
Fully Quantized Transformer for Improved
Translation

Gabriele Prato
Mila, Université de Montréal
pratogab@mila.quebec

Ella Charlaix
Huawei Noah’s Ark Lab

ella.charlaix@huawei.com

Mehdi Rezagholizadeh
Huawei Noah’s Ark Lab

mehdi.rezagholizadeh@huawei.com

Abstract

State-of-the-art neural machine translation methods employ massive amounts of
parameters. Drastically reducing computational costs of such methods without
affecting performance has been up to this point unsolved. In this work, we propose
a quantization strategy tailored to the Transformer [1] architecture. We evaluate our
method on the WMT14 EN-FR and WMT14 EN-DE translation tasks and achieve
state-of-the-art quantization results for the Transformer, obtaining no loss in BLEU
scores compared to the unquantized baseline. We further compress the Transformer
by showing that post-training, a good portion of the nodes in the encoder can be
removed without causing any loss in BLEU. For the full version of this paper,
please refer to: https://arxiv.org/abs/1910.10485

1 Introduction

The recent Transformer network [1] achieved state-of-the-art results on the WMT 2014 English-to-
French and WMT 2014 English-to-German corpus. This self-attention based architecture inspired a
new wave of work resulting in the state-of-the-art of numerous natural language processing tasks to
reach new heights [2]. Unfortunately, these Transformer networks make use of an enormous amount
of parameters. Inference on resource-limited hardware such as edge-devices is thus impractical.

A solution to reduce the computational burden of these neural networks is to lower numerical
precision, which allows the representation of numerical values with fewer bits [3]. This method
called quantization has the advantage of providing good compression rates with minimal accuracy
loss and is supported by a great number of different hardware. Properly quantizing the Transformer
would thus allow computational speed gains at inference, as well as deployment on more constrained
hardware.

Recently, simple quantization solutions have been applied to the Transformer. Tierno (2019) [4]
uses 8-bit fixed and linear quantization schemes on both the weights and inputs of Transformer
layers. Cheong and Daniel (2019) [5] apply k-means quantization and binarization with two centroids
over the weights of the Transformer network. Fan (2019) [6] uses binary and range based linear
quantization on the Transformer. Bhandare et al. (2019) [7] quantize some of the MatMul operations
of the Transformer and use the KL divergence to estimate the most suited parameters for each
quantization range. So far, all proposed methods have failed to avoid any loss in translation quality
and omit quantizing the whole Transformer architecture, resulting in suboptimal computational
efficiency.

EMC2: 5th Edition Co-located with NIPS’19

https://arxiv.org/abs/1910.10485


In this work, we propose a custom quantization strategy of the entire Transformer architecture, where
quantization is applied throughout the whole training. Our method is easy to implement and results
are consistent with the original Transformer. We test our approach on the WMT14 EN-FR and
WMT14 EN-DE translation tasks and obtain state-of-the-art quantization results. We are, to the best
of our knowledge, the first to fully quantize the Transformer architecture to 8-bit while maintaining
the translation quality on par with the baseline and even achieve higher BLEU scores than the latter
on some tasks.

2 Quantization Strategy

2.1 Quantization Method

We use the uniform quantization method described by [8]. Uniform quantization has the advantage of
being easy to implement and is supported by most hardware.

Given an element x of a tensor X, we apply the quantization function Q:

Q(x) = x− xmin

s
(1)

s =
xmax − xmin

2k − 1
(2)

where xmin and xmax are respectively min(X) and max(X) for weight quantization and running
estimates for activation quantization. The latter are computed during training, where for every forward
pass, the xmin and xmax variables are updated via an exponential moving average with a momentum
of 0.9. In the context of 8-bit quantization, k is set to 8.

At training time, we simulate quantization by first quantizing and then rescaling to the original
domain: ⌊

clamp(x;xmin, xmax)− xmin

s

⌉
∗ s+ xmin (3)

where the clamp function clamps all values outside the [xmin, xmax] range and b·e represents
rounding to the nearest integer. During backpropagation, we use the straight-through estimator
[9] and set the gradients of clamped values to zero. The only exception is for the LayerNorm’s
denominator, for which gradients are never zeroed, even though values can still be clamped. Once
training is finished, s, xmin and xmax are frozen along with the weights.

2.2 What to Quantize

We choose to quantize all operations which will provide a computational speed gain at inference. In
this regard, we quantize all matrix multiplications, meaning that the inputs and weights of MatMuls
will both be 8-bit quantized. The other operations we quantize are divisions, but only if both the
numerator and denominator are matrices or tensors, then we quantize them to 8-bit. For all other
operations, such as sums, the computational cost added by the quantization operation outweighs the
benefit of performing the operation with 8-bit inputs. Hence, we do not quantize such operations.

More precisely, we quantize all weights of the Transformer, excluding biases. The latter are summed
with the INT32 output of matrix multiplications and thus provide no additional computational
efficiency from being quantized. Furthermore, the memory space of biases is also insignificant in
comparison to the weight matrices, representing less than 0.1% of total weights. For positional
embeddings, memory gain is also minimal, but since these will be summed with the quantized input
embeddings, we likewise quantize them. The γ weights of LayerNorms are also quantized. As for
activations, we quantize the sum of the input embeddings with the positional encodings in both the
encoder and decoder. In the Multi-Head Attention, we quantize the (Q,K, V ) input, the softmax’s
numerator, the softmax’s denominator, the softmax’s output and the Scaled Dot-Product Attention’s
output. To be precise, in the Scaled Dot-Product Attention, we compute the softmax’s denominator
with the unquantized softmax’s numerator and then quantize the numerator. For the position-wise
feed-forward networks, we quantize the output of the ReLUs and of the feed-forward networks
themselves. Finally, for all LayerNorms, we quantize the numerator x−µ, the denominator

√
σ2 + ε,

their quotient and the output of the LayerNorm.

2



Table 1: Our quantization strategy achieves better BLEU scores than all other quantization methods
for the Transformer on the WMT14 EN-DE, WMT14 EN-FR and WMT17 EN-DE test set.

Model Fully Quantized BLEU
EN-DE (2014) EN-FR EN-DE (2017)

Vaswani et al. (2017) [1] (base) No quantization 27.3 38.1 -

Cheong and Daniel (2019) [5] - - 27.38
Bhandare et al. (2019) [7] 27.33 - -
Fan (2019) [6] 26.94 - -
Our method (base) X 27.60 39.12 27.60

2.3 Bucketing

Instead of using a single set of (s, xmin, xmax) per quantized tensor, we can quantize subsets of
a tensor using a set of (s, xmin, xmax) per subset [10]. Even though this adds more scalars, the
memory cost is insignificant overall and the added flexibility can greatly alleviate the precision loss
obtained by trying to fit all values of a tensor into a single domain with lower numerical precision.

We use this bucketing method for all weight matrices, where we bucket on the output dimension.
That is, we have one set of (s, xmin, xmax) for every element of the output. For activations, we use
bucketing when quantizing: the sum of input embeddings with the positional encoding, the Q,K, V
inputs, the Scaled Dot-Product Attention’s output, the feed-forward’s output, the LayerNorm’s
numerator, the LayerNorm’s quotient and the LayerNorm’s output.

2.4 Dealing with Zeros

Unlike [8], we do not need to nudge the domain so that the zero value gets perfectly mapped.
The only zero values which we have to deal with are the padding, the output of ReLU layers and
dropouts. Since padding has no effect on the final output, we completely ignore these values when
quantizing and when computing the running estimates xmin and xmax. For ReLUs, we fix the xmin

estimate of those quantization layers to 0, which guarantees the perfect mapping of the value. Finally,
quantization is applied before any dropout operation. Even though the zeros added to the output of the
quantization layer might not be part of the domain, this only happens during training. At inference,
no dropout is performed and thus quantization is not affected.

3 Experiments

3.1 Full Quantization

We apply our 8-bit quantization strategy on both the base and big Transformer [1]. The training setup
of all presented models is the same as in the original paper, with the exception that the dropout ratio
is set to 0.1 in all cases. We test our models on the WMT 2014 English-to-German and WMT 2014
English-to-French translation tasks. Reported perplexity is per token and BLEU was measured with
multi-bleu.pl1 on the newstest20142 test set. We used beam search with a beam size of 4 and a
length penalty of 0.6, as in [1]. No checkpoint averaging was performed.

We compare our results with other 8-bit quantization methods in Table 1. Out of all the approaches,
we are the only one fully quantizing the Transformer architecture.

In Table 2, we show performance of our method on the WMT14 EN-DE and WMT14 EN-FR after
a fixed amount of training steps. We compare our results with our two non-quantized baseline
Transformers (base and big variants). Training with quantization was about twice as slow as training
the baselines. We also compare with two other quantization approaches. The first one is the "default"
approach, which is to naively quantize every possible operation and the second approach applies our
quantization strategy post-training (see section 3.3 for details). For post-training quantization, the

1https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.
perl

2https://www.statmt.org/wmt14/translation-task.html

3

https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://www.statmt.org/wmt14/translation-task.html


Table 2: Performance of our quantization method on the WMT14 EN-DE and WMT14 EN-FR test
set for a fixed number of training steps.

Model Quantized Training Compression EN-DE EN-FR
Steps PPL BLEU PPL BLEU

Base 100k 1x 4.41 25.82 3.20 37.94

Default Approach X 100k 4x 74.04 0.21 nan 0
Post-Quantization X 100k 4x 4.45 25.50 3.22 37.96
Our method X 100k 4x 4.67 26.98 3.23 38.55

Big 300k 1x 4.03 26.85 2.72 40.17

Post-Quantization X 300k 4x 4.27 26.55 2.78 39.78
Our method X 300k 4x 4.24 27.95 2.80 40.17

Table 3: Effect of quantizing single activations of the Transformer on the translation quality. Results
are on the WMT14 EN-FR test set.

Module Quantized Activation No Bucketing Bucketing
PPL BLEU PPL BLEU

Encoder (Input Embedding + Positional Encoding) 3.20 38.61 3.20 39.08

Decoder (Input Embedding + Positional Encoding) 3.20 39.35 3.20 39.36

Multi-Head
Attention

Input (Q,K, V ) 3.21 39.06 3.21 39.29
LayerNorm Output 3.21 39.09 3.20 38.78

Scaled
Dot-Product

Attention

Softmax Numerator 3.20 39.32 3.21 39.01
Softmax Denominator 3.21 39.35 3.21 39.11
Softmax Output 3.22 39.41 3.22 38.87
Output 3.21 38.73 3.21 39.02

Feed-forward
ReLU Output 3.21 39.43 3.22 38.93
Feed-forward Output 3.54 38.03 3.20 39.27
LayerNorm Output 3.21 38.67 3.21 39.04

LayerNorm
Numerator 3.53 37.75 3.21 38.86
Denominator 1748 0 - -
Quotient 3.22 38.97 3.21 39.02

best BLEU score out of 20 trials was picked, with scores varying by about 0.2 BLEU. As for the
default approach, the numerical stability provided by the ε in the LayerNorm’s denominator is lost
when quantizing every operation. This is why the default approach got nan in the EN-FR task.

3.2 Ablation Study

To compare the effect of bucketing and better understand which operation is more sensitive to
quantization, we evaluate the effect of quantizing single operations of the Transformer, with and
without bucketing. By single operation, we mean quantizing the operation of a module for all
Transformer layers. Table 3 shows results on the WMT14 EN-FR translation task. The only
operations underperforming our baseline are the LayerNorm’s numerator when not bucketed and the
denominator. The latter cannot be bucketed because all dimensions of the variance tensor vary per
batch. Solely quantizing the LayerNorm’s denominator with no bucketing works, but results are poor.
To successfully quantize this element without causing performance issues, we suspect quantizing
prior elements in the network helps, as is the case in our quantization scheme.

3.3 Delaying Quantization

Our method’s goal is to increase computational efficiency when inferring with the Transformer. To
this end, our quantization scheme only requires us to learn s and xmin. Although we do so with our

4



Table 4: Impact of delaying the learning of quantization parameters on translation quality. Results
are on the WMT14 EN-DE and WMT14 EN-FR test set.

Quantization Start
(training step)

EN-DE EN-FR
PPL BLEU PPL BLEU

100 4.67 26.98 3.23 38.55
10000 5.07 26.06 3.21 38.62
50000 5.04 26.48 3.21 38.50
80000 5.10 26.11 3.21 38.43

Post-Quantization 4.45 25.50 3.22 37.96

quantization scheme throughout the whole training, this is not a necessity. Quantization could be
applied later on during training. Post-training quantization is also an option, where once the model is
fully trained, we keep the weights fixed, but compute the s, xmin and xmax over a few hundred steps.
We compare different starting points in Table 4, where we evaluate them on the WMT14 EN-DE and
WMT14 EN-FR translation tasks.

Learning quantization parameters adds a significant computational cost during training. A major
advantage to delaying quantization is to perform more training steps in the same given amount of
time. Therefore, when training time is a constraint, one possible strategy is to train a model without
quantization, to perform more training steps and then to post-quantize the model. Another advantage
of post-quantization is that iterations can be quickly performed to search for the best performing
candidate.

4 Conclusion

We proposed a quantization strategy for the Transformer, quantizing all operations which could
provide a computational speed gain. With our method, we achieve higher BLEU scores than the
baseline Transformer, as well as all other quantization methods on both WMT14 EN-DE and WMT14
EN-FR. We plan on applying our method to other tasks, as well as further exploring the compression
of Transformers.

References
[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and

I. Polosukhin, “Attention Is All You Need,” arXiv e-prints, p. arXiv:1706.03762, Jun 2017.

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding,” arXiv e-prints, p. arXiv:1810.04805, Oct 2018.

[3] M. Marchesi, G. Orlandi, F. Piazza, and A. Uncini, “Fast neural networks without multipliers,”
IEEE Transactions on Neural Networks, vol. 4, pp. 53–62, Jan 1993.

[4] A. Tierno, “Quantized Transformer,” tech. rep., Stanford University, Stanford, California, 2019.

[5] R. Cheong and R. Daniel, “transformers.zip: Compressing Transformers with Pruning and
Quantization,” tech. rep., Stanford University, Stanford, California, 2019.

[6] C. Fan, “Quantized Transformer,” 2019.

[7] A. Bhandare, V. Sripathi, D. Karkada, V. Menon, S. Choi, K. Datta, and V. Saletore, “Efficient 8-
Bit Quantization of Transformer Neural Machine Language Translation Model,” arXiv e-prints,
p. arXiv:1906.00532, Jun 2019.

[8] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and D. Kalenichenko,
“Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference,”
arXiv e-prints, p. arXiv:1712.05877, Dec 2017.

[9] G. Hinton, “Neural networks for machine learning,” 2012. Coursera, video lectures.

[10] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “QSGD: Communication-Efficient
SGD via Gradient Quantization and Encoding,” arXiv e-prints, p. arXiv:1610.02132, Oct 2016.

5


	Introduction
	Quantization Strategy
	Quantization Method
	What to Quantize
	Bucketing
	Dealing with Zeros

	Experiments
	Full Quantization
	Ablation Study
	Delaying Quantization

	Conclusion

