
Optimal Codes for Distributed Storage
Jian Ren1, Jian Li2 and Tongtong Li1

1 Dept of ECE, Michigan State University, Email: {renjian, tongli}@msu.edu
2 School of Electronic and Information Engineering, Beijing Jiaotong University, E-mail: lijian@bjtu.edu.cn

Abstract—Regenerating codes are a class of distributed storage
codes that allow for efficient repair of failed nodes, as compared
to traditional erasure codes, which enables it to achieve high
data reliability, security, and cost-efficiency and a critical infras-
tructure of the computing system. Existing data storage largely
depends on a centralized cloud, which is not only costly but also
vulnerable to single points of failure and other types of security
attacks. To provide data security, data encryption has to be used,
which requires extensive computing power and cumbersome key
management. Distributed storage system (DSS) is being widely
viewed as a natural solution to future online data storage due
to improved access time and lower storage cost. However, the
existing DSS also has the limitations of low storage efficiency and
lack of data security. In this paper, we investigate multi-layer
code-based distributed data storage systems that can achieve
inherent content confidentiality and optimal storage efficiency.
Our comprehensive analysis shows that the optimal code can
improve the reliable data storage by nearly 50% compared to
the existing state-of-the-art research.

Index Terms—Distributed data storage, regeneration code,
optimal storage, adversarial networks

I. INTRODUCTION

In just a few years, the Internet of Things (IoT) has evolved
into almost every aspect of our daily life. As a result, a
gigantic amount of data is being generated every day, which
makes data storage a critical infrastructure. Currently, the
majority of various data is stored in just a few large central
cloud data providers such as Amazon AWS. These providers
can get full access to user data and dictate the pricing of their
services. Users have to trust the central cloud providers for
their data availability and security. To limit the cloud providers
from accessing their data, data encryption is the only feasible
option, which is not only very costly but also vulnerable to
key loss.

To address these issues, distributed storage system (DSS),
such as IPFS/FileCoin [1], [2], has been introduced. As the
name suggests, distributed data storage works by splitting the
data to be stored into multiple blocks and distributing the in-
dividual blocks across a decentralized network of storage peer
nodes. To ensure data availability, the IPFS storage systems
generally stores multiple copies of each block, which makes
distributed storage much more reliable than the centralized
storage. The importance of this architecture is that significant
storage space can be allocated without requiring any additional
hardware, which can greatly reduce the storage cost.

Unfortunately, the DSS schemes adopted by IPFS/FileCoin
have some major limitations. First, the storage efficiency of
IPFS is relatively low in that the exact copy of each block has
to be collected in order to fully recover the original file. To
ensure data availability, each block has to be stored multiple

times. Second, IPFS splits large files into blocks through
file fragmentation. The individual blocks carry information
directly related to the original file. If not protected, the blocks
could leak significant information about the whole file.

To address the aforementioned issues of IPFS while also
maintaining the major advantages, we propose a new multi-
layer code based distributed storage system. The major con-
tribution of this paper can be summarized as follows:

1) We analyzed the limitations of the existing DSS in
storage efficiency and security.

2) We introduced multi-layer code based reliable data
storage schemes and compared our approach with the
existing DSS schemes in storage efficiency and security.

The remainder of this paper is organized as follows: In
Section II, various issues related to distributed data storage
are discussed. A comprehensive discussion of the multi-layer
code is presented in Section III. In Section IV, we provide
simulation results and the conclusion in Section V.

II. DISCUSSION OF DISTRIBUTED DATA STORAGE

A. Security Issues of Centralized Storage

Centralized cloud provides data storage as a service. Users
do not need to build a hardware infrastructure and invest a
formidable amount of money to store their data and ensure
data fault-tolerance or redundancy. However, building a suc-
cessful cloud data storage business requires a global network
of data-centers and robust user interfaces that satisfy many
user demands. As a result, only a few massive corporations
owning nearly all of the global cloud data storage market.

Since its inception cloud data storage has evolved to be
functional but leaves many security concerns and performance
issues unaddressed. First, centralized databases are highly
dependent on network connectivity and the Internet speed. For
data stored far away from the end-user, the database access
time can be very long especially when the Internet speed is
slow. In fact, the centralized databases could also become a
bottleneck as a result of high traffic. Second, users must rely
on these large corporations to ensure their data availability
and data security. However, due to economic reasons, storage
becomes a commodity or a utility for the data providers. The
service providers are incentivized to lock in their customers
and extract a premium. The nature of these issues could
potentially conflict with user security needs.

B. Limitations of IPFS

The decentralized storage for IPFS system has major secu-
rity and efficiency issues. We use the following example to
illustrate the security limitation.



(a) Original picture (b) First segment of the picture

Fig. 1: File storage in IPFS.

Example 1. To store a picture of a lotus flower in IPFS. The
file size is 1,034,141 bytes with hash value

PQmaNMtwsCJKVmUEe9eaSesKAKhigDzrHf3J4fbAE3VFsAh.

IPFS splits the file into blocks through file fragmentation.
The default IPFS block size is 218 + 14 = 262158 bytes. In
this case, the hash values of the 4 blocks are:

QmYmpjVoCXD5hiVz8PTDXvnqpBPNiiBQeDP3XfXh1iri9b 262158

QmZYgQBkctTKNRWQoUEzJ7NxwJjoGvYim9Zj9D61jKrHgU 262158

QmXbTiNaNL5AtsG8iRtBQgzUwSGfX4JkuoWAnhyBLfDXYV 262158

QmQuErMLNnXvt7SUwXkgRzQun6PYJGDGEiv2ag342L1Tdq 247723

Fig. 1 shows the original lotus flower and the first segment
of the flower stored in IPFS. From this figure, we can see
that the first segment of the lotus flower clearly reveals a
significant amount of information about the original flower.
This example makes it clear that the current IPFS file storage
system cannot ensure content confidentiality.

In addition to security limitations, the data storage effi-
ciency of IPFS is also quite low. As described before, the
data blocks in IPFS are generated through file fragmentation
based approaches. While the individual blocks are stored in
a decentralized way, it is fundamentally different from the
general distributed storage system (DSS) in that the blocks
of DSS are generated through algebraic encoding. For IPFS
based decentralized storage, to recover the original file, at least
one copy of each block must be collected. To increase data
availability, IPFS has to store multiple copies of each block.
While for the encoding-based (n, k) DSS, the file to be stored
is first algebraically split into n blocks so that the original
file can be recovered from any k ≤ n blocks. However,
the original file remains information-theoretically secure for
anyone who can access even up to any k − 1 blocks and
with unlimited computing power. Therefore, no encryption or
key management is required to ensure data confidentiality of
the file stored. To increase data availability, we only need to
increase the number of n, which makes is much more efficient
than the IPFS based decentralized data storage. Fig. 2 shows
the dramatic data availability differences for three different
storage efficiencies of these two approaches.

DSS: rate=1/2
IPFS: rate=1/2
DSS: rate=1/4

DSS: rate=1/6
IPFS: rate=1/4

IPFS: rate=1/6

Fig. 2: Data availability comparison between DSS and IPFS.

C. Error and Erasure Correcting Codes

Reed–Solomon (RS) code is a class of maximum distance
separable (MDS) code with a set of parameters [n, k, δ =
n− k+ 1] that operates on a block of n data symbols over a
finite-field Fq (i.e., Σ = Fq), where q is a prime number or
some power of a prime number. A Reed–Solomon code can
locate and correct up to and including ⌊(δ − 1)/2⌋ erroneous
symbols at unknown locations. As an erasure code, it can
correct twice as many erasures as errors at locations that are
known and any combination of errors and erasures as long as
the relation 2t+ s ≤ δ− 1 is satisfied, where t is the number
of errors and s is the number of erasures in the block.

D. Distributed Storage System

In DSSs, the file to be stored is split into blocks and dis-
tributed across multiple network peer nodes. Unlike traditional
hardware-based data storage, DSS outsources the data storage
to a number of P2P storage servers that act as a single storage
unit while the data is distributed amid the specific number of
servers. DSS is being viewed as a more advanced form of the
concept of software-defined storage (SDS).

Compared to the cloud based centralized storage system, the
DSS can achieve great security inherit from the DSS design
since the data being stored are decomposed into blocks and
then spread over many different peer nodes.

In DSS, data replication and erasure coding are two widely
employed data redundancy techniques. While replication has
the advantage of simplicity and low access overhead, it
imposes higher repair traffic and storage overheads. Moreover,
the data stored in this system is essentially similar to the
IPFS system described in Section II-B. The data components
directly contain information of the original files. Therefore,
to conceal the contents of the files, data encryption has to
be applied to all the data components, which will impose not
only the computational cost but also the overhead for secure
key management. Conversely, to reduce storage overhead,
erasure code avoids data replication. Even though it requires
some very limited computational costs due to coding/decoding



operations, compared to the gain in data availability and
inherit data content security, it can be fully justified.

The best known DSS schemes are designed based on
the conventional (n, k) Reed-Solomon (RS) error-correction
codes (such as OceanStore [3] and Total Recall [4]). When
a node fails, a replacement node can be regenerated by
connecting to any k benign nodes, which will first recover the
whole file, and then regenerate the failure node. This approach
is a waste of bandwidth because the whole file has to be
downloaded to recover even a small fraction of it.

E. Regenerating Code Based DSS

To improve bandwidth efficiency in repairing node failure,
Dimakis et al. [5] introduced the concept of {n, k, d, α, β,B}
linear regenerating code over the finite field based on network
coding. A file of size B is stored in n storage nodes, each of
which stores α symbols. A data collector (DC) can reconstruct
the whole original file stored in the network by downloading
α symbols from each of k randomly selected storage nodes.
In the context of regenerating code, a replacement node of
a failed node can be regenerated by downloading β ≤ α
symbols from each of d ≥ k randomly selected storage nodes.
Therefore, the total bandwidth required to regenerate a failed
node is γ = dβ, which could be far less than the whole file
B.

For n storage peer nodes, the size of the file to be stored
in the distributed storage network is B (symbols). Based on
a cut-set bound on network-coding, the following theoretical
bound was derived in [5]:

B ≤
k−1∑
i=0

min{α, (d− i)β}. (1)

In equation (1), there is a trade-off between the choices of
the parameters α and β, which corresponds to the minimum
storage regeneration (MSR), where the storage parameter α
is minimized as follows:

(αmsr, γmsr) =

(
B

k
,

Bd

k(d− k + 1)

)
, (2)

and the minimum bandwidth regeneration (MBR), where the
regeneration bandwidth γ is minimized as follows:

(αmbr, γmbr) =

(
2Bd

2kd− k2 + k
,

2Bd

2kd− k2 + k

)
. (3)

Existing DSS was largely constructed based on the maxi-
mum distance separable (MDS) code [5], such as RS code.
The error correction and node regenerating capability is lim-
ited to the theoretical error correction bound of the MDS
codes.

Compared to MDS code-based schemes, regenerating code
can reach the optimal theoretical trade-off between the mini-
mum storage regenerating and the minimum bandwidth regen-
erating. Moreover, in regeneration code, it is no longer needed
to decode the original file in order to regenerate a failed peer
node.

Fig. 3: Multi-layer RS code design.

F. Adversarial Model

In P2P networks, it is possible that the storage nodes may be
attacked by the adversarial security attacks. The affected nodes
may provide incorrect response to disrupt data reconstruction
and regeneration, or becomes totally unavailable.

We assume that the attacker has knowledge of the data
allocation scheme. It observes the randomized allocation with
an intention to disrupt or manipulate as many peer nodes as
possible for any given budget to thwart data reconstruction
and availability. Based on this information, the defender first
generates n data components from B symbols to be stored in
the P2P network using the regenerating code-based approach.
It then randomly allocates the n data components across the
entire P2P network so that the original B symbols can be
recovered when any k untackled components are collected.
Meanwhile, any spurious node can be repaired by collecting
β symbols from d storage nodes.

III. MULTI-LAYER CODE DESIGN

In this section, we introduce our proposed multi-layer
regenerating code for distributed storage system and derive the
optimal code construction. Since MSR and MBR are similar
in description, we will only present the MSR code scenario.

A. Multi-layer Codes and DSS

Multi-layer codes, or m-layer codes, split the data to be
stored into m layers and n blocks and then distribute the
blocks to n0 ≤ n different storage peer nodes, as shown in
Fig. 3. The m layers correspond to m RS codes. The code
rate of the m-layer code increases from layer 1 to layer m.
On the other hand, the error-correction capability decreases
from layer 1 to layer m. Because of this structure, the error
correction and node repairing of the m-layer code will proceed
from the 1st layer and then move towards the mth layer, layer
by layer. Since each node stores data corresponds to all m
layers, the nodes with errors detected in one layer, all the
subsequent insiders layers stored in that node also becomes
unreliable. Therefore, for the sake of computational efficiency,
they will be treated as erasures, as illustrated in Fig. 3.

Let the parameter for the ith layer MSR code be viewed as
an (n − 1, di, n − di) MDS code, i = 1, 2, · · · ,m, where



each component contains β symbols as described in the
regeneration code setting, and di ≤ dj ,∀1 ≤ i ≤ j ≤ m.
Then the first layer code can detect and repair t1 failure nodes:

t1 = ⌊(n− d1 − 1)/2⌋ = (n− d1 − ε1 − 1)/2, (4)

where ε1 = 0 if n− d1 − 1 is even and ε1 = 1 otherwise.
For i = 2, . . . ,m, by treating the symbols from the ti−1

nodes where errors have been found as erasures, then based
on discussion in Section II-C, the ith layer code can detect
and repair ti failure nodes:

ti = ⌊(n− di − 1− ti−1)/2⌋+ ti−1

=

 i∑
j=1

2j−1(n− dj − εj − 1)

 /2i,
(5)

assuming that n − di − 1 ≥ ti−1, where εi = 0 if n − di −
1− ti−1 is even and εi = 1 otherwise.

B. Multi-layer Code Construction

The multi-layer DSS was first explored from Hermitian
code [6]–[8]. A Hermitian curve

H(q) : yq + y = xq+1

is defined over Fq2 . There are q3 points on this curve, denoted
as: Pi,j = (αi−1, α(i−1)(q+1)+1+βj) (i = 0, 1, ..., q2−1, j =
0, ..., q−1), where α is the primitive element over Fq2 with
α−1 = 0 and βj is the solution to yq + y = 0.

Let Gj = {(yjfj)(P0,0), · · · , (yjfj)(P0,q−1), · · · ,
(yjfj)(Pq2−1,0), · · · , (yjfj)(Pq2−1,q−1)}, j = 0, . . . , q − 1,
be an RS-code, where fj is a polynomial satisfying

deg fj < κ(j) = max{t | tq + j(q − 1) ≤ m}+ 1.

According to [6], we have

Hm = G0 ⊕ G1 ⊕ · · · ⊕ Gq−1.

Alternatively, it can be viewed as a multiple layer RS code,
with code parameters:

(q2 − 1, κ(i), q2 − κ(i)), i = 0, 1, · · · , q − 1. (6)

For a Hermitian code Hm over Fq2 , a message matrix
Mdim(Hm)×A = [M1, · · · ,MA] is encoded columnwise. The
codeword matrix is

Hm(M) = [Hm(M1),Hm(M2), · · · ,Hm(MA)],

where Hm(Mi) has the following form (ϱ ∈ L(mQ)):

[ϱ(P0,0), · · ·, ϱ(P0,q−1), · · ·, ϱ(Pq2−1,0), · · ·, ϱ(Pq2−1,q−1)]
T .

For Hermitian code based MSR (H-MSR) construction,
let α0, . . . , αq−1 be a strictly decreasing integer sequence
satisfying 0 < αi ≤ k(i), 0 ≤ i ≤ q − 1, and A =

lcm(α0, · · · , αq−1). Arrange B = A ·
q−1∑
i=0

(αi + 1) symbols

into two matrices S, T as follows:

S =

 S0

...
Sq−1

 , T =

 T0

...
Tq−1

 ,

where

Si = [Sαi,1 Sαi,2 ...Sαi,A/αi
],

Ti = [Tαi,1 Tαi,2 ...Tαi,A/αi
],

Sαi,j , Tαi,j (0 ≤ i ≤ q − 1, 1 ≤ j ≤ A/αi) are symmetric
matrices of size αi×αi. Then by processing the data symbols
as described below to achieve the MSR point in the distributed
storage [7], [8]:

1) Encode the data matrices S, T defined above using
a Hermitian code Hm over GF (q2) with parameters
κ(j) (0 ≤ j ≤ q − 1)) and m (m ≥ q2 − 1).

2) Calculate the q3 ×A codeword matrix

Y = Hm(S) + ΓHm(T ),

where Γ = diag(Λ0,Λ1, · · · ,Λq2−1) and the q diagonal
elements in Λi are all identical to λi ∈ Fq2 .

3) Divide Y into q2 submatrices Y0, · · · , Yq2−1 of the size
q×A. Store the submatrix in (up to) q2 storage nodes.

Since H-MSR code can be viewed as q layers of RS codes
with parameters

(q2 − 1, di, q
2 − di), i = 0, 1, · · · , q − 1, αl ≤ κ(l), (7)

where di = 2αi, α ≤ κ(i), we can choose the sequence
αi to be strictly decreasing so that di is also strictly de-
creasing. For the q RS codes, the minimum distance of the
(q2−1, dq−1, q

2−dq−1) code is the largest. It can correct up
to τq−1 errors:

τq−1 = ⌊(q2 − dq−1 − 1)/2⌋,

where ⌊x⌋ is the floor function of x.
Next, the code (q2 − 1, dl, q2 − dl), l = q − 2, · · · , 0 will

be decoded sequentially, which can correct at least τl = τq−1

errors when q2 − d0 − 1 ≥ τq−1. Therefore, the total number
of errors that the the H-MSR can detect and repair is

τH−MSR = qτq−1 = q
⌊
(q2 − dq−1 − 1)/2

⌋
.

In comparison, for RS-MSR code with the same rate can
repair

τRS−MSR =

⌊(
q3 − q −

q−1∑
l=0

dl

)
/2

⌋
. (8)

Moreover, the proposed H-MSR code has complexity O(n5/3)
for node regeneration and reconstruction, which is lower than
the RS-MSR complexity O(n2) in both scenarios.

C. Optimal Regenerating Code

Motivated by the Hermitian code structure, a natural re-
search task is to find out how to select the layers that can
optimize the overall performance [9].

Similar to message encoding algorithm, to encode a file
with size B, we select d = 2α and divide the file into θ blocks
of data with size B̃, where θ = ⌈B/B̃⌉. Then the θ blocks
of data will be encoded into codeword matrices F1, . . . ,Fθ

and form the final n×αθ codeword matrix: C = [F1, . . . ,Fθ].
Each row ci = [F1,i, . . . ,Fθ,i], 1 ≤ i ≤ n, of the codeword



O-MSR Code
H-MSR Code
RS-MSR Code

N
od

e 
R

eg
en

er
at

in
g 

C
ap

ab
ili

ty

q

Fig. 4: Comparison of node regenerating capability of the m-
layer code with the H-MSR and RS-MSR codes with code
rate=3/4 and m = q.

matrix C will be stored in storage node i, where fj,i is the ith

row of Fj , 1 ≤ j ≤ θ.
The design of optimal multi-layer code is equivalent to

maximizing the number of failure nodes that can be regen-
erated, which is determined by tm. The problem can be
formulated as an optimization problem given the following
algorithm [9].

maximize: tm, where ti =

⌊
n− di − ti−1

2

⌋
+ ti−1,

i = 2, . . . ,m, t0 = 0

constraints:
m∑
i=1

di = d.

di−1 ≤ di, 2 ≤ i ≤ m,

n− di − ti−1 − 1 ≥ 0, i = 2, . . . ,m

n+ di − 2di+1,≥ 0, i = 1, . . . ,m− 1,

This is a linear optimization. By introducing slack variables
εi, i = 1, 2, · · · ,m, we can easily find that the optimal re-
generating code can be achieved when di = round(d/m) = d̃
as shown in [9]. In this case, as shown in equation (5), the
maximum number of failure nodes that the m-layer optimal
regenerating code (O-MSR) can repair is at most

tm =

(
m∑
i=1

2i−1(n− d̃− 1− εi)

)
/2m,

=

(
1− 1

2m

)
(n− d̃− 1)− 1

2m

m∑
i=1

2i−1εi.

(9)

By carefully selecting the d so that n− d̃− 1 is even, then
we have εi = 0 for i = 1, . . . ,m, which can maximize the

error correction capability for the given storage efficiency. In
this case, from equation (9), we have

lim
m→∞

tm = lim
m→∞

(
m∑
i=1

2i−1(n− d̃− εi − 1)

)
/2m

= n− d̃− 1.

(10)

In this case, for the single layer RS code, we have

tRS−MSR = ⌊(n− d̃− 1)/2⌋
= (n− d̃− 1)/2.

(11)

Therefore, we have the following theorem.

Theorem 1. Let t
(m)
O−MSR be the number of nodes that can

be regenerated by an m-layer optimal regenerating code and
tRS−MSR be the number of nodes that can be regenerated from
a single layer RS-MSR code with comparable parameters, then

lim
m→∞

t
(m)
O−MSR = 2tRS−MSR. (12)

Theorem 1 proves that the overhead required to correct
random node failure for the m-layer O-MSR code approaches
one half of the RS-MSR code under comparable security
parameters, which is the overhead required to correct erasures.

Fig. 4 compares the performance of our proposed multi-
layer codes O-MSR and H-MSR codes with the RS-MSR code
in which we select m = q since H-MSR is only defined for
this case.

IV. CONCLUSION

We first present limitations of the existing storage system,
especially the decentralized storage system. We then analyze
our previous work in multi-layer code design and applications
to distributed storage systems. We also derive the theoretical
performance bound of the optimal multi-layer regenerating
code. Finally, we present simulation results to compare the
performance of the proposed m-layer O-MSR code and the
RS-MSR code.

REFERENCES

[1] J. Benet. IPFS - content addressed, versioned, P2P file system (draft 3).
[Online]. Available: https://github.com/ipfs/ipfs/blob/master/papers/ipfs-
cap2pfs/ipfs-p2p-file-system.pdf

[2] Protocol Labs. (August 14, 2017) Filecoin: A decentralized storage
network. [Online]. Available: https://filecoin.io/filecoin.pdf

[3] S. Rhea, C. Wells, P. Eaton, D. Geels, B. Zhao, H. Weatherspoon, and
J. Kubiatowicz, “Maintenance-free global data storage,” IEEE Internet
Computing, vol. 5, pp. 40 – 49, 2001.

[4] R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage, and G. M. Voelker, “Total
recall: System support for automated availability management,” in roc.
Symp. Netw. Syst. Design Implementation, 2004, pp. 337–350.

[5] A. Dimakis, P. Godfrey, Y. Wu, M. Wainwright, and K. Ramchandran,
“Network coding for distributed storage systems,” IEEE Transactions on
Information Theory, vol. 56, pp. 4539 – 4551, 2010.

[6] J. Ren, “On the structure of Hermitian codes and decoding for burst
errors,” IEEE Transactions on Information Theory, vol. 50, no. 11, pp.
2850–2854, November 2004.

[7] J. Li, T. Li, and J. Ren, “Beyond the MDS bound in distributed cloud
storage,” in IEEE INFOCOM 2014, Toronto, CA., April 27-May 2 2014.

[8] ——, “Beyond the MDS bound in distributed storage,” IEEE Transac-
tions on Information Theory, vol. 66, no. 7, pp. 3957–3975, 2020.

[9] ——, “Optimal construction of regenerating code through rate-matching
in hostile networks,” IEEE Transactions on Information Theory, vol. 63,
no. 7, pp. 4414–4429, July 2017.


