
Feistel networks

In SPN Network S-boxes Invertible

SPN: PROS and CONS

PRO: With enough rounds secure.

CON: Hard to come up with invertible S-boxes.

Feistel Networks will not need invertible components but will be
secure.

Feistel networks

1) Message length is `. Just like SPN.

2) Key k = k1 · · · kr of length n. r rounds. Just like SPN.

3) |ki | = n/r . Need NOT be `. Unlike SPN.

4) Use key ki in ith round. Just like SPN.

5) Instead of S-boxes we have public functions f̂i . Need not be
invertible! Unlike SPN. We derive fi (R) = f̂i (ki ,R) from them.

For 1-round:
Input: L0R0, |L0| = |R0| = `/2.
Output: L1R1 where L1 = R0, R1 = L0 ⊕ f1(R0)
Invertible! The nature of f1(R) does not matter.
1) Input(L1R1)
2) R0 = L1.
3) Can compute f1(R0) and hence L0 = R1 ⊕ f1(R0).

Feistel Network

r-round Feistel networks

1) Message length is `. Just like SPN.

2) Key k = k1 · · · kr of length n. r rounds. Just like SPN.

3) |ki | = n/r . Need NOT be `. Unlike SPN.

4) Use key ki in ith round. Just like SPN.
5) Public functions f̂i . Need not be invertible! Unlike SPN.
fi (R) = f̂i (ki ,R) from

Input: L0R0, |L0| = |R0| = `/2.
Output or Round 1: L1R1 where L1 = R0, R1 = L0 ⊕ f1(R0)
Output or Round 2: L2R2 where L2 = R1, R2 = L1 ⊕ f2(R1)
...

...
...

Output or Round r : LrRr where Lr = Rr−1, Rr = Lr−1 ⊕ fr (Rr−1)

Data Encryption Standard (DES)

I Standardized in 1977

I 56-bit keys, 64-bit block length

I 16-round Feistel network

I Same round function in all rounds (but different sub-keys)

I Basically an SPN design! But easier to build.

DES mangler function is f̂i

Avalanche effect – Like SPN!

I Consider 1-bit difference in left half of input

I After 1 round, 1-bit difference in right half

I S-boxes cause 2-bit difference, implying a 3-bit difference
overall after 2 rounds

I Mixing permutation spreads differences into different S-boxes

I . . .

Security of DES

PRO: DES is extremely well-designed

PRO: Known attacks brute force or need lots of Plaintext.

BIG CON: Parameters are too small! Brute-force search is feasible

Security of DES

PRO: DES is extremely well-designed

PRO: Known attacks brute force or need lots of Plaintext.

BIG CON: Parameters are too small! Brute-force search is feasible

Security of DES

PRO: DES is extremely well-designed

PRO: Known attacks brute force or need lots of Plaintext.

BIG CON: Parameters are too small! Brute-force search is feasible

56-bit key length

I A concern as soon as DES was released.

I Released in 1975, but that was then, this is now.

I Brute-force search over 256 keys is possible

I 1997: 1000s of computers, 96 days

I 1998: distributed.net, 41 days

I 1999: Deep Crack ($250,000), 56 hours

I 2018: 48 FPGAs, 1 day

I 2019: Will do as Classroom demo when teach this course in
Fall of 2019.

Increasing key length?

I DES has a key that is too short

I How to fix?

I Design new cipher. HARD!

I Tweak DES so that it takes a larger key. HARD!

I Build a new cipher using DES as a black box. EASY?

Double encryption

I Let F : {0, 1}n × {0, 1}` → {0, 1}`

I (i.e. n=56, `=64 for DES)

I Define F 2 : {0, 1}2n × {0, 1}` → {0, 1}` as follows:

F 2
k1,k2(x) = Fk1(Fk2(x))

(still invertible)

I If best known attack on F takes time 2n, is it reasonable to
assume that the best known attack on F 2 takes time 22n?
Vote! YES, NO, UNKNOWN TO SCIENCE

NO

Double encryption

I Let F : {0, 1}n × {0, 1}` → {0, 1}`

I (i.e. n=56, `=64 for DES)

I Define F 2 : {0, 1}2n × {0, 1}` → {0, 1}` as follows:

F 2
k1,k2(x) = Fk1(Fk2(x))

(still invertible)

I If best known attack on F takes time 2n, is it reasonable to
assume that the best known attack on F 2 takes time 22n?
Vote! YES, NO, UNKNOWN TO SCIENCE
NO

Encrypt Twice – Lets look at Past Ciphers

1) Shift: if Shift twice, does sec increase? Vote: Yes, No, Unk

N0 Its just Shift!

2) Affine: if Affine twice, does sec increase? Vote: Yes, No, Unk
N0 Its just Affine!

3) Cubic: if Cubic twice, does sec increase? Vote: Yes, No, Unk
YES Higher Deg poly!

4) Vig: if Vig twice, does sec increase? Vote: Yes, No, Unk
YES Key size is LCM(k1, k2).

5) Matrix: if Matrix twice, does sec increase? Vote: Yes, No, Unk
NO Its just Matrix!

6) OTP: if OTP twice, does security increase? Vote: Yes, No, Unk
NO Its just OTP!

7) RSA: if RSA twice, does security increase? Vote: Yes, No, Unk
NO (me)e = me2 .

Encrypt Twice – Lets look at Past Ciphers

1) Shift: if Shift twice, does sec increase? Vote: Yes, No, Unk
N0 Its just Shift!

2) Affine: if Affine twice, does sec increase? Vote: Yes, No, Unk
N0 Its just Affine!

3) Cubic: if Cubic twice, does sec increase? Vote: Yes, No, Unk
YES Higher Deg poly!

4) Vig: if Vig twice, does sec increase? Vote: Yes, No, Unk
YES Key size is LCM(k1, k2).

5) Matrix: if Matrix twice, does sec increase? Vote: Yes, No, Unk
NO Its just Matrix!

6) OTP: if OTP twice, does security increase? Vote: Yes, No, Unk
NO Its just OTP!

7) RSA: if RSA twice, does security increase? Vote: Yes, No, Unk
NO (me)e = me2 .

Encrypt Twice – Lets look at Past Ciphers

1) Shift: if Shift twice, does sec increase? Vote: Yes, No, Unk
N0 Its just Shift!

2) Affine: if Affine twice, does sec increase? Vote: Yes, No, Unk

N0 Its just Affine!

3) Cubic: if Cubic twice, does sec increase? Vote: Yes, No, Unk
YES Higher Deg poly!

4) Vig: if Vig twice, does sec increase? Vote: Yes, No, Unk
YES Key size is LCM(k1, k2).

5) Matrix: if Matrix twice, does sec increase? Vote: Yes, No, Unk
NO Its just Matrix!

6) OTP: if OTP twice, does security increase? Vote: Yes, No, Unk
NO Its just OTP!

7) RSA: if RSA twice, does security increase? Vote: Yes, No, Unk
NO (me)e = me2 .

Encrypt Twice – Lets look at Past Ciphers

1) Shift: if Shift twice, does sec increase? Vote: Yes, No, Unk
N0 Its just Shift!

2) Affine: if Affine twice, does sec increase? Vote: Yes, No, Unk
N0 Its just Affine!

3) Cubic: if Cubic twice, does sec increase? Vote: Yes, No, Unk
YES Higher Deg poly!

4) Vig: if Vig twice, does sec increase? Vote: Yes, No, Unk
YES Key size is LCM(k1, k2).

5) Matrix: if Matrix twice, does sec increase? Vote: Yes, No, Unk
NO Its just Matrix!

6) OTP: if OTP twice, does security increase? Vote: Yes, No, Unk
NO Its just OTP!

7) RSA: if RSA twice, does security increase? Vote: Yes, No, Unk
NO (me)e = me2 .

Encrypt Twice – Lets look at Past Ciphers

1) Shift: if Shift twice, does sec increase? Vote: Yes, No, Unk
N0 Its just Shift!

2) Affine: if Affine twice, does sec increase? Vote: Yes, No, Unk
N0 Its just Affine!

3) Cubic: if Cubic twice, does sec increase? Vote: Yes, No, Unk

YES Higher Deg poly!

4) Vig: if Vig twice, does sec increase? Vote: Yes, No, Unk
YES Key size is LCM(k1, k2).

5) Matrix: if Matrix twice, does sec increase? Vote: Yes, No, Unk
NO Its just Matrix!

6) OTP: if OTP twice, does security increase? Vote: Yes, No, Unk
NO Its just OTP!

7) RSA: if RSA twice, does security increase? Vote: Yes, No, Unk
NO (me)e = me2 .

Encrypt Twice – Lets look at Past Ciphers

1) Shift: if Shift twice, does sec increase? Vote: Yes, No, Unk
N0 Its just Shift!

2) Affine: if Affine twice, does sec increase? Vote: Yes, No, Unk
N0 Its just Affine!

3) Cubic: if Cubic twice, does sec increase? Vote: Yes, No, Unk
YES Higher Deg poly!

4) Vig: if Vig twice, does sec increase? Vote: Yes, No, Unk
YES Key size is LCM(k1, k2).

5) Matrix: if Matrix twice, does sec increase? Vote: Yes, No, Unk
NO Its just Matrix!

6) OTP: if OTP twice, does security increase? Vote: Yes, No, Unk
NO Its just OTP!

7) RSA: if RSA twice, does security increase? Vote: Yes, No, Unk
NO (me)e = me2 .

Encrypt Twice – Lets look at Past Ciphers

1) Shift: if Shift twice, does sec increase? Vote: Yes, No, Unk
N0 Its just Shift!

2) Affine: if Affine twice, does sec increase? Vote: Yes, No, Unk
N0 Its just Affine!

3) Cubic: if Cubic twice, does sec increase? Vote: Yes, No, Unk
YES Higher Deg poly!

4) Vig: if Vig twice, does sec increase? Vote: Yes, No, Unk

YES Key size is LCM(k1, k2).

5) Matrix: if Matrix twice, does sec increase? Vote: Yes, No, Unk
NO Its just Matrix!

6) OTP: if OTP twice, does security increase? Vote: Yes, No, Unk
NO Its just OTP!

7) RSA: if RSA twice, does security increase? Vote: Yes, No, Unk
NO (me)e = me2 .

Encrypt Twice – Lets look at Past Ciphers

1) Shift: if Shift twice, does sec increase? Vote: Yes, No, Unk
N0 Its just Shift!

2) Affine: if Affine twice, does sec increase? Vote: Yes, No, Unk
N0 Its just Affine!

3) Cubic: if Cubic twice, does sec increase? Vote: Yes, No, Unk
YES Higher Deg poly!

4) Vig: if Vig twice, does sec increase? Vote: Yes, No, Unk
YES Key size is LCM(k1, k2).

5) Matrix: if Matrix twice, does sec increase? Vote: Yes, No, Unk
NO Its just Matrix!

6) OTP: if OTP twice, does security increase? Vote: Yes, No, Unk
NO Its just OTP!

7) RSA: if RSA twice, does security increase? Vote: Yes, No, Unk
NO (me)e = me2 .

Encrypt Twice – Lets look at Past Ciphers

1) Shift: if Shift twice, does sec increase? Vote: Yes, No, Unk
N0 Its just Shift!

2) Affine: if Affine twice, does sec increase? Vote: Yes, No, Unk
N0 Its just Affine!

3) Cubic: if Cubic twice, does sec increase? Vote: Yes, No, Unk
YES Higher Deg poly!

4) Vig: if Vig twice, does sec increase? Vote: Yes, No, Unk
YES Key size is LCM(k1, k2).

5) Matrix: if Matrix twice, does sec increase? Vote: Yes, No, Unk

NO Its just Matrix!

6) OTP: if OTP twice, does security increase? Vote: Yes, No, Unk
NO Its just OTP!

7) RSA: if RSA twice, does security increase? Vote: Yes, No, Unk
NO (me)e = me2 .

Encrypt Twice – Lets look at Past Ciphers

1) Shift: if Shift twice, does sec increase? Vote: Yes, No, Unk
N0 Its just Shift!

2) Affine: if Affine twice, does sec increase? Vote: Yes, No, Unk
N0 Its just Affine!

3) Cubic: if Cubic twice, does sec increase? Vote: Yes, No, Unk
YES Higher Deg poly!

4) Vig: if Vig twice, does sec increase? Vote: Yes, No, Unk
YES Key size is LCM(k1, k2).

5) Matrix: if Matrix twice, does sec increase? Vote: Yes, No, Unk
NO Its just Matrix!

6) OTP: if OTP twice, does security increase? Vote: Yes, No, Unk
NO Its just OTP!

7) RSA: if RSA twice, does security increase? Vote: Yes, No, Unk
NO (me)e = me2 .

Encrypt Twice – Lets look at Past Ciphers

1) Shift: if Shift twice, does sec increase? Vote: Yes, No, Unk
N0 Its just Shift!

2) Affine: if Affine twice, does sec increase? Vote: Yes, No, Unk
N0 Its just Affine!

3) Cubic: if Cubic twice, does sec increase? Vote: Yes, No, Unk
YES Higher Deg poly!

4) Vig: if Vig twice, does sec increase? Vote: Yes, No, Unk
YES Key size is LCM(k1, k2).

5) Matrix: if Matrix twice, does sec increase? Vote: Yes, No, Unk
NO Its just Matrix!

6) OTP: if OTP twice, does security increase? Vote: Yes, No, Unk

NO Its just OTP!

7) RSA: if RSA twice, does security increase? Vote: Yes, No, Unk
NO (me)e = me2 .

Encrypt Twice – Lets look at Past Ciphers

1) Shift: if Shift twice, does sec increase? Vote: Yes, No, Unk
N0 Its just Shift!

2) Affine: if Affine twice, does sec increase? Vote: Yes, No, Unk
N0 Its just Affine!

3) Cubic: if Cubic twice, does sec increase? Vote: Yes, No, Unk
YES Higher Deg poly!

4) Vig: if Vig twice, does sec increase? Vote: Yes, No, Unk
YES Key size is LCM(k1, k2).

5) Matrix: if Matrix twice, does sec increase? Vote: Yes, No, Unk
NO Its just Matrix!

6) OTP: if OTP twice, does security increase? Vote: Yes, No, Unk
NO Its just OTP!

7) RSA: if RSA twice, does security increase? Vote: Yes, No, Unk
NO (me)e = me2 .

Encrypt Twice – Lets look at Past Ciphers

1) Shift: if Shift twice, does sec increase? Vote: Yes, No, Unk
N0 Its just Shift!

2) Affine: if Affine twice, does sec increase? Vote: Yes, No, Unk
N0 Its just Affine!

3) Cubic: if Cubic twice, does sec increase? Vote: Yes, No, Unk
YES Higher Deg poly!

4) Vig: if Vig twice, does sec increase? Vote: Yes, No, Unk
YES Key size is LCM(k1, k2).

5) Matrix: if Matrix twice, does sec increase? Vote: Yes, No, Unk
NO Its just Matrix!

6) OTP: if OTP twice, does security increase? Vote: Yes, No, Unk
NO Its just OTP!

7) RSA: if RSA twice, does security increase? Vote: Yes, No, Unk

NO (me)e = me2 .

Encrypt Twice – Lets look at Past Ciphers

1) Shift: if Shift twice, does sec increase? Vote: Yes, No, Unk
N0 Its just Shift!

2) Affine: if Affine twice, does sec increase? Vote: Yes, No, Unk
N0 Its just Affine!

3) Cubic: if Cubic twice, does sec increase? Vote: Yes, No, Unk
YES Higher Deg poly!

4) Vig: if Vig twice, does sec increase? Vote: Yes, No, Unk
YES Key size is LCM(k1, k2).

5) Matrix: if Matrix twice, does sec increase? Vote: Yes, No, Unk
NO Its just Matrix!

6) OTP: if OTP twice, does security increase? Vote: Yes, No, Unk
NO Its just OTP!

7) RSA: if RSA twice, does security increase? Vote: Yes, No, Unk
NO (me)e = me2 .

Encrypt Twice Sometimes Gives the Same Exact
Cipher

Encrypting Twice:

Shift, Affine, Matrix: Give same cipher, NO increase in key length.

Cubic: Gave diff cipher.

Vig: Gave same cipher but longer key length. So Still crackable?

DES:
Is double-DES really DES with a longer key? Vote: Yes, No, Unk.

No, for technical reasons I don’t want to get into.
Is double-DES harder than DES to crack?? Vote: Yes, No, Unk.
No
Next slide is Meet-in-the-Middle attack.

Encrypt Twice Sometimes Gives the Same Exact
Cipher

Encrypting Twice:

Shift, Affine, Matrix: Give same cipher, NO increase in key length.

Cubic: Gave diff cipher.

Vig: Gave same cipher but longer key length. So Still crackable?

DES:
Is double-DES really DES with a longer key? Vote: Yes, No, Unk.
No, for technical reasons I don’t want to get into.

Is double-DES harder than DES to crack?? Vote: Yes, No, Unk.
No
Next slide is Meet-in-the-Middle attack.

Encrypt Twice Sometimes Gives the Same Exact
Cipher

Encrypting Twice:

Shift, Affine, Matrix: Give same cipher, NO increase in key length.

Cubic: Gave diff cipher.

Vig: Gave same cipher but longer key length. So Still crackable?

DES:
Is double-DES really DES with a longer key? Vote: Yes, No, Unk.
No, for technical reasons I don’t want to get into.
Is double-DES harder than DES to crack?? Vote: Yes, No, Unk.

No
Next slide is Meet-in-the-Middle attack.

Encrypt Twice Sometimes Gives the Same Exact
Cipher

Encrypting Twice:

Shift, Affine, Matrix: Give same cipher, NO increase in key length.

Cubic: Gave diff cipher.

Vig: Gave same cipher but longer key length. So Still crackable?

DES:
Is double-DES really DES with a longer key? Vote: Yes, No, Unk.
No, for technical reasons I don’t want to get into.
Is double-DES harder than DES to crack?? Vote: Yes, No, Unk.
No

Next slide is Meet-in-the-Middle attack.

Encrypt Twice Sometimes Gives the Same Exact
Cipher

Encrypting Twice:

Shift, Affine, Matrix: Give same cipher, NO increase in key length.

Cubic: Gave diff cipher.

Vig: Gave same cipher but longer key length. So Still crackable?

DES:
Is double-DES really DES with a longer key? Vote: Yes, No, Unk.
No, for technical reasons I don’t want to get into.
Is double-DES harder than DES to crack?? Vote: Yes, No, Unk.
No
Next slide is Meet-in-the-Middle attack.

Encrypt Twice

We show that Encrypting twice does not help much in general.
Let Π = (Gen,Enc ,Dec) be an encryption scheme. Let n be a
security parameter which will be the length of the key.
Dr. Birdz has the following idea:

1) Alice and Bob share two keys k1, k2.

2) To encode m: send Enc(k1,Enc(k2,m))

3) To decode c : Dec(Dec(k1, c), k2)

Hope: Eve needs k1 and k2, 2n bits, twice as hard to crack.

We Dash That Hope: We show that Eve can crack in ∼ 2n steps.
Caveat: Eve needs LOTS of space.

Encrypt Twice

We show that Encrypting twice does not help much in general.
Let Π = (Gen,Enc ,Dec) be an encryption scheme. Let n be a
security parameter which will be the length of the key.
Dr. Birdz has the following idea:

1) Alice and Bob share two keys k1, k2.

2) To encode m: send Enc(k1,Enc(k2,m))

3) To decode c : Dec(Dec(k1, c), k2)

Hope: Eve needs k1 and k2, 2n bits, twice as hard to crack.
We Dash That Hope: We show that Eve can crack in ∼ 2n steps.
Caveat: Eve needs LOTS of space.

Meet-in-the-middle attack

1) Alice and Bob share two keys k1, k2.

2) To encode m: send Enc(k1,Enc(k2,m))

3) To decode c : Dec(Dec(k1, c), k2)
Note: m = Dec(Dec(k1, c), k2), so Enc(m, k2) = Dec(c , k1)

Meet-in-the-middle attack

Note: m = Dec(Dec(k1, c), k2), so Enc(m, k2) = Dec(c , k1)
Assume Eve has one (m, c) pair.

1) (∀k ∈ {0, 1}n) Eve comp. Enc(m, k). Sort 2n (Enc(m, k), k).

2) (∀k ∈ {0, 1}n) Eve comp. Dec(c , k). Sort 2n (Dec(c , k), k).

3) Find pairs from each list that agree on 1st comp m.

4) Have (m, k2) = (m, k1) so have k1, k2.

Time: 2× (2n+1 + n2n) = 2n+2 + n2n+1.
Can do better: Can avoid Sorting (HW).
Upshot: Double Encryption did NOT double the exponent for Eve.

Triple encryption

I Define F 3 : {0, 1}3n × {0, 1}` → {0, 1}` as follows:

F 3
k1,k2,k3(x) = Fk1(Fk2(Fk3(x)))

I Can do meet-in-the-middle but would be 22n.

I No better attack known.

Two-key triple encryption

I Define F 3 : {0, 1}2n × {0, 1}` → {0, 1}` as follows:

F 3
k1,k2(x) = Fk1(Fk2(Fk1(x)))

I Best attacks take time 22n — optimal given the key length!

I Sames on key length.

I Good for some backward-compatibiliy issues

