
Fast Algorithms for Convolutional Neural Networks

Andrew Lavin

alavin@acm.org

Scott Gray

Nervana Systems

sgray@nervanasys.com

Abstract

Deep convolutional neural networks take GPU-days of

computation to train on large data sets. Pedestrian detec-

tion for self driving cars requires very low latency. Image

recognition for mobile phones is constrained by limited pro-

cessing resources. The success of convolutional neural net-

works in these situations is limited by how fast we can com-

pute them. Conventional FFT based convolution is fast for

large filters, but state of the art convolutional neural net-

works use small, 3 × 3 filters. We introduce a new class

of fast algorithms for convolutional neural networks using

Winograd’s minimal filtering algorithms. The algorithms

compute minimal complexity convolution over small tiles,

which makes them fast with small filters and small batch

sizes. We benchmark a GPU implementation of our al-

gorithm with the VGG network and show state of the art

throughput at batch sizes from 1 to 64.

1. Introduction

Deep convolutional neural networks (convnets) achieve

state of the art results on image recognition prob-

lems [12][8]. The networks take several days of GPU time

to train and require significant compute resources during

classification as well. Larger data sets and models lead to

better accuracy but also increase computation time. There-

fore progress in deep neural networks is limited by how fast

the networks can be computed.

Likewise the application of convnets to low latency in-

ference problems, such as pedestrian detection in self driv-

ing car video imagery, is limited by how fast a small set of

images, possibly a single image, can be classified.

Distributed training of convnets can be achieved by parti-

tioning each batch of examples across the nodes of a cluster

and accumulating weight updates across the nodes. A large

batch size adversely affects convergence of the network, so

the minimum batch size that can be computed efficiently

places an upper limit on cluster size [9, 7].

State of the art convnet architectures for image recogni-

tion use deep networks of 3 × 3 convolutional layers, be-

cause they achieve better accuracy with fewer weights than

shallow networks with larger filters [12, 8].

Therefore there is a strong need for fast convnet algo-

rithms for small batch sizes and small filters. However

conventional convnet libraries require large batch sizes and

large filters for fast operation.

This paper introduces a new class of fast algorithms for

convolutional neural networks based on the minimal filter-

ing algorithms discovered by Toom [14] and Cook [4] and

generalized by Winograd [16]. The algorithms can reduce

the arithmetic complexity of a convnet layer by up to a fac-

tor of 4 compared to direct convolution. Almost all of the

arithmetic is performed by dense matrix multiplies of suf-

ficient dimensions to be computed efficiently, even when

the batch size is very small. The memory requirements are

also light compared to the conventional FFT convolution

algorithm. These factors make practical implementations

possible. Our implementation for NVIDIA Maxwell GPUs

achieves state of the art throughput for all batch sizes mea-

sured, from 1 to 64, while using at most 16MB of workspace

memory.

2. Related Work

The FFT and convolution theorem have been used to re-

duce the arithmetic complexity of convnet layers, first by

Mathieu et al. [11], then refined by Vasilache et al. [15],

and then implemented in the NVIDIA cuDNN library [1].

The Strassen algorithm for fast matrix multiplica-

tion [13] was used by Cong and Xiao [3] to reduce the num-

ber of convolutions in a convnet layer, thereby reducing its

total arithmetic complexity. The authors also suggested that

more techniques from arithmetic complexity theory might

be applicable to convnets.

Various approaches have been attempted to reduce the

complexity of convnets by quantizing or otherwise approx-

imating the convolutional layer. We consider these ap-

proaches as orthogonal and complementary to those that ex-

ploit algebraic structure, and therefore declare them outside

the scope of this paper.

14013

3. Convolutional Neural Networks

A convnet layer correlates a bank of K filters with C
channels and size R × S against a minibatch of N images

with C channels and size H×W . We denote filter elements

as Gk,c,u,v and image elements as Di,c,x,y .

The computation of a single convnet layer output Yi,k,x,y

is given by the formula:

Yi,k,x,y =

C∑

c=1

R∑

v=1

S∑

u=1

Di,c,x+u,y+vGk,c,u,v (1)

and we can write the output of an entire image/filter pair as

Yi,k =

C∑

c=1

Di,c ∗Gk,c (2)

where ∗ denotes 2D correlation.

4. Fast Algorithms

It has been known since at least 1980 that the minimal

filtering algorithm for computing m outputs with an r-tap

FIR filter, which we call F (m, r), requires

µ(F (m, r)) = m+ r − 1 (3)

multiplications [16, p. 39]. Also, we can nest minimal 1D

algorithms F (m, r) and F (n, s) to form minimal 2D algo-

rithms for computing m × n outputs with an r × s filter,

which we call F (m× n, r × s). These require

µ(F (m× n, r × s)) = µ(F (m, r))µ(F (n, s))

= (m+ r − 1)(n+ s− 1)
(4)

multiplications [17]. We can continue to nest 1D algorithms

to form algorithms for multi-dimensional FIR filters.

It is interesting to note that in 1D, 2D, and multi-

dimensions, the minimal algorithm requires a number of

multiplications equal to the number of inputs. In other

words, to compute F (m, r) we must access an interval of

m + r − 1 data values, and to compute F (m × n, r × s)
we must access a tile of (m + r − 1) × (n + s − 1) data

values. Therefore the minimal filtering algorithm requires

one multiplication per input.

4.1. F(2x2,3x3)

The standard algorithm for F (2, 3) uses 2×3 = 6 multi-

plications. Winograd [16, p. 43] documented the following

minimal algorithm:

F (2, 3) =

[
d0 d1 d2
d1 d2 d3

]

g0
g1
g2


 =

[
m1 +m2 +m3

m2 −m3 −m4

]

(5)

where

m1 = (d0 − d2)g0

m4 = (d1 − d3)g2

m2 = (d1 + d2)
g0 + g1 + g2

2

m3 = (d2 − d1)
g0 − g1 + g2

2

This algorithm uses just 4 multiplications and is there-

fore minimal by the formula µ(F (2, 3)) = 2 + 3 − 1 = 4.

It also uses 4 additions involving the data, 3 additions and

2 multiplications by a constant involving the filter (the sum

g0 + g2 can be computed just once), and 4 additions to re-

duce the products to the final result.

Fast filtering algorithms can be written in matrix form

as:

Y = AT
[
(Gg)⊙ (BT d)

]
(6)

where ⊙ indicates element-wise multiplication. For

F (2, 3), the matrices are:

BT =




1 0 −1 0
0 1 1 0
0 −1 1 0
0 1 0 −1




G =




1 0 0
1
2

1
2

1
2

1
2 − 1

2
1
2

0 0 1




AT =

[
1 1 1 0
0 1 −1 −1

]

g =
[
g0 g1 g2

]T

d =
[
d0 d1 d2 d3

]T

(7)

A minimal 1D algorithm F (m, r) is nested with itself to

obtain a minimal 2D algorithm, F (m×m, r × r) like so:

Y = AT

[
[GgGT]⊙ [BT dB]

]
A (8)

where now g is an r × r filter and d is an (m + r − 1) ×
(m+r−1) image tile. The nesting technique can be gener-

alized for non-square filters and outputs, F (m × n, r × s),
by nesting an algorithm for F (m, r) with an algorithm for

F (n, s).
F (2×2, 3×3) uses 4×4 = 16 multiplications, whereas

the standard algorithm uses 2 × 2 × 3 × 3 = 36. This

is an arithmetic complexity reduction of 36
16 = 2.25. The

data transform uses 32 additions, the filter transform uses

28 floating point instructions, and the inverse transform uses

24 additions.

Algorithms for F (m×m, r× r) can be used to compute

convnet layers with r × r kernels. Each image channel is

divided into tiles of size (m+r−1)×(m+r−1), with r−
1 elements of overlap between neighboring tiles, yielding

4014

P = ⌈H/m⌉⌈W/m⌉ tiles per channel, C. F (m×m, r×r)
is then computed for each tile and filter combination in each

channel, and the results are summed over all channels.

Substituting U = GgGT and V = BT dB, we have:

Y = AT
[
U ⊙ V

]
A (9)

Labeling tile coordinates as (x̃, ỹ), we rewrite the con-

vnet layer formula (2) for a single image i, filter k, and tile

coordinate (x̃, ỹ) as:

Yi,k,x̃,ỹ =

C∑

c=1

Di,c,x̃,ỹ ∗Gk,c

=
C∑

c=1

AT

[
Uk,c ⊙ Vc,i,x̃,ỹ

]
A

= AT

[C∑

c=1

Uk,c ⊙ Vc,i,x̃,ỹ

]
A

(10)

Thus we can reduce over C channels in transform space,

and only then apply the inverse transform A to the sum.

This amortizes the cost of the inverse transform over the

number of channels.

We examine the sum

Mk,i,x̃,ỹ =

C∑

c=1

Uk,c ⊙ Vc,i,x̃,ỹ (11)

and simplify the notation by collapsing the image/tile coor-

dinates (i, x̃, ỹ) down to a single dimension, b. We also la-

bel each component of the element-wise multiplication sep-

arately, as (ξ, ν), yielding:

M
(ξ,ν)
k,b =

C∑

c=1

U
(ξ,ν)
k,c V

(ξ,ν)
c,b (12)

This equation is just a matrix multiplication, so we can

write:

M (ξ,ν) = U (ξ,ν)V (ξ,ν) (13)

Matrix multiply has efficient implementations on CPU,

GPU, and FPGA platforms, owing to its high computational

intensity. Thus we have arrived at the practical implemen-

tation for the fast algorithm listed in Algorithm 1.

Winograd documented a technique for generating the

minimal filtering algorithm F (m, r) for any choice of m
and r. The construction uses the Chinese remainder the-

orem to produce a minimal algorithm for linear convolu-

tion, which is equivalent to polynomial multiplication, then

transposes the linear convolution algorithm to yield a min-

imal filtering algorithm. The reader is referred to Wino-

grad’s seminal book [16], or Blahut’s book [2] for a mod-

ern treatment of the subject. We provide derivations of the

specific algorithms used in this paper in the supplementary

material.

Algorithm 1 Compute Convnet Layer with Winograd Min-

imal Filtering Algorithm F (m×m, r × r)

P = N⌈H/m⌉⌈W/m⌉ is the number of image tiles.

α = m+ r − 1 is the input tile size.

Neighboring tiles overlap by r − 1.

dc,b ∈ R
α×α is input tile b in channel c.

gk,c ∈ R
r×r is filter k in channel c.

G, BT , and AT are filter, data, and inverse transforms.

Yk,b ∈ R
m×m is output tile b in filter k.

for k = 0 to K do

for c = 0 to C do

u = Ggk,cG
T ∈ R

α×α

Scatter u to matrices U: U
(ξ,ν)
k,c = uξ,ν

for b = 0 to P do

for c = 0 to C do

v = BT dc,bB ∈ R
α×α

Scatter v to matrices V: V
(ξ,ν)
c,b = vξ,ν

for ξ = 0 to α do

for ν = 0 to α do

M (ξ,ν) = U (ξ,ν)V (ξ,ν)

for k = 0 to K do

for b = 0 to P do

Gather m from matrices M: mξ,ν = M
(ξ,ν)
k,b

Yk,b = ATmA

4.2. F(3x3,2x2)

Training a network using stochastic gradient descent re-

quires computation of the gradients with respect to the in-

puts and weights. For a convnet layer, the gradient with re-

spect to the inputs is a convolution of the next layer’s back-

propagated error, of dimension N × K × H × W , with a

flipped version of the layer’s R × S filters. Therefore it

can be computed using the same algorithm that is used for

forward propagation.

The gradient with respect to the weights is a convolution

of the layer inputs with the backpropagated errors, produc-

ing R×S outputs per filter and channel. Therefore we need

to compute the convolution F (R×S,H×W), which is im-

practical because H×W is much too large for our fast algo-

rithms. Instead we decompose this convolution into a direct

sum of smaller convolutions, for example F (3 × 3, 2 × 2).
Here the algorithm’s 4 × 4 tiles are overlapped by 2 pixels

in each dimension, and the 3 × 3 outputs are summed over

all tiles to form F (3× 3, H ×W).

4015

The transforms for F (3× 3, 2× 2) are given by:

BT =




1 0 −1 0
0 1 1 0
0 −1 1 0
0 −1 0 1




AT =




1 1 1 0
0 1 −1 0
0 1 1 1




, G =




1 0
1
2

1
2

1
2 − 1

2
0 1


 (14)

With (3+ 2− 1)2 = 16 multiplies versus direct convolu-

tion’s 3 × 3 × 2 × 2 = 36 multiplies, it achieves the same

36/16 = 2.25 arithmetic complexity reduction as the corre-

sponding forward propagation algorithm.

4.3. F(4x4,3x3)

A minimal algorithm for F (4, 3) has the form:

BT =




4 0 −5 0 1 0
0 −4 −4 1 1 0
0 4 −4 −1 1 0
0 −2 −1 2 1 0
0 2 −1 −2 1 0
0 4 0 −5 0 1




G =




1
4 0 0

− 1
6 − 1

6 − 1
6

− 1
6

1
6 − 1

6
1
24

1
12

1
6

1
24 − 1

12
1
6

0 0 1




AT =




1 1 1 1 1 0
0 1 −1 2 −2 0
0 1 1 4 4 0
0 1 −1 8 −8 1




(15)

The data transform uses 12 floating point instructions,

the filter transform uses 8, and the inverse transform uses

10.

Applying the nesting formula yields a minimal algorithm

for F (4 × 4, 3 × 3) that uses 6 × 6 = 36 multiplies, while

the standard algorithm uses 4× 4× 3× 3 = 144. This is an

arithmetic complexity reduction of 4.

The 2D data transform uses 12(6 + 6) = 144 floating

point instructions, the filter transform uses 8(3 + 6) = 72,

and the inverse transform uses 10(6 + 4) = 100.

The number of additions and constant multiplications

required by the minimal Winograd transforms increases

quadratically with the tile size [10, p. 211]. Thus for large

tiles, the complexity of the transforms will overwhelm any

savings in the number of multiplications.

The magnitude of the transform matrix elements also in-

creases with increasing tile size. This effectively reduces

the numeric accuracy of the computation, so that for large

tiles, the transforms cannot be computed accurately [16,

p. 28].

Convnets require surprisingly little numeric precision [5,

6]. This implies that we can sacrifice some numeric ac-

curacy in the filtering computation without affecting the

accuracy of the convnet. We examine the possibility of

F (6× 6, 3× 3) in the supplementary material.

4.4. Fast Fourier Transform

The Fast Fourier Transform (FFT) can be used to pro-

duce a tiled convolution algorithm that has the same form

as Algorithm 1. The main difference is that the trans-

form matrices are replaced with FFT and inverse FFT,

and point-wise multiplication of complex FFT components

yields cyclic convolution. Only m × n components of the

(m+ r− 1)× (n+ s− 1) cyclic convolution are valid, the

rest must be discarded, and the tiles must be overlapped by

r−1 and s−1 in order to recompute the discarded outputs.

This technique is referred to as overlap and save [2, p. 195].

The similarity of overlap and save to our approach makes

for an easy comparison. With FFT based convolution, the

multiply stage still uses 1 multiply per input, but now the

operands are complex numbers. Direct multiplication of

complex numbers requires 4 real multiplications. Thank-

fully, a couple of tricks reduce the complexity further.

The Fourier transform of a real signal has Hermitian

symmetry, which reduces the number of unique products in

each U⊙V by almost half. FFT based convnet implementa-

tions have exploited this property [11, 15]. Specifically, the

discrete Fourier transform of a α × α array of real values

can be represented with an array of α× (⌊α
2 ⌋+1) complex

values. Furthermore UHV H = (UV)H , so the products

of the missing values can be reconstructed simply by taking

the complex conjugate of the computed values. Thus the

multiply stage of the FFT convnet algorithm with tile size

α = m + r − 1 requires N⌈H
m
⌉⌈W

m
⌉CKα(⌊α

2 ⌋ + 1) com-

plex multiplications, or (⌊α
2 ⌋+1)/α complex multiplies per

input.

Using the standard algorithm for multiplying complex

numbers, this equals 4(⌊α
2 ⌋+ 1)/α > 2 real multiplies per

input.

Another technique, which to our knowledge has not been

used in convnets, is to use a fast algorithm to multiply com-

plex numbers with 3 real multiplications [16]:

(x0 + ix1)(y0 + iy1) = [x0y0 − x1y1, i(x0y1 + x1y0)]

= [ucva + uavc, i(uavc − ubvb)]

(16)

where

ua = x0

ub = x0 + x1

uc = x1 − x0

,

va = y0

vb = y1

vc = y0 + y1

(17)

4016

Tile
Winograd FFT

α′ β′ γ′ δ′ α′ β′, γ′, δ′

3 9.00 - - -

4 4.00 2.00 1.75 1.50

5 2.78 3.60 2.24 2.24

6 2.25 4.00 2.00 2.78

8 1.78 6.50 2.23 4.38 4.44 2.42

16 2.94 4.23

32 2.42 6.24

64 2.20 8.30

128 2.10 10.37

256 2.05 12.42

Table 1. Multiply (α′), data transform (β′), filter transform (γ′),

and inverse transform (δ′) normalized arithmetic complexity ver-

sus tile size, for both Winograd and FFT based convolution.

F(4x4,3x3) has tile size 6. Direct convolutions has tile size 3.

An FFT based convnet algorithm can incorporate this by

modifying the FFT transforms of the filter and data to output

the the real valued matrices (Ua, Ub, Uc) and (Va, Vb, Vc)
instead of the complex valued matrices U and V . This adds

2 floating point instructions per output to the filter trans-

form, and 1 to the data transform. It also increases the mem-

ory footprint of each matrix by half.

Then we can calculate M = UV using 3 calls to a stan-

dard real matrix multiply function (e.g. SGEMM):

T = UaVc

M1 = −UbVb + T,

M0 = UcVa + T

M = (M0, iM1)
(18)

The accumulation of temporary matrix T is performed

using regular SGEMM with β = 1 and C = T , at the cost

of adding 2 floating point instructions per output. We can

think of these instructions as adding to the inverse transform

cost. The temporary matrix T increases memory use by

half, so that the total workspace size is approximately twice

that of FFT based convolution with direct CGEMM.

Combining Hermitian symmetry with fast CGEMM

gives us a multiplication stage with 3(⌊α
2 ⌋ + 1)/α > 1.5

real multiplies per input. Recall that the multiply stage of

the Winograd algorithms is always 1 real multiply per in-

put. Thus even with fast CGEMM, FFT base convolution

must use a significantly larger tile size in order to rival the

arithmetic complexity of the Winograd algorithms.

For the FFT transform itself, we consider the split-radix

FFT algorithm, which is the minimal practical FFT algo-

rithm when N is a power of 2 [10, p. 150]. We assume the

2D FFT transform is constructed using row-column com-

position, and borrow the complexity figures from the DSP

Handbook [10, pp. 173,175] for Table 1.

Tile
FFT with Fast CGEMM

α′ β′ γ′ δ′

8 3.33 3.77 4.30 4.30

16 2.20 6.23 6.82 6.82

32 1.81 8.94 9.57 9.57

64 1.65 11.72 12.36 12.36

128 1.57 14.48 15.14 15.14

256 1.54 17.22 17.88 17.88

Table 2. Normalized arithmetic complexity for FFT filtering with

fast CGEMM. Fast CGEMM uses 3 real multiplies per complex

multiply instead of 4, but has slightly greater transform overhead

and uses more memory.

5. Arithmetic Complexity Analysis

In our model of fast convnets, the arithmetic complexity

of the multiplication stage is:

X = N⌈H/m⌉⌈W/n⌉CK(m+R− 1)(n+ S − 1) (19)

When m = n = 1, the formula equals the arithmetic

complexity of direct convolution. Therefore direct convolu-

tion is the minimal algorithm for F (1× 1, R× S)

Although our analysis employs minimal convolutions,

the convnet layer itself is still not minimal because it per-

forms more convolutions than are strictly necessary. We

could reduce the number of convolutions by employing

Strassen recursions as in [3], but each recursion reduces

all 3 dimensions of our matrices by half while providing

only an 8
7 reduction in arithmetic complexity. The matrix

multiplications cannot be computed efficiently if C or K
is too small. Fast convolution alone provides a 2.25 or

larger arithmetic complexity reduction while shrinking only

the largest dimension of the matrix, P . Still, for layers

with large C, K, and P , it may be worthwhile to perform

Strassen recursions in addition to fast convolution. We leave

this as an area for further research.

In order to simplify the equations, we will henceforth

assume that W/m and H/n have no remainders. We also

assume square filters and blocks, R = S and m = n.

The multiplication complexity can be rewritten as:

X = (m+R− 1)2/m2NHWCK

= α′NHWCK
(20)

where α = (m+R− 1)2 and α′ = α/m2

The total arithmetic complexities of the data, filter, and

inverse transforms can be written as:

T (D) = β/m2NHWC

T (F) = γCK

T (I) = δ/m2NHWK

(21)

4017

where β, γ, and δ are the number of floating point instruc-

tions used by the corresponding transforms for single tiles.

Dividing the complexity of each transform by X yields

its relative complexity:

T (D)/X = β/(Kα2) = β′/K

T (F)/X = γ/(NHWα2/m2)

= γ/(Pα2) = γ′/P

T (I)/X = δ/(Cα2) = δ′/C

(22)

We call β′, γ′, and δ′ the normalized arithmetic complex-

ities of the data, filter, and inverse transforms, respectively.

P = NHW/m2 is the number of tiles per channel.

Adding the terms for each stage gives the total arithmetic

complexity of the convnet layer:

L = α′(1 + β′/K + γ′/P + δ′/C)NHWCK (23)

In order to achieve a large speedup, the multiplication

complexity α′ must be as small as possible, and the trans-

form complexities β′, γ′, and δ′ must each be small com-

pared with K, P , and C, respectively.

For direct convolution, α′ = α2 = R2 and β′ = γ′ =
δ′ = 0. Therefore the maximum speedup of a fast algorithm

versus direct convolution is R2/α′.

We list the normalized transform complexity for differ-

ent tile sizes and algorithms in Tables 1 and 2. Due to its

similarity to our approach, FFT based convolution complex-

ity can also be measured with Equation 23.

FFT based convnet layers with direct CGEMM must use

tile size at least 64 × 64 to equal the multiplication stage

complexity of Winograd F (4× 4, 3× 3) and its 6× 6 tile,

but then it incurs much greater transform overhead. Also

a 64 × 64 tile will waste computation on many unwanted

pixels for images with sizes that are not close to a multiple

of 62 × 62. Even for moderate size layers, a moderate to

large minibatch must be used, or there will be too few tiles

to compute the CGEMM efficiently. Finally, the memory

used by a single transformed filter channel is 64 × 64 =
4096 units, which is a large expansion of the 3× 3 = 9 unit

filter. The 6x6 tile of F (4 × 4) expands the same filter to

6× 6 = 36 units.

FFT based convnet layers with fast CGEMM can be

much more competitive with Winograd algorithms. They

have multiplication stage parity with tile size 16, and rea-

sonable transform complexity. Also tile size 16 generates a

reasonably large number of tiles with large convnet layers

or moderate batch size.

Even with fast CGEMM, the larger tile size compared to

Winograd means FFT based convnet implementations must

have a large memory workspace to hold transformed data.

A decent amount of transformed data must be held in order

to amortize transform cost and to generate matrices with

large enough dimensions so that the multiply stage is effi-

cient. This is problematic for current GPUs, which have a

limited amount of on chip memory. CPUs have large caches

and might therefore compute FFT based convolution more

efficiently.

6. GPU Implementation

We implemented F (2× 2, 3× 3) for NVIDIA Maxwell

GPUs and tested on the NVIDIA Titan X model.

The small 4 × 4 tile size and light weight transforms of

F (2 × 2, 3 × 3) make possible a fused implementation of

the algorithm stages, where the the data and filter transform,

16 batched matrix multiplies (GEMMs), and inverse trans-

form are all computed in the same block. Another resource

limit is the instruction cache, which can only fit about 720

instructions. Our main loop is larger than this, but aligning

the start of the loop with the 128 byte instruction cache-line

boundary helps mitigate the cost of a cache miss.

The 16 batched GEMMs compute 32×32 outputs, which

enables us to fit the workspace in the registers and shared

memory of a single block and still have 2 active blocks per

SM for latency hiding. Zero padding is implicit through use

of predicates. If the predicate deselects a global image load,

the zero value is loaded with a dual issued I2I instruction.

Image data is stored in CHWN order to facilitate con-

tiguous and aligned memory loads, significantly reducing

over-fetch. We employ a “super blocking” strategy to load

32 tiles of size 4×4 from a configurable number of images,

rows, and columns. For N >= 32, we load tiles from 32

separate images. For N < 32, we load a super block of

X × Y = 32/N tiles per image. This strategy facilitates

efficient loads with small batch sizes, as the W ×N dimen-

sions of the input data are contiguous in memory. Further-

more, the 2 pixel overlap between adjacent tiles causes high

L1 cache hit rates when using several tiles in a super block.

We also employ L2 cache blocking to increase the re-use

of overlapping blocks. Since the number of image tiles is

typically much larger than the number of filters, our block

mapping iterates over a group of up to 128 filters in the inner

loop, and then iterates over all image tiles in the second

loop. All channels of the filter group fit in L2 cache, so

each filter will only be loaded once from DDR memory, and

each image tile will be loaded ⌈K/128⌉ times as we iterate

over the filter groups. This strategy reduces DDR memory

bandwidth by almost half.

We implemented a version of our kernel that loads fp16

data, which decreases global memory bandwidth. We also

implemented a variant that we call “FX” that runs a filter

transform kernel first and stores the result in a workspace

buffer. The convolution kernel loads transformed filter

values from the workspace as needed. The size of the

workspace is only 16KC units of memory, which equals

just 16MB when K = C = 512 and data is fp32.

4018

Layer Depth C ×H ×W K GFLOPs

conv 1.1 1 3× 224× 224 64 0.17
conv 1.2 1 64× 224× 224 64 3.70
conv 2.1 1 64× 112× 112 128 1.85
conv 2.2 1 128× 112× 112 128 3.70
conv 3.1 1 128× 56× 56 256 1.85
conv 3.2 3 256× 56× 56 256 11.10
conv 4.1 1 256× 28× 28 512 1.85
conv 4.2 3 512× 28× 28 512 11.10
conv 5 4 512× 14× 14 512 3.70

Total 39.02

Table 3. Convolution layers of VGG network E. All layers uses

3 × 3 filters. Depth indicates the number of times a given layer

shape occurs in the network. GFLOPs is weighted by depth and

assumes N=1.

7. Experiments

We ran accuracy and speed experiments with VGG Net-

work E [12]. This is a deep network that uses 3×3 filters ex-

clusively in the convolution layers, which are summarized

in Table 3.

We tested the accuracy of our fast algorithms with both

single precision (fp32) and half precision (fp16) data and

filters. In all tests we used fp32 arithmetic instructions. We

used random data and filters from the uniform distribution

[−1, 1] and measured absolute element error. Ground truth

was computed by direct convolution using a double preci-

sion accumulator for reductions.

We measured the speed of our GPU implementation of

F (2× 2, 3× 3) and compared with cuDNN v3 [1] on a su-

perclocked NVIDIA Titan X GPU. We disabled boost clock

and observed a maximum clock rate of 1126MHz. The

GPU has 3072 cores, yielding a device peak throughput of

2× 3072× 1126 = 6.96 TFLOPS.

Speed for a given layer was calculated by dividing the

number of GFLOPs of computation required by direct con-

volution, as tabulated in 3, by the run time in milliseconds to

yield Effective TFLOPS. The reduction of arithmetic com-

plexity allows fast algorithms to have Effective TFLOPS

that can exceed device peak throughput.

Total GFLOPs and run time were calculated by weight-

ing the GFLOPs and run time for each layer by its depth,

and total throughput was calculated as the ratio of the two.

8. Results

Table 4 shows the numeric accuracy of the different con-

volution layer algorithms tested with single precision (fp32)

and half precision (fp16) input data and filters.

F (2 × 2, 3 × 3) is actually slightly more accurate than

direct convolution. Its simple transforms do not lose much

precision, and its multiplication stage performs a reduction

over C channels, rather than the RSC filter elements re-

duced by direct convolution. F (4 × 4, 3 × 3) has a larger

error, but it is still more accurate than direct convolution

with fp16 data.

All tested algorithms are equally accurate with fp16 data.

Here accuracy is limited by the precision of the inputs. Be-

cause direct convolution is accurate enough for training and

inference with low precision data [5, 6], we conclude that

F (4× 4, 3× 3) is too.

Table 5 and Table 6 show the total throughput for VGG

Network E layers for cuDNN and our F (2×2, 3×3) imple-

mentation for fp32 and fp16 data for different batch sizes.

For fp32 data, F (2 × 2, 3 × 3) is 1.48X at N = 64 and

2.26X as fast at N = 1. The throughput at N = 16 is 9.49
TFLOPS. For fp16 data, F (2×2, 3×3) extends its lead over

cuDNN, recording 10.28 TFLOPS throughput for N = 64.

N = 8 performance is still very good at 9.57 TFLOPS.

Figure 1 shows throughput by layer. Hatch marks indi-

cate the layers where cuDNN used the FFT algorithm, oth-

erwise direct convolution was used. For F (2 × 2, 3 × 3),
hatch marks indicate that the external filter transform (FX)

was used, otherwise the fused transform was faster.

cuDNN’s FFT algorithm performs poorly for intermedi-

ate values of N , under 2 TFLOPS. This suggests that the

FFT convolution implementation either uses large tiles, or

possibly just a single tile per image, as in [15], which leads

to inefficient multiplication stages unless N is large. At

large N , cuDNN FFT performs much better, but stays well

under 8 TFLOPS.

F (2×2, 3×3) performs better than cuDNN at every layer

and batch size, except layer conv1.1, which contributes less

than 0.5% of the total network computation.

In general, we found that the FX variant of our imple-

mentation performed best unless the number of filters and

channels was very large. Computing the filter transform is

heavily memory bound, therefore transforming a larger fil-

ter bank decreases computational efficiency.

The worst F (2 × 2, 3 × 3) performance occurs for the

14×14 layers when N = 1. In this case the 8×4 superblock

runs over the image boundary and computes unwanted pix-

els. Throughput on this layer configuration is still over 5
TFLOPS, where cuDNN performance is just 1.6 TFLOPS.

cuDNN FFT uses a global memory workspace up to 2.6
GB in our experiments. By contrast, our fused F (2×2, 3×
3) implementation does not use any global workspace, and

the FX variant uses no more than 16 MB.

9. Conclusion

We introduced a new class of fast algorithms for convo-

lutional neural networks based on Winograd’s minimial fil-

tering algorithms. These algorithms excel with small filters

and minibatches due to the fact that they compute minimal

4019

Layer
fp32

fp16
Direct F(2x2,3x3) F(4x4,3x3)

1.2 4.01E-05 1.53E-05 2.84E-04 1.14E-02

2.2 8.01E-05 2.86E-05 5.41E-04 1.45E-02

3.2 1.53E-04 5.34E-05 9.06E-04 1.99E-02

4.2 3.20E-04 5.34E-05 1.04E-03 3.17E-02

5 3.43E-04 4.20E-05 1.08E-03 2.61E-02

Table 4. Maximum element error on VGG network layers. With

fp32 data, F (2×2, 3×3) is more accurate than direct convolution.

With fp16 data, all algorithms are equally accurate.

N
cuDNN F(2x2,3x3)

Speedup
msec TFLOPS msec TFLOPS

1 12.52 3.12 5.55 7.03 2.26X

2 20.36 3.83 9.89 7.89 2.06X

4 104.70 1.49 17.72 8.81 5.91X

8 241.21 1.29 33.11 9.43 7.28X

16 203.09 3.07 65.79 9.49 3.09X

32 237.05 5.27 132.36 9.43 1.79X

64 394.05 6.34 266.48 9.37 1.48X

Table 5. cuDNN versus F (2 × 2, 3 × 3) performance on VGG

Network E with fp32 data. Throughput is measured in Effective

TFLOPS, the ratio of direct algorithm GFLOPs to run time.

N
cuDNN F(2x2,3x3)

Speedup
msec TFLOPS msec TFLOPS

1 14.58 2.68 5.53 7.06 2.64X

2 20.94 3.73 9.83 7.94 2.13X

4 104.19 1.50 17.50 8.92 5.95X

8 241.87 1.29 32.61 9.57 7.42X

16 204.01 3.06 62.93 9.92 3.24X

32 236.13 5.29 123.12 10.14 1.92X

64 395.93 6.31 242.98 10.28 1.63X

Table 6. cuDNN versus F (2 × 2, 3 × 3) performance on VGG

Network E with fp16 data.

arithmetic complexity convolution over small tiles of the in-

put data. The use of small tiles also reduces the size of the

algorithm workspace, which can lead to more efficient im-

plementations. For these reasons, our GPU implementation

of the F (2 × 2, 3 × 3) Winograd algorithm is faster than

NVIDIA cuDNN v3 FFT on all layers of the VGG network

and batch sizes 1 to 64. We expect to increase performance

again when F (4× 4, 3× 3) is implemented.

Implementations of our algorithms are available as

open source in the Neon machine learning framework at

https://github.com/NervanaSystems/neon

0
2
4
6
8

10
12

vgg.conv1.1

0
2
4
6
8

10
12

vgg.conv1.2

0
2
4
6
8

10
12

vgg.conv2.1

0
2
4
6
8

10
12

vgg.conv2.2

0
2
4
6
8

10
12

E
ff
e
ct
iv
e
 T
FL
O
P
S

vgg.conv3.1

0
2
4
6
8

10
12

vgg.conv3.2

0
2
4
6
8

10
12

vgg.conv4.1

0
2
4
6
8

10
12

vgg.conv4.2

1 2 4 8 16 32 64

Batch Size

0
2
4
6
8

10
12

vgg.conv5

cuDNN

cuDNN FFT

cudNN fp16

cudNN FFT fp16

F(2x2,3x3)

F(2x2,3x3) FX

F(2x2,3x3) fp16

F(2x2,3x3) FX fp16

Figure 1. VGG net Effective TFLOPS vs. batch size for cuDNN

and F (2× 2, 3× 3) on a 6.96 TFLOPS NVIDIA Titan X GPU.

4020

References

[1] cuDNN. https://developer.nvidia.com/

cudnn. Accessed: 2015-11-01. 1, 7

[2] Richard E Blahut. Fast algorithms for signal process-

ing. Cambridge University Press, 2010. 3, 4

[3] Jason Cong and Bingjun Xiao. Minimizing compu-

tation in convolutional neural networks. In Artifi-

cial Neural Networks and Machine Learning–ICANN

2014, pages 281–290. Springer, 2014. 1, 5

[4] SA Cook. On the minimum computation time for mul-

tiplication. Doctoral diss., Harvard U., Cambridge,

Mass, 1966. 1

[5] Matthieu Courbariaux, Yoshua Bengio, and Jean-

Pierre David. Low precision arithmetic for deep learn-

ing. CoRR, abs/1412.7024, 2014. 4, 7

[6] Suyog Gupta, Ankur Agrawal, Kailash Gopalakr-

ishnan, and Pritish Narayanan. Deep learning

with limited numerical precision. arXiv preprint

arXiv:1502.02551, 2015. 4, 7

[7] Suyog Gupta, Wei Zhang, and Josh Milthrope. Model

accuracy and runtime tradeoff in distributed deep

learning. arXiv preprint arXiv:1509.04210, 2015. 1

[8] Sergey Ioffe and Christian Szegedy. Batch nor-

malization: Accelerating deep network training by

reducing internal covariate shift. arXiv preprint

arXiv:1502.03167, 2015. 1

[9] Alex Krizhevsky. One weird trick for paralleliz-

ing convolutional neural networks. arXiv preprint

arXiv:1404.5997, 2014. 1

[10] V. Madisetti. The Digital Signal Processing Hand-

book. Number v. 2 in Electrical engineering handbook

series. CRC, 2010. 4, 5

[11] Michaël Mathieu, Mikael Henaff, and Yann LeCun.

Fast training of convolutional networks through ffts.

CoRR, abs/1312.5851, 2013. 1, 4

[12] Karen Simonyan and Andrew Zisserman. Very deep

convolutional networks for large-scale image recogni-

tion. arXiv preprint arXiv:1409.1556, 2014. 1, 7

[13] Volker Strassen. Gaussian elimination is not optimal.

Numerische Mathematik, 13(4):354–356, 1969. 1

[14] Andrei L Toom. The complexity of a scheme of func-

tional elements realizing the multiplication of integers.

In Soviet Mathematics Doklady, volume 3, pages 714–

716, 1963. 1

[15] Nicolas Vasilache, Jeff Johnson, Michaël Mathieu,

Soumith Chintala, Serkan Piantino, and Yann LeCun.

Fast convolutional nets with fbfft: A GPU perfor-

mance evaluation. CoRR, abs/1412.7580, 2014. 1,

4, 7

[16] Shmuel Winograd. Arithmetic complexity of computa-

tions, volume 33. Siam, 1980. 1, 2, 3, 4

[17] Shmuel Winograd. On multiplication of polynomials

modulo a polynomial. SIAM Journal on Computing,

9(2):225–229, 1980. 2

4021

https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn

