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Abstract 

 
Code coverage is commonly used in software testing because it tells which portion of code has 
been tested or not. Fuzzing is one of the most popular and powerful solutions to find software 
vulnerabilities. And code coverage information is used in several fuzzing techniques to guide the 
testing. Coverage-guided fuzzer is efficient and effective by tracking and utilizing code coverage 
feedback. In practice, when the source code of a target application is not provided, we have to 
focus on the binary files and fuzz the executable files. This paper briefly introduces fuzzing 
techniques and the common code coverage measurement criteria. Then the paper give a 
comprehensive review and summary of the ways to gather coverage information, including 
source code instrumentation, dynamic instrumentation, static instrumentation, emulation, 
debugger, and hardware feature. Their advantages and disadvantages are discussed. Few 
studies have been conducted on the techniques that fuzzers extract code coverage information 
from binary files and use it to guide fuzzers in next step. Therefore this paper also provides a 
summary of how fuzzers utilize code coverage feedback information and what are the strengths 
and limitations of each of them.  
 
Keywords: Code Coverage, Fuzzing, Software Testing, Binary Analysis, Test Case Generation. 
 

 
1. INTRODUCTION 
In software development life cycle, testing is a crucial step to ensure the security and quality of 
software. With the increasing size and complexity of software, cyber threats on software security 
have been prevailing and have increased exponentially [33], and adequate software testing has 
become increasingly important [34]. Code coverage is commonly used in software testing 
because it gives a picture of which portion of the code has been tested. Code coverage keeps 
track of the portion of code or paths that have been covered and the part which has not been 
reached. Therefore code coverage is commonly used in the software testing to guide the testing 
toward the portion that has not been tested. In addition, it is often used as a yardstick to measure 
the efficiency and adequacy of a testing [1]. It can help testers to understand how much code is 
tested in a quantitative measurement.  
 
Code coverage can be used for software testing, unit testing, integration testing, and usage 
analysis. Therefore a code coverage tool is usually integrated into various tools, such as IDE 
(Eclipse, NetBeans…), or Build tool (Maven, Gradle, Ant), or CI (Jeakins, TeamCity, Visual Studio 
Team Services) [2]. Code coverage can tell us how much of the code is tested, however, good 
code coverage does not mean good testing. For instance, even if the code coverage shows a 
testing has covered 100% of the code, it may not be able to reveal some or all of the existing 
vulnerabilities. Therefore a good coverage in testing does not mean it is a complete testing. And 
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passing the testing with 100% code coverage does not mean the software under testing is perfect 
without any vulnerability. 
 
Code coverage can also be used for fuzzing. Fuzzing is one of the software testing methods 
which is widely used by developers and testers. In traditional fuzzing, random inputs are fed into 
the program, intend to trigger abnormal behavior of the program, such as crash or unexpected 
exception. With fuzzing, the whole testing process can be automated and it does not need much 
time to set up the environment. However the drawback of fuzzing is that it can reveal the easy-to-
reach bugs, not the bugs located at deeper level in the software. To make fuzzers smarter, 
researchers have integrated various techniques in fuzzers to guide the fuzz testing, such as 
symbolic execution, concolic execution, grammar, taint analysis, code coverage, machine 
learning, and so on [3].  
 
In this paper, we give an overview of how fuzzers gather code coverage information and how  
code coverage feedback is used to improve the efficiency and effectiveness of coverage-guided 
fuzzing tools. Besides, we analyze and compare a few popular and wide-used fuzzers and 
different techniques they use to gather and use code coverage feedback. 
 
In the remainder of this paper, Section 2 introduces fuzzing techniques and code coverage 
criteria. Section 3 discusses the ways of collecting coverage information at the software level and 
hardware level. A detailed study on how code coverage feedback is used in fuzzing tools is 
provided in Section 4. The usages of code coverage information in different fuzzing tools are 
summarized at the end of that section. And section 5 concludes the paper. 

 
2. BACKGROUND 
This section introduces fuzzing techniques, code coverage, and coverage measurement criteria. 
 
1. Fuzzing Techniques 
Fuzzing was developed by Miller at the University of Wisconsin in 1989 [4]. It was a black box 
testing strategy that does not require access to the source code. Fuzzers feed a program with 
random inputs and monitor the abnormal behavior of the program, including crashes, memory 
leaks, unhandled exception, etc. Most inputs are invalid and rejected by a fuzzer immediately. 
One way to solve this problem is to introduce small changes to existing well-formed inputs so that 
the new input might still be valid [32]. 
 
Fuzzing is much faster than manual source code review, and it can run 24 hours / 7 days [5]. 
However, it usually detects simple crashes, not deep ones. Nowadays, fuzzing is commonly used 
for security testing. For example, Microsoft security development lifecycle (SDL) process is a 
software security assurance process to help developer build high assurance software. SDL 
utilizes black-box fuzzing in its verification phase [6].  
 
According to the test case generation techniques a fuzzer uses, existing fuzzers can be 
categorized into three groups: blind fuzzers, coverage-guided fuzzers, hybrid fuzzers [7]. 
 
1.1. Blind Fuzzer 
Blind fuzzers are also known as dumb fuzzers. A blind fuzzer mutates the existing input blindly. It 
doesn't use any feedback from previous tests. It generates a lot of random and invalid inputs that 
are rejected by the program quickly. For example, PEACH, RADAMSA, ZZUF are blind fuzzers. 
  
PEACH has both generation and mutation capabilities. It works by creating PeachPit files. 
PeachPit files are XML files containing the complete information about the data structure and type 
information. 
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1.2. Coverage-guided Fuzzer 
A fuzzer that uses code coverage feedback information is categorized as a coverage-guided 
fuzzer. Most inputs generated by blind fuzzer are invalid and would be rejected by the program 
directly. A coverage-guided fuzzer can mutate one valid input file iteratively to increase the code 
coverage. More information about coverage-guided fuzzers provided in section 4. AFL [8], 
HONGGFUZZ [9], VUZZER [10] are widely used coverage-guided fuzzers. 
 
1.3. Hybrid Fuzzer 
Hybrid fuzzer use symbolic execution or taint analysis to uncover code edges that coverage-
guided fuzzer cannot reach [7]. A hybrid fuzzer calculates and extracts the correct input 
necessary for new code coverage, such as DRILLER [11], T-FUZZ [12]. The main idea of 
symbolic execution is to use symbolic values instead of concrete values as input values and to 
use symbolic expressions to represent the values of program variables [38]. In software testing, 
symbolic execution is typically used to explore as many program paths as possible. In dynamic 
taint analysis, all the data directly from or derived from untrusted sources, which could be fuzzed 
inputs, are labeled as tainted [39]. These tainted data and the data propagated from the tainted 
data are tracked during program execution, and insecure use of the data is detected. 
 
A binary file is computer readable, but not human-readable. In computer science, executable files 
are usually stored in binary files. When the source file is not available, we have to do binary 
analysis. Many fuzzers provide their own compilers, such as AFL has afl-gcc, and HONGFUZZ 
has hfuzz. These compilers insert instrumentation code during compilation to track code 
coverage. This strategy is known as source code instrumentation. For binary files, fuzzers have to 
utilize some different strategies rather than source code instrumentation to obtain coverage 
information if they want to use the code coverage feedback, such as static binary instrumentation 
or dynamic instrumentation. More details are given in section 3.1. 
A comparison of different types of fuzzers is shown in Table 1. 
 

 
TABLE 1: Comparison of Different Types of Fuzzers. 

 
2. Code Coverage and Coverage Measurement Criteria 
Code coverage provides a quantitative measure of how thoroughly a test is. Code coverage could 
also help figure out the parts of a program that are not reached by a set of test cases, and it can 
help create extra test cases using the coverage information to increase coverage. 
 
Coverage measures the amount of testing done based on a certain criterion [13]. A coverage 
criterion is a rule or collection of rules that impose test requirements on a test set. Kaner has 
summarized 101 types of testing coverage [13]. Usually, these metrics are calculated by the 
number of items triggered and tested divide by the total number of items existing in the program. 
The major coverage measures are listed below. 
 
2.1. Statement Coverage/Line Coverage 
Statement coverage is also called line coverage. It is the most basic and simplest coverage 
criteria in the white box testing. It is used to calculate and measure the number of statements in 
the source code which are executed at least once given the input. Statement coverage is the 
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most used kind of coverage criterion in the industry [14]. It is often used by developers to 
evaluate the quality of programs. 
 
2.2. Block Coverage 
Block coverage or basic block coverage describes a block of code, defined as not having any 
branch point within, is executed or not. In other words, a basic block always executes as one 
atomic unit without any jumps and jump targets. Several lines of source code could be in the 
same basic block. It makes more sense to keep track of basic blocks rather than individual lines 
for efficiency reasons at execution time [15]. For example, if there is one line in an if block, but 
there are nine lines of code in the else block, it will be 10% line coverage if the if branch is 
executed, while 50% block coverage if the else branch is executed. Obviously, block coverage is 
more desirable than line coverage.   
 
2.3. Branch Coverage 
Branch coverage also is known as decision coverage. It equals the number of executed 
statement blocks and decisions divided by the total number of statements and decisions. Each 
decision counts twice, one for the true case and one for the false case. Branch coverage is widely 
used because of its ease of implementation and its low overhead on the execution of the program 
under test.  
 
Examples of branch or decision statements are switch, do-while, and if-else statements.  
 
There are two main weakness of branch coverage. First weakness of branch coverage is that 
only the outcome of boolean expressions are considered. For example, in the tiny program, the 

outcome of a is executed, but the outcome of !a is not considered. The line coverage is 100% 

when a is true, which branch coverage is 50%.  
 

if (a) { 

  print(a); 

} 

 
Another limitation of branch coverage is that it is not applicable if a program has no decision 
statement, such as if-else, do-while loop.  
 
2.4. Path Coverage 
Path coverage is the ratio of all paths through the control flow graph covered and the number of 
total paths. In practice, path coverage is impossible. If there are n decisions to make in the control 
flow graph, it could result in 2^n paths. The loop (while loop, for loop) will make things worse. 
Furthermore, some code paths could not be executed anyway since there may be no input that 
can trigger that path.  
 
2.5. Function/Method Coverage 
Method coverage measures how many of the functions/methods in the program have been called 
during execution. It is the easiest criteria to measure code coverage. 

 
3. COLLECTING CODE COVERAGE INFORMATION 
Code coverage can be measured by instrumenting the source code or binary code, as well as 
using hardware features. Methods to measure code coverage are summarized in Table 1 and 
detailed here [7]: 
 
3.1 Source Code Instrumentation  
Source code instrumentation automatically adds specific code to the source files under analysis. 
After compilation, execution of the code produces dump data for runtime analysis or component 
testing. Source code instrumentation is widely used by coverage-guided fuzzers, such as AFL [8], 
HONGFUZZ [9], T-FUZZ [11], VUZZER [10]. 
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Source code instrumentation is the most powerful, flexible and accurate way to calculate code 
coverage. It can be done for function coverage, basic blocks coverage, statement coverage, and 
branch coverage, since it is implemented at the source-code level. 
 
Source code instrumentation will be inefficient if the target has a large amount of code. It will be 
impossible if the source code is not available. It also needs a specific compiler to compile an 
instrumented code, So it is not portable across different programming languages [16].  
 
3.2 Dynamic Binary Instrumentation 
Dynamic binary instrumentation (DBI) is a method of binary analysis at runtime by injection of 
instrumentation code to a binary file to collect information without requiring access to its source 
code or modifications to the runtime. DBI is usually used to conduct program analysis or 
architectural studies, such as code coverage, call-graph generation, memory leak detection, and 
fault injection [17]. DBI is especially necessary for application analysis on Windows system, 
because most windows programs are not open source. 
 
There are two approaches to dynamic binary instrumentation. The first one is dynamic binary 
translation (DBT), which copies the target binary in segments and instruments the copies during 
runtime. The second one is dynamic probe injection (DPI) [16]. DBI process the target binary in 
memory to insert probes that lead execution to the instrumentation. Comparing to DBT, DPI 
doesn't have copying overhead. It instruments the binary directly. But it could cause performance 
overhead from preserving target program behavior while inserting probes, as well as costs from 
context-switching and redirecting of execution by the probes [16]. 
 
DBI has many advantages. It is non-bypassable instrumentation, complete and easy to use [18]. 
We could use DBI platforms such as Pin, DynamoRIO, and Valgrind to develop dynamic binary 
instrumentation tools so that we don't have to build it from scratch. 
 
Even though dynamic binary instrumentation is used widely, it is impractical to instrument a whole 
target binary because of overhead. Usually, a specific code area or a specific function is chosen 
to be instrumented. Library functions that we do not care about, such as printf(), should not be 
considered [19].  
 
3.3 Static Binary Instrumentation 
Static binary instrumentation (SBI) is also as known as binary rewriting, which refers to rewriting 
the compiled binary statically [20]. Compared with dynamic binary instrumentation, SBI is more 
efficient than DBI since SBI doesn't introduce as much runtime performance overhead as DBI 
and all the instrumentation code is added prior to execution [21]. 
 
One challenge of static binary instrumentation is to differentiate code and data. Current 
approaches to static rewriting can only provide limited coverage and reduced accuracy [22]. 
 
3.4 Emulation of Binary  
QEMU works by compiling the target object code into the host object code and that the host 
computer is typically faster than the target one, virtualization is actually a plus over direct 
execution on the target [23].  
 
3.5 Writing Own Debugger and Set Breakpoints On Every Basic Block 
It runs slow, but useful in some situations [5]. First, we need to write a specific debugger. Set 
breakpoints to every single basic block in the program via the debugger. These breakpoints are 
removed as they are hit. In this way, the debugger can gather the coverage information about the 
binary [24]. This method could be very slow because the debugger processes many switches 
which takes a lot of time [5]. 
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3.6 Use of Hardware Features 
Another method is to collect code coverage from physical hardware. For example, Intel Processor 
Trace (Intel PT) is a new feature built into some Intel processors that let us collect execution and 
branch trace information from CPU cores. Intel PT is implemented entirely in hardware with very 
little overhead, and no instrumentation in software is needed [25].  
 
Except for source code instrumentation, all other above methods or combinations could be used 
for binary code coverage. Some fuzzers use dynamic binary instrumentation to obtain code 
coverage information when performing fuzzing with binary files. There are a few fuzzers that use 
other strategies. For example, AFL uses QEMU for dynamic binary instrumentation and GCC and 
Clang compilers for static source instrumentation. VUzzer uses PIN for dynamic binary 
instrumentation. kAFL uses QEMU and Intel processor trace to fuzz OS kernel [26].  
 
A summary of different methods to collect code coverage information is shown in Table 2. 

 
TABLE 2: Comparison of different methods of collecting code coverage information. 

 
4. THE USE OF COVERAGE FEEDBACK IN FUZZING 
Fuzzing is one of the most powerful techniques to find vulnerabilities in software. But fuzzers can 
only find shallow bugs, not deeper ones. There are many attempts to deal with this problem. Such 
as corpus distillation, symbolic execution, etc. In this section, we mainly focus on the fuzzers that 
use code-coverage feedback, such as AFL, VUzzer, honggfuzz. 
 
In general, a coverage-guided fuzzer’s algorithm contains these steps [27]: 
 
      Step 1: Load initial test cases into the poll or queue. initial test cases are created by users.  
      Step 2: Take the next seed test cases from the queue. 
      Step 3: Repeatedly mutate this test file to generate a batch of new test cases. 
      Step 4: Apply mutations to the target application. 
      Step 5: Monitor the behavior of the target application and track the code coverage. 
      Step 6: Filtrate good mutants that trigger new code area to the queue. 
      Step 7: Go to step 2 literately. 
 
Different coverage-guided fuzzers use different code coverage strategies to fuzz binary files. AFL 
uses static instrumentation provided by compiler and dynamic instrumentation with QEMU to 
track edge coverage. HongFuzzer uses SanitizerCoverage instrumentation method to track block 
coverage [9]. VUzzer uses PIN to track block coverage [10]. 
 
4.1 American Fuzzy Lop (AFL) 
AFL is a popular fuzzer used by many developers and researchers. To keep track of the 
coverage information, AFL maintains a bitmap. Each byte in the bitmap represents the number of 
times a branch has been taken. AFL assigns a random two-byte ID to each branch during 
instrumentation. When executing a branch, AFL does an XOR of the last branch ID with the 
current branch ID. Then it calculates the hash value of the XOR'd value by using a hash function. 
Next it finds the corresponding entry that represents these two branches combination, and 
increases the byte value by one in the bitmap [28]. Since hash function is used in this process, it 
could cause hash collision, which could make AFL mistakes a new path for an existing path in the 
bitmap.  
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Hash collision could prevent the fuzzer to find more paths and give a lower code coverage 
feedback information. For example, if there is a good test case which can trigger a new code 
path, but AFL categorizes it as another path in the map, then this test case will be discarded and 
will not be put back into the queue for the next fuzzing round. Many researchers have been 
working on solving this problem and improve AFL, such as CollAFL [27], which is a coverage 
sensitive fuzzing solution. It could reduce hash collision significantly for source code fuzzing. 
Hash collision increases to perform fuzzing on binary files than source code.  
 
 After one round, AFL will pull one test case from the queue and mutate it according to some 
strategies [29], such as walking bit flips, walking byte flips, simple arithmetic, known integers, 
stacked tweaks, and test case splicing. 
 
4.2 ANGORA 
ANGORA is a mutation-based fuzzer that uses some key techniques to produce high quality 
inputs, such as scalable byte-level taint tracking, context-sensitive branch count, search algorithm 
based on gradient descent, shape and type inference, and input length exploration [30]. 
 
ANGORA utilizes a very similar scheme with AFL with a little difference. When AFL performs 
XOR calculation, it takes the last branch and current branch into consideration. ANGORA 
considers the current branch and a hash of the call stack to do XOR, so that ANGORA can tell 
the same coverage in different contexts [31]. In this way, the hash collision problem could be 
solved. 
 
4.3 VUzzer 
VUzzer is an application-aware evolutionary fuzzer. It doesn't require any prior knowledge of the 
application or input format [10]. It uses control flow and data flow features based on static and 
dynamic analysis to maximize coverage and explore deeper paths, so it can generate qualified 
inputs and discover bugs deep in the program [10]. 
 
VUzzer is very different from AFL and ANGORA. Unlike AFL using a bitmap, VUzzer assigns 
scores to each basic block according to the depth they are within a function. Deeper blocks have 
higher scores and shallow blocks have lower scores. Finally, it sums all the scores of all basic 
blocks in a path to get a fitness score. VUzzer utilizes an evolutionary algorithm to produce new 
mutations. If one test case has a high fitness score, it could produce more offsprings. 
 
As shown in Table 3, a comparison of how code coverage feedback is used in each fuzzing tool 
is provided. 

 

 

TABLE 3: Comparison of How Fuzzers Use Code Coverage Feedback. 

 
5. CONCLUSION 
This paper summarizes common code coverage measurement criteria, such as statement 
coverage, block coverage, branch coverage, path coverage, and function coverage. We also 
studied the methods to gather code coverage information and listed their pros and cons. Each 
method has its pros and cons. All methods can be used for binary files except source code 
instrumentation. In practice, most fuzzers utilize dynamic binary instrumentation to track code 
coverage when fuzzing binary file, but dynamic binary instrumentation has significant run-time 
overhead. Source code instrumentation has a lower overhead than dynamic binary 
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instrumentation. If we have access to source code, source code instrumentation is a good choice. 
Using hardware features to obtain code coverage seems a perfect method. It is non-intrusive, 
language-independent, most accurate, and it has low overhead, however it requires hardware 
support.  
 
We analyzed how fuzzers utilize code coverage information in this paper. The core algorithm of 
AFL uses a bitmap to trace block transition when encountered. Since a hash function is used, 
hash collision can happen if the size of bitmap is not big enough. The code coverage may be not 
accurate enough due to hash collision. Accurate code coverage information could help fuzzers 
explore unique paths and find more vulnerabilities. If a bigger bitmap is used, it lowers the hash 
collision rate. However, maintaining a bigger bitmap reduces the fuzzer’s performance at the 
same time. Sometimes fuzzers need to trade off the code coverage accuracy with better 
performance. ANGORA uses a bigger bitmap and a call stack to solve the hash collision problem. 
VUzzer uses a different strategy than AFL and ANGORA. It calculates the fitness score of inputs. 
If one input exercises deep code block, it has a higher fitness score, and it can produce more 
offspring in the next generation round. 
 
Fuzzing is an efficient way to detecting vulnerabilities, but it also has disadvantages, and there 
are still a lot of challenges need to be solved. For example, fuzzing is not exhaustive. It could 
happen that an input covers a piece of code without revealing bugs in it, because the fuzzer treat 
covered code equally. Some new techniques could be used to solve this problem and improve 
fuzzing, such as machine learning [35] and coverage accounting [36]. TortoiseFuzz uses 
coverage accounting which is novel approach to evaluate coverage by security impacts. It could 
combine the evaluation with coverage information for input prioritization [36]. Code coverage 
fuzzing also could be time consuming. Code coverage tracing is a dominant source of overhead. 
Untracer uses coverage-guided tracing technique to eliminate needless tracing [37]. 
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