Effective Aggregate Design
e Part Il: Making Aggregates Work Together

Vaughn Vernonyvernon@shiftmethod.com

Part | focused on the design of a number of sawt eg-
ates and their internals. In Part Il we discuss haggr eg-

ates reference othemggr egates, as well as how to leverage

eventual consistency to keep sepasaigr egate instances
in harmony.

When designingggr egates, we may desire a composition-

al structure that allows for traversal through debject
graphs, but that is not the motivation of the pattfDDD]
states that onaggregate may hold references to theot

of otheraggr egates. However, we must keep in mind that
this does not place the referenagmr egate inside the con-
sistency boundary of the one referencing it. THeremce
does not cause the formation of just one, wiaghr egate.
There are still two (or more), as shown in Figure 5

Inside Outside

{Laggregate rootd)
Backlo gltem

Laggreqate rotd)
Product

0.*

A 4

{entity)) {value objectd
Task EstimationlogEntry
description u“} description

hourshemaining hoursRemaining

name
volin feer

name
volinfeer

Figure5: There are twaggr egates, not one.

In Java the association would be modeled like this:

public class Backl ogltem extends ConcurrencySafeEntity {

private Product product;

That is, theBackl ogl t emholds a direct object associ-
ation toPr oduct .

In combination with what's already been discusset a
what's next, this has a few implications:

1. Both the referencingggregate (Backl ogl t em)

and the referenceagregate (Pr oduct) must

not be modified in the same transaction. Only one
or the other may be modified in a single transac-
tion.

2. If you are modifying multiple instances in a $iang
transaction, it may be a strong indication thatryou
consistency boundaries are wrong. If so, it is pos-
sibly a missed modeling opportunity; a concept of
your ubiquitous language has not yet been dis-
covered although it is waving its hands and shout-
ing at you (see Part I).

3. If you are attempting to apply point #2, and doin
so influences a large clustaggr egate with all the
previously stated caveats, it may be an indication
that you need to usasentual consistendgee be-
low) instead of atomic consistency.

If you don't hold any reference, you can't modifytner
aggregate. So the temptation to modify multipéggr eg-
ates in the same transaction could be squelched bydagi
the situation in the first place. But that is oydimiting
since domain models always require some associcbne
nections. What might we do to facilitate necessesgoci-
ations, protect from transaction misuse or inorirfailure,
and allow the model to perform and scale?

CCvale object? >
Productid

{Caggregate rootdd
Backbgitem

status
story
storyPoints

summary
type {{volve objectd>

Sprintld

Cvolve objectd?
Releaseld

0.~

A
CCentity??
Task EstimationlogEntry

CCvalue object >

description
hoursRemaining

description
hoursRemaining

name name
volun feer volun teer

Figure 6: TheBackl ogl t emaggregate, inferring
associations outside its boundary with identities.

Rule: Reference Other Aggregates By Identity

Prefer references to exterraajgr egates only by their glob-
ally unique identity, not by holding a direct oljeeference
(or “pointer”). This is exemplified in Figure 6. Weould
refactor the source to:

public class Backl ogltem extends ConcurrencySafeEntity {

private Productld productld;

Aggregates with inferred object references are thus auto-
matically smaller because references are neverlgage
loaded. The model can perform better because icssare-
quire less time to load and take less memory. Ukisg
memory has positive implications both for memolped-
tion overhead and garbage collection.

Model Navigation

Reference by identity doesn't completely prevent na
igation through the model. Some will useepository
from inside araggregate for look up. This technique is
calleddisconnected domain model, and it's actually a
form of lazy loading. There's a different recomnehep-
proach, however: Usergpository or domain service to
look up dependent objects ahead of invokingatmr egate
behavior. A clienapplication service may control this,
then dispatch to thaggregate:

public class ProductBackl ogltenService ... {

@ransacti onal
public void assi gnTeamvenber ToTask(
String aTenant!ld,
String aBackl ogltenid,
String aTaskld,
String aTeamVenber!d) {

Backl ogl t em backl ogl tem =
backl ogl t enReposi t ory. backl ogl t enOf | d(
new Tenant | d(aTenant | d),
new Backl ogl t em d(aBackl ogl tem d));

Team of Team =
t eanReposi tory. t eanf | d(
backl ogl tem tenantid(),
backl ogltem team d());

backl ogl t em assi gnTeanvenber ToTask(
new Team\enber | d(aTeanvenber | d),
of Team
new Taskl d(aTaskl d));

Having anapplication service resolve dependencies frees
the aggregate from relying on either aepository or a
domain service. Again, referencing multiplaggr egatesin
one request does not give license to cause moaiilifican
two or more of them.

Limiting a model to using reference only by identibuld
make it more difficult to serve clients that assvdnd
renderuser interface views. You may have to use multiple
repositoriesin a single use case to populate views. If query
overhead causes performance issues, it may be wonth
sidering the use dEQRS [Dahan, Fowler, Young]. Or you
may need to strike a balance between inferred ardtd
object reference.

If all this advice seems to lead to a less convénigodel,
consider the additional benefits it affords. Makaugr eg-
ates smaller leads to better performing models, plusa®
add scalability and distribution.

Scalability and Distribution

Sinceaggregates don't use direct references to othgr
gregates, but reference by identity, their persistent stae
be moved around to reach large scAleost-infinite
scalabilityis achieved by allowing for continuous reparti-
tioning ofaggr egate data storage, as explained by
Amazon.com's Pat [Helland] in his position pajéfie
Beyond Distributed Transactions: an Apostate's @pin
What we callaggr egate he callsentity. But what he de-
scribes is stilbggregate by any other name; a unit of com-
position that has transactional consistency. Soo®dgN\
persistence mechanisms support the Amazon-insgised
tributed storage. These provide much of what [Hhel]la
refers to as the lower, scale-aware layer. Wheriayimg a
distributed store, or even when using a SQL datahéth
similar motivations, reference by identity playsiaaport-
ant role.

Distribution extends beyond storage. Since thezeabways
multiple bounded contexts at play in a givertore domain
initiative, reference by identity allows distribdtdomain
models to have associations from afar. When antedrén
en approach is in use, message-basmahin events con-
taining aggr egate identities are sent around the enterprise.
Message subscribers in foreigounded contexts use the
identities to carry out operations in their own égommod-
els. Reference by identity forms remote associat@m
partners Distributed operations are managed by what
[Helland] callstwo-party activitiesbut inpublish-
subscribe [POSAL, GoF] terms itsulti-party (two or
more). Transactions across distributed systemadatre
atomic. The various systems bring multipgr egates into
a consistent state eventually.

Rule: Use Eventual Consistency Outside the
Boundary

There is a frequently overlooked statement founithén

[DDD] aggr egate pattern definition. It bears heavily on
what we must do to achieve model consistency whalh m
tiple aggr egates must be affected by a single client request.

DDD p128: Any rule that spans AGGREGATES will not
be expected to be up-to-date at all times. Thraagnt
processing, batch processing, or other update mesrhs,
other dependencies can be resolved within soméfispe
time.

Thus, if executing a command on caggr egate instance
requires that additional business rules executenenor
more othemaggregates, useeventual consistencyccept-

reached. If complete failure occurs it may be neagsto
compensate, or at a minimum to report the failore f
pending intervention.

What is accomplished by publishing tBackl ogl t em
Conmi t t ed event in this specific example? Recalling that
Backl ogl t emalready holds the identity of tigpr i nt

it is committed to, we are in no way interestednaintain-
ing a meaningless bidirectional association. Ratiher

ing that allaggregate instances in a large-scale, high-traffic event allows for the eventual creation oCanmi t t ed-

enterprise are never completely consistent helgsospt
that eventual consistency also makes sense imthkes
scale where just a few instances are involved.

Ask the domain experts if they could tolerate saime
delay between the modification of one instancethrdth-
ers involved. Domain experts are sometimes far more
comfortable with the idea of delayed consistenanthre
developers. They are aware of realistic delaysadbetir all
the time in their business, whereas developerssually
indoctrinated with an atomic change mentality. Domex-
perts often remember the days prior to computerraat
tion of their business operations, when variousi&iaf
delays occurred all the time and consistency wasme
immediate. Thus, domain experts are often williogitow
for reasonable delays—a generous number of seconds,
minutes, hours, or even days—before consistencyrecc

There is a practical way to support eventual coaiscy in

Backl ogl t emso theSpri nt can make a record of work
commitment. Since eadBormi tt edBackl ogl t emhas
anor der i ng attribute, it allows th&pr i nt to give each
Backl ogl t eman ordering different thalfr oduct and
Rel ease have, and that is not tied to tBackl ogl t em
instance's own recorded estimatiorBoki ness-
Priority. Thus,Product andRel ease each hold
similar associations, namelr oduct Backl ogl t em
andSchedul edBackl ogl t em respectively.

This example demonstrates how to use eventual stensi
ency in a singléounded context, but the same technique
can also be applied in a distributed fashion asipuosly
described.

Ask Whose Job It Is

Some domain scenarios can make it very challentgirzg-

a DDD model. Areggregate command method publishes a termine whether transactional or eventual consisten
domain event that is in time delivered to one or more asyn-should be used. Those who use DDD in a classiitiwadl

chronous subscribers:

public class Backl ogltem extends ConcurrencySafeEntity {
public void comm tTo(Sprint aSprint) {

Donwi nEvent Publ i sher
.instance()
. publ i sh(new Backl ogl t emConmi t t ed(
this.tenantld(),
this. backl ogltem d(),
this.sprintid()));

These subscribers each then retrieve a differantgre
respondingaggr egate instance and execute their behavior
based on it. Each of the subscribers executesé@parate
transaction, obeying the rule adgregate to modify just
one instance per transaction.

What happens if the subscriber experiences conuyre
contention with another client, causing its modifion to
fail? The modification can be retried if the suliiser does
not acknowledge success to the messaging mechaniem.
message will be redelivered, a new transactionestaa
new attempt made to execute the necessary commaadd,
a corresponding commit. This retry process canicoat
until consistency is achieved, or until a retryitim

way may lean toward transactional consistency. & lvdso
use CQRS may tend to lean toward eventual consigten
But which is correct? Frankly, neither of thoseniegs
provide a domain-specific answer, only a technicafer-
ence. Is there a better way to break the tie?

Discussing this with Eric Evans revealed a verypénand
sound guideline. When examining the use case ¢oy)st
ask whether it's the job of the user executingufecase to
make the data consistent. If it is, try to makieahsaction-
ally consistent, but only by adhering to the othaes of
aggregate. If it is another user's job, or the job of the-sy
tem, allow it to be eventually consistent. Thatdfitvis-
dom not only provides a convenient tie breakenelps us
gain a deeper understanding of our domain. It exptise
real system invariants: the ones that must be tkepsac-
tionally consistent. That understanding is muchenalu-
able than defaulting to a technical leaning.

This is a great tip to add &mgr egate rules of thumb. Since
there are other forces to consider, it may not géwaad to
the final answer between transactional and evectuaist-
ency, but will usually provide deeper insight itle mod-
el. This guideline is used later in Part Il whée team re-
visits theiraggr egate boundaries.

Reasons To Break the Rules

An experienced DDD practitioner may at times detide
persist changes to multipéggr egate instances in a single
transaction, but only with good reason. What mggrhe
reasons be? | discuss four reasons here. You npsgriex
ence these and others.

Reason One: User Interface Convenience

Sometimes user interfaces, as a convenience, alievs to
define the common characteristics of many thingmae
in order to create batches of them. Perhaps itdvapfre-
quently that team members want to create seveciddin
items as a batch. The user interface allows thefifl tut
all the common properties in one section, and trexby-
one the few distinguishing properties of each, ilating
repeated gestures. All of the new backlog itemgteae
planned (created) at once:

public class ProductBackl ogltenService ... {

@ransacti onal

public void pl anBat chCf Product Backl ogl t ens(
String aTenantld, String productld,
Backl ogl t enDescri ption[] aDescriptions) {

Product product
pr oduct Reposi t ory. product O | d(
new Tenant | d(aTenant | d),

new Product | d(productld));

for (BacklogltenDescription desc : aDescriptions) {
Backl ogl t em pl annedBackl ogl tem =
product . pl anBackl ogl t en{
desc. summary(),
desc. cat egory(),
Backl ogl t enTType. val ueCf (
desc. backl ogl t eniType()),
St oryPoi nts. val ueCr (
desc. storyPoints()));

backl ogl t enReposi t ory. add(pl annedBackl ogl tem) ;

Does this cause a problem with managing invariaimts?
this case, no, since it would not matter whetheséhwere
created one at a time or in batch. The objectsghiestanti-
ated are fulbggr egates, which themselves maintain their
own invariants. Thus, if creating a batchagfyregate in-
stances all at once is semantically no differeantbreating
one at a time repeatedly, it represents one reasoreak
the rule of thumb with impunity.

Udi Dahan recommends avoiding the creation of gpeci
batch application services like the one aboveehtta

[Message Bus] would be used to batch multiple apfibn
service invocations together. This is done by diedjra lo-
gical message type to represent a single invocatiih

the client sending multiple logical messages togeith the
same physical message. On the server-side the figess

10

Bus] processes the physical message in a singisacton,
delivering each logical message individually tdass
which handles the “plan product backlog item mesSéyr
processing (equivalent in implementation to an igpfibn
service method), all either succeeding or failiogether.

Reason Two: Lack of Technical Mechanisms

Eventual consistency requires the use of some ddirmait-
of-band processing capability, such as messagingrg,
or background threads. What if the project youvemeking
on has no provision for any such mechanism? Whistm
of us would consider that strange, | have facetivbey
limitation. With no messaging mechanism, no backgt
timers, and no other home-grown threading capads]it
what could be done?

If we aren't careful, this situation could leadoask toward
designing large clusteaggregates. While that might make
us feel like we are adhering to the single trarisaaule, as
previously discussed it would also degrade perfoaea
and limit scalability. To avoid that, perhaps weilcoin-
stead change the system@adgregates altogether, forcing
the model to solve our challenges. We've already co
sidered the possibility that project specificationsy be
jealously guarded, leaving us little room for negjing
previously unimagined domain concepts. That's eally
the DDD way, but sometimes it does happen. Theieond
tions may allow for no reasonable way to alterniwlel-
ing circumstances in our favor. In such cases ptajg-
namics may force us to modify two or maggr egate in-
stances in one transaction. However obvious thighmi
seem, such a decision should not be made tooyhastil

Consider an additional factor that could furthgpsart di-
verting from the ruleuser-aggregate affinityAre the busi-
ness work flows such that only one user would lceised
on one set ofggregate instances at any given time? Ensur-
ing user-aggregate affinity makes the decisiorter anul-
tiple aggr egate instances in a single transaction more
sound since it tends to prevent the violation ghnmants
and transactional collisions. Even with user-aggte@f-
finity, in rare situations users may face concuryecon-
flicts. Yet eachaggr egate would still be protected from
that by using optimistic concurrency. Anyway, comency
conflicts can happen in any system, and even niere f
guently when user-aggregate affinity is not ouy.fle-
sides, recovering from concurrency conflicts igigfntfor-
ward when encountered at rare times. Thus, when our
design is forced to, sometimes it works out welinodify
multiple aggr egate instances in one transaction.

Reason Three: Global Transactions

Another influence considered is the effects of tygch-
nologies and enterprise policies. One such mighhbe
need to strictly adhere to the use of global, twiase com-

mit transactions. This is one of those situatidrag thay be
impossible to push back on, at least in the sleorbt

Even if you must use a global transaction, youtdwtes-
sarily have to modify multipleggr egate instances at once
in your localbounded context. If you can avoid doing so,
at least you can prevent transactional contentigrour
core domain and actually obey the rules adgr egates as
far as it depends on you. The downside to glolaaisiac-
tions is that your system will probably never scaddt
could if you were able to avoid two-phase commitd the
immediate consistency that goes along with them.

Reason Four: Query Performance

There may be times when it's best to hold direfgailyef-
erences to otheaggregates. This could be used to ease
pository query performance issues. These must be weighe
carefully in the light of potential size and ovédrform-
ance trade-off implications. One example of bregkhe

rule of reference by identity is given in Part Il1.

Adhering to the Rules

You may experience user interface design decisienh;
nical limitations or stiff policies in your enteipe environ-
ment, or other factors, that require you to makaesgom-
promises. Certainly we don't go in search of exsiise
break theaggregate rules of thumb. In the long run, adher-
ing to the rules will benefit our projects. We'lire consist-
ency where necessary, and support optimally peifarm
and highly scalable systems.

Looking Forward to Part lll

We are now resolved to design snamr egates that form
boundaries around true business invariants, t@prefer-
ence by identity betweeaggr egates, and to use eventual
consistency to manage croagyr egate dependencies. How
will adhering to these rules affect the designaf &crum
model? That's the focus of Part lll. We'll see hbe
project team rethinks their design again, applyher
new-found techniques.

Copyright © 2011 Vaughn Vernon. All rights reserved
Effective Aggregate Desigs licensed under théreative
Commons Attribution-NoDerivs 3.0 Unported License
http://creativecommons.org/licenses/by-nd/3.0/

11

Acknowledgments

Eric Evans and Paul Rayner did several detailewesvof
this essay. | also received feedback from Udi Dakarg
Young, Jimmy Nilsson, Niclas Hedhman, and Rickard
Oberg.

References

[DDD] Eric Evans;Domain-Driven Design—Tackling
Complexity in the Heart of Software

[Dahan] Udi DahanClarified CQRS
http://www.udidahan.com/2009/12/09/clarified-cqrs/

[Fowler] Martin Fowler,CQRS
http://martinfowler.com/blikiiCORS.html

HSOF] Erich Gamma, Richard Helm, Ralph JohnsonnJoh
Vlissides;Design Patterns: Elements of Reusable Object-
Oriented Softwaresee the Observer pattern.

[Helland] Pat Hellandt.ife beyond Distributed
Transactions: an Apostate’s Opinion
http://www.ics.uci.edu/~cs223/papers/cidr07p15.pdf

[Message BusNServiceBuss a framework that supports
this patternhttp://www.nservicebus.com/

[POSA1] Frank Buschmann, Regine Meunier, Hans
Rohnert, Peter Sommerladattern-Oriented Software
Architecture Volume 1: A System of Pattese the
Publisher-Subscriber pattern.

[Young] Greg YoungCQRS and Event Sourcing
http://codebetter.com/gregyoung/2010/02/13/cqrs-and

event-sourcing/

Biography

Vaughn Vernon is a veteran consultant, providing
architecture, development, mentoring, and trairsieyices.
This three-part essay is based on his upcoming book
implementing domain-driven design. HCon San
Francisco 201(resentation onontext mapping is
available on the DDD Community site:
http://dddcommunity.org/library/vernon_2010aughn
blogs herehttp://vaughnvernon.cpand you can reach him
by email herevvernon@shiftmethod.com

