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ABSTRACT
Nonlinear waveshaping is a common technique in musical signal
processing, both in a static memoryless context and within feed-
back systems. Such waveshaping is usually applied directly to
a sampled signal, generating harmonics that exceed the Nyquist
frequency and cause aliasing distortion. This problem is tradi-
tionally tackled by oversampling the system. In this paper, we
present a novel method for reducing this aliasing by constructing a
continuous-time approximation of the discrete-time signal, apply-
ing the nonlinearity to it, and filtering in continuous-time using an-
alytically applied convolution. The presented technique markedly
reduces aliasing distortion, especially in combination with low or-
der oversampling. The approach is also extended to allow it to be
used within a feedback system.

1. INTRODUCTION

Nonlinear waveshaping has been part of the toolbox of musical
signal processing since the 1960s, when overdrive and fuzz pedals
became popular for treating the sound of the electric guitar. Its ap-
plication in the digital signal processing domain began in the 1970s
with exploration of synthesis methods employing waveshaping us-
ing Chebyshev polynomials [1,2]. In more recent times, investiga-
tion of waveshaping has mainly been pursued within the domain of
virtual analog modelling. A particularly active area of research has
been filters with embedded nonlinearities, including the Moog lad-
der filter [3–7], the diode ladder filter [5, 8] and Sallen-Key based
filters [9, 10]. Much work has also been done on the digital emu-
lation of analog overdrive and fuzz pedals [11,12] and tube ampli-
fiers [13,14]. Other nonlinear analog devices have been modelled,
including the ring-modulator [15,16] and bucket-brigade based ef-
fects [17, 18]. Recent work has applied correction functions usu-
ally used for oscillator antialiasing to the problem of antialiasing
signals processed by a hard clipper [19], and has also considered
more abstract applications of nonlinear waveshaping [20, 21].

One of the primary problems encountered when dealing with
nonlinearities is that of aliasing distortion. Aliasing distortion is
present in many types of digital signal processing algorithm, and
is generally perceived to be disturbing or unpleasant [22]. In this
paper, we describe a method for reducing the aliasing produced
by processing a signal with a memoryless nonlinearity, as well
as describe how the same method can be applied inside a filter.
This method is based on forming a continuous-time approximation
of the signal, applying the nonlinearity, and analytically deriving
the result of applying convolution with a continuous-time lowpass
filter kernel. The application of the filtering process in the con-
tinuous domain is crucial to working of the method, as it allows
suppression of components even beyond the original Nyquist fre-
quency of the system. The method is related to the Differentiated

Polynomial Waveform (DPW) approach to antialiasing oscillator
waveforms [23–25], which also applies filtering in the continuous-
time domain. There is also some relation to methods of antialias-
ing wavetable playback using integrated wavetables [26, 27].

In Sec. 2, we describe the simplest formulation of the tech-
nique. Sec. 3 describes how the method can be extended to use
any piecewise polynomial filter kernel, with the example of the tri-
angular or linear interpolation kernel given. In Sec. 4, we discuss
some drawbacks of the method—specifically its delay, and filter-
ing effects below Nyquist. Examples of applying the method to a
number of nonlinearities are given in Sec. 5. In Sec. 6, we broaden
the method to apply to feedback systems, where the delay of the
antialiased nonlinearity can be directly compensated by removal of
equivalent parts of the filter structure. Finally, in Sec. 7 we draw
conclusions about the presented work.

2. APPROXIMATION OF CONTINUOUS DOMAIN
NONLINEAR WAVESHAPING

Nonlinear waveshaping in a digital signal processing context is
generally applied directly to a discrete-time signal:

y[n] = f(x[n]) (1)

where y denotes the output, x the input, n the discrete-time sample
index, and f is an arbitrary nonlinear function. The waveshap-
ing process is not bandlimited, and therefore depending on the
input can generate frequency components exceeding the Nyquist
frequency of the system (in many cases, even an infinite series of
components). The components are reflected around the Nyquist
frequency, and appear within the output spectrum as aliasing dis-
tortion. This is a well-known and common problem in musical
digital signal processing. The most prominent method of reduc-
ing aliasing is to oversample the processing of the signal through
the nonlinearity. This raises the Nyquist frequency, and hence the
point at which the generated harmonics alias. However, this ap-
proach is still far from ideal given that the sequence of harmonics
can be infinite.

The ideal result of the process, that of applying the nonlin-
earity to the input signal without any generated aliasing, can be
thought of as perfect sampling of the same nonlinearity applied in
continuous-time:

y(t) = f(x̃(t)) (2)
where x̃ is a continuous-time reconstruction of our input signal,
y is the continuous-time output signal, and t is the time variable.
Given that we are working within a purely discrete-time context
and presumably don’t want to pass our signal out to the continuous
domain for nonlinear processing, the challenge is to approximate
this expression as accurately as possible whilst staying within the
discrete-time domain.
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2.1. Approximating a continuous-time input signal

The first challenge is to devise a version of the discrete-time input
signal which can be treated in the same way as its continuous-time
reconstruction. In the case of a known input signal, for example a
sinusoid, this can be done trivially. In the case of an arbitrary sig-
nal, the problem is more complicated—we need to draw a function
through the known sample-points of the input signal. One way of
approaching this problem is to utilise a standard interpolation tech-
nique to ‘fill in the gaps’ between sample points—resulting in a
piecewise approximation of the ideal continuous-time input signal.
In the case of linear interpolation, and assuming a unit sampling
interval, this would result in the following:

x̃(t) =


x1 + τ(x0 − x1), 0 ≤ t < 1
x2 + τ(x1 − x2), 1 ≤ t < 2

...
xn + τ(xn−1 − xn), (n− 1) ≤ t < n

(3)

where xn ≡ x[n] is shorter notation for the samples of the discrete-
time input signal, and τ = 1 − (t mod 1), a time variable that
runs 1 . . . 0 between each sample.

Higher-order interpolation methods could be applied here, with
the result of better suppression of the image spectra that repeat in-
finitely above the original Nyquist frequency. However, approxi-
mating the input signal as locally linear allows an analytic solution
of the method to be derived, as will be seen in the following sec-
tion.

2.2. Returning to the discrete-time domain

Now, given an expression for x̃(t), we are able to calculate y(t) at
any specific t via (2). This can be considered to be sampling the ap-
proximated continuous-time signal at an arbitrary point. However,
if we want our discrete-time output signal to be free of aliasing,
we need to apply some kind of filtering to the continuous-time sig-
nal before it is sampled to remove components above our original
Nyquist frequency. This can be done by applying a continuous-
time convolution with some filter kernel h to y(t):

ỹ(t) =

∫ ∞
−∞

h(u)y(t− u)du (4)

where ỹ(t) is the approximately bandlimited continuous-time out-
put. ỹ(t) can then be trivially sampled at the original sampling
times (again assuming unit sample interval):

y[n] = ỹ(n) (5)

A very simple example of a lowpass kernel is a rectangular
function of unit width:

hrect(t) =

{
1, 0 ≤ t ≤ 1
0, otherwise (6)

Fig. 1 shows the amplitude response of this kernel, along with its
time-domain form. From the amplitude response, we can see that
the convolution will significantly attenuate any harmonics which
exceed the original Nyquist frequency.
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Figure 1: Rectangular and linear continuous-time convolution ker-
nels and their continuous time amplitude responses.

We can now write an expression for the output y[n]:

y[n] = ỹ(n) =

∫ ∞
−∞

hrect(u)y(n− u)du

=

∫ 1

0

y(n− u)du

=

∫ 1

0

f(x̃(n− u))du

using (3), and noticing that over this interval u = τ , we can write:

y[n] =

∫ 1

0

f(x̃)dτ (7)

=

∫ 1

0

f(xn + τ(xn−1 − xn))dτ

From integration by substitution, we can write:∫ 1

0

f(x̃)
dx̃

dτ
dτ =

∫ xn−1

xn

f(x̃)dx̃

The piecewise linear nature of x̃ now becomes useful as it means
that dx̃

dτ
is constant over the extent of the τ integration, and can be

factored out of the integral to produce:

y[n] =

∫ 1

0

f(x̃)dτ =
dτ

dx̃

∫ xn−1

xn

f(x̃)dx̃

=
1

xn−1 − xn

∫ xn−1

xn

f(x̃)dx̃ (8)

Finally, by applying the fundamental theorem of calculus, we pro-
duce:

y[n] =
F0(xn)− F0(xn−1)

xn − xn−1
(9)

where F0 is the antiderivative of f .

2.3. Precision and ill-conditioning concerns

In a digital context with finite precision arithmetic, (9) becomes
ill-conditioned when xn ≈ xn−1 due to a 0/0-type uncertainty,
resulting in precision loss or even a division by zero. Assum-
ing floating point numeric representation the precision loss occurs
from the subtraction of two values of the same sign and compara-
ble magnitude. This kind of precision loss in the numerator can be
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minimized by choosing the integration constant for F0 such that
F0(0) = 0. In this case the precision loss in the entire formula is
determined by that in the denominator.

According to the derivation given in Appendix A:

F0(xn)− F0(xn−1)

xn − xn−1
= f

(xn + xn−1

2

)
+O((xn − xn−1)2)

(10)
where O(. . . ) denotes the order of the neglected terms, and hence
the order of the error. This value can then be substituted for (9)
when the value of xn − xn−1 becomes very small.

3. EXTENSION TO HIGHER-ORDER FILTER KERNELS

The filter kernel described in (6) is the simplest possible kernel
that can be used in this technique. A more complex kernel can
be used, as long as the convolution can be performed analytically.
The triangular or linear-interpolation kernel is an example of such
a kernel:

hlin(t) =

 t, 0 ≤ t < 1
2− t, 1 ≤ t ≤ 2

0, otherwise
(11)

Substituting this into (4), and following the same procedure as pre-
viously, we obtain:

ỹ(n) =

∫ ∞
−∞

hlin(u)y(n− u)du

=

∫ 1

0

uy(n− u)du+

∫ 2

1

(2− u)y(n− u)du

=

∫ 1

0

τf(xn + τ(xn−1 − xn))dτ+∫ 1

0

(1− τ)f(xn−1 + τ(xn−2 − xn−1))dτ (12)

The two integrals can be evaluated by noting that over the interval
we’re considering τ = x̃−xn

xn−1−xn
. Therefore, by again applying

integration by substitution, we have:

ỹ(n) =

∫ xn−1

xn

x̃− xn
(xn − xn−1)2

f(x̃)dx̃+∫ xn−2

xn−1

xn−2 − x̃
(xn−1 − xn−2)2

f(x̃)dx̃ (13)

As before, we can use the fundamental theorem of calculus to write
this expression in terms of antiderivatives of f . Additionally, the
antiderivative of xf(x) is needed. We denote this as F1(x). After
some simplification, the expression for the output can be written
as:

ỹ(n) =
xn(F0(xn)− F0(xn−1))− (F1(xn)− F1(xn−1))

(xn − xn−1)2
+

xn−2(F0(xn−2)− F0(xn−1))− (F1(xn−2)− F1(xn−1))

(xn−2 − xn−1)2

(14)

The frequency response of the triangular kernel can be seen in
Fig. 1. As expected, the suppression of harmonics above Nyquist
will be improved compared to the rectangular kernel. However,
the expression needed to compute the anti-aliased output is more
complex than in the rectangular kernel case. This is ameliorated

somewhat by the fact that many terms can be calculated by storing
and re-using the values calculated at previous time steps. Conse-
quently, there should only be one evaluation of F0 and of F1 per
sample.

The same derivation can be followed for any higher order ker-
nel which consists of piecewise polynomial sections, for example a
Hermite interpolator. However as the polynomial order of the ker-
nel grows, the higher-order counterparts of the analytical convolu-
tion expressions (9) and (14) become more ill-conditioned. There-
fore the precision requirements of the computation grow and so
potentially the computational load.

3.1. Precision and ill-conditioning concerns

As in the rectangular window case, when xn ≈ xn−1 or xn−1 ≈
xn−2, (14) becomes ill-conditioned. Again, this can be resolved
as described in Appendix A. In this case, we must deal with the
first and second terms of (14) separately. The first term becomes:

1

2
f

(
xn + 2xn−1

3

)
(15)

when xn ≈ xn−1. Similarly, the second term becomes:

1

2
f

(
xn−2 + 2xn−1

3

)
(16)

when xn−1 ≈ xn−2.

4. LINEAR RESPONSE AND GROUP DELAY OF
METHOD

The conversion to the continuous-time domain and back can be
seen as oversampling to an infinitely large sampling rate. The lin-
ear interpolation (3) and convolution (4) in that regard can be seen
as lowpass filters used in resampling.

Additionally, many nonlinearities of interest become transpar-
ent at very low signal levels: f(x) ≈ x. In this case the whole sys-
tem becomes a combination of an upsampler and a downsampler.
Therefore the system behaves as an LTI filter, where the overall
filtering effect is a combination of the lowpass filters (3) and (4)
and the aliasing occuring due to both filters being non-brickwall.

Using (41) of Appendix A we obtain the linear-case version of
(9):

y[n] =
xn + xn−1

2
(17)

Therefore at low signal levels (9) can be viewed as a half-sample
fractional delay using linear interpolation (i.e. its group delay is
0.5 samples).

In a similar fashion for (14) we obtain

y[n] =
xn + xn−2

6
+

2

3
xn−1 (18)

corresponding to a group-delay of 1 sample.
The respective amplitude responses of (17) and (18) are plot-

ted in Fig. 2. Higher-order kernels can be treated in a similar fash-
ion. Extension to the case with non-unity linear scaling at low
signal levels is also trivial.

5. EXAMPLES AND RESULTS

In the following section, we describe how the methods described
above can be applied to a number of nonlinearities.
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Figure 2: Low signal-level discrete-time frequency responses of the
method when using rectangular and linear continuous-time convo-
lution kernels.

5.1. Example: tanh()

One of the most common nonlinear functions used in music signal
processing is the hyperbolic tangent:

f(x) = tanh(x) (19)

the antiderivative is given by:

F0(x) = log(cosh(x)) (20)

therefore:

y[n] =
log(cosh(xn))− log(cosh(xn−1))

xn − xn−1
(21)

in the case where the rectangular kernel is used.
The antiderivative of x tanh(x) is given by:

F1(x) =
1

2

(
x
(
x+ 2 log

(
e−2x + 1

))
− Li2

(
−e−2x)) (22)

where Li2 is the dilogarithm function. The full expression for
y[n] can be obtained by substituting the expressions for F0(x) and
F1(x) into (14).

The expression (22) is rather expensive to compute. Therefore
it may be beneficial to tabulate it. Due to the ill-conditioned na-
ture of (14) the tabulation needs to be done with high precision.
Particularly, usage of piecewise segments of higher than linear or-
der may be advised for the table. Also, warping of the argument
scale (for example, making it logarithmic) can further reduce the
table size. The unbounded argument range for the tabulated func-
tion can be achieved by noting that tanh(x) ≈ sgn(x) within very
high precision for |x| � 1, thus F1(x) can be approximated by

F1(x) ≈ F1(x0 sgn(x))+
x2 − x20

2
sgn(x), |x| ≥ x0 � 1 (23)

for some sufficiently large x0. The tabulation approach also al-
lows us to deal with nonlinearities which cannot be analytically
integrated.

Fig. 3 shows spectrograms of a linear sine sweep, processed
by a tanh() nonlinearity with a linear input gain of 5, at two dif-
ferent sample rates, without and with the continuous-time convo-
lution applied. At both 44.1kHz and 88.2kHz, there is a significant
reduction in aliasing when the method is applied. At 44.1kHz a
small loss of high-frequency content is visible, due to the effec-
tive discrete-time frequency response of the method. This effect
is explained in Sec. 4. As can be seen, the triangular kernel pro-
duces noticeably greater suppression of aliased components than
the rectangular kernel. However, the difference is not as large as
that between no antialiasing and the rectangular kernel.
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Figure 3: Spectrogram of linear sine sweep from 0. . . 22kHz, pro-
cessed with tanh() function with an input gain of 5. The minimum
amplitude visible is -80dBFS.

5.2. Example: Hard Clipper

Another common saturating nonlinearity in music signal process-
ing is the hard clipper, defined by:

f(x) =

{
x, −1 ≤ x ≤ 1

sgn(x), otherwise (24)

Recent work has considered alias-suppression for this function by
applying a correction function to the transition between linear and
clipped regions [19].

The antiderivative of (24) is trivially calculated, taking care to
set the arbitrary constant of integration so that the function passes
through the origin:

F0(x) =

{
1
2
x2, −1 ≤ x ≤ 1

x sgn(x)− 1
2
, otherwise (25)

Similarly, the antiderivative of xf(x) can be calculated:

F1(x) =

{
1
3
x3, −1 ≤ x ≤ 1

( 1
2
x2 − 1

6
) sgn(x), otherwise

(26)

In order to illustrate the effectiveness of the technique, a test
was performed. A linear sine sweep wave processed by the non-
linearity with a very large input gain, in this case 10. The sample
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Figure 4: Spectrogram of linear sine sweep from 0. . . 22kHz, pro-
cessed with hard clipping function with an input gain of 10. The
minimum amplitude visible is -80dBFS.

rate of the cases was adjusted until roughly the same amount of
aliasing was present. Signal-to-noise ratio (SNR) was calculated
by creating an image mask denoting the non-aliased part of the
spectrogram and calculating the ratio of the power inside the im-
age mask to that outside the image mask. The mask is created
from the spectrogram of an ‘ideal’ version of the processed signal
(in this case calculated at Fs = 11.2MHz) by picking bins which
have a power greater than –30dB. The results are given in Table 1
and shown in Fig. 4.

Table 1: Oversampling required for similar aliasing level of hard
clipper with input gain of 10.

Kernel Fs(kHz) Fs/44.1kHz SNR(dB)
None 529.2 12 46.7

Rectangular 176.4 4 46.3
Triangular 132.3 3 46.6

6. APPLICATION TO SYSTEMS WITH FEEDBACK

As discussed above in Sec. 4, the antialiasing method introduces
delay into the signal path, which poses a problem in systems with
feedback. This becomes especially critical in the systems with
delayless feedback, which occurs in implicit time-discretization
schemes, most prominently in trapezoidal integration. In the fol-
lowing we propose an approach to address this problem.

6.1. Delay elimination

Equation (17) is equivalent to the equation of the FIR part of a DF1
(Direct Form 1) trapezoidal integrator, shown in Fig. 5. Consider a
serial connection of an antialiased nonlinearity Φ, as described in
(9), and a DF1 trapezoidal integrator. This configuration is shown
in Fig. 6. Since, according to (17), the nonlinearity (9) is already
implementing the FIR part of the integrator, we can drop this part
of the integrator from the structure, thereby eliminating the extra
delay. The resulting structure is shown in Fig. 7.

// •// +//

z−1//
OO
// +// •//

z−1 oo
OO

//

0.5ωc

Figure 5: Direct form 1 trapezoidal integrator (ωc is the embedded
cutoff control gain).

Φ// // •// +//

z−1//
OO
// +// •//

z−1 oo
OO

//

0.5ωc

Figure 6: A serial chain of an antialiased nonlinearity (9) (denoted
by Φ) and a DF1 trapezoidal integrator.

The nonlinearity and the integrator do not have to be located
immediately next to each other in the feedback loop. However, any
structural elements in the intermediate area must be considered.
For example, consider a serial chain of a nonlinearity and a 1-
pole lowpass filter, as shown in Fig. 8. In this case, as there is
a summation node in between the nonlinearity and the integrator
we must also introduce the same FIR part in the other path into
the summation. This structure is shown in Fig. 9. It is interesting
to note that the structure in Fig. 9 is equivalent to a naive 1-pole
lowpass filter with an adjusted cutoff, as shown in Fig. 10.

Such manipulations change the topology of the system, and
thus have the potential to change its time-varying behaviour. In
practice, these changes are not usually severe enough to be a prob-
lem, but care must be taken.

The approach of Fig. 7 can be used as long as nonlinearities
and integrators are interleaved in the feedback path. In the case
where a nonlinearity does not have an associated integrator to ab-
sorb its delay, we can insert a very high cutoff (close to Nyquist)
1-pole lowpass filter immediately following (or preceding) it. This
allows the delay to be absorbed, whilst hopefully having a min-
imal effect on the behaviour of the system. However, as the in-
serted lowpass has the potential to alter the linear (small signal)
frequency response of the filter, care must again be taken.

6.2. Solving the antialiased implicit equation

Topologies containing delayless feedback require an implicit equa-
tion to be solved in order to be computable. If the implicit equation
is transcendental, which is common with the types of saturating
nonlinearity often used in musical filters, then linearisation is usu-
ally performed. A common approach to this problem is to apply
the Newton–Raphson method. To this end, when the systems con-
tains antialiased nonlinearities we need to be able to differentiate
the antialiased nonlinearities with respect to their instantaneous in-

Φ// // +// •//

z−1 oo
OO

//
ωc

Figure 7: A version of Fig. 6 with eliminated antialiasing delay.
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Φ// +//
∫// •//

−
OO

//

Figure 8: A serial chain of an antialiased nonlinearity (9) and a
1-pole low pass filter.

Φ// +// // +// •//

z−1 oo
OO •// //

•oo+ oo

z−1 oo
OO

oo

−
OO

ωc

0.5

Figure 9: Application of the delay elimination across a summation
node in Fig. 8.

put signal. Consider y[n] in (9), expressed as a function of xn:

y[n] = Φ(xn) =
F0(xn)− F0(xn−1)

xn − xn−1
(27)

Then

dΦ

dxn
=
f(xn) · (xn − xn−1)−

(
F0(xn)− F0(xn−1)

)
(xn − xn−1)2

(28)

Similarly to (9), the equation (28) becomes ill-conditioned when
xn ≈ xn−1 . The ill-conditioned case substitute for (28) can be
obtained by differentiating (10) with respect to xn resulting in:

dΦ

dxn
=

1

2
f ′
(xn + xn−1

2

)
+O(xn − xn−1) (29)

6.3. Example: Moog Ladder Filter

Consider the Moog-ladder-like structure [4, 28] in Fig. 11, using
trapezoidal integration. By folding the nonlinearity into the first
of the four 1-pole lowpasses (as shown in Fig. 9) we eliminate
the delay. Then we can apply Newton–Raphson to compute the
solution of the implicit equation.

The performance of the approach was tested by driving the fil-
ter in Fig. 11 at k = 8 (strong selfoscillation) with a 5kHz unit am-
plitude sine oscillator, while sweeping the filter cutoff from 1Hz to
21kHz. We have plotted the spectrograms for non-antialiased and
antialiased versions of filter, where we iterated Newton–Raphson
until the convergence reached −60dB or better.

The output is shown in Fig. 12, at 44.1kHz and 88.2kHz sam-
pling rates. The output at high sampling rate (576kHz) without
antialiasing is provided as a reference. As can be easily seen, the
antialiasing produces a noticeable reduction in aliasing. This has
a particularly strong effect on the dynamics of the filter as the fre-
quency is swept, as it prevents the resonant peak from locking
on to particular frequencies where aliased components coincide.
This change in dynamics is very clearly audible, with the non anti-
aliased versions sounding ‘steppy’ as their cutoff is swept.

Additionally, the extra lowpass method was tested in the same
filter topology. The extra lowpass filter’s normalized prewarped
cutoff was set to ωc = 30 (the corresponding unprewarped cutoff
ω ≈ 0.98π). The results are also shown in Fig. 12, and appear

f(x)// +// // +// •// //

z−1 oo•oo
OO

−
OO

ωc
1+ωc/2

Figure 10: Structure of Fig. 9 with resolved local delayless feed-
back.

+// tanhx// LP1// LP1// LP1// LP1// •// //

oo

−
OO

k

Figure 11: A Moog-ladder-like filter.
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Fs = 44.1kHz, rect. kernel
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Fs = 88.2kHz, rect. kernel
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extra LP

Fs = 576kHz, no antialiasing

Figure 12: Cutoff sweep of Moog-ladder-like filter with high res-
onance and 5kHz unit sinusoidal input. Shown without antialias-
ing, with antialiasing and integrator delay elimination, and with
antialiasing and extra lowpass delay elimination.

to be very similar to those given by the standard antialiasing tech-
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Figure 13: Effect of the extra lowpass on the amplitude response
of the Moog-ladder-like filter at k = 3. Dashed curves show the
amplitude response in the absence of the extra lowpass. The ω
axis is using the prewarped frequency scale (∞ is Nyquist, 2 is
half Nyquist frequency, 30 is the extra lowpass’s cutoff).

nique. However, the inserted lowpass increases the filter’s reso-
nance and lowers the resonant frequency at high cutoff settings, as
illustrated by Fig. 13. This effect is not strongly audible at sam-
pling rates of 88.2kHz or above.

7. CONCLUSION

In this work, we have described a new method of suppressing
aliasing when processing a digital signal with a nonlinear wave-
shaper. The method allows generated harmonics to be suppressed
above Nyquist, by constructing a continuous-time approximation
of the input signal, applying the waveshaping, and then analyti-
cally applying a convolution with a continuous-time filter kernel.
The method is especially effective in situations where the nonlin-
earity generates a large amount of harmonics, such as a saturating
nonlinearity with large input gain. In these situations, applying
the antialiasing can give a similar improvement to a much larger
level of oversampling. Techniques for applying the method within
feedback systems were also given.

Sound and code examples illustrating the techniques described
in this paper are available at the accompanying website1.
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A. DERIVATION OF RESOLVED OUTPUT IN
ILL-CONDITIONED AREA AND SYSTEM RESPONSE IN

LINEAR CASE

Let us consider one linear segment of x̃(t), the continuous-time
approximation of the input signal, being processed by the nonlin-
earity f :

y(τ) = f(xn + τ(xn−1 − xn)) (30)

In order to calculate the output of the continuous-time convolution,
we must calculate one or more integrals of the form:∫ 1

0

y(τ)h̄(τ) dτ (31)

where h̄ is one particular unipolar piecewise segment of the convo-
lution kernel. The analytical expressions for integrals (31) become

ill-conditioned at xn ≈ xn−1, therefore we wish to obtain alter-
native expressions that can be substituted for the ill-conditioned
case.

(31) can be seen as a weighted average of y(τ), where h̄(τ)
is the weight function. From the mean value theorem there exists
τ0 ∈ [0, 1] such that:∫ 1

0

y(τ)h̄(τ) dτ = y(τ0)

∫ 1

0

h̄(τ) dτ (32)

For xn ≈ xn−1, in principle any τ0 ∈ [0, 1] can be chosen for the
approximation. However, we wish to find the most optimal choice.
Introducing a normalized weight function:

w(τ) = h̄(τ)
/∫ 1

0

h̄(τ) dτ (33)

we rewrite (32) as: ∫ 1

0

y(τ)w(τ) dτ = y(τ0) (34)

For xn ≈ xn−1 the function y(τ) can be considered approxi-
mately linear on [0, 1]:

y(τ) = a+ bτ +O((xn − xn−1)2) (35)

where the error term is assuming the bounded second derivative of
f(x). From (34) we then have:

y(τ0) =

∫ 1

0

y(τ)w(τ) dτ

=

∫ 1

0

(a+ bτ +O((xn − xn−1)2))w(τ) dτ

=(a+O((xn − xn−1)2))

∫ 1

0

w(τ) dτ + b

∫ 1

0

τw(τ) dτ

=a+ bM1 +O((xn − xn−1)2)

=y(M1) +O((xn − xn−1)2) (36)

where

M1 =

∫ 1

0

τw(τ) dτ (37)

is the first moment of the weight function w(τ). That is

y(τ0) = y(M1) +O((xn − xn−1)2) (38)

and therefore we choose

τ0 = M1 =

∫ 1

0

τ h̄(τ) dτ
/∫ 1

0

h̄(τ) dτ (39)

Using this τ0 and (32), we can then compute the integrals (31) in
the ill-conditioned case.

Further, for f(x) = x the equation (30) turns into

y(τ) = xn + τ(xn−1 − xn)) (40)

while the term O((xn − xn−1)2) vanishes from (35) and the fol-
lowing equations. Using (40) and (39) we turn (32) into∫ 1

0

y(τ)h̄(τ) dτ = (xn + (xn−1 − xn)M1)

∫ 1

0

h̄(τ) dτ (41)

which allows us to calculate the response of the system in cases
where f(x) is approximately transparent.
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