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Project requirements
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Create

Cast

Close

Shuffle

Decrypt

time

Cancel*

Execution:

Security:
- Transparency/Auditability
- Resilience
- Vote secrecy
- Data integrity
- Availability

Roles:
- Admin
- Voters
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Background: Dela & Smart contract

7Credit: freepik.com

proc CreateElection:
  if CreateElectionTx:
    make(Election)
  exit

reads from

Dela



Background: DKG
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DKG

Public Secret

Credit: Key by Vectorstall from NounProject.com



Background: Neff Shuffle
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DELA node

shuffles

Credit: Envelopes from favpng.com



Background: All together
Create

Cast

Close

Shuffle

Decrypt

time

Cancel*
Tools:

DKG
Neff Shuffle

Init
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Smart contract methods
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DKG: One DKG instance per election (1/3)

Init
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Election 1 Election 2 Election 3



DKG: One DKG instance per election (2/3)

Init
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Election 1 Election 2 Election 3

Init Init



DKG: One DKG instance per election (3/3)

Create

Cast

Init

14

Create

Cast

Init

…

Open
…



DKG: Persistence of DKG credentials
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type DKGService struct {
  electionID     ID
  pubKey         PubKey
  secretPartKey  PrivKey
  rpc            RPC
  factory        serde.Factory
}

?
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Neff shuffle: Security issue

We want enough nodes to make a shuffle:
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DELA node

… Done

Algorithm: 
1. All nodes shuffle the ballots and submit the result
2. One shuffle is accepted.
3. Start in 1 again but with the new shuffled ballots as input and 

without the node who made the accepted shuffle. Until enough 
shuffles are accepted.



Solution

- The nodes have to sign their shuffle

- Refuse shuffle if the node already has achieved one 
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Plan
❖ Our goals

❖ Main changes
➢ DKG
➢ Neff Shuffle
➢ Election format

■ Ballot size
■ Sequence shuffle
■ Election configuration

❖ Evaluation

❖ Future work
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Election format: Ballot Size

● kyber can only encrypt plaintexts < 29 bytes

→ split plaintext into chunks
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Encryption

Encryption

Encryption

Encrypted Ballot

[]byte(ElGamal pair)

[]byte(ElGamal pair)

[]byte(ElGamal pair)

Ballot



Election format: Ballot Size

2121

Encrypted Ballot

[]byte(ElGamal pair)

[]byte(ElGamal pair)

[]byte(ElGamal pair)

- Type refactoring
- Adaptation of the protocols

Encrypted Ballot

[]byte(ElGamal pair)



Election format: Sequence shuffle

- Shuffle of ElGamal sequences
- Recent feature of kyber*
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Layout of the ElGamal pairs in memory. (Xij, Yij) is the jth pair of the ith ballot.

*alpha release, awaiting crypto review



Election format: Proving a shuffle of sequence

- The prover needs a random vector from the verifier

→  Problem of verifiable randomness

- The prover uses a semi-random generator to get the vector on its own
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Election format: Election configuration (1/2)

- Bigger Ballots → More complex polls!

- 3 Types of Questions:
- Ranked
- Select
- Open text

- A Subject groups multiple questions and 
sub-Subjects such that the Layout is fixed
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type Configuration struct {
  MainTitle string
  Scaffold  []Subject
}



Election format: Election configuration (2/2)
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Rank your favorite foods:
1. Chocolate
2. Caramel
2. Raspberry
2. Orange
3. Licorice

Choose one hot drink:
◯ Cappuccino
◯ Latte
⬤ Hot chocolate
◯ Espresso
◯ Flat White

Write down your name:

type Rank struct {
  ID ID

  Title   string
  MaxN    uint
  MinN    uint
  Choices []string
}

First name

Last name 
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Evaluation: Correctness

+ New integration tests added very recently
27

cothority last semester now

Smart contract 37 87 76

DKG 65 90 88

Neff Shuffle 65 93 88

Test coverage evolution (%)



Evaluation: Performance (1/3)

- Focus on shuffling and decryption 
- Parameters:

- Number of nodes
- Number of ballots in election
- Size of ballots
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Evaluation: Performance (2/3)

- Shuffle time is linear in 
number of nodes

- well…

- Number of chunks is 
fixed at 3 per ballot
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Evaluation: Performance (3/3)

- Linear in log-log scale, 
hence decryption time is 
a power law of number 
of ballots

- Number of nodes fixed at 
7

- Pairs = Chunks
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❖ Evaluation

❖ Future work
➢ Stability
➢ Decryption
➢ Linking the backend and frontend
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Future work: Stability

- More tests

- In more exotic situations

- With more nodes/ballots
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Future work: Decryption

- Transparency

- Speed
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Future work: Linking the backend and frontend

- Authentication of users

- Election formats
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Frontend
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Plan

❖ Tequila authentication

❖ Dela node request signatures

❖ Administration panel
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How it was at the beginning

● One React process
● Anyone can login (and have a random ID) and 

create/manage elections and vote
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Starting architecture



Tequila authentication

● Need to add a new trusted backend (as 
React is only for frontend)

● Modification on the webpages
○ Show the user’s name on each page
○ Actually “log in” the users on React and Express 

processes
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New ExpressJS backend



Authentication process
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DELA message signature : reason

● Until now, everybody could send actions to the blockchain
● With Tequila implemented, actions must be now trusted / signed

→ Let all the traffic that goes to the DELA nodes pass through the Express

→ The Express adds current user data and signs the data
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DELA message signature : architecture change

● The ExpressJS receives all 
requests that needs to go to 
the DELA nodes
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DELA message signature : signing process
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Administration Panel

● Since users are authenticated, we can set roles to users to allow / disallow 
certain actions:

○ Voter: can vote
○ Operator: can create / manage / close elections and can do the same as a voter
○ Admin: can add operators / admins and do the same as an operator
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Administration Panel : User Interface
- Added a new view that allow admins to add a role to a user
- Changes the navigation bar to only display the correct tabs

44View as an admin user



Administration Panel: Database

● Added a database with only one table to store roles 
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Administration Panel : Backend access

● Middleware on the Express server that allow / reject a request depending on:
○ The user’s role
○ The current URL to access
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Production-ready configuration

● Set up of a server with the following configurations
○ NGINX as a reverse proxy that holds the SSL certificate
○ Custom services files to run the differents processes
○ crond configuration to restart the apps often
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Demo
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Conclusion

- Focused on security, made advances in usability

- Addressed many issues… and found new ones

- The project should be usable during the next semester!
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The project’s journey
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Refactoring, 
Enhancement,

Testing

Where it is now

Production 
ready

Where it’s goingWhere it was

Proof of 
concept


