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Abstract—Communication protocols determine how network
components interact with each other. Therefore, the ability to
derive a specification of a protocol can be useful in various
contexts, such as to support deeper black-box testing or effective
defense mechanisms. Unfortunately, it is often hard to obtain
the specification because systems implement closed (i.e., undoc-
umented) protocols, or because a time consuming translation has
to be performed, from the textual description of the protocol
to a format readable by the tools. To address these issues, we
propose a new methodology to automatically infer a specification
of a protocol from network traces, which generates automata for
the protocol language and state machine. Since our solution only
resorts to interaction samples of the protocol, it is well-suited
to uncover the message formats and protocol states of closed
protocols and also to automate most of the process of specifying
open protocols. The approach was implemented in a tool and
experimentally evaluated with publicly available FTP traces. Our
results show that the inferred specification is a good approximation
of the reference specification, exhibiting a high level of precision
and recall.

I. INTRODUCTION

Network protocols regulate the communication among en-
tities by defining the syntax and semantics of the messages,
and the order in which they need to be exchanged. The
ability to obtain a protocol specification can, therefore, play
an important role in several contexts. For example, it can
help on the implementation of effective defense mechanisms,
such as firewalls and intrusion detection systems, that use the
specifications of the protocols to accurately identify malicious
traffic by performing deep packet inspection [1]. Testing tools
can take as input a protocol specification to generate test cases
that cover the protocol space for conformance testing [2] or to
verify if a server is vulnerable to remote attacks [3].

However, it is typically hard to produce protocol specifi-
cations. Closed (or undocumented) protocols require reverse
engineering the seemingly arbitrary set of bytes that compose
each message in order to determine their meaning and structure.
Open protocols, on the other hand, are well documented and
their (textual) specification is readily available (e.g., IETF
protocols), but obtaining their specification is also difficult and
time consuming because developers have to carefully analyze
the textual description of the protocol and translate it into the
format supported by the tools.

Automatic protocol reverse engineering can address most of
these difficulties by deducing an approximate specification of a
protocol from information about its operation and with minor
assumptions about its structure. In this paper, we present a
methodology for automatically inferring the language and state
machine of the protocol.This approach constructs two automata
(one for the language and the other for the protocol state

machine) from the sequences of messages and protocol sessions
that were observed in network traces, and then, generalizes
and reduces them in order to create a concise specification.
The methodology can be used both to extract a specification
of closed protocols and to automate most of the manual
translation of open protocols. Our solution is focussed on clear-
text protocols, often used on network servers. By noticing that
many of these server protocols are text-based (e.g., HTTP, SIP,
IMAP, FTP, Microsoft Messenger), we decided to explore in our
approach the way text fields are usually organized and delimited
in a message. We also include in the paper a brief discussion
on how to extend the approach to binary-based protocols.

The methodology was implemented in ReverX, a tool that
infers the protocol specification from a network trace containing
a sample of protocol interactions. An experimental evaluation
of the tool was carried out using publicly available network
traces, to determine if an inferred specification can capture
the main characteristics of a protocol. For this experiment,
we chose the FTP protocol for two main reasons. First, it is
a non-trivial protocol with a reasonable level of complexity
that is well-known to most readers, and therefore, it becomes
simpler to provide examples in the text. Second, since FTP is
documented in an IETF RFC [4], it facilitates the assessment
of the results and allows an intuitive comparison between the
inferred automata and the ones manually produced from the
textual description. The experiments show that the generated
automata can recognize the FTP protocol with a high level of
precision, recall, and f-measure, even with training sets with a
relatively small number of messages (around 1000 packets).

II. REVERX

A protocol is a set of rules that dictates the communication
between two or more entities. It defines message types (or
formats) that are composed of a sequence of fields organized
with certain rules and that can take values from a given domain.
Therefore, a protocol can been seen as a formal language
whose syntax rules are specified through a grammar, describing
how symbols of an alphabet can be combined to form valid
words. Grammars can be represented by deterministic Finite
State Machine (FSM) automata, which are commonly used
to describe language recognizers, i.e., computational functions
that determine whether a sequence of symbols belongs to the
language. Likewise, the network protocol also identifies the
order in which the messages can be transmitted while programs
execute, and consequently, a FSM can also be utilized to
represent the relations among the different types of messages.
We call this second automaton the protocol state machine. It is
thus the goal of our methodology to obtain the specification of
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Figure 1. ReverX overview.

the protocol by inferring two FSM, which define the language
and the state machine of the protocol.

The problem of grammar inference, or automata induction,
refers to the process of learning a language L (or obtaining
the FSM that recognizes L) from a set of sample sequences.
If the sequences given to infer the language are exhaustive
and complete, constructing a FSM that accepts all sequences
can be a simple task. However, several problems arise when
the language is complex and the alphabet is rich, such as in
network protocols. First, if the language defines words that
can contain arbitrary values, such a message containing several
fields for variable-data arguments, it denotes an alphabet with
considerable size (given the combinations of possible values
that each field can have). Also, it is quite difficult to produce
a representative set of sample sequences for languages with
large alphabets, since this would imply that one must obtain a
complete set of network traces containing all the messages of
the protocol with all possible variations and combinations of
parameter data!. If the set of sample sequences is incomplete,
the problem of grammar inference consists in generalizing from
the given set to obtain a FSM that also accepts the missing
sequences, without over-generalizing.

Therefore, network protocols are characterized by complex
languages and large alphabets, and as a result they are difficult
to reverse engineer. Some solutions have nevertheless been
created that take advantage of some particular characteristic
of the network protocols [5], [6]. Some works also resort
to positive and negative examples to learn a grammar from
a set of sample sequences [7], [8]. Our approach resorts to
network traces that can be easily obtained by intercepting the
communication between regular clients and servers and that
are expected to contain only positive examples. As in any other
learning-based approach, the quality of the derived specification
will depend on the correctness and coverage of the sample
sequences. Therefore, the network traces should provide a good
protocol coverage and must not have any illegal or malformed
messages (as they would introduce incorrect message formats
or corrupt existing ones). Only messages of the protocol are
considered, therefore the traces are previously filtered to select
only packets to and from a specific UDP/TCP port number. In
addition, to simplify the presentation, we assume that protocol
messages are not fragmented in several packets and that no
encryption is performed.

Figure 1 depicts an overview of the methodology imple-
mented in the ReverX tool. Since the parties involved in the
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Figure 2. Example FTP network trace.

communication can play distinct roles (e.g., client or server),
which restricts the allowed message types that each one can
send or receive, we derive separate specifications for each role
by looking at the direction of the traffic. The methodology is
organized in two phases: In the first phase, ReverX constructs a
Prefix Tree Acceptor (PTA) from the protocol messages of the
network traces (Partial Language), which is then generalized
with the intention of producing a FSM that can accept the same
message types with different payloads (Protocol Language). In
the second phase, the tool deduces the protocol state machine
from the causal relations among the different messages present
in the network traces. ReverX extracts individual protocol
sessions, which are converted into sequences of message types,
to build a PTA that accepts those sessions (Partial State
Machine). The tool then resorts to a more aggressive state
merging algorithm to reduce the automaton (Protfocol State
Machine).

A. Inferring the Language

The methodology for deriving the protocol language consists
of two parts: the construction of a FSM that accepts only the
messages present in the traces, extended with frequency labels,
and the generalization of the automaton to accept different
instances of the same types of messages. The automaton
L=(Q,%,0,w,qo, F) is defined as:

Q@ is a finite, non-empty set of states,

Y is the input alphabet, i.e., a finite set of fields extracted

from all messages,

¢ 1is the state-transition function: § : Q X ¥ — Q,

w is the labeling-transition function: w : @ x X — N,

qo 1s the initial state, and
F' is the set of final states.

In this context, the alphabet of the automaton, i.e., the set
of symbols, is the set of message field payloads observed.
Transitions from a given state define the message fields that
are accepted by that state. Algorithm 1 depicts the method for
obtaining the FSM that recognizes the language of the protocol.

1) Construction of the Partial Language Automaton with
Frequency Labels: A PTA is built so that it accepts every



1 Function inferProtocolLanguage
2 Input: NetworkTraces : Messages of the protocol
3 T4 : Minimum ratio of unique instances (0 <77 < 1)
4 T5 : Minimum number of transitions (72 > 0)
5 Output: Automaton L <+ (Q,%,0,w, qo, F')
6
7 qo < NewState()
8 Q + {q}
9 X +— ¢
10 0(q,s) < UNDEFINED for all domain
11 w(gq,s) < 0 for all domain
12 F < ¢
13 L < (Q,%,4,w,q0,F)
14
15 // Construction of the partial language (PTA)
16 foreach m € NetworkTraces do
17 q < qo
18 foreach m; <;<|y,| do / for each message field
19 if §(¢,m;) # UNDEFINED then
20 p < 0(g;m;)
21 w(g,mi) <« w(g,m;)+ 1/ inc. frequency
22 q <D
23 else
24 p < NewsState()
25 Q < QU {p} / add new state to Q
26 Y « X U{m;} / add symbol to alphabet
27 d(g,m;) < p // add transition
28 w(g,m;) < 1 // initial frequency label
29 q < p
30 F «+ FuU{q} / add final state
31
32 // generalize the automaton
33 MinimizeFSM(L)
34 generalized < TRUE
35 while generalized is TRUE do
36 ¥ « {ANY}
37 &’(q,8) < UNDEFINED for all domain
38 w'(g,s) < O for all domain
39 LN « (Q,%,d',u,qo, F) // nondeterministic FSM
40 generalized < FALSE
41 foreach ¢ € QQ do
42 #transg <+ |{6(g,s) # UNDEFINED ,s € }|
43 freqq < Y sexw(g,s
44 if #transq/freqq > T1 or #transq > T then
45 // transitions are set with symbol ANY
46 foreach s € ¥ : (g, s) # UNDEFINED do
47 0'(qg, ANY) <+ 6'(q, ANY) U {d(q,s)}
48 W'(q, ANY)  w'(g, ANY) U {w(q, )}
49 generalized < TRUE
50 else
51 // transitions keep the same symbol
52 foreach s € ¥ : 6(q,s) # UNDEFINED do
53 ¥ o« XU s}
54 5 (qy5) « {8(,5)}
55 W'(g,8) + {w(q,5))
56 L < DeterminizeFSM(LN) // converts to deterministic FSM
57 MinimizeFSM(L)
58 return L
Algorithm 1. Infer the message formats of the protocol.

message in the network trace (Lines 16-30 in Algorithm 1).
The PTA is a FSM where each common prefix of the messages
is accepted by the same states and transitions and each unique
suffix is accepted by a branchless path in the automaton. We
create the PTA from the positive examples of the network trace
as follows: Each network message is composed of an arbitrary
sequence of bytes, however, text-based protocols usually resort
to a fixed delimiter character to separate the message fields,
such as a space or a tab. Therefore, by providing a regular
expression that defines the field delimiter, we decompose each
message as a sequence of fields and separators (abstracted in
Line 18). Whenever a symbol (field payload or delimiter) is
rejected by the PTA, a new set of states and transitions is
added in order to create a path that accepts the entire message.

Furthermore, all transitions are labeled with the number of
times they were visited (Lines 21-28) to keep track of the
frequency that each payload has been observed in that potential
field. The resulting frequency-labeled FSM is similar to a
probabilistic automaton, where instead of a probability value,
each transition has associated an absolute frequency.

Figure 3 displays a simple example of inferring the protocol
message formats from a network trace of Figure 2. The trace
was obtained from five simple FTP sessions, just to elucidate
the process of deriving a protocol specification using our
methodology. To infer the protocol language recognized by
the server, the trace was filtered so that it contains only FTP
messages sent by the client. Each message is delimited by a
carriage return and a line feed characters, and each field is
separated by the space character, as specified by RFC 959 [4].
Figure 3(a) shows the partial language PTA derived at the end
of this phase, where “<SP>" and “<CRLF>" depict the field
separator and message delimiter, respectively. Additionally,
each transition is labeled with the frequency that it was visited
(in parenthesis).

2) Generalization and Minimization: The partial language
PTA is only able to recognize the previously processed mes-
sages. In order to produce a more generic FSM that accepts
other messages, one needs to identify and abstract the parts of
the message format that are not fundamental to the specification
(e.g., parameters of a command). At the same time, we also
want to produce a concise automaton with a minimal number of
states and transitions. Otherwise, the same message fields could
be scattered among equivalent states and transitions, needlessly
augmenting the complexity of the derived specification.

First, we employ the Moore reduction procedure for de-
terministic finite automata minimization [9] that produces an
equivalent FSM with the minimum number of states and tran-
sitions (Line 33). During the minimization process, equivalent
states are merged, i.e., states with similar transitions that lead
to equivalent states. Merging two states also causes equivalent
transitions to be merged and the resulting label is combined
by adding the respective frequencies. Figure 3(b) shows the
automaton calculated after minimization.

Once the automaton is minimized, we analyze the labelled
frequencies to identify parts of the automaton that should be
generalized. Our approach is taken from the idea that most
protocols make use of the concepts of messages with commands
and parameters. To facilitate the parsing of the protocol mes-
sages some predefined fields define how each message should
be processed, determining the meaning of the remaining bytes.
Most textual protocols, for instance, resort to command fields
(usually the first) with the command name, usually followed by
the respective parameters with variable data (or by some other
sub-commands). The different keywords that each command
field can have are specified by the protocol and should therefore
be inferred. However, the specific parameter data should be
abstracted away and generically identified as parameter fields.

Intuitively, fields associated with predefined values, such
as command keywords, should appear often in the network
traces, as opposed to the variable and less recurrent nature of
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Figure 3. Inference of the protocol language.

the parameter data. Parameters can therefore be recognized in
states of the automaton that accept a wide range of different
symbols (each one is a particular instance of that parameter).
Additionally, these symbols should appear with relatively low
frequency, since each individual instance of a parameter should
be much less common than a command keyword. Alongside,
one can not rely only on the individual frequency of each
symbol, or else commands that appear rarely in the traces could
be misidentified as parameters.

The part of the algorithm responsible for identifying the

states that should be generalized appears in Lines 34-57. Two
configuration parameters are employed 77 and 75 (Line 44).
Any state of the automaton is selected for generalization if one
of two conditions is satisfied:

C1) the ratio of the number of symbols recognized by a state
over the total frequency of that state is above T7;
C2) the total number of symbols is larger than T5.

The condition on 7} determines that a field is a parameter by
looking for states that accept a wide range of symbols relative to
the total number of times they were observed in the traces (i.e.,
the sum of frequency labels on that state). Therefore, 77 must
be set to a value that captures the variability and sporadic nature
of parameters. Consider for example a message field that can
hold four distinct command names. In 200 messages, the value
of the field will be distributed among those four commands (not
necessarily evenly), and therefore the ratio of symbols over the
total frequency will be 4/200 = 0.02. On the other hand, a
state that represents a parameter field (e.g., a pathname) is not
bound to a limited number of fixed symbols. On 200 messages,
the field could have 150 different values and the ratio would be
150/200 = 0.75. The evaluation section studies the sensitivity
of the methodology to 77, and it is possible to observe that
generalization works effectively for a wide range of values.

The condition on 7, says that every state accepting more
symbols than what a typical command field would, should also
be considered a parameter. The purpose of this condition is to
address traces that are heavily skewed toward a certain com-
mand (or commands), making its parameters appear unusually
common, and possibly causing them to be incorrectly regarded
as commands. Therefore, 75 is quite generic and only needs to
be greater than the maximum number of different commands
that any protocol field can have (e.g., 7> = 30 is acceptable
because it is unlikely for a command field to accept more than
30 different command names).

The states identified as field parameters are generalized by
making each transition leaving from those states accept any
value (special symbol ANY'). This transformation however
may render the FSM nondeterministic, which we denote by
automaton LN. The LN automaton is constructed from L
(Lines 36-39) and each state is evaluated and subject for
generalization (Lines 41-55). At the end of this stage, we
employ a standard determinization algorithm [9] to merge all
nondeterministic transitions (i.e., those with symbol ANY) into
a single transition, effectively producing a new generalized
version of the language FSM L (Line 56). The minimization
algorithm is again applied to produce a simpler, yet equivalent,
automaton (Line 57). This procedure is repeated until no more
states can be generalized.

Returning to the FTP example, Figure 3(c) represents the
generalized nondeterministic automaton LN after the first it-
eration of the loop. ReverX was configured with 77 = 0.4
and T, = 30, and state SO was not generalized (7/25 =
0.28 < T1) while states S2 and S6 were identified as parameters
(3/5 = 0.6 > T7). The result of converting the nondeterministic
automaton to a deterministic one, followed by the minimization
operation is shown in Figure 3(d). This automaton also corre-



Function inferStateMachine
Input: Sessions sequences of message formats
Output: Automaton S <+ (Q, 3,4, qo, F)

Q <+ {qo}
X o+— ¢

1

2

3

4

5 qo < NewState()
6

7

8 d(q,s) < UNDEFINED for all domain
F

=)

¢
10 S <_(Q12167q07F)
11

12 // Construction of the partial state machine (PTA)

13 foreach sx € Sessions do

14 q < q

15 foreach m; <;<|sz| € sz do // for each message type

16 if §(¢,m;) # UNDEFINED then

18 else

19 p < NewsState()

20 Q < QU {p} / add new state to Q

21 Y « XU {m;} / add message type to alphabet
22 d(q,m;) < p // add transition

23 q <«

24 F «+ FU{q} // add final state

25

26 // merge states reached from similar message types

27 foreach ¢ € Q do

28 foreach p € Q do

29 if 3seX;rte@:6d(q,s) =rAd(p,s) ="t then
30 MergeStates(d(q, s), d(p, s))

31

32 // merge states without a causal relation that share at least
33 // one message type

34 reduce < TRUE
35 while reduce is TRUE do

36 reduce < FALSE

37 foreach ¢ € @ do

38 foreach p € Q do

39 // if there is not a casual relation

40 if (Js€X:6(q,8)=pVi(p,s)=q)or
41 (3s,t € ¥ :6(q,s) =p A d(p,t) = q) then
42 if 3seX;reQ:6(g,s)=rA

43 d(p, s) = r then

44 MergeStates(p, q)

45 reduce < TRUE

46 MinimizeFSM(S)

47 return S

Algorithm 2. Infer the state machine of the protocol.

sponds to the final FSM for the language, since the second loop
iteration did not find any more states to generalize.

B. Inferring the State Machine

A protocol specification also defines the casual relations
between messages. In the second phase, the methodology uses
the traces and the previously inferred language to obtain the
protocol state machine. Algorithm 2 presents the method used
to get the state machine of the protocol.

1) Extracting the Application Sessions: The protocol state
machine automaton is constructed from the application ses-
sions, each one corresponding to a sequence of messages
exchanged during the same interaction between both parties. To
identify individual sessions in the traces, we cluster messages
that share similar network characteristics, such as network
addresses and time proximity. In the current version, ReverX
groups each application session based on the following criteria:

o same source and destination IP and port addresses;

e TCP sequence numbers follow a monotonic increasing
function, with the next sequence number being at most
the sum of the last sequence number with the length of
that last packet;

o temporal gaps between messages smaller than one hour.

Then, we use the inferred language from the first phase to
convert each session into a sequence of message types. Every
path in the language automaton corresponds to a distinct
message format, and it receives a unique identifier naming
the specific message type. Therefore, one can determine the
type of a message by processing it with the language FSM.
By following this approach iteratively, ReverX transforms each
session as a sequence of message type identifiers.

2) Construction of the Partial State Machine Automaton:
Analogous to the protocol language inference, we build a PTA
that accepts the sequences of message types present in the ap-
plication sessions (Lines 13-24). Since frequency information
is not needed by Algorithm 2, the automaton S’ does not define
a labeling function. New states and transitions are added to the
automaton whenever a distinct message type appears. In the
end, the automaton is able to recognize all sessions observed
in the network traces.

Figure 4 exemplifies how the partial protocol state machine is
inferred from the network trace and from the derived language
FSM. After clustering the network messages into individual
protocol sessions, as depicted in Figure 2, the tool converts
the sessions into sequences of message types. The FSM built
from those sequences appears in Figure 4(a). For the sake of
readability, each message type is identified with the name of
the command of the message.

3) Reduction: The current FSM only captures the sequence
of transitions between the protocol messages exactly as they
appear in the traces. To derive the protocol state machine, it
is necessary to identify and merge the automaton states that
correspond to the same protocol state. In the first place, we find
out which states are reached under similar conditions, i.e., from
the same message type, because they probably represent the
same protocol state. Following this idea, the algorithm merges
all destination states of transitions that define the same symbol
(Lines 27-30). The merge operation consists in: creating a
new state with transitions from each pair of states to merge,
removing these two states from the automaton, and updating
any transition that pointed to either of these states. As with
most heuristic approaches, extrapolating from a smaller subset
may incur in over-optimistic lossy generalizations. For instance,
this procedure may fail if the protocol specification defines
the same message type (e.g., the same command name) for
different purposes. However, we found this practice to be very
uncommon in the usual protocol specifications. Figure 4(b)
shows the automaton after this procedure.

However, some states that are reached from different message
types may be part of the same protocol state. For instance,
after logging in, a user may create, edit, or delete files, all
seemingly interchangeable protocol commands. With respect
to the protocol state machine, the order of these messages is
irrelevant as they are executed from the same state. However,
network traces are most probably incomplete, in the sense
that many causal relations between protocol messages may be
absent. To deduce a complete protocol state machine, in spite of
the incompleteness of the network traces, the algorithm needs to
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Figure 4. Inference of the protocol state machine.

make a few assumptions about the equivalence of some states.
First, if there is a transition from a state S1 to state S2, but
not vice versa, then they can never be considered equivalent
because it establishes a causal relation from S1 to S2. Second,
protocol states without a direct causal relation (i.e., without
any transition between them or with transitions between them
in both directions) and without similar transitions (i.e., not
accepting at least one common message type), are also never
considered equivalent. These two conditions are enforced by the
algorithm to determine the cases where states can be merged
(Lines 37-44). The algorithm also minimizes the produced
FSM to obtain a simpler but equivalent automaton (Line 46).
This procedure is repeated until no more states can be merged,
and the resulting automaton is the protocol state machine.
Figure 4(c) displays the automaton S after the first iteration
of this merge procedure (while loop at Line 35). States 543 and
S44, for instance, have a causal relation, and therefore cannot
be merged. However, states S45, S51, and S53, are merged
because they all share message type QUIT and do not have
any causal relation between them. In the second iteration, the
tool merges S45 and S47 that share message type RNFR, and
the result is the final protocol state machine (see Figure 4(d)).

C. Extensions for Binary-based Protocols

Our inference methodology is primarily focused on text-
based protocols. However, we have some ongoing work on
extending our current approach to support binary-based pro-
tocols by taking into consideration the characteristics of this
kind of network protocols. The fundamental difference between
text- and binary-based protocols resides in their language, i.e.,
the message formats. Text-based protocols are built around the
notion of message fields encoded with text data and separated
by known characters, whereas binary-based protocols usually
resort to fixed-length fields or to a special notation to indicate
the length of variable fields. On the other hand, the specification

of the state machine is the same across text- or binary-based
protocols. Once the language is inferred, the message types,
either encoded with text or binary data, are used by the clients
and servers to make progress and to jump to the different states
of the protocol. Therefore, we only need to extend our approach
for the inference of the language of the protocol (the first phase
of the methodology).

Three changes can be made to assist the derivation of binary
message formats. The first is related with the construction of the
PTA, where each protocol message of the trace is decomposed
in a sequence of fields (Line 16 in Algorithm 1). In our original
approach, we resort to a regular expression that defines the
fixed delimiter character(s) used to separate each (text) field.
However, because there is no a priori assumption about the
structure of the binary fields, we divide each message initially
as a sequence of fields of just one byte (regular expression
“”). Although, one bit is the smallest binary unit, representing
fields as one-bit long would result in a very large PTA and
would greatly impact the overall performance of the inference
process. Moreover, fields that are smaller than one byte can
also be derived, although concatenated with other small fields
that together are inferred as a larger one-byte field. Most binary
protocols usually group several one-bit fields (i.e., flags) into
blocks of one, two, or four bytes, due to performance issues.

Once the PTA is constructed, each transition deemed as a
message field is defined with a one-byte long symbol due to
the message decomposition. However, if a particular subpath
in the automaton is made up of branchless transitions, i.e.,
states with only one transition, they can be concatenated into a
single state and transition, thus defining larger message fields.
We thus introduce the second modification to the methodology
that concatenates all symbols from branchless subsequences of
states and transitions (after Line 33). The concatenation works
as follows: for every three states qg, g1, g2 € @ that define only
two transitions do(qo, a) = q1 and 61(q1,b) = ¢o, with a,b € X,
we merge states gp and ¢; and replace both transitions with
d2(qo1, ab) = go. We also can use this concatenation function
in the end of each generalization cycle (after Line 57), mostly
for readability purposes but also to minimize the number of
states and transitions in the final automaton.

The third and final modification is related with the derivation
of the size of binary fields. Once a state is selected for
generalization (Lines 46—49), instead of replacing the symbol
of each transition with the special symbol “<ANY>" (which
in text-based protocols can be implemented as the regular
expression “.+” or “[a-zA-Z0-9]+”), we now keep information
about the length of the original symbol, such as “.{4}+” for a
a field that defines a generic symbol 4 bytes-long.

An initial evaluation with traces of the Domain Name System
(DNS) protocol show that our approach does produce a correct
automaton that accepts all message types from the traces, but
the generalization was only accomplished to some extent (the
initial header of the messages). This level of generalization can
be acceptable to some contexts (e.g., firewall rules), but further
research is still needed to improve and refine the algorithm.



III. EVALUATION

This section evaluates ReverX to assess the quality of the
inferred language and state machine automata for a given
protocol. To attain this objective, we chose to derive a speci-
fication of the FTP protocol because it has a reasonable level
of complexity. Since FTP is documented by a IETF RFC [4],
it allows the comparison between the inferred automaton and a
reference automaton, manually produced from the documenta-
tion. The network traces were obtained from a public repository
to facilitate the reproducibility of the results and to demonstrate
that our solution can use unbiased network traces obtained from
the regular utilization of the protocol (without being specifically
produced for reverse engineering purposes).

A. Experimental Framework

1) FTP Protocol: To assess the quality of our inference
methodology, we reverse engineer the File Transfer Protocol
(FTP) [4]. FTP defines a standard way where clients can
access files stored remotely in a server. The complete RFC
959 specification defines 33 commands, allowing clients to
authenticate, download or upload files, create directories, delete
or rename files or directories, or to obtain status information
about files and directories.

2) Network Traces: The evaluation uses publicly available
FTP network traces’. Even though these traces had been pre-
viously processed to anonymize the clients [10], a few packets
still contained malformed messages that had to be cleaned
(such as illegal command names). Furthermore, we chose to
concentrate on the RFC 959 specification [4], hence we filtered
out any network messages non compliant with this standard.
This resulted in a clean packet capture file containing 868 825
FTP messages (out of the original 886 547 messages).

3) Evaluation Methodology: The evaluation focuses on de-
riving the client side of the FTP protocol (an equivalent
approach could be utilized for the server side), and therefore
only the client FTP messages were used in the experiments.
Overall, 10 independent experiments were conducted, each
one employing a subset of the trace as training data and the
remaining messages as test sets. In more detail, the procedure
for each experiment is: First, we randomly select a point in the
trace to pick 4000 consecutive FTP messages as the training set.
ReverX infers the language and state machine of the protocol
for various configurations based on this set, by varying the
sample size (raging from 250 messages to the whole 4000) and
the generalization parameter 77 (from 0.0 to 1.0). Therefore,
two automata are produced for each configuration, totaling 132
FSM per experiment. Then, each automaton is evaluated using
10 test sets, which are generated by randomly choosing 4000
consecutive messages from the remaining trace file.

We assess the quality of the inferred automata by calculating
the following metrics:

e Recall: measures the coverage of the inferred automaton,

i.e., how much of the protocol specification has been
captured by the FSM. Recall is calculated as the ratio that

a randomly selected set of valid protocol messages (or
protocol sessions) is accepted by the inferred automaton.

2http://eeAlblAgnv/anonymized- traces.html

Recall = # accepted messages (or sessions)

# messages (or sessions)

e Precision: determines the soundness of the automaton, i.e.,
if the inferred automaton is not overly-generalized. We
calculate precision as the ratio that a randomly selected
(valid or invalid) set of protocol messages (or sessions)
accepted by the inferred FSM is in fact valid.

# accepted valid messages (or sessions)
# accepted messages (or sessions)

Precision =

e F-score: measures the accuracy of a test by computing a
score that considers the precision and the recall.
Precision X Recall

F-Score =2 X —MM—————
Precision + Recall

Typically, it is very simple to have a recall of 1 (with a low
precision) by having a very generic automata that accepts all
messages (or sessions). Therefore, our goal is to achieve both
a high recall and precision [11], which is reflected by f-score
values close to 1.

4) Testbed: The experiments were carried out in a Intel
Pentium Dual Core 2.8GHz with 2GB of memory running
Ubuntu 9.04. ReverX is programmed in Java and resorts to
libpcap® and jnetpcap* libraries to access packet capture files
in TCPDUMP format. ReverX also uses the dot program® to
generate high-quality diagrams of the automata.

B. Experimental Results

All experiments described in this section were executed with
T, = 30. Each entry of recall, precision, and f-score is an
average of 100 values (10 experiments, each with 10 different
test sets).

1) Protocol Language: To calculate the recall of the FSM
of the language, we used the 4000 messages of each test set in
the inferred automaton to find out which packets were accepted
or rejected. A recall with a value near 1 means that most of the
messages are recognized and, therefore, that the FSM should
be able to capture most of the protocol language used by the
FTP clients.

To calculate the precision, we require messages that are
accepted by the derived automaton and evaluate if they are
accepted or rejected by the reference language of FTP. This
gives us a measure of how accurate is the inferred automaton,
since a higher precision value indicates that fewer extraneous
messages are recognized. To get data for the experiment, we
decided to follow an approach based on the mutation of test set
messages, to produce (mutated) messages that are still accepted
by the inferred automaton but could potentially be rejected by
the reference automaton. We configured the editcap tool®
to mutate each byte of every packet with a probability of 0.1.
Then, we fed the mutated messages to the inferred FSM and
only kept the messages that were accepted. This process was
applied repeatedly to the original test set, until a mutated (but
accepted) test set was produced that contained 4000 messages.

3http://WWW.tcpclump.org/

4hllp://jnetpcap.com/

5hllp://www. graphviz.org/
6hltp://wwwwiresharkAorg/docs/mzm— pages/editcap.html



Table T
EVALUATION OF THE INFERRED SPECIFICATION.
(a) Language FSM evaluation. (b) State machine FSM evaluation.

Training set size (messages) Training set size (messages)

7 250 500 1k 1.5k 2k 4k T 250 500 1k 1.5k 2k 4k
Prec. | 1.00 1.00 1.00 1.00 1.00 1.00 Prec. [ 0.00 0.00 0.00 0.00 0.00 0.00
0.00 Rec. | 0.58 0.58 0.58 0.58 0.58 0.58 0.00 Rec. | 0.00 0.00 0.00 0.00 0.00 0.00
F-Sc.| 0.73 0.73 0.73 0.73 0.73 0.73 F-Sc.| NNA N/A N/A NA NA NA
Prec.| 0.81 0.82 0.99 1.00 1.00 1.00 Prec.| 0.58 0.70 0.98 0.98 0.98 1.00
0.10 Rec. | 1.00 1.00 1.00 1.00 1.00 1.00 0.10 Rec. 1 0.99 0.99 1.00 1.00 1.00 1.00
F-Sc.| 0.89 0.90 1.00 1.00 1.00 1.00 F-Sc.] 0.73 0.82 0.99 0.99 0.99 1.00
Prec.| 0.39 0.75 0.99 1.00 1.00 1.00 Prec.[ 0.60 0.70 0.98 0.98 0.98 1.00
0.20 Rec. [ 1.00 1.00 1.00 1.00 1.00 1.00 0.20 Rec. | 0.99 0.99 1.00 1.00 1.00 1.00
F-Sc.| 0.56 0.86 1.00 1.00 1.00 1.00 F-Sc.| 0.75 0.82 0.99 0.99 0.99 1.00
Prec.| 0.39 0.75 0.99 1.00 1.00 1.00 Prec.| 0.61 0.68 0.98 0.98 0.98 1.00
0.30 Rec. [ 1.00 1.00 1.00 1.00 1.00 1.00 0.30 Rec. [0.99 0.99 1.00 1.00 1.00 1.00
F-Sc.| 0.56_0.86 1.00 1.00 1.00 1.00 F-Sc.] 0.75 0.81 0.99 0.99 0.99 1.00
Prec.|0.39 0.75 0.99 1.00 1.00 1.00 Prec.| 0.56 0.68 0.98 0.98 0.98 1.00
0.40 Rec. [ 1.00 1.00 1.00 1.00 1.00 1.00 0.40 Rec. 1 0.99 0.99 1.00 1.00 1.00 1.00
F-Sc.| 0.56_0.86 1.00 1.00 1.00 1.00 F-Sc.] 0.71 0.81 0.99 0.99 0.99 1.00
Prec.| 0.39 0.75 0.98 1.00 1.00 1.00 Prec.| 0.56 0.68 0.97 0.98 0.98 1.00
0.50 Rec. | 1.00 1.00 1.00 1.00 1.00 1.00 0.50 Rec. [0.99 0.99 1.00 1.00 1.00 1.00
F-Sc.| 0.56 _0.85 0.99 1.00 1.00 1.00 F-Sc.] 0.71 0.80 0.99 0.99 0.99 1.00
Prec.| 0.39 0.75 0.98 0.99 1.00 1.00 Prec.| 0.56 0.67 0.97 098 0.98 1.00
0.60 Rec. | 1.00 1.00 1.00 1.00 1.00 1.00 0.60 Rec. [0.99 0.99 1.00 1.00 1.00 1.00
F-Sc.| 0.56_0.85 0.99 1.00 1.00 1.00 F-Sc.] 0.71 0.80 0.99 0.99 0.99 1.00
Prec.| 0.39 0.74 0.98 0.99 1.00 1.00 Prec.| 0.56 0.68 0.97 0.97 0.98 1.00
0.70 Rec. [ 1.00 1.00 1.00 1.00 1.00 1.00 0.70 Rec. [0.99 0.99 1.00 1.00 1.00 1.00
F-Sc.| 0.56_0.85 0.99 0.99 1.00 1.00 F-Sc.[0.71 081 0.99 0.98 0.99 1.00
Prec.| 0.38 0.73 0.97 0.97 0.98 0.99 Prec.| 0.56 0.69 0.97 0.95 0.96 0.99
0.80 Rec. [ 1.00 1.00 1.00 1.00 1.00 1.00 0.80 Rec. [0.99 0.99 1.00 1.00 1.00 1.00
F-Sc.| 0.55 0.84 0.98 0.98 0.99 0.99 F-Sc.| 0.71 0.81 0.99 0.97 0.98 0.99
Prec.| 0.38 0.72 0.95 0.96 0.97 0.98 Prec.[ 0.56 0.68 0.94 0.93 0.94 0.98
0.90 Rec. [1.00 1.00 1.00 1.00 1.00 1.00 0.90 Rec. [0.99 0.99 1.00 1.00 1.00 1.00
F-Sc.| 0.55 0.84 0.97 098 099 0.99 F-Sc.| 0.71 0.81 0.97 0.97 0.97 0.99
Prec.[ 0.34 0.71 10.94 0.96 0.97 0.98 Prec.| 047 0.66 10.93 0.93 0.94 0.98
1.00 Rec. | 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Rec. [ 0.99 0.99 1.00 1.00 1.00 1.00
F-Sc.| 0.50 0.83 '0.97 0.98 0.98 0.99 F-Sc.| 0.64 0.79 10.96 0.97 0.97 0.99

To finalize the calculation of precision, we resorted to the
reference FSM of FTP to verify which messages of the mutated
test set were in fact legal.

Table I(a) shows the recall and precision of the protocol
language automata inferred by ReverX (grey cells have recall
and precision values over 0.9). For each value of the general-
ization parameter 77, we produced FSMs from different sizes
of the training set (ranging between 250 to 4000 messages).
It is possible to conclude from the table that smaller training
set sizes lead to worse quality automata. This is expected since
smaller traces lack enough message diversity to make them
representative enough of the protocol language’. On the other
hand, it is possible to see that even for relatively small training
sets (e.g., 1000 messages) one can already infer high quality
FSMs. Of course, in general there is no exact number for
the minimum training set size because it depends on both the
protocol complexity and coverage of the trace.

The generalization parameter also affects the quality of the
automata. For instance, a value of 0.0 results in generalizing
every parameter as a state, therefore producing over-generalized
automata, which accounts for a recall of 1.0 and the lowest
precision values. This kind of over-generalized FSM recognizes
any type of FTP message, but it also accepts illegal messages.
On the other extreme of the spectrum, a generalization param-
eter of 1.0 creates FSMs that never generalize. These automata
reject some legal FTP messages but they are unlikely to accept
any illegal messages. In any case, ReverX seems to be relatively
insensitive to 71, since it produces good results for a large range
of generalization values.

7In fact, more than 70 percent of the messages had the same kind of protocol
request (PORT command) in the trace that was used.
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Figure 5.

Inferred protocol language versus RFC 959.

Figure 5 compares the best derived automaton (with training
set size of 4000 and generalization parameter of 0.3) against
the reference FSM for FTP. The gray states and bold lines
and labels correspond to states and transitions present in RFC
959, but not inferred by ReverX. The partial inference of
the message formats is due to a generic limitation of trace-
based solutions—they can not infer what is absent from the
traces. In fact, all missing commands are not present in the
network trace (e.g., ALLO, ACCT, CDUP). Additionally, some
transitions are not generalized because of the low diversity
of command parameters present in the traces (e.g., “SITE
U6alfb5bbU”) or due to the anonymization procedure (e.g.,
“USER anonymous”).

2) Protocol state machine: The generated protocol state
machines are also evaluated with similar metrics. Recall is
obtained using the protocol sessions extracted from the test
sets, which are then tried in the inferred FSMs. To calculate
the precision, we employ an equivalent approach where the
extracted protocol sessions are mutated with probability 0.1.
Here, the mutation simply consists in either deleting the mes-
sage or in swapping a given message with the one immediately
succeeding it. This simple method is a very convenient to create
potentially invalid protocol sessions that could be accepted by
an over-generalized FSM. For instance, if a USER command
must always precede a PASS command, a mutation on the first
message would effectively render the session invalid. To verify
if the sessions accepted by the inferred FSM are in fact valid,
we built a reference FSM for the RFC 959 that only recognizes
legal FTP protocol sessions.

Tablel(b) shows the precision, recall, and f-score values for
the obtained protocol state machines. As with the protocol
language inference, the best FSM are built from larger samples
of the training set (i.e., 1000 messages or more). Here, the
impact of the sample size is more pronounced because smaller
training sets have fewer protocol sessions. In fact, we calculated
an average of 29 messages per session, and therefore, a set
with 250 messages would only contain around 8 sessions,
which is typically insufficient to generate a good FSM. The
results also show that 1000 messages (i.e., an average of 34.5
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Figure 6. Inferred protocol state machine versus RFC 959.

sessions) are nevertheless sufficient to create FSMs that capture
the state machine of the protocol. The other factor affecting
the inference is the generalization parameter used to obtain the
language FSM. This is clearly seen in the recall and precision
scores for 77 equal to 0.0, which results in over-generalized
language FSMs and in an inferred protocol state machine with
a single state that rejects all FTP protocol sessions (low recall
and precision values). Overall, the results show that ReverX is
able to obtain a protocol state machine from a relatively small
sample of the network trace (i.e., 1000 messages) and using a
reasonable interval of generalization values (i.e., between 0.1
and 0.8).

The best derived state machine (with training set size of 4000
and the inferred language FSM with generalization parameter of
0.3) and the reference state machine are depicted in Figure 6.
The gray state and transitions and labels in bold correspond
to the part of the FTP specification not captured by ReverX.
As before, ReverX only failed to infer protocol states missing
from the traces. Nevertheless, ReverX is able to deduce all
states observed in the traces, such as the USER and PASS
commands issued before any others, and the QUIT command
as the final state. Even though the RNFR and RNTO commands
are missing from the network traces, our approach is able to
correctly identify those states if they are present in the network
traces, such as shown in Figure 4.

IV. RELATED WORK

In this paper, we present a solution for inferring a protocol
specification based on automata generation from a training set.
The problem of automata inference has been tackled in different
research areas in the past, from natural languages to biology
and to software component behavior [12]-[14]. Typically, a
prefix tree acceptor is first built from the training set, accepting
all events. Then, similar states are merged according to their
local behavior (e.g., states with the same transitions or states
that accept the same k consecutive events) [13], [15]. Some
solutions also resort to specific rules or heuristics to aid the
inference of the automata [16]. Although these techniques can
produce useful models, their precision can be affected when
dealing with larger and complex models, and some works have
tried to addressed this limitation [17].

Protocol reverse engineering has been traditionally a labo-
rious and manual task, with a few tools to ease the process
of capturing and analyzing individual network packets [18]-
[21]. It was only recently that the field of automatic inference
of protocol specifications has seen some developments. The
great majority of these works focused on the inference of the
protocol language, i.e., they try to derive the message formats
accepted by the protocol. Two distinct approaches have been
applied—study the dynamics of a program that implements

the protocol, and resort to the analysis of the network traffic
generated between parties.

Dynamic analysis tools closely monitor the program’s ex-
ecution while processing a single message. Taint analysis is
employed to identify the code that parses the packets, and
to correlate it with each part of the message. The resulting
execution trace is then examined to locate message fields and
their content type (e.g., length) [22]-[25]. Even though these
tools have shown interesting practical results, they can suffer
from some limitations. For instance, if the server employs non-
standard libraries or if its parsing mechanisms deviate from
what is expected, dynamic analysis tools may be unable to make
any sense of the fields or even the entire message. Additionally,
the use of techniques for software piracy prevention, such
as obfuscation [26], can preclude the understanding of the
code. These tools are also system and programming language
dependent, due to the taint analysis engine, which constrains
the programs that can be analyzed.

A few works have attempted to infer parts of the protocol
language from network traces. Protocol Informatics employs
bioinformatics sequence alignment algorithms to reveal simi-
larities between messages, and then consensus sequences are
studied to find the location and lengths of some message
fields [5]. Discoverer resorts to a different approach to derive
more information about the messages [6]. It uses an initial
clustering to group messages with similar sequences of text
or binary tokens, and then, recursive clustering and sequence
alignment to refine each cluster and produce more detailed
message formats. Experiments have shown that Discoverer
could not correctly infer about 10% of the message formats,
in part due to some inaccurate parsing.

We are aware of three approaches to derive the state machine
of the protocol. Prospex employs taint analysis to obtain exe-
cution traces for each execution session, which are then used to
build an acceptor machine [27]. Message formats are inferred
with equivalent techniques as [25]. The state machine is gener-
ated by building an augmented prefix tree from the sequences of
message types of the sessions, and then by transforming the tree
into the smallest automaton that is consistent with the training
data. However, the taint analysis used by Prospex suffers from
similar limitations as above, such as requiring a controlled
environment to run and to collect the program execution data.
PEXT utilizes network traces to infer an approximate state
machine [28]. First, it clusters messages based on a distance
metric using the length of the longest common substring and
labels each message with the corresponding cluster ID. Then,
it translates each session into a sequence of cluster IDs. States
and transitions are generated from similarities between the
sequences of IDs in the sessions and the order in which
they appear in the traces. This approach is useful to evidence
patterns of sequences of messages that arise from using specific
protocol features. However, it can not derive the message
formats, creating a semantic gap between the final automaton
and the observed data. The clustering method can be error
prone because the use of the longest common substring metric
might induce incorrect clustering of different message types



that share long common parameters (e.g., path name). Trifilo
et al. describe protocol reverse engineering solution that resorts
to the statistical analysis of network traces [29]. This approach
however assumes a single message format for the protocol,
which allows all messages to be aligned and compared. The
distributions of the variance of the bytes over different messages
are compared in order to identify the most relevant field, i.e.,
the field that is most likely to dictate the logic of the protocol.
The protocol state machine is then obtained from the order of
messages in the traces and the values of this relevant field.
While this may provide good results for some binary protocols
(ARP), it is not suitable for the majority of application protocols
because they have different message formats (e.g., FTP or
IMAP). In addition, it may be insufficient to use the variance
of distributions as a mean to detect the most relevant field(s), as
the results are greatly dependent on how uniformly the various
kinds of messages appear in the traces®.

In this work, we describe and evaluate a new methodology
for deriving a concise representation of a protocol, both for
message formats and state machine. Our approach is solely
based on traces, which may be readily available in the web
or can be easily obtained by collecting network traffic. At
this stage, we are focusing text-based protocols, which are
commonly used by client-server applications.

V. CONCLUSIONS AND FUTURE WORK

This paper presents a new methodology and a tool to derive
a protocol specification from network traces. Our approach
resorts only to a sample of the regular protocol usage between
clients and servers and does not require any access to a protocol
implementation or its source code, making it suitable to be used
on open or closed protocols. Also, by taking advantage of some
particular characteristics of network protocols, we devised more
aggressive and optimistic approaches for both the language and
the protocol state machine inference. Our experimental results
have shown that ReverX is able to derive the language and state
machine of the FTP protocol, using as little as 1000 messages of
publicly available traces. Besides this experimental evaluation,
we have successfully applied this approach with SMTP and
POP protocols [30].

Currently, we are working towards extending the methodol-
ogy to support binary-based protocol specifications with some
promising results.
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