
E-voting on DELA
Auguste Baum, Ambroise Borbely and Emilien Duc

DEDIS Lab - Prof. Bryan Ford
Supervisor: Noémien Kocher

1

Backend

2

Plan
❖ Our goals

❖ Main cha(lle)nges

❖ Evaluation

❖ Future work

3

Plan
❖ Our goals

➢ Project requirements
➢ Background

❖ Main changes

❖ Evaluation

❖ Future work

4

Project requirements

5

Create

Cast

Close

Shuffle

Decrypt

time

Cancel*

Execution:

Security:
- Transparency/Auditability
- Resilience
- Vote secrecy
- Data integrity
- Availability

Roles:
- Admin
- Voters

Plan
❖ Background

➢ Project requirements
➢ Background

■ Dela & smart contract
■ DKG
■ Neff Shuffle

❖ Main changes

❖ Evaluation

❖ Future work

6

Background: Dela & Smart contract

7Credit: freepik.com

proc CreateElection:
 if CreateElectionTx:
 make(Election)
 exit

reads from

Dela

Background: DKG

8

DKG

Public Secret

Credit: Key by Vectorstall from NounProject.com

Background: Neff Shuffle

9

DELA node

shuffles

Credit: Envelopes from favpng.com

Background: All together
Create

Cast

Close

Shuffle

Decrypt

time

Cancel*
Tools:

DKG
Neff Shuffle

Init

10

Smart contract methods

Plan
❖ Our goals

❖ Main changes
➢ DKG

■ One DKG instance per election
■ Persistence of DKG credentials

➢ Neff Shuffle
➢ Election format

❖ Evaluation

❖ Future work

11

DKG: One DKG instance per election (1/3)

Init

12

Election 1 Election 2 Election 3

DKG: One DKG instance per election (2/3)

Init

13

Election 1 Election 2 Election 3

Init Init

DKG: One DKG instance per election (3/3)

Create

Cast

Init

14

Create

Cast

Init

…

Open
…

DKG: Persistence of DKG credentials

15

type DKGService struct {
 electionID ID
 pubKey PubKey
 secretPartKey PrivKey
 rpc RPC
 factory serde.Factory
}

?

Plan
❖ Our goals

❖ Main changes
➢ DKG
➢ Neff Shuffle

■ Security issue
➢ Election format

❖ Evaluation

❖ Future work

16

Neff shuffle: Security issue

We want enough nodes to make a shuffle:

17

DELA node

… Done

Algorithm:
1. All nodes shuffle the ballots and submit the result
2. One shuffle is accepted.
3. Start in 1 again but with the new shuffled ballots as input and

without the node who made the accepted shuffle. Until enough
shuffles are accepted.

Solution

- The nodes have to sign their shuffle

- Refuse shuffle if the node already has achieved one

18

Plan
❖ Our goals

❖ Main changes
➢ DKG
➢ Neff Shuffle
➢ Election format

■ Ballot size
■ Sequence shuffle
■ Election configuration

❖ Evaluation

❖ Future work

19

Election format: Ballot Size

● kyber can only encrypt plaintexts < 29 bytes

→ split plaintext into chunks

20

Encryption

Encryption

Encryption

Encrypted Ballot

[]byte(ElGamal pair)

[]byte(ElGamal pair)

[]byte(ElGamal pair)

Ballot

Election format: Ballot Size

2121

Encrypted Ballot

[]byte(ElGamal pair)

[]byte(ElGamal pair)

[]byte(ElGamal pair)

- Type refactoring
- Adaptation of the protocols

Encrypted Ballot

[]byte(ElGamal pair)

Election format: Sequence shuffle

- Shuffle of ElGamal sequences
- Recent feature of kyber*

22

Layout of the ElGamal pairs in memory. (Xij, Yij) is the jth pair of the ith ballot.

*alpha release, awaiting crypto review

Election format: Proving a shuffle of sequence

- The prover needs a random vector from the verifier

→ Problem of verifiable randomness

- The prover uses a semi-random generator to get the vector on its own

23

Election format: Election configuration (1/2)

- Bigger Ballots → More complex polls!

- 3 Types of Questions:
- Ranked
- Select
- Open text

- A Subject groups multiple questions and
sub-Subjects such that the Layout is fixed

24

type Configuration struct {
 MainTitle string
 Scaffold []Subject
}

Election format: Election configuration (2/2)

25

Rank your favorite foods:
1. Chocolate
2. Caramel
2. Raspberry
2. Orange
3. Licorice

Choose one hot drink:
◯ Cappuccino
◯ Latte
⬤ Hot chocolate
◯ Espresso
◯ Flat White

Write down your name:

type Rank struct {
 ID ID

 Title string
 MaxN uint
 MinN uint
 Choices []string
}

First name

Last name

Plan
❖ Our goals

❖ Main changes

❖ Evaluation
➢ Correctness
➢ Performance

❖ Future work

26

Evaluation: Correctness

+ New integration tests added very recently
27

cothority last semester now

Smart contract 37 87 76

DKG 65 90 88

Neff Shuffle 65 93 88

Test coverage evolution (%)

Evaluation: Performance (1/3)

- Focus on shuffling and decryption
- Parameters:

- Number of nodes
- Number of ballots in election
- Size of ballots

28

Evaluation: Performance (2/3)

- Shuffle time is linear in
number of nodes

- well…

- Number of chunks is
fixed at 3 per ballot

29

Evaluation: Performance (3/3)

- Linear in log-log scale,
hence decryption time is
a power law of number
of ballots

- Number of nodes fixed at
7

- Pairs = Chunks

30

Plan
❖ Our goals

❖ Main changes

❖ Evaluation

❖ Future work
➢ Stability
➢ Decryption
➢ Linking the backend and frontend

31

Future work: Stability

- More tests

- In more exotic situations

- With more nodes/ballots

32

Future work: Decryption

- Transparency

- Speed

33

Future work: Linking the backend and frontend

- Authentication of users

- Election formats

34

Frontend

35

Plan

❖ Tequila authentication

❖ Dela node request signatures

❖ Administration panel

36

How it was at the beginning

● One React process
● Anyone can login (and have a random ID) and

create/manage elections and vote

37

Starting architecture

Tequila authentication

● Need to add a new trusted backend (as
React is only for frontend)

● Modification on the webpages
○ Show the user’s name on each page
○ Actually “log in” the users on React and Express

processes

38
New ExpressJS backend

Authentication process

39

DELA message signature : reason

● Until now, everybody could send actions to the blockchain
● With Tequila implemented, actions must be now trusted / signed

→ Let all the traffic that goes to the DELA nodes pass through the Express

→ The Express adds current user data and signs the data

40

DELA message signature : architecture change

● The ExpressJS receives all
requests that needs to go to
the DELA nodes

41

DELA message signature : signing process

42

Administration Panel

● Since users are authenticated, we can set roles to users to allow / disallow
certain actions:

○ Voter: can vote
○ Operator: can create / manage / close elections and can do the same as a voter
○ Admin: can add operators / admins and do the same as an operator

43

Administration Panel : User Interface
- Added a new view that allow admins to add a role to a user
- Changes the navigation bar to only display the correct tabs

44View as an admin user

Administration Panel: Database

● Added a database with only one table to store roles

45

Administration Panel : Backend access

● Middleware on the Express server that allow / reject a request depending on:
○ The user’s role
○ The current URL to access

46

Production-ready configuration

● Set up of a server with the following configurations
○ NGINX as a reverse proxy that holds the SSL certificate
○ Custom services files to run the differents processes
○ crond configuration to restart the apps often

47

Demo

48

Conclusion

- Focused on security, made advances in usability

- Addressed many issues… and found new ones

- The project should be usable during the next semester!

49

The project’s journey

50

Refactoring,
Enhancement,

Testing

Where it is now

Production
ready

Where it’s goingWhere it was

Proof of
concept

