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ABSTRACT

Spoken language understanding (SLU) is a core component of a spo-
ken dialogue system, which involves intent prediction and slot filling
and also called semantic frame parsing. Recently recurrent neural
networks (RNN) obtained strong results on SLU due to their superior
ability of preserving sequential information over time. Traditionally,
the SLU component parses semantic frames for utterances consid-
ering their flat structures, as the underlying RNN structure is a lin-
ear chain. However, natural language exhibits linguistic properties
that provide rich, structured information for better understanding.
This paper proposes to apply knowledge-guided structural attention
networks (K-SAN), which additionally incorporate non-flat network
topologies guided by prior knowledge, to a language understanding
task. The model can effectively figure out the salient substructures
that are essential to parse the given utterance into its semantic frame
with an attention mechanism, where two types of knowledge, syntax
and semantics, are utilized. The experiments on the benchmark Air
Travel Information System (ATIS) data and the conversational as-
sistant Cortana data show that 1) the proposed K-SAN models with
syntax or semantics outperform the state-of-the-art neural network
based results, and 2) the improvement for joint semantic frame pars-
ing is more significant, because the structured information provides
rich cues for sentence-level understanding, where intent prediction
and slot filling can be mutually improved.

Index Terms— Spoken language understanding, joint semantic
frame parsing, knowledge-guided structural attention networks, deep
learning, spoken dialogue system

1. INTRODUCTION

In the past decade, goal-oriented spoken dialogue systems (SDS),
such as the virtual personal assistants Microsoft’s Cortana and Ap-
ple’s Siri, are being incorporated in various devices and allow users
to speak to systems in order to finish tasks more efficiently. A key
component of these conversational systems is the spoken language
understanding (SLU) module-it refers to the targeted understanding
of human speech directed at machines [1]. The goal of SLU is to
convert the recognized user speech into a task-specific semantic rep-
resentation of the user’s intention, at each turn, that aligns with the
back-end knowledge and action sources for task completion. The
dialogue manager then interprets the semantics of the user’s request
and associated back-end results, and decides the most appropriate
system action.

A typical pipeline of SLU includes: domain classification, in-
tent determination, and slot filling [1], where the SLU module first
decides the domain of user’s request given the input utterance, and

W tell vivian to be quiet
↓ ↓ ↓ ↓ ↓

S O B-contact name O B-message I-message
D communication
I send text

Fig. 1. An example utterance annotated with its semantic slots in the
IOB format (S), domain (D), and intent (I).

based on the domain, predicts the intent and fills associated slots
corresponding to a domain-specific semantic template. For example,
Figure 1 shows a user utterance, “tell vivian to be quiet” and its se-
mantic frame, send text(contact name=“vivian”, message=“be
quiet”) that can be executed in the communication domain. In this
example, it is easy to see the relationship between the receiver and
the message, although these do not appear next to each other in the
sentence. Traditionally, domain detection and intent prediction are
framed as utterance classification problems, where several classi-
fiers such as support vector machines and maximum entropy are em-
ployed [2, 3, 4]. Then slot filling is framed as a word sequence tag-
ging task, where the IOB (in-out-begin) format is applied for repre-
senting slot tags as illustrated in Figure 1, and hidden Markov mod-
els (HMM) or conditional random fields (CRF) have been employed
for slot tagging [5, 6, 7].

With the advances on deep learning, neural network based ap-
proaches have been applied to domain and intent classification [8,
9, 10]. Recently, Ravuri and Stolcke proposed an RNN architec-
ture for intent determination [11]. For slot filling, deep learning has
been viewed as a feature generator and the neural architecture can
be merged with CRFs [12, 13]. Yao et al. and Mesnil et al. later
employed RNNs for sequence labeling in order to perform slot fill-
ing [14, 15]. However, such pipelining of tasks results in transfer of
errors from one task to the following tasks. Hakkani-Tür proposed
an RNN architecture that incorporates both intent prediction and slot
filling so that the information can be mutually enhanced [16]. Nev-
ertheless, the above studies benefit from large training data without
leveraging any existing knowledge. When tagging sequences RNNs
consider them as flat structures, with their underlying linear chain
structures, potentially ignoring the structured information typical of
natural language sequences.

Hierarchical structures and semantic relationships contain lin-
guistic characteristics of input word sequences forming sentences,
and such information may help interpret their meaning. Further-
more, prior knowledge would help in the tagging of sequences, espe-
cially when dealing with previously unseen sequences. Prior work
exploited external web-scaled knowledge graphs such as Freebase



and Wikipedia for improving SLU [17, 18, 4, 19], Liu et al. and
Chen et al. proposed approaches that leverage linguistic knowledge
encoded in parse trees for language understanding, where the ex-
tracted syntactic structural features and semantic dependency fea-
tures enhance inference model learning, and the model achieves bet-
ter understanding performance in various domains [20, 21]. Even
with the emerging paradigm of integrating deep learning and lin-
guistic knowledge for different NLP tasks [22], most of the previous
work utilized such linguistic knowledge and knowledge bases as ad-
ditional features as input to neural networks, and then learned the
models for tagging sequences. These feature enrichment based ap-
proaches have some possible limitations: 1) poor generalization and
2) error propagation. Poor generalization comes from the mismatch
between knowledge bases and the input data, and then the incorrectly
extracted features due to errors in previous processing propagate er-
rors to the neural models.

This paper focuses on leveraging the benefits from both 1) joint
semantic frame parsing and 2) prior linguistic knowledge. This
paper proposes to apply knowledge-guided structural attention net-
works, K-SAN [23], to automatically learn the attention guided by
external or prior knowledge and generate sentence-based representa-
tions specifically for joint semantic frame parsing, where two types
of prior knowledge are investigated. The main difference between
K-SAN and previous approaches is that knowledge plays the role of
a teacher to guide networks where and how much to focus attention
considering the whole linguistic structure simultaneously. Our main
contributions are three-fold:

• Joint end-to-end learning
To our knowledge, this is the first neural network approach
that utilizes general knowledge as guidance in an end-to-end
fashion for a joint task, where the model automatically learns
important substructures with an attention mechanism and
considers intent prediction and slot filling simultaneously.

• Investigation of different knowledge
Different types of knowledge are employed in the model, and
the analysis can guide the future research directions.

• Efficiency and parallelizability
Because the knowledge-guided substructures from the input
utterance are modeled separately, modeling time may not in-
crease linearly with respect to the number of words in the
input sentence.

2. RELATED WORK

Knowledge-Based Representation There is an emerging trend
of learning representations at different levels, such as word em-
beddings [24], character embeddings [25], and sentence embed-
dings [26, 27]. In addition to fully unsupervised embedding learn-
ing, knowledge bases have been widely utilized to learn entity
embeddings with specific functions or relations [28, 29]. This paper
focuses on leveraging substructure embeddings for joint semantic
frame parsing.

Recently linguistic structures are taken into account in the
deep learning framework. Ma et al. and Tai et al. both proposed
dependency-based approaches to combine deep learning and lin-
guistic structures, where the model used tree-based n-grams instead
of surface ones to capture knowledge-guided relations for sentence
modeling and classification [30, 31]. Roth and Lapata utilized lex-
icalized dependency paths to learn embedding representations for
semantic role labeling [32]. However, the performance of these

approaches highly depends on the quality of “whole” sentence pars-
ing, and there is no control of degree of attentions on different
substructures. Learning robust representations incorporating whole
structures still remains unsolved.

Neural Attention and Memory Model The earliest work with a
memory component applied to language processing is memory net-
works [33, 34], which encode facts into vectors and store them in
the memory for question answering (QA). Following their success,
Xiong proposed dynamic memory networks (DMN) to additionally
capture position and temporality of transitive reasoning steps for dif-
ferent QA tasks [35]. The idea is to encode important knowledge and
store it into memory for future usage with attention mechanisms. At-
tention mechanisms allow neural network models to selectively pay
attention to specific parts. There are also various tasks showing the
effectiveness of attention mechanisms [36].

However, most previous work focused on the classification or
prediction tasks (predicting a single word given a question), and
there are few studies for SLU tasks (slot tagging). Based on the fact
that the linguistic or knowledge-based substructures can be treated as
prior knowledge to benefit language understanding, this work bor-
rows the idea from memory models to improve SLU. Unlike the
prior SLU work that utilized representations learned from knowl-
edge bases to enrich features of the current sentence, this paper di-
rectly learns a sentence representation incorporating memorized sub-
structures with an automatically decided attention mechanism in an
end-to-end manner.

3. KNOWLEDGE-GUIDED STRUCTURAL ATTENTION
NETWORKS (K-SAN)

For the SLU task, given an utterance with a sequence of words/tokens
~s = w1, ..., wT , our model is to predict corresponding seman-
tic frame including an intent and associated slots. The whole
semantic frame is formulated into a semantic tag sequence ~y =
y1, ..., yT , yT+1, where yT+1 denotes the intent label and y1, ..., yT
represent the slot tags associated with ~s [16]. The proposed model is
to predict the semantic frame ~y given a word sequence ~s with incor-
poration of knowledge-guided structures, which is composed of a
knowledge encoding module and a RNN tagging module. The frame-
work of knowledge-guided structural attention networks (K-SAN)
is illustrated in Figure 2 [23].

The knowledge encoding module first leverages external knowl-
edge to generate a linguistic structure for the utterance, where a dis-
crete set of knowledge-guided substructures {xi} is encoded into a
set of vector representations (§ 3.1). The model learns the represen-
tation for the whole sentence by paying different attention on the
substructures. Then the input vector and the structural vector are en-
coded together into a knowledge-guided representation, and then is
utilized to improve the semantic tagger (§ 5). The whole architec-
ture is trained in an end-to-end setting, where the final objective is to
maximize the tagging performance.

3.1. Knowledge Encoding Module

The model embeds all knowledge-guided substructures into a contin-
uous space and stores embeddings of all x’s in the knowledge mem-
ory. The representation of the input utterance is then compared with
encoded knowledge representations to integrate the carried struc-
ture guided by knowledge via an attention mechanism. Then the
knowledge-guided representation of the sentence is taken together
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Fig. 2. The illustration of knowledge-guided structural attention networks (K-SAN) for joint semantic frame parsing.

with the word sequence for estimating the semantic tags. Four main
procedures are described below.

Encoded Knowledge Representation To store the knowledge-
guided structure, we convert each substructure within the utterance,
xi, into a structure vector mi with dimension d by embedding the
substructure in a continuous space through the knowledge encoding
module CNNkg. The construction procedure of knowledge-guided
substructures is detailed in § 4. The input utterance s is also em-
bedded to a vector u with the same dimension through the encoder
CNNin.

mi = CNNkg(xi), (1)
u = CNNin(s). (2)

We apply convolutional neural networks (CNN) with a window size
3 and a max-pooling operation for knowledge encoding models,
CNNkg and CNNin, in order to model multiple words from a sub-
structure xi or an input sentence s into a vector representation. For
example, we assume that one of substructures associated with the
utterance “tell vivian to be quiet” is “tell quiet vivian”. Figure 3
illustrates the procedure for encoding knowledge-guided substruc-
tures into a vector embedding. In the experiments, the weights of
CNNkg and CNNin are tied together during optimization.

Knowledge Attention Distribution In the embedding space, we
compute the match between the current utterance vector u and its
substructure vector mi by taking their inner product followed by a
softmax.

pi = softmax(uTmi), (3)
where softmax(zi) = ezi/

∑
j e

zj and pi can be viewed as atten-
tion distribution for modeling important substructures from external
knowledge in order to understand the current utterance.

Sentence Representation In order to encode the knowledge-guided
structure, a vector h is a sum over the encoded knowledge embed-
dings weighted by the attention distribution.

h =
∑
i

pimi, (4)

tell
quiet
vivian

BOS

EOS

convolutional layer max pooling

Fig. 3. The illustration of CNN knowledge encoder on a knowledge-
guided substructure “tell quiet vivian”.

which indicates that the sentence pays different attention to different
substructures guided from external knowledge. Because the function
from input to output is smooth, we can easily compute gradients
and back propagate through it. Then the sum of the substructure
vector h and the current input embedding u are then passed through a
neural network model Mout to generate an output knowledge-guided
representation o.

o =Mout(h+ u), (5)

where we employ a fully-connected dense network for Mout.

3.2. RNN Tagging Module

To estimate the tag sequence ~y corresponding to an input word se-
quence ~s, we use an RNN module for training a slot tagger, where
the knowledge-guided representation o is fed into the input of the
model in order to incorporate the structure information. The detail is
presented in § 5.

~y = RNN(o,~s) (6)
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4. KNOWLEDGE-GUIDED STRUCTURE CONSTRUCTION

The prior knowledge obtained from external resources, such as de-
pendency relations, knowledge bases, etc., provides richer informa-
tion to help decide the semantic tags given an input utterance. The
top-left component of Figure 2 illustrates the procedure for model-
ing knowledge-guided substructures. Two types of main linguistic
properties, syntax and semantics, are applied in the K-SAN model.

4.1. Syntax: Dependency Parsing Tree

The dependency relation is the basic syntactic information for
knowledge encoding. Several prior studies demonstrated the ef-
fectiveness of such knowledge for better understanding. The input
utterance is parsed by a dependency parser, and the substructures
are built according to the paths from the root to all leaves [37]. For
example, the dependency parsing of the utterance “show me the
flights from seattle to san francisco” is shown in Figure 4(a), where
the associated substructures are obtained from the parsing tree for
knowledge encoding. Here we only utilize the dependency relations
without their labels in the experiments. Note that the number of
substructures may be less than the number of words in the utterance,
because non-leaf nodes do not have corresponding substructure in
order to reduce the duplicated information in the model.

4.2. Semantics: Abstract Meaning Representation (AMR)

Abstract Meaning Representation (AMR) is a semantic formalism
in which the meaning of a sentence is encoded as a rooted, directed,
acyclic graph [38], where nodes represent concepts, and labeled di-
rected edges represent the relations between two concepts. The for-
malism is based on propositional logic and neo-Davidsonian event
representations [39, 40]. The semantic concepts in AMR were lever-
aged to benefit multiple NLP tasks [41]. Figure 4(b) shows an AMR
graph associated with the same example utterance.

5. RECURRENT NEURAL NETWORK TAGGER

5.1. Chain-Based RNN Tagger

Given ~s = w1, ..., wT , the model is to predict ~y = y1, ..., yT where
the tag yi is aligned with the word wi. We use the Elman RNN ar-
chitecture, consisting of an input layer, a hidden layer, and an output
layer [42]. The input, hidden and output layers consist of a set of
neurons representing the input, hidden, and output at each time step
t, wt, ht, and yt, respectively.

ht = φ(Wwt + Uht−1), (7)
ŷt = softmax(V ht), (8)

where φ is a smooth bounded function such as tanh, and ŷt is the
probability distribution over semantic tags given the current hidden
state ht. The sequence probability can be formulated as

p(~y | ~s) = p(~y | w1, ..., wT ) =
∏
i

p(yi | w1, ..., wi). (9)

The model can be trained using backpropagation to maximize the
conditional likelihood of the training set labels.

To overcome the frequent vanishing gradients issue when mod-
eling long-term dependencies, gated RNN was designed to use
a more sophisticated activation function than a usual activation
function, consisting of affine transformation followed by a sim-
ple element-wise nonlinearity by using gating units [43], such
as long short-term memory (LSTM) and gated recurrent unit
(GRU) [44, 45]. RNNs employing either of these recurrent units
have been shown to perform well in tasks that require capturing
long-term dependencies [15, 46, 47, 48]. In this paper, we mainly
use RNN with GRU cells to allow each recurrent unit to adaptively
capture dependencies of different time scales [45, 43], because
RNN-GRU can yield comparable performance as RNN-LSTM with
fewer parameters and less data for generalization [43]

A GRU has two gates, a reset gate r, and an update gate z [45,
43]. The reset gate determines the combination between the new
input and the previous memory, and the update gate decides how
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much the unit updates its activation, or content.

r = σ(W rwt + Urht−1), (10)
z = σ(W zwt + Uzht−1), (11)

where σ is a logistic sigmoid function, W r and Ur are the matrices
corresponding to the reset gate, and W z and Uz are the matrices
corresponding to the update gate.

Then the final activation of the GRU at time t, ht, is a linear
interpolation between the previous activation ht−1 and the candidate
activation h̃t:

ht = (1− z)� h̃t + z � ht−1, (12)

h̃t = φ(Whwt + Uh(ht−1 � r))), (13)

where � is an element-wise multiplication, and Wh and Uh are the
weight matrices. When the reset gate is off, it effectively makes
the unit act as if it is reading the first symbol of an input sequence,
allowing it to forget the previously computed state. Then ŷt can be
computed by (8).

5.2. Knowledge-Guided RNN Tagger

In order to model the encoded knowledge from previous turns, for
each time step t, the knowledge-guided sentence representation o in
(5) is fed into the RNN model together with the word wt. For the
plain RNN, the hidden layer can be formulated as

ht = φ(Mo+Wwt + Uht−1) (14)

to replace (7) as illustrated in the right block of Figure 2. RNN-GRU
can incorporate the encoded knowledge in the similar way, where
Mo can be added into gating mechanisms for modeling contextual
knowledge similarly.

5.3. Joint RNN Tagger

Because the chain-based tagger and the knowledge-guided tagger
carry different information, the joint RNN tagger is proposed to bal-
ance the information between two model architectures. Figure 5
presents the architecture of the joint RNN tagger.

h1
t = φ(W 1wt + U1ht−1), (15)
h2
t = φ(Mo+W 2wt + U2ht−1), (16)
ŷt = softmax(V (αh1

t + (1− α)h2
t )), (17)

Table 1. The statistics of datasets

Dataset Train Dev Test #Intent #Slot
Small Medium Large

ATIS 129 515 4,478 500 893 17 79
Cortana 230 1,148 10,479 1,000 2,300 25 20

where α is the weight for balancing chain-based and knowledge-
guided information. By jointly considering chain-based information
(h1

t ) and knowledge-guided information (h2
t ), the joint RNN tag-

ger is expected to achieve better generalization, and the performance
may be less sensitive to poor structures from external knowledge.
In the experiments, α is set to 0.5 for balancing two sides. Other
model parameters are trained by maximizing the sequence probabil-
ity p(~y | ~s) in (9).

6. EXPERIMENTS

6.1. Experimental Setup

In the experiments, two datasets are used.

• ATIS: is a benchmark dataset that is extensively used by the
SLU community [15]. There are 4978 training utterances
selected from Class A (context independent) in the ATIS-2
and ATIS-3, while there are 893 utterances selected from the
ATIS-3 Nov93 and Dec94.

• Cortana Communication: is conversational data addressed to
a virtual intelligent assistant, Cortana, and related to the com-
munication domain.

In the experiments, we conduct the experiments with 3 different
sizes of data (Small, Medium, and Large) in order to show the ro-
bustness to data scarcity. The number of training, development and
test utterances of these datasets are listed in Table 1. The evalua-
tion metrics for SLU includes F-measure on the predicted slots and
accuracy on the whole semantic frames1.

For experiments with K-SAN, we parse all data with the pre-
trained parsers from SyntaxNet2 to generate syntactic knowledge
and JAMR3 for semantic knowledge. We represent words as its
embeddings trained on the in-domain data, the loss function is
cross-entropy, and the optimizer we use is adam with the default set-
ting [49], where the learning rate λ = 0.001, β1 = 0.9, β2 = 0.999,
and ε = 1e−08. The maximum iteration for training our K-SAN
models is set as 300. The dimensionality of input word embeddings
is 100, and the hidden layer sizes are in {50, 100, 150}. The dropout
rates are set as {0.25, 0.50}. All reported results are from the joint
RNN tagger, and the hyperparameters are tuned in the dev set for all
experiments.

6.2. Baseline

To validate the effectiveness of the proposed model, we compare the
performance with the following baselines.

• RNN Tagger (Indep): predicts a slot tag for each word in the
given utterance.

1The slot filling results are performed via an evaluation script conlleval.
2https://github.com/tensorflow/models/tree/

master/syntaxnet
3https://github.com/jflanigan/jamr



Table 2. The F1 scores of predicted slots on the different size of ATIS and Cortana training examples. Dataset Small: 1/40 set; Dataset
Medium: 1/10 set; Dataset Large: original set. The performance for slot filling is F-measure and for the whole frame is accuracy (%).

Data
Model Small (1/40) Medium (1/10) Large (full)

Approach Knowledge Slot Filling Frame Slot Filling Frame Slot Filling FrameIndep Joint Indep Joint Indep Joint

ATIS

RNN Tagger 7 73.83 72.97 33.45 85.55 86.42 58.45 93.11 93.42 79.73
RNN Encoder-Tagger 7 72.79 71.90 35.16 88.26 87.51 61.93 94.75 93.11 82.53
K-SAN Syntax 74.35 74.56 37.63 88.40 88.24 63.49 95.00 95.38 84.32
K-SAN Semantics 74.27 73.41 37.07 88.27 88.08 63.61 94.89 95.08 83.76

Cortana

RNN Tagger 7 45.47 50.25 48.87 69.03 69.84 68.22 80.35 79.83 79.52
RNN Encoder-Tagger 7 45.49 47.71 52.70 69.42 73.07 71.43 85.71 85.97 83.87
K-SAN Syntax 45.04 55.10 57.17 69.46 75.30 73.48 85.04 84.54 83.48
K-SAN Semantics 45.10 54.96 54.13 69.08 74.27 73.78 85.33 85.18 83.43

• RNN Tagger (Joint): predicts the whole semantic frame for
the given utterance.

• RNN Encoder-Tagger (Indep): encodes the input word se-
quence into a vector and then tags each word by additionally
incorporating the sentence-level vector.

• RNN Encoder-Tagger (Joint): predicts the semantic frame by
additionally incorporating the sentence-level vector.

6.3. Slot Filling Results

Table 2 shows the performance of slot filling using independent and
joint approaches on different size of training data, where there are
three datasets (Small, Medium, and Large). For baselines, RNN
Encoder-Tagger performs better than RNN Tagger on the Medium
and Large sets (for both ATIS and Cortana data), but slightly worse
on the Small set. The probable reason is that the Small set does not
contain enough training data to learn more parameters in the RNN
Encoder-Tagger.

In terms of the proposed K-SAN approaches, both syntax and
semantics are useful for achieving better tagging performance in all
cases. Among them, syntax helps improve slot tagging results more
than semantics for most of cases, probably because syntactic rela-
tions are more general and the number of relations is larger.

6.4. Semantic Frame Parsing Results

Table 2 also shows the frame-level accuracy of joint approaches,
which better correlates to system performance. Between two base-
lines, RNN Encoder-Tagger approaches outperform RNN tagger
methods, indicating the correlation between slots and intents and
showing the benefit of joint semantic frame parsing.

For K-SAN approaches, all semantic frame results but one from
Cortana Large data are better than the baselines, where the improve-
ment is significantly larger on the smaller sets (35.2% to 37.6%
of frame accuracy on the ATIS Small set and 52.7% to 57.2% on
the Cortana Small set). The reason of no improvement on Cortana
Larger data may be that the baseline model already achieves good
enough performance based on 10K utterances, and the additional
knowledge does not provide further improvement.

6.5. Discussion

6.5.1. Effectiveness of K-SAN

In the experiments, the proposed models outperform the baselines in
most of cases, where the improvement for the small dataset is more

significant. This suggests that the proposed models carry better gen-
eralization and are less sensitive to unseen data. The proposed model
presents the state-of-the-art performance on the Small and Medium
datasets, showing the effectiveness of leveraging knowledge-guided
structures for learning embeddings that can be used for specific tasks
and the robustness to data scarcity and mismatch.

6.5.2. Comparing between Syntax and Semantics

Considering the fact that syntactic relations are general and seman-
tic relations are specific, the number of syntactic relations is larger
than the number of semantic relations. For smaller datasets, more
relations may offer richer information so that the model can learn
the attention for substructures better. On the other hand, although
the number of semantic relations is less, the specific and accurate se-
mantic relations provide stronger guidance for the model. Less but
stronger relations allow the model to achieve similar performance
with less training time.

6.5.3. Comparing between Independent and Joint Parsing

Comparing between independent and joint methods, for Cortana
Small and Medium sets, joint approaches significantly outperform
independent ones for both baselines and proposed models. How-
ever, the difference between independent and joint methods is not
significant for ATIS data. It implies that the intent information is
more informative for Cortana data than for ATIS data, because the
ratio between intents and slots of Cortana is 25:20 (= 1.25), which
is much larger than one of ATIS (17:79 ≈ 0.22). Therefore, joint
semantic frame parsing benefits the data with diverse intents more
than the data with less intents, and the Cortana results show the great
potential of the joint method.

7. CONCLUSION

This paper investigates the effectiveness of different types of linguis-
tic properties in knowledge-guided structural attention networks (K-
SAN), which additionally incorporate non-flat network topologies
guided by prior knowledge, for joint semantic frame parsing. The
experiments demonstrate the effectiveness of syntax and semantics
for guiding the attention and the mutual improvement between intent
prediction and slot filling the structural knowledge brings, showing
the feasibility of applying to neural network training with limited
training data for spoken language understanding.
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