
Deep Set Prediction Networks
Yan Zhang, Jonathon Hare, Adam Prügel-Bennett

Deep Set Prediction Networks
Yan Zhang, Jonathon Hare, Adam Prügel-Bennett

To predict a set from a vector,

use gradient descent to find a set

that encodes to that vector.

Set prediction

•Predicting sets means:
– object detection (image to set of objects)
– 3d shape inference (image to set of 3d points)
– molecule generation (vector to set of nodes and edges)
– clustering (set to set-of-sets)
• This paper is about the vector to set mapping, useful for all
these applications.
• Existing approaches su�er from responsibility problem.
Explained at FSPool poster in this workshop!
•Compared to normal object detection methods:

– Anchor-free, fully end-to-end, no post-processing.

The idea

• To avoid responsibility problem, we want a model that has
unordered outputs.
• Similar set inputs encode to similar feature vectors.
•Di�erent set inputs encode to di�erent feature vectors.

> Minimise the di�erence between predicted and target set by
minimising the di�erence between their feature vectors.

Algorithm for auto-encoding

1. Start with “random” guess for our prediction.
2. For a fixed number of steps:

1. Encode current set and input set into feature vectors.
2. Compute MSE between the two feature vectors.
3. Gradient descent on MSE by changing current set.

• Train (shared) encoder weights by minimising the set loss, dif-
ferentiating through the algorithm.
•Gradients of permutation-invariant functions are always

permutation-equivariant.
> All gradient updates ∂MSE/∂set don’t rely on the order of

the set.
> Our model is completely unordered!

MSE MSE
Encoder

Encoder

Encoder

−∂ MSE
∂ Step 0

−∂ MSE
∂ Step 1

Step 0 Step 1 Step 2 Step 10

Input Target

set loss

. . .

MSE MSE

Encoder
Encoder

Encoder

−∂ MSE
∂ Step 0

−∂ MSE
∂ Step 1

Step 0 Step 1 Step 2 Step 10

Input Target

set loss

. . .

Bounding box prediction

Bounding box prediction AP50 AP90 AP95 AP98 AP99

MLP baseline 99.3±0.2 94.0±1.9 57.9±7.9 0.7±0.2 0.0±0.0

RNN baseline 99.4±0.2 94.9±2.0 65.0±10.3 2.4±0.0 0.0±0.0

Ours (train 10 steps, eval 10 steps) 98.8±0.3 94.3±1.5 85.7±3.0 34.5±5.7 2.9±1.2

Ours (train 10 steps, eval 20 steps) 99.8±0.0 98.7±1.1 86.2±7.2 24.3±8.0 1.4±0.9

Ours (train 10 steps, eval 30 steps) 99.8±0.1 96.7±2.4 75.5±12.3 17.4±7.7 0.9±0.7

512d

MSE

MSE loss

ResNet34
Encoder

En
co

de
r

−∂ MSE
∂ Step 0

Step 0 Step 1 Step 10

Input Target

set loss

. . .

• Simply replace input encoder with ConvNet image encoder.
•Add MSE loss to set loss when training the encoder and ResNet weights.

– Forces minimisation of MSE to converge to something sensible.
Step 2 Step 6 Step 10 Step 20

Object attribute prediction

Object attribute prediction AP∞ AP1 AP0.5 AP0.25 AP0.125

MLP baseline 3.6±0.5 1.5±0.4 0.8±0.3 0.2±0.1 0.0±0.0

RNN baseline 4.0±1.9 1.8±1.2 0.9±0.5 0.2±0.1 0.0±0.0

Ours (train 10 steps, eval 10 steps) 72.8±2.3 59.2±2.8 39.0±4.4 12.4±2.5 1.3±0.4

Ours (train 10 steps, eval 20 steps) 84.0±4.5 80.0±4.9 57.0±12.1 16.6±9.0 1.6±0.9

Ours (train 10 steps, eval 30 steps) 85.2±4.8 81.1±5.2 47.4±17.6 10.8±9.0 0.6±0.7

Input Step 5 Step 10 Step 20
x, y, z = (-0.14, 1.16, 3.57) x, y, z = (-2.33, -2.41, 0.73) x, y, z = (-2.33, -2.42, 0.78)

large purple rubber sphere large yellow metal cube large yellow metal cube

x, y, z = (0.01, 0.12, 3.42) x, y, z = (-1.20, 1.27, 0.67) x, y, z = (-1.21, 1.20, 0.65
large gray metal cube large purple rubber sphere large purple rubber sphere

x, y, z = (0.67, 0.65, 3.38) x, y, z = (-0.96, 2.54, 0.36) x, y, z = (-0.96, 2.59, 0.36)
small purple metal cube small gray rubber sphere small gray rubber sphere

x, y, z = (0.67, 1.14, 2.96) x, y, z = (1.61, 1.57, 0.36) x, y, z = (1.58, 1.62, 0.38)
small purple rubber sphere small yellow metal cube small purple metal cube

Input Step 5 Step 10 Step 20
(0.22, 0.12, 3.47) (-2.76, -1.42, 0.68) (-2.68, -1.64, 0.77)

small brown rubber cube large blue metal cylinder large blue metal cylinder

(0.41, 0.11, 3.77) (-1.56, -0.61, 0.35) (-2.43, 0.03, 0.34)
large gray metal cube small blue rubber cylinder small blue rubber cube

(0.50, 0.44, 3.61) (-1.08, 0.23, 0.33) (-1.00, 1.18, 0.33)
small gray rubber cube small green rubber cube small red rubber cylinder

(0.83, 0.53, 3.45) (-0.07, 0.97, 0.36) (0.21, -2.88, 0.40)
small cyan rubber sphere small green rubber cylinder small cyan rubber cylinder

(0.86, 0.85, 3.50) (0.28, -2.44, 0.49) (-0.01, -1.00, 0.46)
small gray rubber sphere small cyan rubber cylinder small green rubber cube

(1.86, 2.34, 3.80) (1.36, -0.63, 0.38) (0.99, 0.17, 0.37)
large gray metal cube small green rubber sphere small green rubber sphere

(1.97, 0.55, 3.61) (2.01, 3.07, 0.65) (1.97, 2.89, 0.39)
small green rubber sphere large gray metal cube large gray metal cube

(2.69, 0.63, 0.34) (2.87, 0.51, 0.25)
small yellow rubber sphere small yellow rubber sphere

Code and pre-trained models available at
https://github.com/Cyanogenoid/dspn

https://github.com/Cyanogenoid/dspn
https://github.com/Cyanogenoid/dspn

