DEEP SET PREDICTION NETWORKS

Yan Zhang, Jonathon Hare, Adam Prügel-Bennett

To predict a set from a vector,

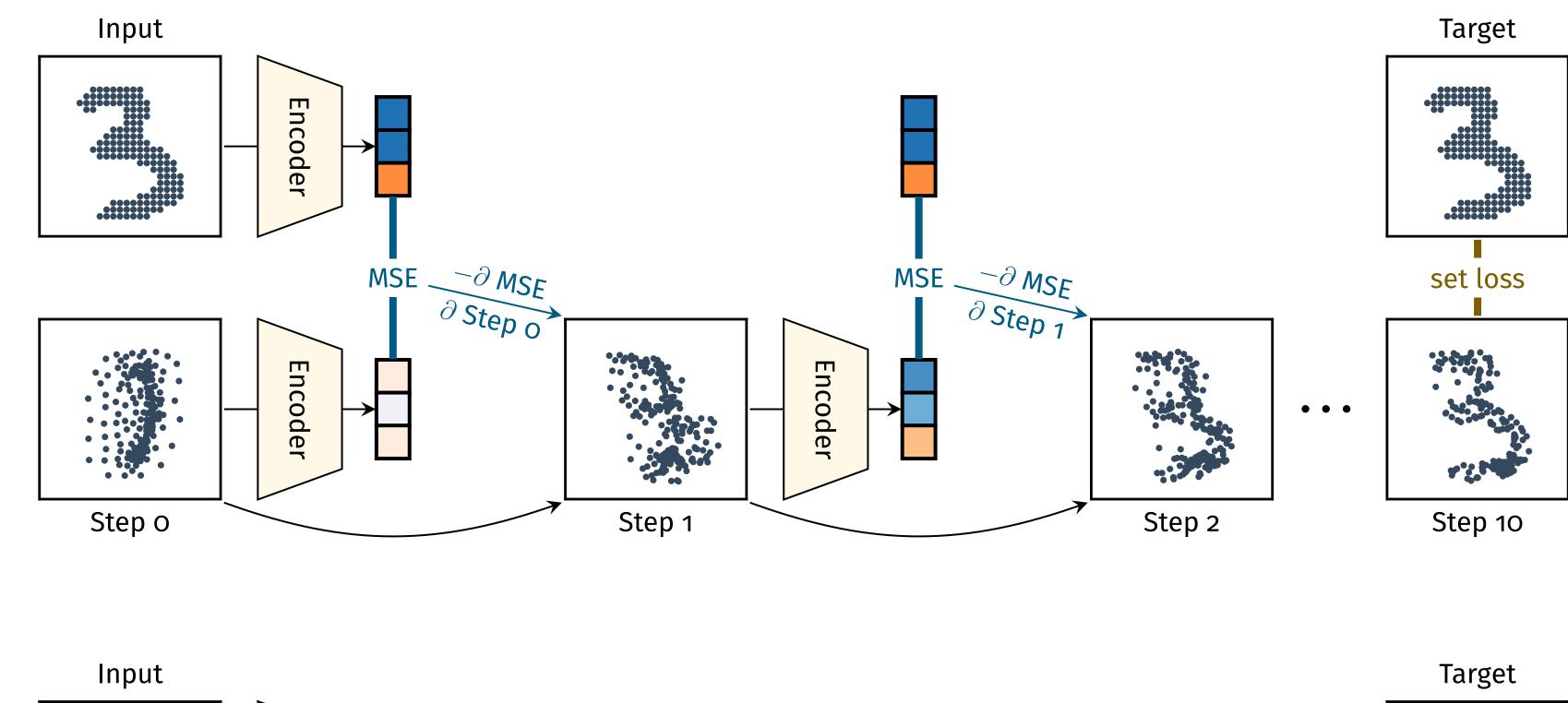
use gradient descent to find a set

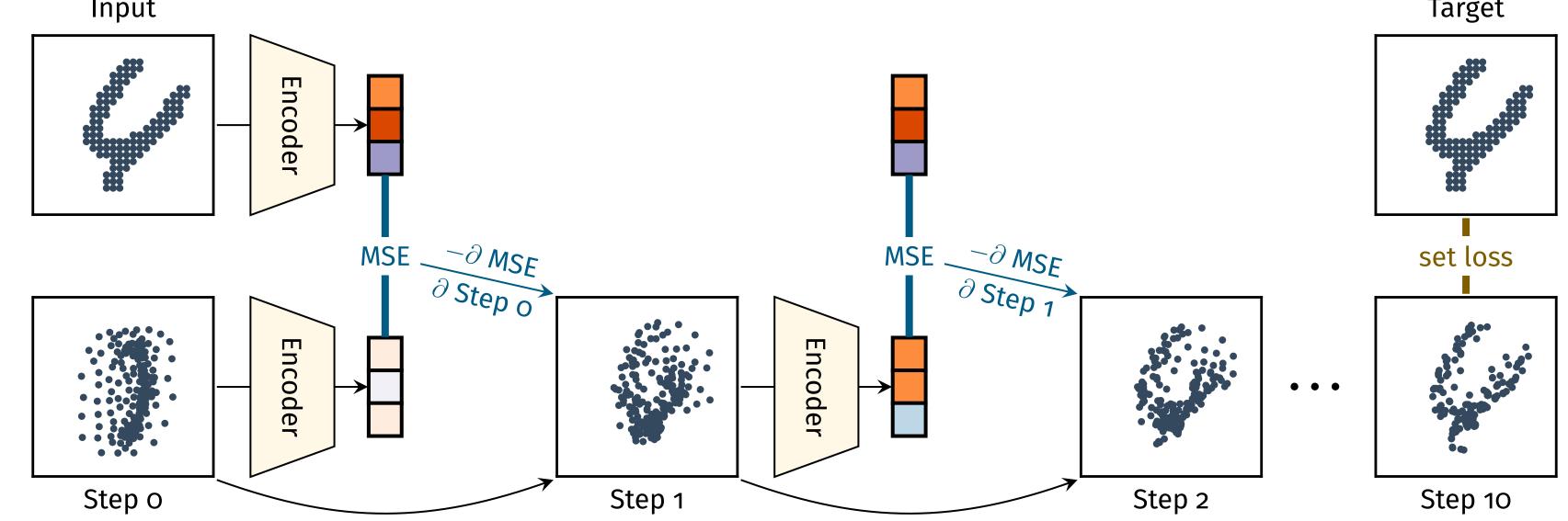
that encodes to that vector.

Code and pre-trained models available at https://github.com/Cyanogenoid/dspn

Set prediction

- Predicting sets means:
- object detection (image to set of objects)
- 3d shape inference (image to set of 3d points)
- molecule generation (vector to set of nodes and edges)
- clustering (set to set-of-sets)
- This paper is about the vector to set mapping, useful for all these applications.
- Existing approaches suffer from **responsibility problem**. Explained at **FSPool** poster in this workshop!
- Compared to normal object detection methods:
 - -Anchor-free, fully end-to-end, no post-processing.

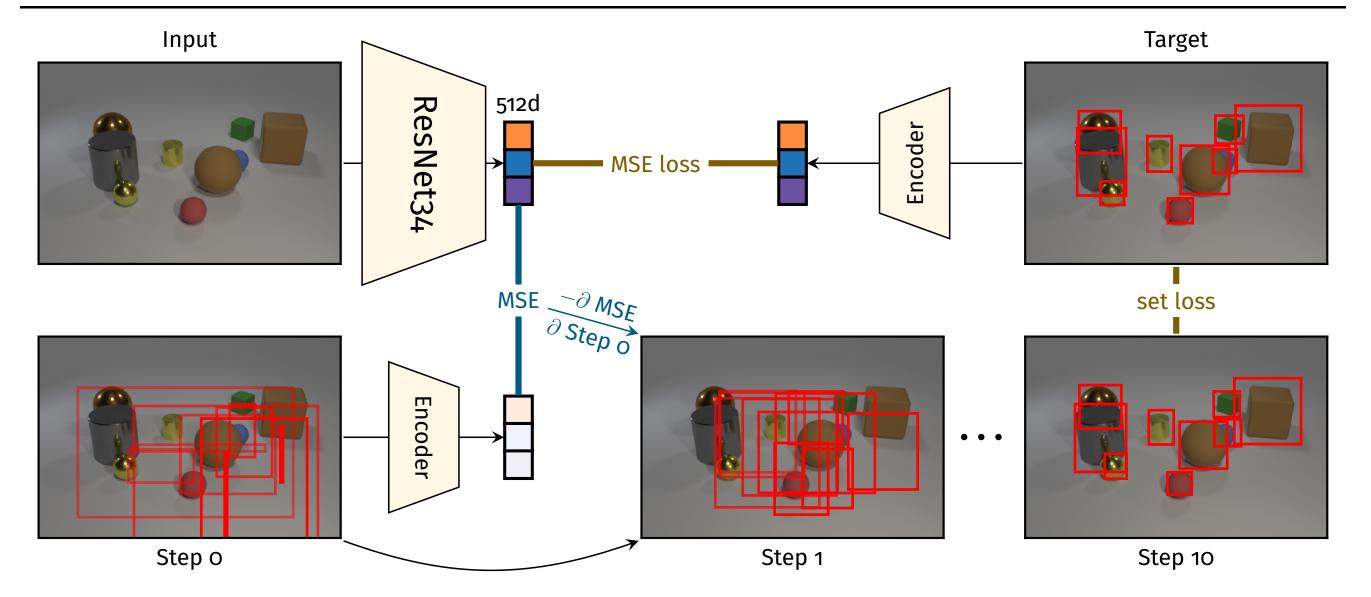



The idea

- To avoid responsibility problem, we want a model that has **unordered outputs**.
- Similar set inputs encode to similar feature vectors.
- *Different* set inputs encode to *different* feature vectors.
- > Minimise the difference between predicted and target set by minimising the difference between their feature vectors.

Algorithm for auto-encoding

- Start with "random" guess for our prediction.
 For a fixed number of steps:
- Encode current set and input set into feature vectors.
 Compute MSE between the two feature vectors.
 Gradient descent on MSE by changing current set.
- Train (shared) encoder weights by minimising the set loss, differentiating through the algorithm.
- Gradients of permutation-invariant functions are always permutation-equivariant.



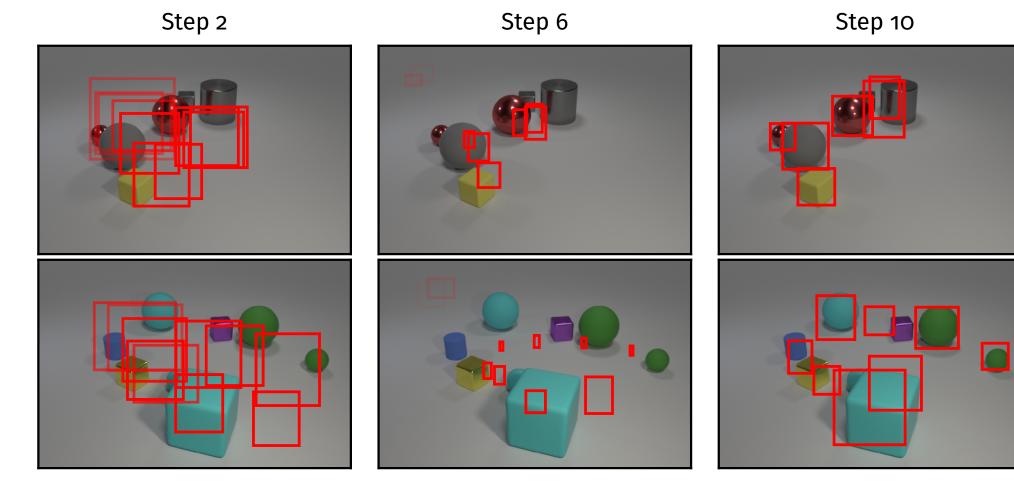
>All gradient updates \u00f6MSE/\u00f6set don't rely on the order of the set.

> Our model is completely **unordered**!

Bounding box prediction

Bounding box prediction	AP_{50}	AP ₉₀	AP ₉₅	AP ₉₈	AP ₉₉
MLP baseline	99.3±0.2	94.O _{±1.9}	57.9 ±7.9	0.7 ±0.2	0.0 ±0.0
RNN baseline	99.4 ±0.2	94.9 _{±2.0}	65.0 _{±10.3}	2.4 ±0.0	0.0 ±0.0
Ours (train 10 steps, eval 10 steps)	$98.8_{\pm 0.3}$	94.3±1.5	85.7 _{±3.0}	34.5 ±5.7	2.9 ±1.2
Ours (train 10 steps, eval 20 steps)	99.8 ±0.0	98.7 ±1.1	86.2 ±7.2	24.3 _{±8.0}	1.4 ±0.9
Ours (train 10 steps, eval 30 steps)	99.8 ±0.1	96.7 _{±2.4}	75.5±12.3	17.4 ±7.7	0.9 ±0.7

Object attribute prediction


Object attribute prediction	AP_∞	AP ₁	AP _{0.5}	AP _{0.25}	AP _{0.125}
MLP baseline	3.6 ±0.5	1.5 ±0.4	$\textbf{0.8}_{\pm \text{o.3}}$	0.2 ±0.1	0.0 ±0.0
RNN baseline	4.0 ±1.9	1.8 ±1.2	0.9 ±0.5	0.2 ±0.1	$\textbf{0.0}_{\pm\text{o.o}}$
Ours (train 10 steps, eval 10 steps)	$\textbf{72.8}_{\scriptscriptstyle \pm 2.3}$	$59.2_{\scriptscriptstyle \pm 2.8}$	39.O _{±4.4}	12.4 ±2.5	1.3 ±0.4
Ours (train 10 steps, eval 20 steps)	$84.0_{\pm 4.5}$	80.0 _{±4.9}	57.0 ±12.1	16.6 ±9.0	1.6 ±0.9
Ours (train 10 steps, eval 30 steps)	85.2 ±4.8	$\textbf{81.1}_{\pm 5.2}$	47.4 ±17.6	10.8 _{±9.0}	0.6 ±0.7

Input	Step 5	Step 10	Step 20
	x, y, z = (-0.14, 1.16, 3.57)	x, y, z = (-2.33, -2.41, 0.73)	x, y, z = (-2.33, -2.42, 0.78)
	large <mark>purple rubber sphere</mark>	large yellow metal cube	large yellow metal cube
	x, y, z = (0.01, 0.12, 3.42)	x, y, z = (-1.20, 1.27, 0.67)	x, y, z = (-1.21, 1.20, 0.65
	large <mark>gray metal cube</mark>	large purple rubber sphere	large purple rubber sphere
	x, y, z = (0.67, 0.65, 3.38)	x, y, z = (-0.96, 2.54, 0.36)	x, y, z = (-0.96, 2.59, 0.36)
	small <mark>purple metal cube</mark>	small gray rubber sphere	small gray rubber sphere
	x, y, z = (0.67, 1.14, 2.96)	x, y, z = (1.61, 1.57, 0.36)	x, y, z = (1.58, 1.62, 0.38)
	small purple rubber sphere	small <mark>yellow</mark> metal cube	small purple metal cube

- Simply replace input encoder with ConvNet image encoder.
- Add MSE loss to set loss when training the encoder and ResNet weights.

Step 20

- Forces minimisation of MSE to converge to something sensible.

Input	Step 5	Step 10	Step 20
	(0.22, 0.12, 3.47) small brown rubber cube	(-2.76, -1.42, 0.68) large blue metal cylinder	(-2.68, -1.64, 0.77) large blue metal cylinder
	(0.41, 0.11, 3.77) <mark>large gray metal</mark> cube	(-1.56, -0.61, 0.35) small blue rubber <mark>cylinder</mark>	(-2.43, 0.03, 0.34) small blue rubber cube
	(0.50, 0.44, 3.61) small <mark>gray</mark> rubber <mark>cube</mark>	(-1.08, 0.23, 0.33) small <mark>green</mark> rubber <mark>cube</mark>	(-1.00, 1.18, 0.33) small red rubber cylinder
	(0.83, 0.53, 3.45) small cyan rubber <mark>sphere</mark>	(-0.07, 0.97, 0.36) small <mark>green</mark> rubber cylinder	<mark>(0.21, -2.88, 0.40)</mark> small cyan rubber cylinder
	(0.86, 0.85, 3.50) small <mark>gray</mark> rubber <mark>sphere</mark>	(0.28, -2.44, 0.49) small <mark>cyan</mark> rubber <mark>cylinder</mark>	<mark>(-0.01, -1.00, 0.46)</mark> small green rubber cube
	(1.86, 2.34, 3.80) large gray metal cube	(1.36, -0.63, 0.38) small green rubber sphere	(0.99, 0.17, 0.37) small green rubber sphere
	(1.97, 0.55, 3.61) small green rubber sphere	(2.01, 3.07, 0.65) large gray metal cube	(1.97, 2.89, 0.39) large gray metal cube
		(2.69, 0.63, 0.34) small yellow rubber sphere	(2.87, 0.51, 0.25) small yellow rubber sphere