
Effective Aggregate Design
Part II: Making Aggregates Work Together

Vaughn Vernon: vvernon@shiftmethod.com

Part I focused on the design of a number of small aggreg-
ates and their internals. In Part II we discuss how aggreg-
ates reference other aggregates, as well as how to leverage
eventual consistency to keep separate aggregate instances
in harmony.

When designing aggregates, we may desire a composition-
al structure that allows for traversal through deep object
graphs, but that is not the motivation of the pattern. [DDD]
states that one aggregate may hold references to the root
of other aggregates. However, we must keep in mind that
this does not place the referenced aggregate inside the con-
sistency boundary of the one referencing it. The reference
does not cause the formation of just one, whole aggregate.
There are still two (or more), as shown in Figure 5.

Figure 5: There are two aggregates, not one.

In Java the association would be modeled like this:

public class BacklogItem extends ConcurrencySafeEntity {

 ...

 private Product product;

 ...

}

That is, the BacklogItem holds a direct object associ-
ation to Product.

In combination with what's already been discussed and
what's next, this has a few implications:

1. Both the referencing aggregate (BacklogItem)

and the referenced aggregate (Product) must
not be modified in the same transaction. Only one
or the other may be modified in a single transac-
tion.

2. If you are modifying multiple instances in a single
transaction, it may be a strong indication that your
consistency boundaries are wrong. If so, it is pos-
sibly a missed modeling opportunity; a concept of
your ubiquitous language has not yet been dis-
covered although it is waving its hands and shout-
ing at you (see Part I).

3. If you are attempting to apply point #2, and doing
so influences a large cluster aggregate with all the
previously stated caveats, it may be an indication
that you need to use eventual consistency (see be-
low) instead of atomic consistency.

If you don't hold any reference, you can't modify another
aggregate. So the temptation to modify multiple aggreg-
ates in the same transaction could be squelched by avoiding
the situation in the first place. But that is overly limiting
since domain models always require some associative con-
nections. What might we do to facilitate necessary associ-
ations, protect from transaction misuse or inordinate failure,
and allow the model to perform and scale?

Figure 6: The BacklogItem aggregate, inferring
associations outside its boundary with identities.

7

Rule: Reference Other Aggregates By Identity

Prefer references to external aggregates only by their glob-
ally unique identity, not by holding a direct object reference
(or “pointer”). This is exemplified in Figure 6. We would
refactor the source to:

public class BacklogItem extends ConcurrencySafeEntity {

 ...

 private ProductId productId;

 ...

}

Aggregates with inferred object references are thus auto-
matically smaller because references are never eagerly
loaded. The model can perform better because instances re-
quire less time to load and take less memory. Using less
memory has positive implications both for memory alloca-
tion overhead and garbage collection.

Model Navigation

Reference by identity doesn't completely prevent nav-
igation through the model. Some will use a repository
from inside an aggregate for look up. This technique is
called disconnected domain model, and it's actually a
form of lazy loading. There's a different recommended ap-
proach, however: Use a repository or domain service to
look up dependent objects ahead of invoking the aggregate
behavior. A client application service may control this,
then dispatch to the aggregate:

public class ProductBacklogItemService ... {

 ...

 @Transactional

 public void assignTeamMemberToTask(

 String aTenantId,

 String aBacklogItemId,

 String aTaskId,

 String aTeamMemberId) {

 BacklogItem backlogItem =

 backlogItemRepository.backlogItemOfId(

 new TenantId(aTenantId),

 new BacklogItemId(aBacklogItemId));

 Team ofTeam =

 teamRepository.teamOfId(

 backlogItem.tenantId(),

 backlogItem.teamId());

 backlogItem.assignTeamMemberToTask(

 new TeamMemberId(aTeamMemberId),

 ofTeam,

 new TaskId(aTaskId));

 }

 ...

}

Having an application service resolve dependencies frees
the aggregate from relying on either a repository or a
domain service. Again, referencing multiple aggregates in
one request does not give license to cause modification on
two or more of them.

Limiting a model to using reference only by identity could
make it more difficult to serve clients that assemble and
render user interface views. You may have to use multiple
repositories in a single use case to populate views. If query
overhead causes performance issues, it may be worth con-
sidering the use of CQRS [Dahan, Fowler, Young]. Or you
may need to strike a balance between inferred and direct
object reference.

If all this advice seems to lead to a less convenient model,
consider the additional benefits it affords. Making aggreg-
ates smaller leads to better performing models, plus we can
add scalability and distribution.

Scalability and Distribution

Since aggregates don't use direct references to other ag-
gregates, but reference by identity, their persistent state can
be moved around to reach large scale. Almost-infinite
scalability is achieved by allowing for continuous reparti-
tioning of aggregate data storage, as explained by
Amazon.com's Pat [Helland] in his position paper, Life
Beyond Distributed Transactions: an Apostate's Opinion.
What we call aggregate he calls entity. But what he de-
scribes is still aggregate by any other name; a unit of com-
position that has transactional consistency. Some NoSql
persistence mechanisms support the Amazon-inspired dis-
tributed storage. These provide much of what [Helland]
refers to as the lower, scale-aware layer. When employing a
distributed store, or even when using a SQL database with
similar motivations, reference by identity plays an import-
ant role.

Distribution extends beyond storage. Since there are always
multiple bounded contexts at play in a given core domain
initiative, reference by identity allows distributed domain
models to have associations from afar. When an event-driv-
en approach is in use, message-based domain events con-
taining aggregate identities are sent around the enterprise.
Message subscribers in foreign bounded contexts use the
identities to carry out operations in their own domain mod-
els. Reference by identity forms remote associations or
partners. Distributed operations are managed by what
[Helland] calls two-party activities; but in publish-
subscribe [POSA1, GoF] terms it's multi-party (two or
more). Transactions across distributed systems are not
atomic. The various systems bring multiple aggregates into
a consistent state eventually.

Rule: Use Eventual Consistency Outside the
Boundary

There is a frequently overlooked statement found in the
[DDD] aggregate pattern definition. It bears heavily on
what we must do to achieve model consistency when mul-
tiple aggregates must be affected by a single client request.

8

DDD p128: Any rule that spans AGGREGATES will not
be expected to be up-to-date at all times. Through event
processing, batch processing, or other update mechanisms,
other dependencies can be resolved within some specific
time.

Thus, if executing a command on one aggregate instance
requires that additional business rules execute on one or
more other aggregates, use eventual consistency. Accept-
ing that all aggregate instances in a large-scale, high-traffic
enterprise are never completely consistent helps us accept
that eventual consistency also makes sense in the smaller
scale where just a few instances are involved.

Ask the domain experts if they could tolerate some time
delay between the modification of one instance and the oth-
ers involved. Domain experts are sometimes far more
comfortable with the idea of delayed consistency than are
developers. They are aware of realistic delays that occur all
the time in their business, whereas developers are usually
indoctrinated with an atomic change mentality. Domain ex-
perts often remember the days prior to computer automa-
tion of their business operations, when various kinds of
delays occurred all the time and consistency was never
immediate. Thus, domain experts are often willing to allow
for reasonable delays—a generous number of seconds,
minutes, hours, or even days—before consistency occurs.

There is a practical way to support eventual consistency in
a DDD model. An aggregate command method publishes a
domain event that is in time delivered to one or more asyn-
chronous subscribers:

public class BacklogItem extends ConcurrencySafeEntity {

 ...

 public void commitTo(Sprint aSprint) {

 ...

 DomainEventPublisher

 .instance()

 .publish(new BacklogItemCommitted(

 this.tenantId(),

 this.backlogItemId(),

 this.sprintId()));

 }

 ...

}

These subscribers each then retrieve a different yet cor-
responding aggregate instance and execute their behavior
based on it. Each of the subscribers executes in a separate
transaction, obeying the rule of aggregate to modify just
one instance per transaction.

What happens if the subscriber experiences concurrency
contention with another client, causing its modification to
fail? The modification can be retried if the subscriber does
not acknowledge success to the messaging mechanism. The
message will be redelivered, a new transaction started, a
new attempt made to execute the necessary command, and
a corresponding commit. This retry process can continue
until consistency is achieved, or until a retry limit is

reached. If complete failure occurs it may be necessary to
compensate, or at a minimum to report the failure for
pending intervention.

What is accomplished by publishing the BacklogItem-
Committed event in this specific example? Recalling that
BacklogItem already holds the identity of the Sprint
it is committed to, we are in no way interested in maintain-
ing a meaningless bidirectional association. Rather, the
event allows for the eventual creation of a Committed-
BacklogItem so the Sprint can make a record of work
commitment. Since each CommittedBacklogItem has
an ordering attribute, it allows the Sprint to give each
BacklogItem an ordering different than Product and
Release have, and that is not tied to the BacklogItem
instance's own recorded estimation of Business-
Priority. Thus, Product and Release each hold
similar associations, namely ProductBacklogItem
and ScheduledBacklogItem, respectively.

This example demonstrates how to use eventual consist-
ency in a single bounded context, but the same technique
can also be applied in a distributed fashion as previously
described.

Ask Whose Job It Is

Some domain scenarios can make it very challenging to de-
termine whether transactional or eventual consistency
should be used. Those who use DDD in a classic/traditional
way may lean toward transactional consistency. Those who
use CQRS may tend to lean toward eventual consistency.
But which is correct? Frankly, neither of those leanings
provide a domain-specific answer, only a technical prefer-
ence. Is there a better way to break the tie?

Discussing this with Eric Evans revealed a very simple and
sound guideline. When examining the use case (or story),
ask whether it's the job of the user executing the use case to
make the data consistent. If it is, try to make it transaction-
ally consistent, but only by adhering to the other rules of
aggregate. If it is another user's job, or the job of the sys-
tem, allow it to be eventually consistent. That bit of wis-
dom not only provides a convenient tie breaker, it helps us
gain a deeper understanding of our domain. It exposes the
real system invariants: the ones that must be kept transac-
tionally consistent. That understanding is much more valu-
able than defaulting to a technical leaning.

This is a great tip to add to aggregate rules of thumb. Since
there are other forces to consider, it may not always lead to
the final answer between transactional and eventual consist-
ency, but will usually provide deeper insight into the mod-
el. This guideline is used later in Part III when the team re-
visits their aggregate boundaries.

9

Reasons To Break the Rules

An experienced DDD practitioner may at times decide to
persist changes to multiple aggregate instances in a single
transaction, but only with good reason. What might some
reasons be? I discuss four reasons here. You may experi-
ence these and others.

Reason One: User Interface Convenience

Sometimes user interfaces, as a convenience, allow users to
define the common characteristics of many things at once
in order to create batches of them. Perhaps it happens fre-
quently that team members want to create several backlog
items as a batch. The user interface allows them to fill out
all the common properties in one section, and then one-by-
one the few distinguishing properties of each, eliminating
repeated gestures. All of the new backlog items are then
planned (created) at once:

public class ProductBacklogItemService ... {

 ...

 @Transactional

 public void planBatchOfProductBacklogItems(

 String aTenantId, String productId,

 BacklogItemDescription[] aDescriptions) {

 Product product =

 productRepository.productOfId(

 new TenantId(aTenantId),

 new ProductId(productId));

 for (BacklogItemDescription desc : aDescriptions) {

 BacklogItem plannedBacklogItem =

 product.planBacklogItem(

 desc.summary(),

 desc.category(),

 BacklogItemType.valueOf(

 desc.backlogItemType()),

 StoryPoints.valueOf(

 desc.storyPoints()));

 backlogItemRepository.add(plannedBacklogItem);

 }

 }

 ...

}

Does this cause a problem with managing invariants? In
this case, no, since it would not matter whether these were
created one at a time or in batch. The objects being instanti-
ated are full aggregates, which themselves maintain their
own invariants. Thus, if creating a batch of aggregate in-
stances all at once is semantically no different than creating
one at a time repeatedly, it represents one reason to break
the rule of thumb with impunity.

Udi Dahan recommends avoiding the creation of special
batch application services like the one above. Instead, a
[Message Bus] would be used to batch multiple application
service invocations together. This is done by defining a lo-
gical message type to represent a single invocation, with
the client sending multiple logical messages together in the
same physical message. On the server-side the [Message

Bus] processes the physical message in a single transaction,
delivering each logical message individually to a class
which handles the “plan product backlog item message” for
processing (equivalent in implementation to an application
service method), all either succeeding or failing together.

Reason Two: Lack of Technical Mechanisms

Eventual consistency requires the use of some kind of out-
of-band processing capability, such as messaging, timers,
or background threads. What if the project you are working
on has no provision for any such mechanism? While most
of us would consider that strange, I have faced that very
limitation. With no messaging mechanism, no background
timers, and no other home-grown threading capabilities,
what could be done?

If we aren't careful, this situation could lead us back toward
designing large cluster aggregates. While that might make
us feel like we are adhering to the single transaction rule, as
previously discussed it would also degrade performance
and limit scalability. To avoid that, perhaps we could in-
stead change the system's aggregates altogether, forcing
the model to solve our challenges. We've already con-
sidered the possibility that project specifications may be
jealously guarded, leaving us little room for negotiating
previously unimagined domain concepts. That's not really
the DDD way, but sometimes it does happen. The condi-
tions may allow for no reasonable way to alter the model-
ing circumstances in our favor. In such cases project dy-
namics may force us to modify two or more aggregate in-
stances in one transaction. However obvious this might
seem, such a decision should not be made too hastily.

Consider an additional factor that could further support di-
verting from the rule: user-aggregate affinity. Are the busi-
ness work flows such that only one user would be focused
on one set of aggregate instances at any given time? Ensur-
ing user-aggregate affinity makes the decision to alter mul-
tiple aggregate instances in a single transaction more
sound since it tends to prevent the violation of invariants
and transactional collisions. Even with user-aggregate af-
finity, in rare situations users may face concurrency con-
flicts. Yet each aggregate would still be protected from
that by using optimistic concurrency. Anyway, concurrency
conflicts can happen in any system, and even more fre-
quently when user-aggregate affinity is not our ally. Be-
sides, recovering from concurrency conflicts is straightfor-
ward when encountered at rare times. Thus, when our
design is forced to, sometimes it works out well to modify
multiple aggregate instances in one transaction.

Reason Three: Global Transactions

Another influence considered is the effects of legacy tech-
nologies and enterprise policies. One such might be the
need to strictly adhere to the use of global, two-phase com-

10

mit transactions. This is one of those situations that may be
impossible to push back on, at least in the short term.

Even if you must use a global transaction, you don't neces-
sarily have to modify multiple aggregate instances at once
in your local bounded context. If you can avoid doing so,
at least you can prevent transactional contention in your
core domain and actually obey the rules of aggregates as
far as it depends on you. The downside to global transac-
tions is that your system will probably never scale as it
could if you were able to avoid two-phase commits and the
immediate consistency that goes along with them.

Reason Four: Query Performance

There may be times when it's best to hold direct object ref-
erences to other aggregates. This could be used to ease re-
pository query performance issues. These must be weighed
carefully in the light of potential size and overall perform-
ance trade-off implications. One example of breaking the
rule of reference by identity is given in Part III.

Adhering to the Rules

You may experience user interface design decisions, tech-
nical limitations or stiff policies in your enterprise environ-
ment, or other factors, that require you to make some com-
promises. Certainly we don't go in search of excuses to
break the aggregate rules of thumb. In the long run, adher-
ing to the rules will benefit our projects. We'll have consist-
ency where necessary, and support optimally performing
and highly scalable systems.

Looking Forward to Part III

We are now resolved to design small aggregates that form
boundaries around true business invariants, to prefer refer-
ence by identity between aggregates, and to use eventual
consistency to manage cross-aggregate dependencies. How
will adhering to these rules affect the design of our Scrum
model? That's the focus of Part III. We'll see how the
project team rethinks their design again, applying their
new-found techniques.

Copyright © 2011 Vaughn Vernon. All rights reserved.
Effective Aggregate Design is licensed under the Creative
Commons Attribution-NoDerivs 3.0 Unported License:
http://creativecommons.org/licenses/by-nd/3.0/

Acknowledgments

Eric Evans and Paul Rayner did several detailed reviews of
this essay. I also received feedback from Udi Dahan, Greg
Young, Jimmy Nilsson, Niclas Hedhman, and Rickard
Öberg.

References

[DDD] Eric Evans; Domain-Driven Design—Tackling
Complexity in the Heart of Software.

[Dahan] Udi Dahan; Clarified CQRS;
http://www.udidahan.com/2009/12/09/clarified-cqrs/

[Fowler] Martin Fowler; CQRS;
http://martinfowler.com/bliki/CQRS.html

[GoF] Erich Gamma, Richard Helm, Ralph Johnson, John
Vlissides; Design Patterns: Elements of Reusable Object-
Oriented Software; see the Observer pattern.

[Helland] Pat Helland; Life beyond Distributed
Transactions: an Apostate’s Opinion;
http://www.ics.uci.edu/~cs223/papers/cidr07p15.pdf

[Message Bus] NServiceBus is a framework that supports
this pattern; http://www.nservicebus.com/

[POSA1] Frank Buschmann, Regine Meunier, Hans
Rohnert, Peter Sommerlad; Pattern-Oriented Software
Architecture Volume 1: A System of Patterns; see the
Publisher-Subscriber pattern.

[Young] Greg Young; CQRS and Event Sourcing;
http://codebetter.com/gregyoung/2010/02/13/cqrs-and-
event-sourcing/

Biography

Vaughn Vernon is a veteran consultant, providing
architecture, development, mentoring, and training services.
This three-part essay is based on his upcoming book on
implementing domain-driven design. His QCon San
Francisco 2010 presentation on context mapping is
available on the DDD Community site:
http://dddcommunity.org/library/vernon_2010. Vaughn
blogs here: http://vaughnvernon.co/, and you can reach him
by email here: vvernon@shiftmethod.com

11

