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1. INTRODUCTION. This is an article about a generalization of a landmark con-
struction introduced in 1906 by the French mathematician Maurice René Fréchet [2].

Definition 1. A metric space is a pair (X, d : X × X → R) such that

M0: 0 ≤ d(x, y) (nonnegativity),
M1: if x = y then d(x, y) = 0 (equality implies indistancy),
M2: if d(x, y) = 0 then x = y (indistancy implies equality),
M3: d(x, y) = d(y, x) (symmetry), and
M4: d(x, z) ≤ d(x, y) + d(y, z) (triangularity).

As with many mathematical concepts these axioms are chosen to ensure that two things
are equal if and only if some property expressible in terms of the concept holds. For
a metric space, x = y if and only if d(x, y) = 0. Thus as there is the equality relation
x = y in a metric space, so there is what we call an indistancy relation d(x, y) = 0.
Axioms M1 and M2 work together to identify equality with indistancy. That is x and
y are equal if and only if x and y have no distance between them. Such identification
may seem to be so fundamental that to suggest otherwise would serve no purpose.
However, there is a longstanding precedent for relaxing the axioms which ensure this
identification. The relation defined by x ≡ y if and only if d(x, y) = 0 is an equiv-
alence, which can be useful, as in the construction of the classical l p-spaces. In this
construction, spaces are considered in which axiom M2 is dropped while the others
hold, giving a pseudometric space. This article retains M2 but drops M1, introducing
the possibility of equality without indistancy, and leading to the study of self-distances
d(x, x) which may not be zero. Originally motivated by the experience of computer
science, as discussed below, we show how a mathematics of nonzero self-distance for
metric spaces has been established, and is now leading to interesting research into the
foundations of topology.

The approach of this article is to retrace the steps of a standard introduction to metric
and topological spaces [10], seeing why and how it can be generalized to accommodate
nonzero self-distance. The article then concludes with a discussion of research direc-
tions. Proofs of results presented here consist of straightforward reasoning about dis-
tances or topology, and as such are left as informative exercises for the reader. For more
material and publications please visit [7], the authors’ web site partialmetric.org

2. NONZERO SELF-DISTANCE. Let us begin with an example of a metric space,
and why nonzero self-distance is worth considering. Let Sω be the set of all infinite
sequences x = 〈x0, x1, . . .〉 over a set S. For all such sequences x and y let dS(x, y) =
2−k , where k is the largest number (possibly ∞) such that xi = yi for each i < k.
Thus dS(x, y) is defined to be 1 over 2 to the power of the length of the longest initial
sequence common to both x and y. It can be shown that (Sω, dS) is a metric space.

How might computer scientists view this metric space? To be interested in an in-
finite sequence x they would want to know how to compute it, that is, how to write
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a computer program to print out (on either a screen or paper) the values x0, then x1,
then x2, and so on. As x is an infinite sequence, its values cannot be printed out in
any finite amount of time, and so computer scientists are interested in how the se-
quence x is formed from its parts, the finite sequences 〈 〉, 〈x0〉, 〈x0, x1〉, 〈x0, x1, x2〉,
and so on. After each value xk is printed, the finite sequence 〈x0, . . . , xk〉 represents
that part of the infinite sequence produced so far. Each finite sequence is thus thought
of in computer science as being a partially computed version of the infinite sequence
x , which is totally computed. Suppose now that the above definition of dS is extended
to S∗, the set of all finite sequences over S. Then axioms M0, M2, M3, and M4 still
hold. However, if x is a finite sequence then dS(x, x) = 2−k for some number k < ∞,
which is not 0, since x j = x j can only hold if x j is defined. Thus axiom M1 (equality
implies indistancy) does not hold for finite sequences. This raises an intriguing con-
trast between 20th century mathematics, of which the theory of metric spaces is our
working example, and the contemporary experience of computer science. The truth of
the statement x = x is surely unchallenged in mathematics, while in computer science
its truth can only be asserted to the extent to which x is computed. This article will
show that rather than collapsing, the theory of metric spaces is actually expanded
and enriched by the generalization of dropping the requirement for equality to imply
indistancy.

3. PARTIAL METRIC SPACES. Nonzero self-distance is thus motivated by expe-
rience from computer science, and seen to be plausible for the example of finite and
infinite sequences. The question we now ask is whether nonzero self-distance can be
introduced to any metric space. That is, is there a generalization of the metric space
axioms M0-M4 to introduce nonzero self-distance such that familiar metric and topo-
logical properties are retained? The following is suggested.

Definition 2. A partial metric space is a pair (X, p : X × X → R) such that

P0: 0 ≤ p(x, x) ≤ p(x, y) (nonnegativity and small self-distances),
P2: if p(x, x) = p(x, y) = p(y, y) then x = y (indistancy implies equality),
P3: p(x, y) = p(y, x) (symmetry), and
P4: p(x, z) ≤ p(x, y) + p(y, z) − p(y, y) (triangularity) [9].

Why these axioms and not others? We are not seeking an alternative, but an exten-
sion to the theory of metric spaces. If dp(x, y) is defined to be 2p(x, y) − p(x, x) −
p(y, y) then from the axioms P0, P2, P3, and P4 for p, it can be shown that M0, M2,
M3, and M4 respectively hold for dp. In particular, note how p(y, y) is included in
P4 in order to ensure that M4 will hold for dp. Thus as dp also satisfies M1, (X, dp)

is a metric space. Each partial metric space thus gives rise to a metric space with the
additional notion of nonzero self-distance introduced. Also, a partial metric space is
a generalization of a metric space; indeed, if an axiom P1: p(x, x) = 0 is imposed,
then the above axioms reduce to their metric counterparts. Thus, a metric space can be
defined to be a partial metric space in which each self-distance is zero.

Why should axiom P2 deserve the title of indistancy implies equality? It can be
argued that this axiom reduces to M2 for (X, dp), but there should be a justification
in terms of (X, p). Let us define indistancy for (X, p) to be p(x, y) = 0. Then if
p(x, y) = 0 it can be shown by P0 and P3 that p(x, x) = p(x, y) = p(y, y), and
hence x = y by P2. It is a recurring theme of this article to find as many ways as
possible in which partial metric spaces may be said to extend metric spaces. This is to
apply as much as possible the existing theory of metric spaces to partial metric spaces,
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but also to see how the notion of nonzero self-distance can influence our understanding
of metric spaces.

Let us now consider three examples of partial metric spaces, beginning with the
sequences studied in the previous section. (S∗ ∪ Sω, dS) is a partial metric space, where
the finite sequences are precisely those having nonzero self-distance, and the infinite
sequences are precisely those having zero self-distance. For a second example note a
very familiar function that just happens to be a partial metric. Let max(a, b) be the
maximum of any two nonnegative real numbers a and b; then max is a partial metric
over R

+ = [0, ∞).
For a third example, let I be the collection of nonempty closed bounded intervals

in R: I = {[a, b] : a ≤ b}. For [a, b], [c, d] ∈ I let p([a, b], [c, d]) = max(b, d) −
min(a, c). Then it can be shown that p is a partial metric over I , and the self-distance
of [a, b] is the length b − a. This is related to the real line as follows: |a − b| =
p([a, a], [b, b]), and so by mapping each a in R to [a, a] we embed the usual metric
structure of R into that of the partial metric structure of intervals.

And so partial metric spaces demonstrate that although zero self-distance has al-
ways been taken for granted in the theory of metric spaces, it is not necessary in order
to establish a mathematics of distance. What partial metric spaces do is to introduce
a symmetric metric-style treatment of the nonsymmetric relation is part of, which, as
explained in this article, is fundamental in computer science. This relation is a partial
order:

Definition 3. A partial order on X is a binary relation � on X such that

x � x (reflexivity),
if x � y and y � x then x = y (antisymmetry), and
if x � y and y � z then x � z (transitivity).

A partially ordered set (or poset) is a pair (X, �) such that � is a partial order on X .

For each partial metric space (X, p) let �p be the binary relation over X such that
x �p y (to be read, x is part of y) if and only if p(x, x) = p(x, y). Then it can be
shown that (X, �p) is a poset.

Let us now see the poset for each of our earlier partial metric spaces. For sequences,
x �dS y if and only if there exists some k ≤ ∞ such that the length of x is k, and for
each i < k, xi = yi . In other words, x �dS y if and only if x is an initial part of y. For
example, suppose we wrote a computer program to print out all the prime numbers.
Then the printing out of each prime number is described by the chain

〈 〉 �dS 〈2〉 �dS 〈2, 3〉 �dS 〈2, 3, 5〉 �dS . . . ,

whose least upper bound is the infinite sequence 〈2, 3, 5, . . .〉 of all prime numbers.
For the partial metric max(a, b) over the nonnegative reals, �max is the usual ≥

ordering. For intervals, [a, b] �p [c, d] if and only if [c, d] is a subset of [a, b].
Thus the notion of a partial metric extends that of a metric by introducing nonzero

self-distance, which can then be used to define the relation is part of, which, for ex-
ample, can be applied to model the output from a computer program.

4. THE CONTRACTION FIXED POINT THEOREM. We now consider how a
familiar theorem from the theory of metric spaces can be carried over to partial metric
spaces. Complete spaces, Cauchy sequences, and the contraction fixed point theorem
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are all well known in the theory of metric spaces, and can be generalized to partial
metric spaces as follows. The next definition generalizes the metric space notion of
Cauchy sequence to partial metric spaces.

Definition 4. A sequence x = (xn) of points in a partial metric space (X, p) is Cauchy
if there exists a ≥ 0 such that for each ε > 0 there exists k such that for all n, m > k ,
|p(xn, xm) − a| < ε.

In other words, x is Cauchy if the numbers p(xn, xm) converge to some a as n and m
approach infinity, that is, if limn,m→∞ p(xn, xm) = a. Note that then limn→∞ p(xn, xn)

= a, and so if (X, p) is a metric space then a = 0.

Definition 5. A sequence x = (xn) of points in a partial metric space (X, p) converges
to y in X if

lim
n→∞ p(xn, y) = lim

n→∞ p(xn, xn) = p(y, y).

Thus if a sequence converges to a point then the self-distances converge to the self-
distance of that point.

Definition 6. A partial metric space (X, p) is complete if every Cauchy sequence con-
verges.

Definition 7. For each partial metric space (X, p), a contraction is a function f :
X → X for which there exists a c ∈ [0, 1) such that for all x, y in X , p( f (x), f (y)) ≤
c · p(x, y).

Theorem 1 (Matthews [8]). For each contraction f over a complete partial metric
space (X, p) there exists a unique x in X such that x = f (x). Also, p(x, x) = 0.

Thus the contraction fixed point theorem is extended to partial metric spaces. This
highlights an additional feature: the fixed point has self-distance 0, which, although
trivial in metric spaces, can be useful for reasoning about posets found in computer
science. In the context of computer science where a computable function can also be
proved to be a contraction, the partial metric extension of the contraction fixed point
theorem can be used to prove that the unique fixed point, which is the program’s output,
will be totally computed [8, 11].

5. EQUIVALENTS FOR PARTIAL METRIC SPACES. Partial metric spaces
arose from the need to develop a version of the contraction fixed point theorem which
would work for partially computed sequences as well as totally computed ones. Since
then much research has been aimed at extrapolating away from computer science in
order to develop a mathematics of posets for metric spaces. To discover more about
the properties of partial metric spaces we now look at equivalent formulations.

Definition 8. A weighted metric space is a triple (X, d, | · | : X → R) such that (X, d)

is a metric space and

0 ≤ |x | for each x in X , and
|x | − |y| ≤ d(x, y) for all x and y in X [9].
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Thus a weighted metric space is a metric space with a nonnegative real number
assigned to each point as a weight. Let (X, d, | · |) be a weighted metric space, and let

p(x, y) = d(x, y) + |x | + |y|
2

.

Then (X, p) is a partial metric space, and p(x, x) = |x |. Conversely, if (X, p) is
a partial metric space, then (X, dp, | · |), where (as before) dp(x, y) = 2p(x, y) −
p(x, x) − p(y, y) and |x | = p(x, x), is a weighted metric space. It can be seen that
from either space we can move to the other and back again. In a weighted metric space
the ordering can be defined by x �p y if |x | = d(x, y) + |y|. Note that any metric
space can be trivially weighted by defining |x | = 0 for each x . Thus a partial metric
space combines the metric notion of distance, weight, and poset in a single formalism.

Now we consider another variant of the metric space concept that bears a close
relationship to partial metric spaces.

Definition 9. A based metric space is a triple (X, d, φ) such that (X, d) is a metric
space and φ is any member of X .

That is, a based metric space is a metric space with an arbitrarily chosen base point.
This can be turned into an equivalent weighted metric space as follows. Let |x | =
d(x, φ); by the triangle inequality and symmetry, |x | ≤ d(x, y) + |y|, so |x | − |y| ≤
d(x, y) and therefore (X, d, | · | : X → R) is a weighted metric space, and can be
turned into an equivalent partial metric space as previously discussed. Then for each
x ∈ X, p(x, x) = d(x, φ), so φ is the largest member of the associated poset (X, �p).
Conversely, if there happens to exist a largest member φ in X for �p, then (X, dp, φ)

is a based metric space from which (X, p) can be recovered as above.
Consider the following example of a based metric space. Suppose we wish to design

an interactive computer game consisting of a Euclidean space, and players who move
around in the space. The space itself could be modeled by a metric space (X, d), and
each player’s position at any time in the space by a base point. One of many challenges
for the game’s programmers would be to ensure that at all times each player’s view of
space is consistent with the space itself, both of which are displayed as one upon the
computer’s screen. Then the movement of each player through space could be modeled
by a sequence of the form ((X, d, φn)), to which can be associated a sequence of posets
((X, �n)) to describe that player’s changing view of space.

Each of our earlier examples of partial metric spaces does not have a unique largest
member. However, those posets used in computer science, such as our example of fi-
nite and infinite sequences, usually do have a unique least member, this being the place
where any computation begins. An equivalence between any based bounded metric
space and a partial metric space having a unique least member can be defined as fol-
lows. Suppose that (X, d, φ) is a based metric space such that the metric is bounded
by some value, say a. Let

p(x, y) = a + d(x, y) − d(x, φ) − d(y, φ)

2
.

Then it can be shown that (X, p) is a partial metric space having φ as a unique least
member, and (X, dp) = (X, d).

Having now introduced weighted metric spaces and based metric spaces, we intro-
duce a third equivalent formulation for partial metric spaces. A connection between
posets and metric spaces existed long before partial metric spaces were introduced.
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Definition 10. A quasimetric space is a pair (X, q : X × X → R) such that

Q0: 0 ≤ q(x, y) (nonnegativity),

Q1: if x = y then q(x, y) = 0 (equality implies indistancy),

Q2: if q(x, y) = q(y, x) = 0 then x = y (indistancy implies equality), and

Q4: q(x, z) ≤ q(x, y) + q(y, z) (triangularity).

As quasimetrics are not in general symmetric, we revise our definition of indistancy to
be q(x, y) = q(y, x) = 0. Thus in quasimetric spaces equality is identified with indis-
tancy. A metric space (X, d) can be formed by defining d(x, y) = q(x, y) + q(y, x).
For any quasimetric q, a partial order �q is described by x �q y ⇐⇒ q(x, y) = 0.
Also, any partial order � is �q for some quasimetric q; in fact,

q(x, y) =
{

0 x � y
1 x �� y

is such a quasimetric. This connection between posets and quasimetric spaces can be
related to partial metric spaces as follows.

Definition 11. A weighted quasimetric space is a triple (X, q, | · | : X → R) such that
(X, q) is a quasimetric space and

0 ≤ |x | for each x in X , and
|x | + q(x, y) = |y| + q(y, x) for all x and y in X .

If we define p(x, y) = |x | + q(x, y) then (X, p) is a partial metric space. Conversely,
if (X, p) is a partial metric space then (X, qp, | · |p), where qp(x, y) = p(x, y) −
p(x, x) and |x |p = p(x, x), is a weighted quasimetric space. With these definitions,
for any partial metric, �p=�qp . Not every quasimetric space has a weight function | · |
(see [9]).

6. PARTIAL METRIC TOPOLOGY. A first course in metric spaces would usually
progress into a discussion of their topological properties [10]. For example, it would
show that the notion of convergent sequence in a metric space can be expressed in
terms of topology. This section shows how a course in partial metric spaces would
progress into a discussion of their topological properties. Recall the following defini-
tions in topology.

Definition 12. A topological space is a pair (X, τ ) so that τ is a set of subsets of X ,
the empty set is in τ , X is in τ, τ is closed under finite intersections, and τ is closed
under arbitrary unions. Each member of τ is termed an open set.

Topologies are often determined by special open sets:

Definition 13. A basis for a topological space (X, τ ) is a subset β of τ so that when-
ever x ∈ T , T open, there is a B ∈ β such that x ∈ B ⊆ T . The sets in β are called
basic open sets.

In particular, the open balls in a metric space give rise to a topology called the metric
topology. This is easily generalized to quasimetric and partial metric spaces as follows:
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Definition 14. Given a quasimetric space (X, q), x ∈ X , and ε > 0,

Bq
ε (x) = {y : q(x, y) < ε}

is the open ball with center x and radius ε.
For a partial metric p, we abbreviate B

qp
ε (x) to B p

ε (x).

Certainly by the above definitions, for a partial metric p,

B p
ε (x) = {y : p(x, y) < p(x, x) + ε}.

The usual proof that the open balls in a metric space form a basis for a topology
carries over, essentially unchanged, to any quasimetric space. This topology is denoted
τq (and τqp is abbreviated to τp). In particular, when (X, p) is a metric space then this
is the usual open ball topology.

But there is an essential difference due to the lack of symmetry: one should won-
der why we did not define Bq

ε (x) = {y : q(y, x) < ε} (rather than q(x, y) < ε), and
obtain our topology from this basis instead. It turns out we must take into account
both of the topologies just mentioned, and a third. We do this by considering, for any
quasimetric q, its dual q∗ and its symmetrization qS , defined by q∗(x, y) = q(y, x)

and qS = q + q∗. Then it is easily seen that q∗ is a quasimetric and qS is a metric (and
the topology mentioned at the beginning of this paragraph is τq∗). Of course q = q∗ if
and only if q is a metric, and in this case the topologies τq , τq∗ , and τq S are identical.

For a partial metric p, (qp)
∗(x, y) = p(x, y) − p(y, y). We abbreviate qp to

p, (qp)
∗ to p∗, and (qp)

S to pS (or dp) in notations such as B
qp
ε (x) and τ(qp)∗ . To

discuss this array of topologies, we need:

Definition 15. A bitopological space is a triple (X, τ, τ ∗) such that τ and τ ∗ are
topologies.

Bitopological spaces were first introduced in [3]. A thorough discussion is in [5].
These spaces naturally occur when there is a lack of symmetry to be considered.

Each bitopological space (X, τ, τ ∗) gives rise to a third topology important in the
study of these spaces. It is τ S = τ ∨ τ ∗, the join of the topologies τ and τ ∗, that is, the
smallest topology which contains both of them. The topology τ S often has symmetric
properties, and is called the symmetrization topology. For example, it is easy to check
that

Bq
ε/2(x) ∩ Bq∗

ε/2(x) ⊆ Bq S

ε (x) ⊆ Bq
ε (x) ∩ Bq∗

ε (x).

As a result, τq ∨ τq∗ is τq S , a metric topology.
As an example, for the partial metric space (R+, max) discussed earlier, Bmax

ε (x) =
{y : max(x, y) < x + ε} = [0, x + ε), so τmax = {[0, t) : 0 ≤ t ≤ ∞}, Bmax∗

ε (x) =
{y : max(x, y) < y + ε} = (x − ε, ∞), so τmax∗ = {(t, ∞) : 0 ≤ t ≤ ∞} ∪ {[0, ∞)},
and thus τmax S is the usual real topology on this set.

The relation x is part of y is also understood topologically. We have seen it captured
in terms of distance by p(x, x) = p(x, y), or qp(x, y) = 0, which leads to a poset
formulation x �p y. Topologically, this is expressed by noting that x �p y if and
only if y is in each Bε(x), which in turn holds if and only if x ∈ cl({y}). Indeed,
for any topology τ , the relation �τ , defined by x �τ y ⇐⇒ x ∈ cl({y}), is called its
specialization order. This relation is always reflexive and transitive.
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As a result of P2, (X, τp) is a T0 space: x �= y if and only if there is an open set
containing exactly one of x and y; equivalently, x ∈ cl({y}) and y ∈ cl({x}) only when
x = y. Put differently, a topological space (X, τ ) is T0 if and only if its specialization
order, �τ , is a partial order.

In contrast, each metric topology τ is Hausdorff; that is, x �= y if and only if there
are disjoint open sets O and O ′ such that x is in O and y is in O ′. Note that in Haus-
dorff spaces, if x �= y then there is an open set O ′ such that y ∈ O ′ and x �∈ O ′, so
y ��τ x . Therefore �τ is equality, thus a symmetric relation.

So key properties of partial metric spaces and the reality they represent are implicit
in their bitopological spaces, just as key properties of metric spaces are abstracted into
topological spaces. Finally, we consider the idea of determining the end product of a
computation (such as an infinite string, or a real number) as the result of a limit of its
parts.

Definition 16. For a topological space (X, τ ) a sequence x = (xn) of points in X
converges to a point y in X if for each open set O containing y there exists k such that
for each n > k, xn is in O .

That is, (xn) converges to y if it is eventually in any open set containing y. It is easy
to check that given a basis β, (xn) converges to y if and only if it is eventually in any
basic open set containing y. Thus in particular, for a quasimetric space (X, q), xn → y
in τq if and only if, for each ε > 0, eventually q(y, xn) < ε.

Our definition of partial metric convergence of a sequence (xn) to a point y is that
limn→∞ p(xn, y) = limn→∞ p(xn, xn) = p(y, y). This is equivalent to saying that
limn→∞ qp(y, xn) = 0 = limn→∞ q∗

p(y, xn). This in turn happens if and only if for
each ε > 0, eventually qp(y, xn) < ε and eventually q∗

p(y, xn) < ε, that is, if and only
if xn → y with respect to both τp and τp∗ , that is, if and only if xn → y with respect
to τdp .

Thus in the case of the nonnegative reals with the partial metric max , our def-
inition of partial metric convergence reduces to the usual real convergence. On the
other hand, by the above, limn→∞ qmax (y, xn) = 0 if and only if for each ε > 0
eventually xn < y + ε, and that holds if and only if y ≥ lim sup(xn). Similarly,
limn→∞ (qmax )

∗(y, xn) = 0 if and only if y ≤ lim inf(xn).

Therefore, partial metric convergence in (R+, max) is the usual real convergence,
while its two parts are closely related to lim sup and lim inf. In general, a sequence
converges with respect to p in the partial metric sense if and only if it converges with
respect to dp, which in turn holds if and only if it converges with respect to τdp .

In the central motivating case of sequences over a set S, xn → x , where x =
(s1, s2, ...) and each xn are in Sω, if and only if for each positive integer k, the initial
segment (s1, s2, ..., sk) is an initial segment of xn for sufficiently large n. In the other
key example of nonempty closed bounded intervals in R, for any real number a, {a} =
[a, a] = limn→∞[bn, cn] if and only if for each k, [bn, cn] ⊆ [a − 1/k, a + 1/k] for
sufficiently large n.

It is easy to check that in a weighted metric space (X, d, | · |), a sequence (xn)

converges to y in the associated partial metric if and only if the distances d(xn, y)

converge to 0 and the weights |xn| converge to |y|.
Thus given a metric space (X, d) there is just one topology, but from a partial met-

ric space (X, p), three related topologies can be identified (they are all equal if p
is a metric). Also, a key partial order is represented by (X, �p) (�p is = if p is a
metric).
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7. CONCLUSION. We have shown above how partial metrics model the sort of
asymmetric convergence implicit in computing an object, as metric spaces model the
more traditional symmetric spaces of analysis. Similarities, such as the involvement of
topology, and dissimilarities, such as the need for an order and for bitopology in this
newer case, have also been pointed out.

We close with a discussion of some possible uses of partial metric spaces. The
partial metrics originally studied and discussed above are valued in R, and this imposes
countability issues that are irrelevant for our purposes (for partial metrics valued in R

and x ∈ X, {B1/n(x) : n = 1, 2, 3, ...} is a countable base for the neighborhoods of
x in τp, and similar issues arise for τp∗ and τdp ). To avoid this, we allow our partial
metrics and quasimetrics below to be valued elsewhere, such as in sets of the form
[0, ∞]I .

But other problems must be overcome. We get our topology by saying that a set
T is open when for each x ∈ T there is some r > 0 such that {y : qp(x, y) < r} ⊆
T ; equivalently, when for each x ∈ T there is some r > 0 such that Nr (x) = {y :
qp(x, y) ≤ r} ⊆ T . It turns out that in some of the spaces we want to study, there are
pairs r, s > 0 such that inf{r, s} = 0. Four properties of the set G = (0, ∞) of positive
reals are centrally important in the use of metrics:

(a) if r ∈ G and r ≤ s then s ∈ G,

(b) if r, s ∈ G then for some t ∈ G, t ≤ r and t ≤ s,

(c) if r ∈ G then for some t ∈ G, t + t ≤ r ,

(d) for each a, b, if a ≤ b + r for each r ∈ G, then a ≤ b.

As a result, we define a set of positives, G, to have these properties which we often
use. Then τq,G is defined to be the topology whose open sets are those T ⊆ X such that
for each x ∈ T , Nr (x) ⊆ T for some r ∈ G. Details are given in an earlier MONTHLY

article [4], and in [6]. Note for example that if I has at least two elements, then {r >

0 : r ∈ [0, ∞]I } fails to satisfy (b) above, so it is not a set of positives. A particularly
useful set of positives in [0, ∞]I is {r ∈ (0, ∞]I : {i : r(i) �= ∞} is finite}.

Now we give some examples to show variety in the kinds of concepts that can be
modeled by such partial metrics.

Partial metrics were designed to discuss computer programs, and our first example
comes from this area. A type of poset (X, �) termed a domain has been defined to
model computation. We now give part of this definition; much more can be learned in
[1]:

A directed complete partially ordered set (dcpo) is a poset, (P, ≤), in which each
directed subset S has a supremum

∨
S (recall that a set S is directed by an order ≤

if for each r, s ∈ S there is a t ∈ S such that r ≤ t and s ≤ t). For any poset (P, ≤),
the way-below relation << is defined by b << a if whenever a ≤ ∨

D, D directed,
then b ≤ d for some d ∈ D. A dcpo is continuous if for each a ∈ P , {b : b << a} is a
directed set and a = ∨{b : b << a}.

The above axioms are best understood by considering the elements of P as sets
of accumulated knowledge, and interpreting a ≤ b to mean that the knowledge rep-
resented by b implies all the knowledge represented by a. Then (P, ≤) is a dcpo if,
whenever a directed set of knowledge is accumulated, then there is an element which
represents this knowledge. The example of finite and infinite sequences (discussed in
Sections 2 and 3) is a continuous poset; in it, the directed union of a set of sequences
is the sequence which has precisely the information held by the elements of the set.
The example of the closed bounded intervals (also in Section 3) is also a continuous
poset; here the knowledge that a point is in each of a collection of such intervals is
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given by the fact that it is in their intersection, which is also a closed bounded interval.
These, like all continuous posets, are natural examples of spaces in which information
is gathered.

For sequences, b << a if and only if b is a finite (initial) subsequence of a, and a
is clearly the supremum of {b : b << a}, so this example (which abstracts the Turing
machine) is a continuous dcpo. For the closed bounded intervals, it can be seen that
[u, v] << [x, y] if and only if [x, y] ⊆ (u, v), and therefore that {[u, v] : [u, v] <<

[x, y]} is directed by ⊇ and [x, y] is its supremum, so this poset is also a continuous
dcpo.

Given a poset, its Scott topology, σ , is the one whose closed sets are the lower sets
which contain the suprema of their directed subsets. That is, a set C is Scott closed
if whenever x ≤ y ∈ C then x ∈ C , and whenever D ⊆ C is directed then

∨
D ∈ C

(assuming
∨

D exists, as it must for a dcpo).
The Scott topology is seen to be appropriate by thinking of ≤ as the “knowledge

order”, with x ≥ y meaning that x implies y. Then it is natural to think that a set
is closed if it contains all objects implied by each of its elements, and whenever it
contains increasing amounts of knowledge, it contains an object that implies all this
knowledge. For each x ∈ P, the smallest closed set containing x is {y : y ≤ x}; thus
the poset order is the specialization order of the Scott topology, and so this topology
can only arise from a metric if ≤ is equality.

Due to the lack of symmetry embodied in ≤, it is useful to consider a second topol-
ogy, and the one most often used is the lower topology, ω, whose closed sets are gen-
erated by the sets of the form {y : y ≥ x} for x ∈ P .

In [6] it is shown that for each continuous dcpo, there is a partial metric into a power
of the unit interval, [0, 1]I , such that τp is the Scott topology and τp∗ is the lower
topology. Thus the poset order is the specialization order, so in particular (P, ≤) =
(P, ≤p).

But many other bitopological spaces can be so represented (to be precise, the ones
that so arise are the pairwise Tychonoff spaces; see [6]). It is unclear whether a rea-
sonable characterization of continuous dcpo’s can be found in terms of partial metrics.

More traditional examples are found by looking at topologies on R
X , the real val-

ued functions on a set X . The best known of these is the topology of uniform con-
vergence, given by the metric d∞( f, g) = sup{| f (x) − g(x)| : x ∈ X}. The partial
metric p∞( f, g) = sup{max( f (x), g(x)) : x ∈ X} gives rise to this topology, since
dp∞( f, g) = ‖ f − g‖∞, the sup norm distance between f and g. By earlier discus-
sion, this splits the topology of uniform convergence into two subtopologies: τp∞ , its
lower open sets, and τ(p∞)∗ , its upper open sets.

In fact, each topology on each set X arises from a pseudo-partial metric: a function
p : X × X → H , where H is some abelian lattice ordered group, satisfying all the
partial metric axioms except P2 (if p(x, x) = p(x, y) = p(y, y) then x = y), together
with a set of positives G ⊆ H ; the T0 topologies are those for which P2 also holds.
This is shown using the discussions in [6] and [4] and viewing [0, 1]I as a subset of
the lattice ordered abelian group R

I .
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