
Explaining Mispredictions of Machine Learning Models
using Rule Induction

Jürgen Cito
TU Wien and Facebook

Austria

Isil Dillig
UT Austin†

U.S.A.

Seohyun Kim
Facebook
U.S.A.

Vijayaraghavan Murali
Facebook
U.S.A.

Satish Chandra
Facebook
U.S.A.

ABSTRACT
While machine learning (ML) models play an increasingly prevalent
role inmany software engineering tasks, their prediction accuracy is
often problematic. When these models do mispredict, it can be very
difficult to isolate the cause. In this paper, we propose a technique
that aims to facilitate the debugging process of trained statistical
models. Given an ML model and a labeled data set, our method
produces an interpretable characterization of the data on which the
model performs particularly poorly. The output of our technique
can be useful for understanding limitations of the training data or
the model itself; it can also be useful for ensembling if there are
multiple models with different strengths. We evaluate our approach
through case studies and illustrate how it can be used to improve
the accuracy of predictive models used for software engineering
tasks within Facebook. We also compare our algorithm against
related rule induction techniques to illustrate its advantages in the
context of explaining mispredictions of machine learning models.

CCS CONCEPTS
• Software and its engineering; • Computing methodologies
→ Rule learning;

KEYWORDS
explainability, rule induction, machine learning

ACM Reference Format:
Jürgen Cito, Isil Dillig, Seohyun Kim, Vijayaraghavan Murali, and Satish
Chandra. 2021. Explaining Mispredictions of Machine Learning Models
using Rule Induction. In Proceedings of the 29th ACM Joint European Soft-
ware Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE ’21), August 23–28, 2021, Athens, Greece. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3468264.3468614

†Work done at Facebook as visiting scientist.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’21, August 23–28, 2021, Athens, Greece
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8562-6/21/08. . . $15.00
https://doi.org/10.1145/3468264.3468614

1 INTRODUCTION
Over the last decade, machine learning models have started play-
ing an increasingly prevalent role in automating many types of
software engineering tasks. For instance, machine learning has
become a popular tool for automating code completion tasks [44],
predicting which tests to run [28], finding relevant code fragments
from large corpora [8], isolating crash inducing event sequences
from telemetry [32], performing type inference [20, 34, 47], and
synthesizing or repairing programs [5, 6, 13, 46].

While software engineering tools powered by machine learn-
ing achieve remarkably good results overall, it can be frustrating
to understand when they do not produce the intended result. For
instance, consider a predictive model that, given a crash report,
predicts which of the recent code commits was the likely culprit.
If such a tool does not produce the expected result, how do we
understand why it behaves as it does? Is it because of some limita-
tion of the model; or is it because of a lack of training data; or is it
something else? Thus, in order to understand and improve modern
software engineering tools (or, more generally, any program that
uses machine learning), we need a way to debug trained statistical
models. Unfortunately, manually debugging modern machine learn-
ing models can be an extremely daunting task due to the opaque
nature of these models as well as the high dimensionality of the
input data.

Motivated by this observation, there has been significant recent
work on improving the interpretability of ML models. For exam-
ple, local interpretability techniques like LIME [38], Shap [21], and
Integrated Gradients [43] aim to provide accompanying evidence
for predictions on a specific input. On the other hand, global inter-
pretability techniques such as [18, 26, 45] try to shed light on the
global behavior of a model either by highlighting which features are
the most important or by constructing a simpler, surrogate model
that emulates a more complex model. However, with the possible
exception of [14], there is almost no work that can explain the
shortcomings of machine learning models. That is, given a machine
learning model, how can we identify the salient characteristics of
the input data on which the model’s predictions are particularly
off?We believe that techniques for understanding the shortcomings
of ML models are particularly important in the context of software
engineering due to the growing popularity of complex ML mod-
els being used to support routine software engineering tasks like
debugging, program repair, and more.

Based on this observation, the goal of this paper is to take a step
towards semi-automatically debugging machine learning models

https://doi.org/10.1145/3468264.3468614
https://doi.org/10.1145/3468264.3468614

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Jürgen Cito, Isil Dillig, Seohyun Kim, Vijayaraghavan Murali, and Satish Chandra

and shedding light on when a model does not work well. Given
a labeled data set 𝐷 and a trained model 𝑀 , our technique auto-
matically identifies properties of the data on which 𝑀 performs
particularly poorly. For instance, our technique might uncover that
the model is much more likely to mispredict when the crash re-
port pertains to a certain module or when it is excessively long, or
indeed, a combination of such properties. As we demonstrate in
this paper, this kind of information can be invaluable for improv-
ing the model or identifying problems in the training data. This
information constitutes an explanation in the same sense as in delta
debugging [49]: delta debugging isolates failure inducing part of
the input, and analogously, our method finds properties of inputs
on which a model mispredicts.

One of the appealing aspects of our proposed technique is that it
is model agnostic. In other words, our method can be applied with
equal ease to a complex deep learning model as it can be applied to
a simple model like an SVM or a decision tree. Furthermore, our
method produces interpretable results that are easy for a human to
understand and act upon. From a technical perspective, the key idea
underlying our technique is to learn simple rules (i.e., properties
of the input data) that are highly correlated with mispredictions of
the machine learning model. In particular, our method learns a set
of rules that (a) collectively cover a large portion of the model’s
mispredictions, and (b) each of which correlate strongly with model
mispredictions. The learnt rules are conjunctions of predicates over
the input features and are therefore easily interpretable. Since these
rules are intended to be read by a human, an attempt is made to keep
rules simple. Our specific technical method is an instance of rule
induction. The learnt rules explain the mispredictions of a model
“globally”, over a large number of inputs, as opposed to explaining
misprediction "locally", for a specific input. Given the importance
of this problem, there are other works that pursue similar model
debugging strategies (e.g., [14]), but as explained in more detail in
Sections 5.1 and 6, our primary objective is precision as opposed to
accuracy, which has been shown to work well in our case studies.

We have implemented our method in a tool called MD and eval-
uate it in the context of software engineering tasks, such as code
completion and predicting code crashes. In particular, we consider
models used within Facebook and provide case studies illustrat-
ing how MD has been useful for improving these models. We also
empirically evaluate the rules synthesized by our method against
those inferred by other rule learners and show that our technique
learns rules that correlate more strongly with mispredictions while
still keeping rules simple and interpretable.

Key Contributions.

• We introduce the model misprediction diagnosis problem for im-
proving the accuracy of machine learning models, adding to the
emerging literature on model debugging.
• We present a model-agnostic technique for finding interpretable
rules highly correlated with mispredictions.
• We apply our method to ML-powered software engineering tools
and provide case studies to illustrate how our method has led to
useful insights or improvements in these tools.
• We compare our method against two existing rule induction
techniques and show that it yields rules that are better suited to
the task of explaining mispredictions.

Figure 1: Manual ML model debugging process

Table 1: Samples from a dataset used to train a machine
learning model that predicts whether a commit is likely to
lead to a crash. The % of diffs that crashed are 8.9%, whereas
the % of mispredictions (“crashed" XOR “pred") are 23.5%

loc experience modules ... crashed pred

3 medium 8 False True
37 medium 4 False False
6 low 6 False False
35 low 6 True True
38 high 7 False True

2 OVERVIEW
Imagine you have trained a machine learning model for predicting
whether a code commit will lead to a crash. The model might base
its predictions on lines of code changed (“loc"), experience level of
the developer ("experience"), number of modules touched in the
process ("modules"), and potentially dozens of additional columns.
Table 1 provides a small sample of the dataset, including columns
that show the model’s prediction (“pred") and the ground truth
outcome (“crashed").

The accuracy of this model on the test set1 is 76.5%. How would
you go about improving the accuracy of this model? In most cases,
a first step in this direction is to understand the types of input on
which the model does not perform well. In other words, what are
some salient characteristics of 23.5% of the test data for which the
model mispredicts?

To answer this question, one would first need to formulate a
hypothesis such as the model performs poorly when the lines of code
changed (loc) is rather small. Next, to test this hypothesis, one needs
to write a query to extract this subset of the data, evaluate the model
on this subset, and compare accuracy 𝛼 on this subset against that
𝛼 ′ of the entire dataset. If 𝛼 is not substantially lower than 𝛼 ′, the
hypothesis is incorrect and should be discarded. In this case, the
user would need to formulate a different hypothesis and restart
the process. On the other hand, if accuracy is indeed much lower
on this subset of the data, one would likely want to investigate
what percentage of the mispredictions the hypothesis explains. For
example, if this hypothesis explains 90% of all mispredictions, it
would be very useful to investigate this hypothesis in more detail.

1We use the term test data generically to mean the data set used for validation of the
model.

Explaining Mispredictions of Machine Learning Models using Rule Induction ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Table 2: Different ways a user can act on misprediction explanations produced byMD

Scenario Possible action Case study
Training data not rich enough Improve training data Bug2Commit (Sec 5.2.1)
Enough training data for 𝐸 but model still mispredicts Improve model algorithm Autocomplete (Sec 5.2.3)
Cannot improve training data or model Suppress model’s output if input belongs in 𝐸 Oncall prediction (Sec 5.3)
Multiple models with different misprediction explana-
tions

Select from models based on input Diff review (Sec 5.2.2)

On the other hand, if it only explains 1% of the mispredictions,
one may want to find a better hypothesis. As illustrated by this
discussion and depicted schematically in Figure 1, this process is
extremely inefficient and requires significant human insight and
manual labor. This is particularly true when the model is trained
on datasets with a large number of features.

In the particular setting of Table 1, it turns out that a hypothesis
that explains mispredictions particularly well is experience!="low"
& loc<=13 & modules>6, which has a precision of 85.7% and a recall
of 30.6%. This means that for this combination of properties in the
data, the model mispredicts in 85.7% of cases and it explains 30.6%
of all mispredictions that occur in the dataset.

The techniques proposed in this paper are intended to simplify
this kind of manual effort involved in debugging machine learn-
ing models. In particular, our method largely automates Steps 1-4
depicted in Figure 1 and produces tested hypotheses that explain
when the model performs poorly. Our method, dubbed Mispredic-
tion Diagnoser or MD for short, takes as input a data set 𝐷 (labeled
with ground truth predictions), machine learning model𝑀 , and a
minimum target coverage parameter 𝛿 and automatically produces
a misprediction explanation 𝐸 such that (1)𝑀’s accuracy is much
lower for inputs that conform to 𝐸 compared to the whole data set,
and (2) if we discard inputs that conform to 𝐸, then𝑀’s accuracy
improves a significant amount (i.e., 𝐸 explains at least a minimum
threshold 𝛿 of all mispredictions). Hence, the explanations produced
by our method pass the checks shown in Steps 3 and 4 of Figure 1
and obviate the need for manually constructing and testing these
hypotheses.

We envision a number of ways in which the output of MD may
be helpful to its users. In particular, as summarized in Table 2,
the output of MD may be useful for improving the training data
or the model itself, and it may also pinpoint opportunities where
suppressing the model’s output or ensembling different models
may be beneficial. For instance, suppose that MD produces 𝐸 as a
misprediction explanation but the training data does not contain
sufficiently many samples that conform to 𝐸. This would suggest
a distribution shift between the training and test data, which in
turn calls for improving the training data or for performing data
augmentation. If this is not the case, it is likely due to a shortcoming
of the model itself, which can be improved by understanding why
the model mispredicts on the subset of the data conforming to 𝐸.
If there is no room for improving either the model or the data, the
output of MD can still be beneficial. For example, if we know where
a code completion engine is likely to mispredict, we can choose
not to make any predictions rather than confusing developers with
incorrect completions. Similarly, if we have access to two models
𝑀1 and𝑀2 with different misprediction explanations 𝐸1, 𝐸2, we can

use this information to obtain a useful ensemble. We have selected
concrete case studies from software engineering to illustrate each
of these scenarios (Section 5.2).

3 PROBLEM FORMULATION
In this paper, we focus on machine learning models used for clas-
sification. A misprediction explanation 𝐸 for such a model 𝑀 is a
boolean function such that inputs 𝑥 satisfying 𝐸 are likely to be
misclassified by𝑀 with high probability. In the remainder of this
section, we formalize the desired properties of 𝐸 in terms of an op-
timization problem (Section 3.1) and then describe our hypothesis
space (Section 3.2).

3.1 Optimization Objective
Let 𝐷 : X → Y be a labeled dataset , and let 𝑀 : X → Y be
a (trained) statistical model. For 𝑥 ∈ X, we define the following
indicator function I : X → {0, 1}:

I(𝑥) =
{

1 if 𝐷 (𝑥) ≠ 𝑀 (𝑥)
0 otherwise

In other words, I(𝑥) is 1 iff the machine learning model produces
the wrong label for 𝑥 .

Our goal is to find a boolean function 𝐸∗ : X → {0, 1} that
maximizes the following optimization objective:

𝐸∗ = argmax
𝐸

𝑃 (I(𝑥) = 1 | 𝐸 (𝑥) = 1, 𝑥 ∼ X) (1)

In other words, the misprediction explanation 𝐸∗ should maximize
the probability that a given input is misclassified by the model.

In addition, because explanations that only explain a tiny fraction
of the mispredictions are not very useful, we additionally require
that 𝐸∗ should explain some minimum fraction 𝛿 of the mispredic-
tions:

𝑃 (𝐸∗ (𝑥) = 1 | I(𝑥) = 1, 𝑥 ∼ X) ≥ 𝛿 (2)
We refer to the value 𝑃 (𝐸 (𝑥) = 1 | I(𝑥) = 1, 𝑥 ∼ X) as the coverage
of explanation 𝐸.

Thus, putting these together, given a model𝑀 and parameter 𝛿 ,
our problem in this paper is to find a boolean function 𝐸 that solves
the following constrained optimization problem for inputs 𝑥 drawn
from distribution X:

maximize 𝑃 (I(𝑥) = 1 | 𝐸 (𝑥) = 1)
subject to :

𝑃 (𝐸 (𝑥) | I(𝑥) = 1) ≥ 𝛿

3.2 Hypothesis Space
In principle, any boolean function X → {0, 1}, including a deep
neural network, can serve as a misprediction explanation. However,

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Jürgen Cito, Isil Dillig, Seohyun Kim, Vijayaraghavan Murali, and Satish Chandra

because our goal is to help humans diagnose problems in their
classifiers, it is very important that such explanations be easily
interpretable. Thus, in this work, we restrict our hypothesis space
to decision lists (also called ordered rule sets) defined by the following
grammar:

𝐸 → if (𝜙) then 1 else 𝐸 | 0
𝜙 → 𝑥𝑐 = 𝑐 | 𝑥𝑐 ≠ 𝑐 | 𝑥𝑛 ≤ 𝑐 | 𝑥𝑛 > 𝑐 | 𝜙 ∧ 𝜙

In other words, misprediction explanations we consider in this
work are simple if - else if “programs" where each conditional
is a conjunction of atomic predicates of the form 𝑥 op 𝑐 where
𝑥 is a feature and 𝑐 is a constant. We use the notation 𝑥𝑐 , 𝑥𝑛 to
indicate categorical and numeric/ordinal features respectively. For
categorical features, we only allow the equality and disequality
operators, whereas for numerical/ordinal features, we allow the ≤
and > operators. In the remainder of this paper, we use the term
rule to refer to a conjunction of atomic predicates.

We believe that decision lists are well-suited to our problem
setting because they essentially correspond to an ordered sequence
of (non-overlapping) rules that explain different problem cases
for the model. Thus, an end-user can inspect each rule in order,
perform one of the possible actions listed in Table 2 to address the
corresponding problem, and move on to the next one.

Discussion. The reader may wonder if our hypothesis space is
too restrictive in that atomic predicates refer to individual attributes
(features) of the input data. However, it is worth noting that these
attributes need not necessarily correspond to features of the input
data that the model was trained on. For instance, consider a clas-
sifier that that is trained on a data set that has features like mass
and volume, and the user wants to know whether there is some
correlation between the model’s mispredictions and density. In that
case, the user can augment the data set to include such a density
feature. Taking this one step further, it might even be the case that
the data set that the model is trained on is entirely different from
the data set used for computing misprediction explanations. For
instance, consider an image classification model where attributes in
the original data set are individual pixels. Since such features may
be too low-level to be useful for debugging, the user may choose
to replace the original data set 𝐷 with another data set 𝐷 ′ where
features in 𝐷 ′ correspond to outputs of simpler ML models (e.g.,
for detecting basic shapes like triangles).

4 GENERATING MISPREDICTION
EXPLANATIONS

The problem formulation that we presented in Section 3 can be
addressed by a rule induction technique. In this section, we present
a rule induction technique that can be viewed as an instance of
subgroup discovery [2]. In Section 5.1 we compare against a couple
of other approaches to rule induction and give a broader overview
Section 6.

At a high level, our approach produces decision lists that solve
the constrained optimization problem from Section 3.1. However,
since exactly solving this optimization problem is computationally
intractable for large datasets, our approach approximates this objec-
tive using a greedy approach. Note that our approach differs from

1: procedure Explain(𝐷,𝑀, 𝛿)
input: Labeled data set 𝐷 : X → Y (ground truth)
input: ML model𝑀 : X → Y
input: Target coverage 𝛿
output: Misprediction explanation for𝑀

2: L ← LabelData(𝐷,𝑀)
3: A ← GenAtoms(L)
4: 𝑟𝑠 ← [] ⊲ A list of rules representing decision list
5: 𝑐𝑣𝑔← 0 ⊲ Current coverage for 𝑟𝑠
6: 𝑐𝑢𝑟 ← L
7: while 𝑐𝑣𝑔 ≤ 𝛿 do
8: 𝜙 ← LearnRule(𝑐𝑢𝑟,A)
9: 𝑟𝑠 ← 𝑟𝑠 :: [𝜙]
10: 𝑐𝑢𝑟 ← Filter(𝑐𝑢𝑟, 𝜙)
11: 𝑐𝑣𝑔← ComputeCoverage(L, 𝑟𝑠)
12: return 𝑟𝑠

Algorithm 1: Top-level algorithm

other techniques for learning decision lists in that it optimizes a
different objective function.

4.1 Top-Level Algorithm
Algorithm 1 presents our top-level procedure called Explain for
generating misprediction explanations. This procedure takes as in-
put a labeled data set𝐷 containing ground truth labels, anMLmodel
𝑀 , and a target coverage 𝛿 . We now explain how this procedure
generates a misprediction explanation.

Construct new data set. The Explain algorithm starts by calling a
procedure called LabelData that constructs a new dataset L : X →
{0, 1} such that:

L(𝑥) = 1⇔ (𝐷 (𝑥) ≠ 𝑀 (𝑥))

In other words, the new data set L maps each input in 𝐷 to a
boolean value indicating whether on not it is mispredicted by the
given model𝑀 .

Generate atomic predicates. Next, our algorithm calls a proce-
dure named GenAtoms to generate a universe of candidate atomic
predicates of the form 𝑥𝑖 op 𝑐 where 𝑥𝑖 is a feature and 𝑐 is a con-
stant. If 𝑥𝑖 is a categorical variable, we generate all predicates of the
form 𝑥𝑖 = 𝑐 𝑗 and 𝑥𝑖 ≠ 𝑐 𝑗 where 𝑐 𝑗 ∈ Domain(𝑥𝑖). For numerical
and ordinal features, we use the operators ≤, > and generate the
constants 𝑐 𝑗 using equal frequency binning [22]. In particular, let 𝑥𝑖
be a numerical feature that takes on values 𝐶 = {𝑐1, . . . , 𝑐𝑛} in the
data set. To generate atoms of the form 𝑥𝑖 op 𝑐 𝑗 , we first partition
the (sorted) set𝐶 into 𝑘 bins2 where each bin has roughly equal size
and then use the highest value in each bin as one of the constants
in our predicates.

Main learning loop. After the initialization phase (lines 2–6),
the algorithm enters a loop that iteratively adds new rules to the
decision list (lines 6–10) until the learned decision list achieves
the desired coverage parameter 𝛿 . The algorithm represents the

2The value of 𝑘 is a hyper-parameter and is set to 4 by default.

Explaining Mispredictions of Machine Learning Models using Rule Induction ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

learned decision list 𝑟𝑠 as a list of predicates, so, for example, the list
[𝜙1, 𝜙2] corresponds to the following misprediction explanation:

if(𝜙1) then 1 else if(𝜙2) then 1 else 0

At a high level, the learning loop synthesizes the target decision
list using a standard sequential covering approach [10]. In particular,
it first learns a rule 𝜙1 for the whole data set, then filters out ele-
ments satisfying 𝜙1, then learns another rule 𝜙2 for the remaining
elements, and so on, until the target coverage is reached. Thus, the
predicate 𝜙𝑖 learned during the 𝑖’th iteration corresponds to the
𝑖’th branch in the final misprediction explanation. Intuitively, the
predicate in the 𝑖’th branch is the best predictor for mispredictions
in the subset of the data not covered by the earlier predicates.

In more detail, each iteration of the loop considers a subset of
the data called cur (initialized to L in the beginning) and learns
a new rule 𝜙 that serves as a (conjunctive) misprediction expla-
nation for 𝑐𝑢𝑟 . This is done at line 8 via the call to LearnRule
(discussed in detail in the next subsection) and added as a new
branch of the decision list (line 9). Next, it removes from 𝑐𝑢𝑟 all
inputs X′ ⊆ X satisfying predicate 𝜙 and computes coverage 𝑐𝑣𝑔
for the misprediction explanation 𝑟𝑠 as follows (line 11):��{𝑥 ∈ X | 𝑟𝑠 (𝑥) = 1 ∧ L(𝑥) = 1}

����{𝑥 ∈ X | L(𝑥) = 1}
�� (3)

which is exactly the probability from Eqn 2. Since the algorithm
terminates only when 𝑐𝑣𝑔 exceeds 𝛿 , the output of the Explain
procedure is guaranteed to satisfy the coverage constraint from
Eqn 2.

4.2 Rule Learning
We now describe the LearnRule procedure for learning a conjunc-
tion of predicates overA for a given data set L.3 As stated in Eq. 1,
our goal is to learn a rule 𝜙 such that:

𝑃𝑥∼X (L(𝑥) = 1 | 𝜙 (𝑥))

is maximized — i.e., we want to learn rules that are highly correlated
with mispredictions. Observe that this optimization problem is
equivalent to maximizing the following alternative optimization
objective:

𝑝 =
|{𝑥 ∈ X | 𝜙 (𝑥) ∧ L(𝑥) = 1}|

|{𝑥 ∈ X | 𝜙 (𝑥)}| (4)

which corresponds to precision or positive predictive value.
However, if our rule learning algorithm aims to maximize solely

𝑝 , the top-level procedure from Algorithm 1 may, in practice, take
many iterations to converge. In particular, recall that Algorithm 1
aims to find a set of rules that collectively satisfy the coverage
threshold. But if each individual rule (i.e., branch) has very low
coverage, we may need to learn many rules in order to reach the
coverage threshold. Beyond making the algorithm slow to converge,
this would also result in misprediction explanations that are very
large, thereby compromising interpretability. Thus, rather than
optimizing only precision, our rule learning algorithm also takes
into account recall as well as rule size. In particular, our optimization

3Recall that L indicates whether a data point is mispredicted or not.

1: procedure LearnRule(L,A)
input: Labeled data set L where a label 𝑙 ∈ {0, 1} indicates
misprediction or not
input: A set of atomic predicates
output: Rule 𝜙 (conjunct over atomic predicates)

2: 𝐵 ← [𝑡𝑟𝑢𝑒, . . . , 𝑡𝑟𝑢𝑒] ⊲ beam initialization
3: 𝑑𝑜𝑛𝑒 ← false
4: while ¬𝑑𝑜𝑛𝑒 do
5: 𝑑𝑜𝑛𝑒 ← 𝑡𝑟𝑢𝑒

6: for all (𝜙𝑖 , 𝑝𝑖) ∈ 𝐵 × A do
7: 𝜙 ← 𝜙𝑖 ∧ 𝑝𝑖 ; 𝜎 ← Eval(𝜙,L)
8: (𝜙 ′, 𝜎 ′) ← GetWorst(𝐵)
9: if 𝜎 ′ < 𝜎 then
10: 𝐵 ← (𝐵\{𝜙 ′}) ∪ 𝜙 ; 𝑑𝑜𝑛𝑒 ← false
11: return GetBest(𝐵)

Algorithm 2: Rule learning algorithm based on beam search

objective O is a linear combination of precision, recall, and rule
size:

O = 𝜆1 · 𝑝 + 𝜆2 · 𝑟 + 𝜆3 ·
1

size(𝜙) (5)

where 𝑟 is the recall (or coverage) defined as in Eqn. 3 and 𝜆1, 𝜆2, 𝜆3
are tunable hyper-parameters. Since our primary goal is to find
rules that are highly correlated with mispredictions, precision is the
primary factor and is therefore given a higher weight by default;
the other hyperparameters are mainly used for regularization and
accelerating convergence.4

Our rule learning algorithm maximizes this optimization ob-
jective using standard beam search as shown in Algorithm 2. In
particular, given a beam size of 𝑛, Algorithm 2 initializes all 𝑛 rules
in the beam to 𝑡𝑟𝑢𝑒 (line 2). Then, it enters a while loop that ter-
minates when we fail to improve the objective value of any of the
rules in the beam. In particular, in each iteration of the while loop,
we construct new rules by adding a single atomic predicate 𝑝𝑖 to
one of the rules 𝜙𝑖 in the beam. If the resulting rule 𝜙 yields a better
value 𝜎 of the objective function from Eqn. 5 compared to the worst
rule 𝜙 ′ in the beam (line 9), then we replace 𝜙 ′ with the new rule 𝜙 .
At the end of the loop, the algorithm returns the best rule (i.e., one
with the highest objective value) among all the rules in the beam.

Running example. We illustrate the algorithm on the example
model on relating diffs to crashes we introduced in Sec 2. Table 3
shows the universe of atomic predicates generated based on the
input feature space illustrated in Table 1.

In every step of our beam search in Algorithm 2, we build
up new rules that consist of conjunctions of predicates from our
atomic predicate universe (e.g., modules>6 & loc<=13 & experi-
ence=="medium"). We evaluate new rule candidates and replace
them with the worst performing rule present in our current beam.
In our main learning loop in Algorithm 1, we iteratively add the
best rule in our beam to the decision list until it achieves our the

4We have also experimented with other optimization objectives such as F1 score but
we found that it does not achieve the right balance between different goals in our
context.

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Jürgen Cito, Isil Dillig, Seohyun Kim, Vijayaraghavan Murali, and Satish Chandra

Table 3: Generated universe of atomic predicates based on
the dataset in Table 1

Atomic Predicates

experience=="low"
experience!="low"
experience=="medium"
experience!="medium"
experience=="high"
experience!="high"

modules<=3
modules>3
modules>6
modules>9
modules<=6
modules<=9

loc<=13
loc>13
loc<=26
loc<=39
loc>39
loc>26

desired coverage parameter (e.g., if (modules>6 & loc<=13 & experi-
ence=="medium") elseif (exp!="low" & loc<=13)). Table 4 shows the
final results produced by MD.

4.3 Implementation
We have implemented MD as a Python library that takes as input a
Pandas dataframe, a target variable, target coverage, and a set of
(optional) parameters and returns a set of decision lists paired with
precision, recall, and coverage metrics. The main parameters to be
provided are the number of bins (default is 4) and the beam width
(default is 10).

Despite taking a greedy approach to solving our optimization
objective, the proposed method can still be quite slow on large data
sets, especially where the number of features is very large. Thus,
our method uses several optimizations to make this computation
tractable. Most of the “heavy” computation in our implementation
involves producing subsets of the data by applying filters and com-
paring metrics of the subset with metrics of the overall data (and
those of other subsets). We were able to achieve these significant
efficiency improvements by introducing proper indexing (and even-
tually using Pandas built-in indexing utility). Further, we have a
set of hyper-parameters that dictate when we discard predicates
and rules that do not meet certain precision and relevance thresh-
olds. An implementation is available as an open source project on
GitHub: https://github.com/facebookresearch/mmd.

5 EVALUATION
In this section, we describe a series of evaluations that are designed
to answer the following research questions:
• RQ1: How does the rule learning algorithm of MD compare
with other techniques with respect to finding conditions for
mispredictions?
• RQ2: Can MD identify problems in ML models used in software
engineering tasks?
• RQ3: Is MD useful for improving these models?

To answer RQ2 and RQ3, we deployed MD within Facebook
and report on case studies with selected teams using proprietary
data and models. For experiments comparing MD to existing rule
learners (RQ1), we additionally use public datasets and models from
Kaggle.

5.1 Comparison with Other Rule Learners
Generally speaking, rule induction techniques differ along three
dimensions: (1) shape of the learnt rules, (2) the quality metric used

for evaluating the rules (i.e., optimization objective), and (3) the
search technique. These characteristics have implications of how
well-suited the results of the different rule induction techniques
are for any particular task.

In this section, we compare our proposed algorithm with other
rule learning techniques. In particular, we compare against contrast
set mining (CSM) and a decision-list learner implementing RIPPER.
CSM has been previously used to diagnose problems in software
engineering tasks [9, 35]. Ripper is a well-known ruleset learning
algorithm that has been used in a variety of classification tasks [16,
17, 24].

We briefly explain where the STUCCO, a CSM algorithm, and
RIPPER algorithms lie along the axes of rule shape, quality metric
and search algorithm.

STUCCO Algorithm. The STUCCO algorithm aims to discover rules
that maximally contrast the target categories. In the remainder of
this discussion, we only consider the scenario where there are two
target categories.

Shape of the learnt rules. In contrast to our technique that learns
decision lists, STUCCO only learns conjunctions of predicates (i.e.,
rules instead of rule sets).

Quality metric. The STUCCO algorithm evaluates the quality of
a rule based on two metrics: largeness and significance. Largeness
means that the difference of support for each of the two target
groups must be larger than a certain threshold, where support is
the percent of rows in a group that match a rule. The other consid-
eration is significance, which measures whether the difference in
support is statistically significant, and not just random fluctuation,
based on a chi-squared test. Unlike a direct emphasis on precision
and recall within the misprediction group, this algorithm optimizes
(as the name says) for contrast between two groups.

Search algorithm. Similar to our LearnRule procedure, CSM’s
STUCCO algorithm is also based on beam search.

RIPPER Algorithm. RIPPER is rule learning algorithm tailored pri-
marily for classification (we focus on binary classification).

Shape of the learnt rules. Similar to our approach, RIPPER learns
decision lists rather than conjunctions of predicates.

Quality metric. The quality metric used by the RIPPER algorithm
is information-theoretic gain [37]. In particular, it favors rules that
provide the maximum information gain.

Search algorithm. Similar to our top-level algorithm, RIPPER
learns decision lists using a sequential covering approach. However,
its procedure for learning rules is not based on beam search and
involves three steps, namely (1) grow, (2) prune, and (3) optimize.
The grow step adds conjuncts to a rule based on the information
gain criterion. The second step prunes rules that do not reduce
entropy. These grow and prune steps are repeated until a stopping
criterion is reached. Finally, the optimize step attempts to improve
the learnt rules using a variety of heuristics.

5.1.1 Evaluation Subjects. As evaluation subjects, we use two mod-
els from our case studies: Bug2Commit (Sec 5.2.1) and Diff Review
(Sec 5.2.2). We also consider two publicly available ML models from

https://github.com/facebookresearch/mmd

Explaining Mispredictions of Machine Learning Models using Rule Induction ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Table 4: Overview of final decision lists generated for dataset introduced in Section 2 (Table 1)

Learned Rulesets Precision Recall

if modules>6 & loc<=13 & experience=="medium" 0.906977 0.165957
if experience!="low" & loc<=13 & modules>6 0.857143 0.306383
if (modules>6 & loc<=13 & experience=="medium") elseif (experience!="low" & loc<=13) 0.734884 0.672340
if (experience!="low" & modules>6) elseif (experience!="low" & loc<=13) 0.588732 0.889362

Figure 2: Precision-recall curves comparing different rule learners on four different tasks. For Diff Review, we see few data
points for MD because it finds rules with high recall even if we specify the coverage parameter to be small.

Kaggle, with the goal of both providing a replicable study (as it is
not possible for us to share company internal data), as well as to
evaluate whether our quantitative results extend to external mod-
els. For Kaggle, we want to select models that still have room for
improvement, so we use models that have an accuracy of less than
90%. Based on these criteria, we evaluate MD on the the follow-
ing pairs of data sets and models: (1) Heart Failure dataset with
an XGBoost model [29] (85% Accuracy), and (2) Cervical Cancer
Risk Classification dataset with a Naive Bayes model [11] (59.8%
Accuracy).

5.1.2 Results. Our main results are presented in Figure 2, which
shows precision-recall curves for the different misprediction ex-
planation tasks. In particular, remember that MD takes as input a
parameter that denotes target recall (i.e., percentage of mispredic-
tions covered by the explanation). To generate these precision-recall
curves, we run MD with different coverage thresholds. However,
since the other techniques do not have such a parameter, we simply
show all rules produced by STUCCO and RIPPER (after filtering
out redundant rules). Also, as mentioned earlier, STUCCO only
generates conjunctive rules.

As we can see from Figure 2, the explanations produced by MD
outperform STUCCO and RIPPER in most cases. That is, for similar
recall rates, the explanations from STUCCO and RIPPER often have
lower precision compared to MD. In some cases, this is not true
for RIPPER. However, in these cases, the explanations produced by
RIPPER are significantly more complex than those of MD. Table 5
provides an illustrative overview of the rule complexity produced by
each of the techniques that we have observed throughout our study:
RIPPER finds rules with high precision and recall by sacrificing
interpretability, producing rules with very high complexity (i.e.,
number of conditions). While both STUCCO and MD produce quite
succinct rules, we find that MD finds a better balance of precision
and recall on the pareto frontier.

While there is no good way of illustrating rule complexity in the
plots, we separately report mean and standard deviation of total

Table 5: Representative rule from each of the techniques

Rule Prec. Rec.

MD if exp!="low" & mod>6 & loc<=18
elseif exp!="low" & loc<=9 0.84 0.71

CSM if exp=="m" & loc>=1.0 & loc<=10.0 0.92 0.34

Ripper

if exp=="high" & loc>=1 & loc<=4
elseif loc>=4 & loc<=8 & exp=="m"
elseif exp=="high" & loc>=4 & loc<=8
elseif loc>=1 & loc<=4 & exp=="m"
elseif loc>=8 & loc<=13 &

exp=="m" & mod=="8"
elseif loc>=1 & loc<=4 & mod=="7"

0.97 0.58

Table 6: Overview of total rule size mean and standard devi-
ation across techniques and datasets

Method Dataset Mean Std

Ripper Cervical Cancer 9.32 1.90
MD 3.61 1.85
CSM 2.94 2.18
Ripper Heart Failure 6.51 2.35
MD 3.84 1.81
CSM 5.95 1.73
Ripper Bug2Commit 8.70 2.11
MD 4.75 3.57
CSM 3.12 1.32
Ripper Diff Review 6.71 2.62
MD 3.22 1.63
CSM 2.67 1.15

rule size for each dataset and technique combination in Table 6.
We see that MD generally produces rules with lower complexity,
especially compared to RIPPER.

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Jürgen Cito, Isil Dillig, Seohyun Kim, Vijayaraghavan Murali, and Satish Chandra

5.2 Case Studies
In this section, we present case reports applying MD to four ML
models used within Facebook. We discuss the insights MD revealed
and how developers were able to improve their tools by acting on
these insights.

One of the common themes in applying MD to software engi-
neering models was the need to augment the original data set with
additional, purely diagnostic features. That is, in addition to the
input data, we worked with model developers to come up with
additional features that could provide useful diagnostic values. We
illustrate this aspect of our case study in the subsections that follow.

5.2.1 Bug2Commit. Bug2Commit [31] is a lightweight ML model
developed at Facebook. Given a crash report in the form of text
(including stack frames when available), and a large set of code
commits in the form of meta data from the commit (but possibly
some content as well), Bug2Commit aims to answer the following
question: Which commit is most likely the cause of the crash? We
expect Bug2Commit to find the true “blame” commit among the
top 10 in a ranked list of suspect commits. The model is based on
information retrieval and computes the cosine distance between
vector representations of both the crash report and each of the
commits. Bug2Commit is known to miss the true blame commit in
more than 30% of the cases.

We set out to find out whether there is a characterization of
crashes that are particularly prone to misprediction. We identified
several attributes that could be of interest: length of the crash report,
the repository to which it pertains (iOS, Android, etc.), the number
of files modified in the true blame commit (which are known for
this dataset) and so on.

MD found the following rule (among the top 5) with high preci-
sion: repository==“ios" & length_trace>57. That is, if the commit is for
iOS and the length of the crash trace is greater than 57 lines, it leads
to misprediction much more often than in the overall dataset. This
rule’s precision is 0.68 and recall is 0.14. Our algorithm discovered
this rule without requiring any human insight.

To gain better intuition about how to improve the model, we
used our domain knowledge to augment the dataset with an ad-
ditional, diagnostic feature, namely the overlap of words between
the crash report and the blame commit, as a percentage of top
words in the crash report. In particular, since the model is based
on vector distance between the “top weighted" words (BM25), we
conjectured that overlap could be a useful diagnostic feature. With
this additional feature, MD found: repository==“ios" & length_trace
> 57 & overlap<=35, with precision of 0.72 and recall of 0.12. This
now gives an actionable idea: can we improve word overlap?

Based on the insights we obtained using MD, we augmented the
content for each commit with the names of the modified functions
in the changed files. With this augmentation and retraining the
pipeline, we got significant reduction in iOS misses, without de-
teriorating anything else. On a dataset with about 5000 instances,
we had 32% mispredictions (17% from iOS). With training over
augmented data, we had 28.5% mispredictions (13% from iOS.) The
data indicates that there is more scope to improve overlap between
words, which we will explore going forward.

5.2.2 Diff Review. The “Diff Review” project builds ML models
to assess the quality of review that a diff (code commit) has gone
through. A diff contains various features associated with it, such as
(i) a title and summary of the commit, (ii) files that are modified,
and (iii) the actual code changes. Different models were built based
on each of these three features, in addition to a fourth model that
combines these features using a deep neural network. The deep
model performs the best overall in terms of precision but it is also
the slowest in terms of inference time. In addition, there are some
inputs that are predicted correctly by one of the three simpler
models but mispredicted by the deep neural network model. In
this case study, we use MD to better understand these “blind spots”
for the deep model and construct an ensemble with both better
precision and faster inference.

To use MD, we again came up with additional diagnostic features
that could be useful. In particular, we used as attributes the number
of modified files of each type in each diff. For instance, if a diff
modified 4 Java files and 2 Python files, it would have attributes
modified_java=4 and modified_python=2. We then ran MD three
times, once for each of the simpler models, with a target where the
simpler model predicted correctly and the deep model did not. MD
revealed several predicates that indicated that the deep model mis-
predicted when a significantly large number of files of particular
types are modified (e.g., modified_javascript>31). We confirmed
with the designer of the deep model that, when a large number
of files are modified in a diff, it ignores the code changes (due to
memory constraints) and switches to only using the other features.

We proceeded to see if this is something that can be fixed “online”
without re-training models. Using the predicates surfaced by MD,
we implemented a quick model selection routine that switches to
using the simpler models when the predicates surfaced by MD
were satisfied. This eliminated 80 mispredictions compared to the
original model. As an additional benefit, we were able to improve
inference time by over 3%.

5.2.3 Autocomplete. We used MD to generate misprediction expla-
nations for amachine learningmodel used for code auto-completion.
This is a classical sequence prediction setting, where a standard
RNN learns a “language model” over a token stream, considering a
context window of size up to 1000. The model outputs a probability
distribution (via softmax) over the top-𝑁 tokens and is known to
predict the correct next token among the top-5 results in approxi-
mately 52% of the cases.

To apply MD for this purpose, we first came up with diagnostic
features that could be potentially useful for improving the model.
These features involve the vocabulary of the corpus as well as
properties of the token predicted by the model. Some of our diag-
nostic features include: (1) frequency rank of the target token in
the vocabulary, (2) whether the top prediction is out of vocabulary
(OOV, indicated by special "unk" token), (3) whether the receiver
of attribute access (the token that comes before the .) is out of
vocabulary, (4) the probability delta between the top prediction and
the next one, (5) whether the target occurs in the recent context
window, and (6) number of tokens in the context.

MDuncovered that the feature that ismost highly correlatedwith
misprediction to be whether the top prediction is out of vocabulary
(precision of 84.9% and recall rate of 59.9%). This means that when

Explaining Mispredictions of Machine Learning Models using Rule Induction ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

the top prediction is "unk", the correct token is not in the top-
5 results in 84.9% of cases. Some of the other highly-correlated
features included (1) whether the probability delta between the top
prediction and next one was < 0.5 (precision 68.6%), and (2) if the
receiver is OOV (precision 65%).

This information was useful in two ways. First, we were able
to use the misprediction explanations of MD to decide when to
suppress the output. That is, if the model’s predictions exhibit the
characteristics uncovered by MD, we chose not to make predic-
tions rather than frustrating users with incorrect predictions (e.g.
suppressing predictions on incidence of the above delta condition
would reduce misprediction rate from 48% to 40%.) In addition, the
output of MD was also useful for inspiring the developers of the
auto-completion tool to improve their model. In particular, given
the findings of MD with respect to out-of-vocabulary tokens, they
are currently exploring the use of pointer networks and copy mech-
anisms to improve precision [4].

5.3 Oncall Recommendation
In this last case study, we consider a machine learning model for
assigning points of contact for various tasks in the software engi-
neering life-cycle [1] (e.g., debugging, code review, oncall rotation).
We used MD with the goal of improving the Rank-1 accuracy of a
particular model that ranks a set of oncall candidates on files in the
source code repository. The test set for the model is composed of
ground truth data on previous oncall assignments.

MD uncovered the following rule which has high precision
(93.6%) and recall (39.4%):

legacy_system_score ≤ 0.14 ∧ inline_comment_ratio ≤ 0.46
∧decision_members_ratio ≤ 0.80

This rule includes a feature that relies on a score retrieved by a
legacy subsystem that was previously responsible for suggesting
oncall assignments. We investigated retraining the model without
using the legacy feature. While we were able to see improvements
in model accuracy, they were relatively small (∼1% improvement).
However, the rules uncovered by MD (paired with domain knowl-
edge) helped the team uncover sources of noise introduced by one
of the features on the relationship of Rank-1 accuracy and ground
truth. Specifically, there can be multiple contenders for a Rank-
1 prediction (if more than one person has the same probability
score assigned by the model). When investigating the impact of the
legacy_system_score feature, they uncovered that this feature added
just enough noise to rank someone as Rank-2, even though they
should have also been at Rank-1. Upon closer inspection, the team
learned that this noisiness was only relevant for some parts of the
involved repositories. A possible solution that was discussed was
suppressing predictions for this particular part of the input space.

6 RELATEDWORK
The work presented in the paper relates to several topics.

Rule learning techniques. The misprediction explanation finding
technique presented in this paper can be viewed as an instance
of rule-based methods used in machine learning and data mining.
In particular, since our method produces decision lists, it is par-
ticularly related to techniques for learning decision lists [40] and,

Figure 3: Illustration of different objectives in our case vs
classification. Since our primary objective is precision, the
green box serves as a better misprediction explanation than
the yellow box for our purposes. On the other hand, the yel-
lowboxhas higher accuracy5compared to the green box (90%
vs. 85%) and is therefore better for classification. However, it
has lower precision (80% vs. 100%).

more recently, decision sets [25]. However, the goal of these prior
techniques is to perform accurate classification rather than charac-
terizing mispredictions of ML models. Due to these differing goals,
our method learns rules that optimize a different objective that
prioritizes precision rather than accuracy Due to this difference,
our approach learns decision lists that are highly correlated with
mispredictions rather than learning rules that strike a good balance
between explaining both correct and incorrect predictions. The dif-
ference between our primary objective and the one in classification
is shown schematically in Figure 3. Here, the green box serves as
a better explanation than the yellow box in our case since all data
points inside it are mispredicted (indicated by +), so it has higher
precision. On the other hand, the yellow box has higher accuracy
and would therefore be preferable for classification purposes.

More generally, rule learning techniques can be classified as
either descriptive rule discovery which aims to find patterns in data
or predictive rule discovery which is used for making predictions
for new data; ID3 [37], CN2 [15] and Ripper are in the second class.
Since our goal is to discover which types of inputs are misclassified
by a model, our method is much more closely related to descrip-
tive rule discovery, which can be further categorized into three
main classes: (1) contrast set mining (CSM), (2) emerging pattern
mining (EPM), and (3) subgroup discovery (SD). While these tech-
niques are closely related, they differ in the following ways: CSM
aims to find statistically meaningful differences between multiple
groups [7]; EPM aims to find new patterns that emerge in new
versions of the same dataset [33], and SD aims to find statistically
interesting subgroups with respect to some property of interest [3].
Since our goal is to find subgroups in the data for which mispre-
diction ratio is particularly high, our approach can be cast as an
instance of subgroup discovery, which has traditionally been useful
in identifying sub-populations that are at risk for certain medical
conditions [19, 23, 30]. While many subgroup discovery algorithms
have been proposed, depending on the application domain, they
vary with respect to their optimization objectives, shape of the

5accuracy is defined as (true-positives + true-negatives) / all.

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Jürgen Cito, Isil Dillig, Seohyun Kim, Vijayaraghavan Murali, and Satish Chandra

learnt subgroups, and search strategies. In contrast to existing sub-
group discovery algorithms, our method learns decision lists using
a sequential covering approach because we want to identify a set
of subgroups that collectively cover a high percentage of the mis-
predictions.

Among different rule learning techniques, ours is perhaps most
similar to that of Lakkaraju et al. [25] in that their objective function
is also a linear combination of different desiderata that aim to strike
a good balance between the primary optimization objective and
other factors such as conciseness and interpretability. However, as
mentioned earlier and illustrated in Figure 3, their primary objective
is accuracy whereas ours is precision. Furthermore, we choose
decision lists rather than decision sets due to the additive nature of
the discovered rules in terms of recall.

Rule Learning in Software Engineering. Rule learning techniques
have also been applied in the context of software engineering. Con-
trast set mining has been used to help debug crashes by identifying
properties unique to sets of crash reports [9, 36]. Castelluccio et al.
use STUCCO to find statistically significant correlations in crash
groups at Mozilla [9]. Qian et al. use CSM to learn what distin-
guishes groups of crashes at Facebook. They extend the algorithm
to be directly applicable to continuous variables instead of using
discretization that can lead to scalability issues [36]. Different rule
learning techniques have also been used in defect prediction [41, 42].
Rodriguez et al. study the use of subgroup discovery algorithms to
obtain rules identifying defect prone modules [41]. Song et al. uses
descriptive rules obtained from association rule learning to predict
defect associations and correction efforts [42].

MLmodel interpretability. While our primary goal is to help users
debug their machine learning models, our approach is nonetheless
related to the fast growing field of model interpretability. Efforts in
this space can be classified as focusing on either local or global inter-
pretability. Techniques for local interpretability, such as LIME [38],
ANCHORS [39] and integrated gradients [43], aim to provide evi-
dence to justify a specific prediction made by the model. In contrast,
techniques for global interpretability aim to shed light on the over-
all behavior of a model. For example, GALE [45] aims to compute
globally important features whereas other methods such as [18, 26]
construct a simpler and more interpretable surrogate model for a
much more complex model. More relevant to the software engi-
neering community, [12] automatically extracts rules that emulate
deep learning models and applies this technique to software engi-
neering tasks such as binary analysis and malware detection.

Debugging ML models. More similarly to this paper, there has
also been recent interest in developing techniques to debugmachine
learning models. For example, Wu et al. [48] propose a methodol-
ogy for debugging ML models used in natural language processing
(NLP). Specifically, they propose a domain-specific language for
formulating and testing hypotheses about NLP models; however, it
is up to the users to manually formulate these hypotheses in the pro-
posed DSL and decide whether they constitute good misprediction
explanation. In contrast, the technique proposed here is intended to
automate the task of finding misprediction explanations to a large
extent.

Another related approach is data slicing, where the goal is to
find a “slice" (i.e., subset) of the data where the difference in error
loss is statistically significant and the so-called “effect size" is above
a certain threshold [14]. Key applications of data slicing include
evaluating model fairness and fraud detection. While the goal of
this work is similar to ours, our method differs from theirs in that
(a) we only assume access to the classification result (as opposed to
error loss), (b) we optimize a different objective function consisting
of precision and recall that are easier to evaluate, (c) the rules we
produce are additive in terms of coverage (as opposed to the top-
k rules), and (d) we use different techniques for optimizing our
objective function.

Recently, there has also been been a proposal for automatically
repairing neural models [27]. In particular, they propose a technique
(MODE) for identifying so-called faulty neurons and then use this
information to select inputs that have a high presence of features
that are important for misclassification. In contrast to MODE where
the goal is to automatically generate additional training data, our
goal is to come up with an interpretable explanation of when a
model mispredicts. As discussed earlier, this information can be
used for data augmentation, but it may also be useful for other
purposes such as ensembling, output suppression, or improving
model architecture. In addition, our method is model agnostic and
does not focus solely on neural models.

7 LIMITATIONS
While we have shown that MD can help explaining mispredictions
of models, it does have certain limitations in its ability to do so.
Firstly, MD searches the space of attributes for likely explanations,
but the attributes themselves have to be defined by the model de-
signer. Typically, one can start with metadata that already exists
for the problem from the input space (e.g., “length of trace” for
Bug2Commit), and if the generated explanations are not actionable,
add further diagnostic features (e.g., “overlap percentage”). In some
cases, this process might require human intervention to converge
to the right set of actionable attributes. Secondly, MD does not guar-
antee that its explanations will lead to significant improvements
for the underlying model. Its main purpose is to help the model
designer understand dark corners of the model and take appropriate
action (as in Table 2). MD should not be relied on as a means to pro-
duce an improved model, which is only a possible side-effect of the
action. Third, we designed MD to be model-agnostic so that it can
be applied to different types of ML models. While this design choice
allows broader applicability, it also prevents our approach from
taking advantage of white-box knowledge that could potentially
allow better scalability.

8 CONCLUSION
We have proposed misprediction explanations as a useful concept
for debugging and improving machine learning models. We also
presented a model-agnostic technique for generating useful and in-
terpretable misprediction explanations. We demonstrated through
case studies that misprediction explanations are useful for improv-
ing MLmodels used in machine learning, and we also demonstrated
the advantages of our technique compared to other rule learning
techniques such as RIPPER and STUCCO.

Explaining Mispredictions of Machine Learning Models using Rule Induction ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

REFERENCES
[1] John Ahlgren, Maria Eugenia Berezin, Kinga Bojarczuk, Elena Dulskyte, Inna

Dvortsova, Johann George, Natalija Gucevska, Mark Harman, Shan He, Ralf
Lämmel, Erik Meijer, Silvia Sapora, and Justin Spahr-Summers. 2020. Ownership
at Large: Open Problems and Challenges in Ownership Management. In ICPC
’20: 28th International Conference on Program Comprehension, Seoul, Republic of
Korea, July 13-15, 2020. ACM, 406–410. https://doi.org/10.1145/3387904.3389293

[2] Martin Atzmueller. 2015. Subgroup discovery. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery 5, 1 (2015), 35–49.

[3] Martin Atzmueller. 2015. Subgroup discovery. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery 5, 1 (2015), 35–49.

[4] G. Aye, S. Kim, and H. Li. 2021. Learning Autocompletion from Real-World
Datasets. , 131-139 pages. https://doi.org/10.1109/icse-seip52600.2021.00022

[5] Matej Balog, Alexander L Gaunt, Marc Brockschmidt, Sebastian Nowozin, and
Daniel Tarlow. 2016. Deepcoder: Learning to write programs. arXiv preprint
arXiv:1611.01989 (2016).

[6] Rohan Bavishi, Caroline Lemieux, Roy Fox, Koushik Sen, and Ion Stoica. 2019.
AutoPandas: neural-backed generators for program synthesis. Proc. ACM Program.
Lang. 3, OOPSLA (2019), 168:1–168:27. https://doi.org/10.1145/3360594

[7] Stephen D Bay and Michael J Pazzani. 1999. Detecting change in categorical
data: Mining contrast sets. In Proceedings of the fifth ACM SIGKDD international
conference on Knowledge discovery and data mining. 302–306.

[8] Jose Cambronero, Hongyu Li, Seohyun Kim, Koushik Sen, and Satish Chandra.
2019. When deep learning met code search. In Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 964–974. https://doi.org/10.1145/3338906.
3340458

[9] Marco Castelluccio, Carlo Sansone, Luisa Verdoliva, and Giovanni Poggi. 2017.
Automatically analyzing groups of crashes for finding correlations. In Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering. 717–726.
https://doi.org/10.1145/3106237.3106306

[10] Jadzia Cendrowska. 1987. PRISM: An algorithm for inducing modular rules.
International Journal of Man-Machine Studies 27, 4 (1987), 349–370.

[11] Vanessa Chantreau. 2021. Cervical Cancer Risk Classification. https://www.
kaggle.com/ebobette/cancer-full-study?scriptVersionId=20118243.

[12] Simin Chen, Soroush Bateni, Sampath Grandhi, Xiaodi Li, Cong Liu, and Wei
Yang. 2020. DENAS: Automated Rule Generation by Knowledge Extraction from
Neural Networks. Association for Computing Machinery, New York, NY, USA,
813–825. https://doi.org/10.1145/3368089.3409733

[13] Yanju Chen, Chenglong Wang, Osbert Bastani, Isil Dillig, and Yu Feng. 2020.
Program Synthesis Using Deduction-Guided Reinforcement Learning. In Inter-
national Conference on Computer Aided Verification. Springer, 587–610. https:
//doi.org/10.1007/978-3-030-53291-8_30

[14] Yeounoh Chung, Tim Kraska, Neoklis Polyzotis, Ki Hyun Tae, and Steven Euijong
Whang. 2020. Automated Data Slicing for Model Validation: A Big Data - AI
Integration Approach. IEEE Transactions on Knowledge and Data Engineering 32,
12 (2020), 2284–2296. https://doi.org/10.1109/TKDE.2019.2916074

[15] P. Clark and T Niblett. 1989. The CN2 induction algorithm. Machine Learning
(1989), 261–283.

[16] William W Cohen et al. 1996. Learning rules that classify e-mail. In AAAI spring
symposium on machine learning in information access, Vol. 18. Stanford, CA, 25.

[17] William W Cohen and Yoram Singer. 1999. Context-sensitive learning methods
for text categorization. ACM Transactions on Information Systems (TOIS) 17, 2
(1999), 141–173.

[18] Finale Doshi-Velez and Been Kim. 2017. Towards a rigorous science of inter-
pretable machine learning. arXiv preprint (2017).

[19] Dragan Gamberger, Nada Lavrač, and Goran Krstačić. 2003. Active subgroup
mining: a case study in coronary heart disease risk group detection. Artificial
Intelligence in Medicine 28, 1 (2003), 27–57.

[20] Vincent J Hellendoorn, Christian Bird, Earl T Barr, and Miltiadis Allamanis. 2018.
Deep learning type inference. In Proceedings of the 2018 26th acm joint meeting
on european software engineering conference and symposium on the foundations of
software engineering. 152–162. https://doi.org/10.1145/3236024.3236051

[21] Ehud Kalai and Dov Samet. 1987. On weighted Shapley values. International
journal of game theory 16, 3 (1987), 205–222.

[22] Sotiris Kotsiantis and Dimitris Kanellopoulos. 2006. Discretization techniques:
A recent survey. GESTS International Transactions on Computer Science and
Engineering 32, 1 (2006), 47–58.

[23] Petra Kralj, Nada Lavrac, Blaz Zupan, and Dragan Gamberger. 2005. Experimental
comparison of three subgroup discovery algorithms: Analysing brain ischemia
data. Information Society (2005), 220–223.

[24] Milan Kumari and Sunila Godara. 2011. Comparative study of data mining
classification methods in cardiovascular disease prediction 1. (2011).

[25] Himabindu Lakkaraju, Stephen H. Bach, and Jure Leskovec. 2016. Interpretable
Decision Sets: A Joint Framework for Description and Prediction. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD ’16). Association for Computing Machinery, New York, NY,

USA, 1675–1684. https://doi.org/10.1145/2939672.2939874
[26] Himabindu Lakkaraju, Ece Kamar, Rich Caruana, and Jure Leskovec. 2017. In-

terpretable & explorable approximations of black box models. arXiv preprint
arXiv:1707.01154 (2017).

[27] Shiqing Ma, Yingqi Liu, Wen-Chuan Lee, Xiangyu Zhang, and Ananth Grama.
2018. MODE: automated neural network model debugging via state differential
analysis and input selection. In Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. 175–186. https://doi.org/10.1145/3236024.3236082

[28] Mateusz Machalica, Alex Samylkin, Meredith Porth, and Satish Chandra. 2019.
Predictive Test Selection. In Proceedings of the 41st International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP ’19). IEEE Press,
Piscataway, NJ, USA, 91–100. https://doi.org/10.1109/ICSE-SEIP.2019.00018

[29] Shiva Raj Mishra. 2021. ANN vs Rest: Endgame in Heart Failure Predic-
tion. https://www.kaggle.com/shivarajmishra/ann-vs-rest-endgame-for-heart-
failure-prediction?scriptVersionId=54717793.

[30] MarianneMueller, Rómer Rosales, Harald Steck, SriramKrishnan, Bharat Rao, and
Stefan Kramer. 2009. Subgroup discovery for test selection: a novel approach and
its application to breast cancer diagnosis. In International Symposium on Intelligent
Data Analysis. Springer, 119–130. https://doi.org/10.1007/978-3-642-03915-7_11

[31] Vijayaraghavan Murali, Lee Gross, Rebecca Qian, and Satish Chandra. 2021.
Industry-scale IR-based Bug Localization: A Perspective from Facebook. In Pro-
ceedings of the ACM/IEEE 43rd International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP ’21). https://doi.org/10.1109/ICSE-
SEIP52600.2021.00028

[32] Vijayaraghavan Murali, Edward Yao, Umang Mathur, and Satish Chandra. 2021.
Scalable Statistical Root Cause Analysis on App Telemetry. In Proceedings of
the ACM/IEEE 43rd International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP ’21). https://doi.org/10.1109/ICSE-SEIP52600.
2021.00038

[33] Petra Kralj Novak, Nada Lavrač, andGeoffrey IWebb. 2009. Supervised descriptive
rule discovery: A unifying survey of contrast set, emerging pattern and subgroup
mining. Journal of Machine Learning Research 10, 2 (2009).

[34] Michael Pradel, Georgios Gousios, Jason Liu, and Satish Chandra. 2020. Type-
writer: Neural type prediction with search-based validation. In Proceedings
of the 28th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. 209–220. https:
//doi.org/10.1145/3368089.3409715

[35] Rebecca Qian, Yang Yu, Wonhee Park, Vijayaraghavan Murali, Stephen Fink,
and Satish Chandra. 2020. Debugging Crashes Using Continuous Contrast Set
Mining. In Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP ’20). Association for
Computing Machinery, New York, NY, USA, 61–70. https://doi.org/10.1145/
3377813.3381369

[36] Rebecca Qian, Yang Yu, Wonhee Park, Vijayaraghavan Murali, Stephen Fink,
and Satish Chandra. 2020. Debugging crashes using continuous contrast set
mining. In Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering: Software Engineering in Practice. 61–70. https://doi.org/10.1145/
3377813.3381369

[37] J Ross Quinlan. 1987. Decision trees as probabilistic classifiers. In Proceedings of
the Fourth International Workshop on Machine Learning. Elsevier, 31–37.

[38] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. " Why should i
trust you?" Explaining the predictions of any classifier. In Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and data mining.
1135–1144. https://doi.org/10.1145/2939672.2939778

[39] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2018. Anchors: High-
Precision Model-Agnostic Explanations. In Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence (AAAI-18).

[40] Ronald L Rivest. 1987. Learning decision lists. Machine learning 2, 3 (1987),
229–246.

[41] Daniel Rodriguez, Roberto Ruiz, Jose C Riquelme, and Rachel Harrison. 2013. A
study of subgroup discovery approaches for defect prediction. Information and
Software Technology 55, 10 (2013), 1810–1822. https://doi.org/10.1016/j.infsof.
2013.05.002

[42] Qinbao Song, Martin Shepperd, Michelle Cartwright, and Carolyn Mair. 2006.
Software defect association mining and defect correction effort prediction. IEEE
Transactions on Software Engineering 32, 2 (2006). https://doi.org/10.1109/tse.
2006.1599417

[43] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017. Axiomatic attribution
for deep networks. In International Conference on Machine Learning. PMLR, 3319–
3328.

[44] Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan. 2020.
IntelliCode compose: code generation using transformer. In ESEC/FSE ’20: 28th
ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, Virtual Event, USA, November 8-13, 2020,
Prem Devanbu, Myra B. Cohen, and Thomas Zimmermann (Eds.). ACM, 1433–
1443. https://doi.org/10.1145/3368089.3417058

https://doi.org/10.1145/3387904.3389293
https://doi.org/10.1109/icse-seip52600.2021.00022
https://doi.org/10.1145/3360594
https://doi.org/10.1145/3338906.3340458
https://doi.org/10.1145/3338906.3340458
https://doi.org/10.1145/3106237.3106306
https://www.kaggle.com/ebobette/cancer-full-study?scriptVersionId=20118243
https://www.kaggle.com/ebobette/cancer-full-study?scriptVersionId=20118243
https://doi.org/10.1145/3368089.3409733
https://doi.org/10.1007/978-3-030-53291-8_30
https://doi.org/10.1007/978-3-030-53291-8_30
https://doi.org/10.1109/TKDE.2019.2916074
https://doi.org/10.1145/3236024.3236051
https://doi.org/10.1145/2939672.2939874
https://doi.org/10.1145/3236024.3236082
https://doi.org/10.1109/ICSE-SEIP.2019.00018
https://www.kaggle.com/shivarajmishra/ann-vs-rest-endgame-for-heart-failure-prediction?scriptVersionId=54717793
https://www.kaggle.com/shivarajmishra/ann-vs-rest-endgame-for-heart-failure-prediction?scriptVersionId=54717793
https://doi.org/10.1007/978-3-642-03915-7_11
https://doi.org/10.1109/ICSE-SEIP52600.2021.00028
https://doi.org/10.1109/ICSE-SEIP52600.2021.00028
https://doi.org/10.1109/ICSE-SEIP52600.2021.00038
https://doi.org/10.1109/ICSE-SEIP52600.2021.00038
https://doi.org/10.1145/3368089.3409715
https://doi.org/10.1145/3368089.3409715
https://doi.org/10.1145/3377813.3381369
https://doi.org/10.1145/3377813.3381369
https://doi.org/10.1145/3377813.3381369
https://doi.org/10.1145/3377813.3381369
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1016/j.infsof.2013.05.002
https://doi.org/10.1016/j.infsof.2013.05.002
https://doi.org/10.1109/tse.2006.1599417
https://doi.org/10.1109/tse.2006.1599417
https://doi.org/10.1145/3368089.3417058

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Jürgen Cito, Isil Dillig, Seohyun Kim, Vijayaraghavan Murali, and Satish Chandra

[45] Ilse van der Linden, Hinda Haned, and Evangelos Kanoulas. 2019. Global aggrega-
tions of local explanations for black box models. arXiv preprint arXiv:1907.03039
(2019).

[46] Ke Wang, Rishabh Singh, and Zhendong Su. 2017. Dynamic neural program
embedding for program repair. arXiv preprint (2017).

[47] JiayiWei, Maruth Goyal, Greg Durrett, and Isil Dillig. 2020. Lambdanet: Probabilis-
tic type inference using graph neural networks. arXiv preprint arXiv:2005.02161
(2020).

[48] Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer, and Daniel Weld. 2019.
Errudite: Scalable, Reproducible, and Testable Error Analysis. In Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics.
Association for Computational Linguistics, Florence, Italy, 747–763. https:
//doi.org/10.18653/v1/P19-1073

[49] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and Isolating Failure-
Inducing Input. IEEE Trans. Softw. Eng. 28, 2 (Feb. 2002), 183–200. https://doi.
org/10.1109/32.988498

https://doi.org/10.18653/v1/P19-1073
https://doi.org/10.18653/v1/P19-1073
https://doi.org/10.1109/32.988498
https://doi.org/10.1109/32.988498

	Abstract
	1 Introduction
	2 Overview
	3 Problem Formulation
	3.1 Optimization Objective
	3.2 Hypothesis Space

	4 Generating Misprediction Explanations
	4.1 Top-Level Algorithm
	4.2 Rule Learning
	4.3 Implementation

	5 Evaluation
	5.1 Comparison with Other Rule Learners
	5.2 Case Studies
	5.3 Oncall Recommendation

	6 Related Work
	7 Limitations
	8 Conclusion
	References

