When and When Not to Use Distributed
Machine Learning

Chih-Jen Lin
Department of Computer Science
National Taiwan University

2nd International Winter School on Big Data, February 2016

1/34

N
Outline

@ Introduction
@ Challenges to handle large-scale data

© Discussion and conclusions

Chih-Jen Lin (National Taiwan Univ.) 2 /34

QOutline

@ Introduction

Chih-Jen Lin (National Taiwan Univ.)

3/34

Machine Learning

@ Extract knowledge from data
@ Representative tasks:
Classification, clustering, ranking and others

O
~ o c
S o [o] o ©
\\\\O o o} OOé) o]
~ o
A S ol
A A \\
A A AN oooo
X .
Classification Clustering
Today | will focus more on classification

Chih-Jen Lin (National Taiwan Univ.) 4 /34

Data Classification

e Given training data in different classes (labels
known)

Predict test data (labels unknown)
@ Classic example: medical diagnosis
Find a patient’s blood pressure, weight, etc.
After several years, know if he/she recovers
Build a machine learning model
New patient: find blood pressure, weight, etc
Prediction
@ Training and testing

Chih-Jen Lin (National Taiwan Univ.) 5/ 34

Traditional Ways of Doing Machine
Learning

@ Get an integrated tool for data mining and machine
learning (e.g., Weka, R, Scikit-learn)

You can also get an implementation of a particular
ML algorithm (e.g., LIBSVM)

@ Pre-process the raw data and then run ML
algorithms

@ Conduct analysis on the results

All these are done in the RAM of one computer

6/ 34

Traditional Ways of Doing Machine
Learning (Cont'd)

@ But the traditional way may not work if data are too
large to store in the RAM of one computer

@ Most existing machine learning algorithms are
designed by assuming that data can be easily
accessed

@ Therefore, the same data may be accessed many
times

@ But random access of data from disk is slow

734

Challenges to handle large-scale data
Outline

@ Challenges to handle large-scale data

Chih-Jen Lin (National Taiwan Univ.)

8 /34

Handling Very Large Data

Some possible approaches

@ Buy a machine with several TB RAM
o We can use existing methods/tools
o But we cannot handle extremely large data
o Initial data loading can be time consuming
o We need to subsample and transfer data to one

machine
@ Disk-level machine learning

o Can handle bigger data
o But frequent data access from disk is a big

concern

Chih-Jen Lin (National Taiwan Univ.) 9 /34

Handling Very Large Data (Cont'd)

@ Distributed machine learning
o Parallel data loading and fault tolerance
o Communication and synchronization are

concerns
o Programs become more complicated

Chih-Jen Lin (National Taiwan Univ.)

10 / 34

Challenges to handle large-scale data

Handling Very Large Data (Cont'd)

@ Currently there are various types of arguments
@ Some say that single machines with huge RAM is
the way to go. Their arguments are
o RAM in a machine is getting bigger and bigger
From KDnuggets News (15:n11), the increase
of RAM has been much faster than the
increase of the typical data set used
o There are not so many big data — only Google
or Facebook has

11/ 34

Challenges to handle large-scale data

Handling Very Large Data (Cont'd)

@ More arguments for the single-machine model:
o Loading data from disk can be fast if for
example you store data in binary format
o You load data once and keep it in memory for
analysis (e.g., using MATLAB or R)
o If proper feature engineering is done, then you
don’t need lots of data

12 / 34

Handling Very Large Data (Cont'd)

@ In contrast, some say that in the future data
analytics will be mainly done in a distributed
environment

o Big data is everywhere — a simple health
application can easily accumulate lots of
information

Chih-Jen Lin (National Taiwan Univ.)

13 / 34

Challenges to handle large-scale data

Handling Very Large Data (Cont'd)

o | think different types of approaches will exist
@ However, when to use which is the big issue
@ | will discuss issues that need to be considered

14 / 34

Loading time

@ Usually on one machine ML people don't care too
much about loading time

@ However, we will argue that the situation depends
on the time spent on computation

@ Let's use the following example to illustrate that
sometimes loading may be more than computation

@ Using a linear classifier LIBLINEAR (Fan et al.,
2008) to train the rcvl document data sets (Lewis
et al., 2004).

@ # instances: 677,399, # features: 47,236

Chih-Jen Lin (National Taiwan Univ.) 15 / 34

Challenges to handle large-scale data

Loading Time (Cont'd)

@ On a typical PC: Total time: 50.88 seconds.
Loading time: 43.51 seconds

@ In fact, 2 seconds are enough to get stable test
accuracy

loading time > running time
@ To see why this happens, let's discuss the complexity

@ Assume the memory hierarchy contains only disk
and number of instances is /

@ Loading time: / x (a big constant)
Running time: /9 x (some constant), where g > 1.

16 / 34

Challenges to handle large-scale data

Loading Time (Cont'd)

@ Traditionally running time is larger because of using
nonlinear algorithms (i.e., ¢ > 1)

@ But when [is large, we may use a linear algorithm
(i.e., g = 1) for efficiency = loading time may
dominate

o Parallel data loading:

o Using 100 machines, each has 1/100 data in its
local disk = 1/100 loading time

o But having data ready in these 100 machines is
another issue

Chih-Jen Lin (National Taiwan Univ.) 17 / 34

Fault Tolerance

@ Some data are replicated across machines: if one
fails, others are still available

@ However, having this support isn't easy. MPI has no
fault tolerance, but is efficient. MapReduce on
Hadoop has it, but is slow.

@ In machine learning applications very often training
is done off-line

@ So if machines fail, you just restart the job. If it
does not finish on time, the old model can still be
used

Chih-Jen Lin (National Taiwan Univ.) 18 / 34

Fault Tolerance (Cont'd)

@ In this sense, an implementation using MPI (no
fault tolerance) may be fine for median-sized
problems (e.g., tens or hundreds of nodes)

@ However, fault tolerance is needed if you use more
machines (e.g., thousands). Restarting a job on
thousands of machines is a waste of resources

@ This is an interesting example that data size may
affect the selection of the programming framework

Chih-Jen Lin (National Taiwan Univ.) 19 / 34

Communication and Synchronization

@ Communication and synchronization are often the
bottleneck to cause lengthy running time of
distributed machine learning algorithms

@ Consider matrix-vector multiplication as an example.
XTs
@ This operation is common in distributed machine

learning

Chih-Jen Lin (National Taiwan Univ.) 20 / 34

Challenges to handle large-scale data

Communication and Synchronization

(Cont'd)

@ Data matrix X is now distributedly stored

node 1 — X1

node 2 — X2

node p — Xp
XTs=Xs; 4+ Xstp

@ Synchronization:
T T
Xy 815, X, Sp

may not finish at the same time

21/ 34

Communication and Synchronization

(Cont'd)

@ Communication:

T T
Xy 815, X, 8p

are transferred to a master node for the sum

@ Which one is more serious depends on the system
configuration

@ For example, if your machines are the same,
probably the synchronization cost is low

Chih-Jen Lin (National Taiwan Univ.)

22 /34

Workflow

o If data are already distributedly stored, it's not
convenient to reduce some to one machine for
analysis = workflow interrupted

@ This is particularly a problem if you must frequently
re-train models

Chih-Jen Lin (National Taiwan Univ.) 23 / 34

Challenges to handle large-scale data

Programming Framework

e Unfortunately writing and running a distributed
program is a bit complicated

@ Further, platforms are still being actively developed
(Hadoop, Spark, Reef, etc.)

@ Developing distributed machine learning packages
becomes difficult because of platform dependency

24 / 34

Challenges to handle large-scale data

Going Distributed or Not Isn't Easy to
Decide

@ Quote from Yann LeCun (KDnuggets News 14:n05)

“l have seen people insisting on using Hadoop for
datasets that could easily fit on a flash drive and
could easily be processed on a laptop.”

@ The decision isn't easy because we have discussed
many considerations

25 / 34

Challenges to handle large-scale data

Going Distributed or Not Isn't Easy to
Decide (Cont'd)

Quote from Xavier Amatriain “10 more lessons learned
from building Machine Learning systems”:

e You don’t need to distribute your ML algorithm.

e Most of what people do in practice can fit into a
multi-core machine: smart data sampling, offline
schemes and efficient parallel code.

e Example:

e Spark implementation: 6 hours, 15 machines.
e Developer time: 4 days
e Same model on 1 machine within 10 minutes

Chih-Jen Lin (National Taiwan Univ.) 26 / 34

Challenges to handle large-scale data

Scenarios that Need Distributed Linear
Classification

@ Example: computational advertising (in particular,
click-through rate prediction) is an area that heavily
uses distributed machine learning

@ This application has the following characteristics

o Frequent re-training so workflow shouldn’t be

interrupted
o Data are big, so parallel loading is important

27 / 34

Challenges to handle large-scale data

Example: CTR Prediction

@ Definition of CTR:

clicks

CTR = :
impressions

@ A sequence of events

Not clicked Features of user
Clicked Features of user
Not clicked Features of user

@ A binary classification problem.

28 / 34

Challenges to handle large-scale data

Example: CTR Prediction (Cont'd)

Data Storage

(Amazon S3)

Data Transfer
(Amazon EC2)

Local Disk
Encoding
Train

(Amazon EC2)

Predict

Web Ul b
N / Log
Collecting data %

User

Chih-Jen Lin (National Taiwan Univ.)

29 / 34

Discussion and conclusions
O t I .

© Discussion and conclusions

Chih-Jen Lin (National Taiwan Univ.)

30 / 34

Algorithms for Distributed Machine
Learning

This is an on-going research topic.

Roughly there are two types of approaches
@ Parallelize existing (single-machine) algorithms

An advantage is that things such convergence
properties still hold

@ Design new algorithms particularly for distributed
settings

Of course there are things in between

Chih-Jen Lin (National Taiwan Univ.)

31/ 34

Algorithms on Single Machines

o Efficient algorithms on single machines are still
important

@ They can be useful components for distributed
machine learning

@ Multi-core machine learning is an important
research topic

@ For example, in the past 2 years we have multi-core
and distributed extensions of LIBLINEAR for
large-scale linear classification

@ So far the multi-core code has more users!

Chih-Jen Lin (National Taiwan Univ.) 32 /34

Distributed Machine Learning Frameworks

@ Earlier frameworks include, for example,
o Apache Mahout
o Spark MLlib
o MADIib

@ There are many ongoing efforts.

@ One possible goal is to have a framework that is
independent of the distributed programming
platforms

33 /34

Conclusions

@ Big-data machine learning is in its infancy.
Algorithms and tools in distributed environments are

still being actively developed

@ We think various settings (e.g., single-machine,
distributed, etc.) will exist.

@ One must be careful in deciding when to use which

Chih-Jen Lin (National Taiwan Univ.) 34 /34

	Introduction
	Challenges to handle large-scale data
	Discussion and conclusions

