 594 + 269
OpenVINO Intel i7-7990 67+ 11 4+2 283£39 0+£0 0£0 954,563 + 29,203
Intel HD Graphics 620 174 £8 6+4 167£5 0£0 0£0 581,054 + 16,304
Intel Neural Compute Stick2  54+10 144+8 248+14 0=£0 0£0 873,093 £ 1,576
TensorRT NVIDIA GTX 1080 Ti 2444 1+0 9+0 0£0 0£0 81,298 £ 180

Note that data streaming, processing, GPU scheduling, and
visualization in FAST all run concurrently in different
threads.

The runtime of the TensorFlow and TensorRT IEs were
measured on Ubuntu 18.04 64 bit operating system, while
OpenVINO runtime was measured on Windows 10 64 bit.

A video of these three uses cases and more are avail-
able online in the supplementary material and on YouTube
(https://youtu.be/iuevRnZMDgg).

IV. DISCUSSION

The world of inference engines is currently fragmented.
Although they are all made to process neural networks, they
differ in several aspects as shown in Table 1. FAST manages
to hide these differences by providing a common interface for
all of them and still provide high performance inference. Still,
an issue that remains is the storage format of neural networks.
For each use case in this article, the original TensorFlow
protobuf file created after training had to be converted to the
UFF format used by TensorRT and the OpenVINO format
using scripts provided by the vendors. Hopefully, the industry
will land on a common storage format in the future which will
remove the need for manually converting between formats.
At the moment there are two candidates for a standard storage
format: Open Neural Network eXchange format (ONNX)
[22] initiated by Facebook and Microsoft, and the Neural
Network Exchange Format (NNEF) [23], developed by the
Khronos Group, an industry consortium.

Of the three inference engines investigated, TensorFlow is
currently the only one supporting 3D convolutions which is
useful when processing CT and MRI volumes.

The deep learning scene has long been dominated by
NVIDIA and their proprietary software CUDA, cuDNN
and TensorRT, and thus NVIDIA GPUs have, and still
are, considered almost mandatory for doing deep learn-
ing. Recently, other options such as Intel’s OpenVINO
and AMD’s ROCm/MIOpen have arrived which are using
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open-source libraries such as OpenCL. This is great news
for reducing the NVIDIA dominance and their proprietary
software in deep learning. However, developers are still faced
with multiple libraries with different API’s. In this article,
we have showed how FAST was extended to support all
of these inference engines and processors using a common
interface making it easier for the developer.

Performance comparison of the three different use cases,
inference engines and processors indicated that TensorRT
was the fastest IE at the moment, beating TensorFlow with
cuDNN on the same GPU, and was able to do ultrasound
image segmentation inference in just 2 milliseconds on a con-
sumer NVIDIA GPU. A fair comparison with AMD’s ROCm
was not possible since only an older AMD GPU was available
for this study. Taking into consideration that the R9 Fury
is two years older than the 1080 Ti GPU, the performance
numbers show a decent runtime for the ROCm platform. Still,
the choice of which inference engine and processor to use
for medical neural network image analysis can affect runtime
performance considerably. The biggest relative difference
was seen in case 1 of processing ultrasound frames, where
the difference between the fastest and slowest cases were half
a second vs. 24 seconds. For volume processing, using the
CPU or the GPU, showed a difference of 2 vs 53 seconds.
Due to the extreme size of the whole slide microscopy images
used in digital pathology, processing these images using deep
neural networks is very time consuming. The fastest configu-
ration tested in this article used about 81 seconds to process a
single WSI, while the slowest IE used almost 16 minutes. On
OpenVINO, using the integrated GPU was generally fastest,
followed by the Neural Compute Stick VPU and the slowest
which was the CPU.

Most scientists use Python to train and test their neu-
ral networks due the simpler syntax and semantics of the
Python language. Since the neural network libraries, such as
TensorFlow, are essentially written in C++ and optimized
for GPUs, inference is still fast when using these libraries in
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Python. The real benefit of using a C++ framework such as UltrasoundSegmentation,  neuralNetworkCTSegmentation
FAST, instead of Python libraries, comes when you want to and neuralNetworkWSIClassification respectively.
use trained neural networks in practice, such as doing real-
time inference on streamed ultrasound images, or process- A. USE CASE 1: REAL-TIME ULTRASOUND IMAGE
ing large images and volumes with complex pipelines and SEGMENTATION
visualize them with advanced rendering techniques such as '
. . . . . // Stream data from an ultrasound device
GPU-based ray casting and tiled image pyramid rendering of // OpenIGTLink is used as an example here, but it

extremely large microscopy images. In these cases, utilizing // is also possible to stream from a Clarius
the parallel capabilities of modern CPUs and GPUs, as well // scanner or from files stored on disk.
idi 1 d . d the sl auto streamer = OpenIGTLinkStreamer::New();
as avoiding unnecessary large data copies and the slow nature streamer—>setConnectionAddress ("192.168.0.1");
of the interpreted Python language is essential for achieving
high performance use of neural networks in medical image // Set up neural network ‘
. auto segmentation = egmentatlonNetwork: :New H

i to segmentat SegmentationNetwork: :New ()

analysis. segmentation->setOutputNode (0,
In the introduction, the proposed FAST solution was com- "conv2d_23/truediv");
pared to related frameworks such as OpenCV, Clara Al and Segmenzat}on—iloi?("piéhftoiQme,(neural,network -pb")
. segmentation—>se npu onnection

Deeplnfer. All of these four frameworks have different pros streamer->getOutputPort ());
and cons, and in the end it is all about selecting the best tool // Neural network input pre processing parameters
for the problem at hand. Currently, FAST is the only one ~ Segmentation—>setScaleFactor (1.0£/255.0%);
of these frameworks to support whole slide imaging, real- // Set up renderers
time ultrasound streaming, and multiple IEs with a common auto imageRenderer = ImageRenderer::New();
interface. Itis also the only open framework that provides data lmageie“deferjai? ftlputtgomtle(?t) ton{

. . . . . . streamer->getOutputPor ;
loading, streaming, processing, NN inference and visualiza- ’
tion of medical images in one single software package. auto segmentationRenderer =

SegmentationRenderer: :New () ;
segmentationRenderer—->getOutputPort (
V. CONCLUSION segmentation->getOutputPort ());
Methods for extending the medical open-source framework // Set up window and start pipeline
FAST were presented together with an overview of current auto window = SimpleWindow: :New () ;
inference engines. It was shown how these methods enable window->addRenderer (imageRenderer) ;
. . window—>addRenderer (segmentationRenderer) ;

FAST to perform high performance neural network inference window—>set 2DMode () ;
using different inference engines and processors with a com- window->start () ;

mon API on three different medical use cases.

. . . . B. USE CASE 2: CT VOLUME SEGMENTATION
Most of the inference engines and necessary libraries

investigated were open-source, with the exception of // Import CT image from a file

NVIDIA’s software CUDA, cuDNN and TensorRT. Tensor- auto importer = ImageFilelmporter::New();

Flow was the only IE to support 3D convolutions importer->setFilename ("/path/to/CT-thorax.dcm");
Performance comparison of the three different use cases, // Generate patches from volume

inference engines and processors showed large differences auto generator = PatchGenerator::New();

. . iall h . diff h generator->setPatchSize (512, 512, 32);

in runtime, especially when using di erel.lt processors suc generator—->set TnputConnection (

as GPUs and CPUs. While an ultrasound image can be pro- importer—->getOutputPort ());

cessed by a neural network in only a couple of milliseconds,

. . . . // Set up neural network
processing a whole slide microscopy image can take several

auto network = SegmentationNetwork::New();
minutes. network->setOutputNode (0, "conv3d_18/truediv");
Source code, documentation, binary releases and test data  "erverk->load( "/Pith/tO/?Ome/“euralf“etwork~Pb") i
can be found online on GitHub at https://github.com/smistad/ netwgzneriz r?i;tetgii;iiﬁié 0);
FASTY/. network->setResizeBackToOriginalSize (true);
// Neural network input pre processing parameters
network->setMinAndMaxIntensity (-1200.0f, 400.0f);
APPENDIX. USE CASE SOURCE CODE network->setScaleFactor (1.0f/(400+1200));
. . . network->setMeanAndStandardDeviation (-1200.0f,
This section is meant to show the reader the amount 1.06);
of code needed to set up the use cases in this arti-
cle using FAST. Header includes and the C main func- // stitch the patch results back together
. . auto stitcher = PatchStitcher::New();
tion have been omitted, and only setup for TensorFlow stitcher—>set InputConnection (
protobuf files is shown. An executable binary for each network—>getOutputPort ());

use case is available in the FAST version 3 release on /) ser B
. . . ren rer
GitHub https://github.com/smistad/FAST/releases/. The exe- autoereigerzr i ers
cutables for use case 1, 2 and 3 are named neuralNetwork AlphaBlendingVolumeRenderer: :New () ;

VOLUME 7, 2019 136319



IEEE Access

E. Smistad et al.: High Performance NN Inference, Streaming, and Visualization of Medical Images Using FAST

renderer->setTransferFunction (
TransferFunction: :CT_Blood_And_Bone());

renderer->addInputConnection (
importer->getOutputPort ());

auto renderer2 = ThresholdVolumeRenderer: :New();
renderer2->addInputConnection (
stitcher->getOutputPort ());

// Setup window

auto window = SimpleWindow: :New () ;
window->addRenderer (renderer) ;
window—->addRenderer (renderer2) ;
window—->start () ;

C. USE CASE 3: PATCH-WISE CLASSIFICATION OF WHOLE
SLIDE IMAGE

auto importer = WholeSlideImageImporter::New();
importer—->setFilename ("/path/to/some/WSI.tiff");

auto tissueSegmentation =
TissueSegmentation: :New () ;

tissueSegmentation->setInputConnection (
importer->getOutputPort ());

// Generate patches from highest resolution level
(0) of the WSI

auto generator = PatchGenerator::New();

generator->setPatchSize (512, 512);

generator->setPatchLevel (0);

generator->setInputConnection (0,
importer->getOutputPort ());

generator->setInputConnection (1,
tissueSegmentation->getOutputPort ());

// Set up neural network

auto network = NeuralNetwork::New();

network->setOutputNode (0, "dense_1/Softmax");

network->load ("/path/to/some/neural_network.pb");

network->setInputConnection (
generator->getOutputPort ());

// Neural network input pre processing parameters

network->setScaleFactor (1.0£/255.0f);

// Stitch patch wise classifications together

auto stitcher = PatchStitcher::New();

stitcher->setInputConnection (
network—>getOutputPort ());

// Set up renderers

auto renderer = ImagePyramidRenderer: :New () ;

renderer—->addInputConnection (
importer->getOutputPort ());

auto heatmapRenderer = HeatmapRenderer::New();
heatmapRenderer->addInputConnection (
stitcher->getOutputPort ());

// Set up window and start

auto window = SimpleWindow: :New () ;
window—->addRenderer (renderer) ;
window->addRenderer (heatmapRenderer) ;
window->set2DMode () ;

window—>start () ;
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