
An Introduction to Hidden 
Markov Models 

The basic theory of Markov chains has been known to 
mathematicians and engineers for close to 80 years, but it is 
only in the past decade that it has been applied explicitly to 
problems in speech processing. One of the major reasons why 
speech models, based on Markov chains, have not been devel
oped until recently was the lack of a method for optimizing 
the parameters of the Markov model to match observed signal 
patterns. Such a method was proposed in the late 1960's and 
was immediately applied to speech processing .in several re
search institutions. Continued refinements in the theory and 
implementation of Markov modelling techniques have greatly 
enhanced the method, leading to a wide range of applications 
of these models. It is the purpose of this tutorial paper to 
give an introduction to the theory of Markov models, and to 
illustrate how they have been applied to problems in speech 
recognition. 

INTRODUCTION 

ASSUME YOU ARE GIVEN the following problem. A 
real world process produces a sequence of observable 

symbols. The symbols could be discrete (outcomes of coin 
tossing experiments, characters from a finite alphabet, 
quantized vectors from a code book, etc.) or continuous 
(speech samples, autocorrelation vectors, vectors of linear 
prediction coefficients, etc.). Your job is to build a signal 
model that explains and characterizes the occurrence of 
the observed symbols. If such a signal model is obtain
able, it then can be used later to identify or recognize 
other sequences of observations. 

In attacking such a problem, some fundamental deci
sions, guided by signal and system theory, must be made. 
For example, one must decide on the form of the model, 
linear or non-linear, time-varying or time-invariant, deter
ministic or stochastic. Depending on these decisions, as 
well as other signal processing considerations, several 
possible signal models can be constructed. 

To fix ideas, consider modelling a pure sinewave. If we 
have reason to believe that the observed symbols are from 
a pure sinewave, then all that would need to be measured 
is the amplitude, frequency and perhaps phase of the sine
wave and an exact model, which explains the observed 
symbols, would result. 
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Consider next a somewhat more complicated signal
namely a sinewave imbedded in noise. The noise compo
nents of the signal make the modelling problem more 
complicated because in order to properly estimate the 
sinewave parameters (amplitude, frequency, phase) 
one has to take into account the characteristics of the 
noise component. 

In the above examples, we have assumed the sinewave 
part of the signal was stationary-i .e. not time varying. This 
may not be a realistic assumption. If, for example, the 
unknown process produces a sinewave with varying am
plitude, then clearly a non-linear model, e.g. amplitude
modulation, may be more appropriate. Similarly, if we 
assume that the frequency, instead of the amplitude, of 
the sinewave is changing, a frequency-modulation model 
might be most appropriate. 

Linear system models 

The concepts behind the above examples have been 
well studied in classical communication theory. The vari
ety and types of real world processes, however, does not 
stop here. Linear system models, which model the ob
served symbols as the output of a linear system excited by 
an appropriate source, form another important class of 
processes for signal modeling and have proven useful for 
a wide variety of applications. For example, "short time" 
segments of speech signals can be effectively modeled as 
the output of an all-pole filter excited by appropriate 
sources with essentially a flat spectral envelope. The signal 
modeling technique, in this case, thus involves deter
mination of the linear filter coefficients and, in some 
cases, the excitation parameters. Obviously, spectral analy
ses of other kinds also fall within this category. 

One can further incorporate temporal variations of the 
signal. into the linear system model by allowing the filter 
coefficients, or the excitation parameters, to change with 
time. In fact, many real world processes cannot be mean
ingfully modeled without considering such temporal 
variation. Speech signals are one example of such pro
cesses. There are several ways to address the problem of 
modeling temporal variation of a signal. 

As mentioned above, within a "short time" period, 
some physical signals, such as speech, can be effectively 
modeled by a simple linear time-invariant system with the 
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appropriate excitation. The easiest way then to address the 
time-varying nature of the process is to view it as a direct 
concatenation of these smaller "short time" segments, 
each such segment being individually represented by a 
linear system model. In other words, the overall model is 
a synchronous sequence of symbols where each of the 
symbols is a linear system model representing a short seg
ment of the process. In a sense this type of approach 
models the observed signal using representative tokens of 
the signal itself (or some suitably averaged set of such 
signals if we have multiple observations). 

Time-varying processes 

Modeling time-varying processes with the above ap
proach assumes that every such short-time segment of 
observation is a unit with a prechosen duration. In gen
eral, however, there doesn't exist a precise procedure 
to decide what the unit duration should be so that both 
the time-invariant assumption holds, and the short-time 
linear system models (as well as concatenation of the mod
els) are meaningful. In most physical systems, the duration 
of a short-time segment is determined empirically. In 
many processes, of course, one would neither expect the 
properties of the process to change synchronously with 
every unit analysis duration, nor observe drastic changes 
from each unit to the next except at certain instances. 
Making no further assumptions about the relationship be
tween adjacent short-time models, and treating temporal 
variations, small or large, as "typical" phenomena in the 
observed signal, are key features in the above direct con
catenation technique. This template approach to signal 
modeling has proven to be quite useful and has been the 
basis of a wide variety of speech recognition systems. 

There are good reasons to suspect, at this point, that the 
above approach, while useful, may not be the most effi
cient (in terms of computation, storage, parameters etc.) 
technique as far as representation is concerned. Many real 
world processes seem to manifest a rather sequentially 
changing behavior; the properties of the process are usu
ally held pretty steadily, except for minor fluctuations, 
for a certain period of time (or a number of the above
mentioned duration units), and then, at certain instances, 
change (gradually or rapidly) to another set of properties. 
The opportunity for more efficient modeling can be ex
ploited if we can first identify thes.e periods of rather 
steadily behavior, and then are willing to assume that the 
temporal variations within each of these steady periods 
are, in a sense, statisti'cal. A more efficient representation 
may then be obtained by using a common short time 
model for each of the steady, or well-behaved parts of the 
signal, along with some characterization of how one 
such period evolves to the next. This is how hidden 
Markov models (HMM) come about. Clearly, three prob
lems have to be addressed: 1) how these steadily or dis
tinctively behaving periods can be identified, 2) how the 
"sequentially" evolving nature of these periods can be 
characterized, and 3) what typical or common short time 
model should be chosen for each of these periods. Hid-

den Markov models successfully treat these problems un
der a probabilistic or statistical framework. 

It is thus the purpose of this paper to explain what a 
hidden Markov model is, why it is appropriate for certain 
types of problems, and how it can be used in practice. In 
the next section, we illustrate hidden Markov models via 
some simple coin toss examples and outline the three 
fundamental problems associated with the modeling tech
nique. We then discuss how these problems can be solved 
in Section III. We will not direct our general discussion to 
anyone particular problem, but at the end of this paperwe 
illustrate how HMM's are used via a couple of examples in 
speech recognition. 

DEFINITION OF A HIDDEN MARKOV MODEL 

An HMM is a doubly stochastic process with an unde'r
lying stochastic process that is not observable (it is hid
den), but can only be observed through another set of 
stochastic processes that produce the sequence of ob
served symbols. We illustrate HMM's with the following 
coin toss example. 

Coin toss example 

To understand the concept of the HMM, consider the 
following simplified example. You are in a room with a 
barrier (e.g., a curtain) through which you cannot see 
what is happening. On the other side of the barrier is 
another person who is performing a coin (or multiple 
coin) tossing experiment. The other person will not tell 
you anything about what he is doing exactly; he will only 
tell you the result of each coin flip. Thus a sequence of 
hidden coin tossing experiments is performed, and you 
only observe the results of the coin tosses, i.e. 

0 1 0 2 0 3 ••••••••••• 0 T 

where 'M- stands for heads and ~ stands for tails. 
Given the above experiment, the problem is how do we 

build an HMM to explain the observed sequence of heads 
and tails. One possible model is shown in Fig. 1a. We call 
this the "1-fair coin" model. There are two states in the 
model, but each state is uniquely associated with either 
heads (state 1) or tails (state 2). Hence this model is not 
hidden because the observation sequence uniquely de
fines the state. The model represents a "fair coin" because 
the probability of generating a head (or a tail) following a 
head (or a tail) is 0.5; hence there is no bias on the current 
observation. This is a degenerate example and shows how 
independent trials, like tossing of a fair coin, can be inter
preted as a set of sequential events. Of course, if the 
person behind the barrier is, in fact, tossing a single fair 
coin, this model should explain the outcomes very well. 

A second possible HMM for explaining the observed 
sequence of cofn toss outcomes is giv-en in Fig. 1 b. We call 
this model the "2-fair coin" model. There are again 2 states 
in the model, but neither state is uniquely associated with 
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P(T)= 0.0 PIT): 1.0 
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0.5 0.5 
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P(H) = 0.75 P(H) = 0.25 
PIT) = 0.25 PIn =0.75 

STATE 
1 2 3 

P(H) 0.6 0.25 0.45 
PIT) 0.4 0.75 0.55 

1 - FAIR COIN MODEL 

2- FAIR COINS MODEL 

2- BIASED COINS MODEL 

3- BIASED COINS MODEL 

Figure 1. Models which can be used to explain the 
results of hidden coin tossing experiments. The sim
plest model. shown in part (a). consists of a single fair 
coin with the outcome heads corresponding to one 
state and tails to the other state. The model of part (b) 
corresponds to tossing two fair (unbiased) coins. with 
the first coin being used in state 1 and the second coin 
being used in state 2. An independent "fair" coin is 
used. to decide which of the other two fair coins is 
flipped at each trial. The model of part (c) corresponds 
to tossing two biased coins. with the first coin being 
heavily biased towards heads. and the second coin 
heavily biased towards tails. Again a "fair" coin is used 
to decide which biased coin. is tossed at each trial. 
Finally the model of part d corresponds to the case of 
3 biased coins being used. 

either heads or tails. The probabilities of heads (or tails) in 
either state is 0.5. Also the probability of leaving (or re
maining in) either state is 0.5. Thus, in this case, we can 
associate each state with a fair (unbiased) coin. Although 
the probabilities associated with remaining in, or leaving, 
either of the tw€H.tates are all 0.5, a little thought should 
convince the reader that the statistics of the observable 
output sequencres of the 2-fair coins model are indepen
dent of the state transitions. The reason for this is that this 
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model is hidden (Le. we cannot know exactly which fair 
coin (state) led to the observed heads or tails at each ob
servation), but is essentially indistinguishable (in a statisti
cal sense) from the 1-fair coin model of Fig. 1a. 

Figures 1c and 1d show two more possible HMM's which 
can account for the observed sequence of heads and tails. 
The model of Fig. 1c, which we call the 2-biased coins 
model, has two states (corresponding to two different 
coins). In state 1, the coin is biased strongly towards 
heads. In state 2, the coin is biased strongly towards tails. 
The state transition probabilities are all equal to 0.5. This 
2-biased coins model is a hidden Markov model which 
is distinguishable from the two previously discussed 
models. Interestingly, the reader should be able to con
vince himself that the long time statistics (e.g. average 
number of heads or tails) of the observation sequences 
from the HMM of Fig. 1c are the same as those from the 
models of Figs. 1a and 1b. This model is very appropriate 
if what is happening behind the barrier is as follows. The 
person has three coins, one fair and the other two biased 
according to the description in Fig. 1c. The two biased 
coins are associated- with the two faces of the fair coin 
respectively. To report the outcome of every mysterious 
coin flip, the person behind the barrier first flips the fair 
coin to decide which biased coin to use, and then flips the 
chosen biased coin to obtain the result. With this model, 
we thus are able to look into and explain the above subtle 
characteristic changes (Le. switching the biased coins). 

The model of Fig. 1d, which we call the 3-biased coins 
model, has three states (corresponding to three different 
coins). In state 1 the coin is biased slightly towards heads; 
in state 2 the coin is biased strongly toward tails; in state 3 
the coin is biased slightly toward tails. We have not speci
fied values of the state transition probabilities in Fig. 1d; 
clearly the behavior of the observation sequences pro
duced by such a model are strongly dependent on these 
transition probabilities. (To convince himself of this, the 
reader should consider two extreme cases, namely when 
the probability of remaining in state 3 is large (>0.95), or 
small «0.05). Very different sequence statistics will result 
from these two extremes because of the strong bias of the 
coin associated with state 3). As with the 2-biased coin 
model, some real scenario behind the barrier, corre
sponding to such a model can be composed; the reader 
should find no difficulty doing this himself. 

There are several important points to be learned from 
this discussion of how to model the outputs of the coin 
tossing experiment via HMM's. First we note that one of 
the most difficult parts of the modeling procedure is to 
decide on the size (the number of states) of the model. 
Without some a priori information, this decision often is 
difficult to make and could involve trial and error before 
settling on the most appropriate model size. Although we 
stopped at a 3-coin model for the above illustration, even 
this might be too small. How do we decide on how many 
coins (states) are really needed in the model? The answer 
to this question is related to an even larger question, 
namely how do we choose model parameters (state transi-



Urn 1 

Pr(R)= • 

Pr (8) = • 

Pr (Y) = • 

• 

Urn 2 

Pr (R) = • 
Pr (8)= • 

Pr(Y)= • 

• 

• 

• • • 

Urn N 

Pr (R) = 
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Pr(Y)=· 

• 

Figure 2. An urn and ball model which illustrates the general case of a discrete symbol hidden Markov model. Each 
of N urns (the N states of the model) contains a large number of colored balls. The proportion of each colored ball. 
in each urn. is different. and is governed by the probability density of colors for each urn. The observations from 
the urn and ball model consists of announcing the color of the ball drawn at random from a selected urn. replacing 
the ball. and then choosing a new urn from which to select a ball according to the state transition density associated 
with the originally selected urn. 

tion probabilities, probabilities of heads and tails in each 
state) to optimize the model so that it best explains the 
observed outcome sequence. We will try to answer this 
question in the section on Solutions to the Three HMM 
Problems as this is the key to the successful use of HMM's 
for real world problems. A final point concerns the size of 
the observation sequence. If we are restricted to a small 
finite observation sequence we may not be able to reliably 
estimate the optimal model parameters. (Think of the 
case of actually using 10 coins but be given a set of 
50-100 observations). Hence, in a sense, depending on the 
amount of model training data we are given, certain 
HMM's may not be statistically, reliably different. 

Elements of an HMM 

We now explain the elements and the mechanism of the 
type of HMM's that we discuss in this paper: 

1. There are a finite number, say N, of states in the 
model; we shall not rigorously define what a state is but 
simply say that within a state the signal possesses some 
measurable, distinctive properties. 

2. At each clock time, t, a new state is entered based 
upon a transition probability distribution which depends 
on the previous state (the Markovian property). (Note that 
the transition may be such that the process remains in the 
previous state.) 

3. After each transition is made, an observation output 
symbol is produced according to a probability distribution 
which depends on the current state. This probability distri
bution ;s held fixed for the state regardless of when and 
how the state is entered. There are thus N such obser
vation probability distributions which, of course, repre
sent randpm variables or stochastic processes. 

To fix ideas, let us consider the "urn and ball" model of 
Fig. 2. There are N urns, each filled with a large number of 
colored balls. There are M possible colors for each ball. 
The observation sequence is generated by initially choos
ing one of the N urns (according to an initial probability 
distribution), selecting a ball from the initial urn, record
ing its color, replacing the ball, and then choosing a new 
urn according to a transition probability distribution asso
ciated with the current urn. Thus a typical observation 
sequence might be: 

clock time 1234· .. T 

urn (hidden) state q3q1q1q2'" qN-2 

color (observation) R B Y Y ... R 

We now formally define the following model notation 
for a discrete observation HMM: 

T = length of the observation sequence (total number of 
clock times) 

N = number of states (urns) in the model 
M = number of observation symbols (colors) 
Q = {q1, q2, . .. ,qN}, states (urns) 
V = {V1, V2, ... ,VM} discrete set of possible symbol obser-

vations (colors) 
A = {aij}, aij = Pr(qj at t + 11 qi at t), state transition proba

bility distribution 
B = {bj(k)}, bj(k) = Pr(vk at tl q; at t), observation symbol 

probability distribution in state i 
7T = {7Ti}, 71) = Pr(qi at t =1), initial state distribution 

Using the model, an observation sequence, 0 = 
0 1 O2, ••• ,OT, is generated as follows: 
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1. Choose an initial state, i1 , according to the initial state 
distribution,7T; 

2. Set t = 1; 
3. Choose Ot according to bii(k), the symbol probability 

distribution in state it; 
4. Choose it+1 according to {aitit+l}' it+1 = 1,2, ... ,N, 

the state transition probability distribution for state it; 
. S. Set t = t + 1; return to step 3 if t < T; otherwise 

terminate the procedure. 

We use the compact notation A = (A, B, 7T) to represent 
an HMM. Specification of an HMM involves choice of the 
number of states, N, and the number of discrete symbols 
M, (we will briefly discuss continuous density HMM's at 
the end of this paper), and specification of the three 
probability densities A, B, and 7T. If we try to specify the 
relative importance of the three densities, A, B, and 7T, 
then it should be clear that for most applications 7T is the 
least important (this represents initial conditions), and B is 
the most important (since it is directly related to the ob
served symbols). For some problems the distribution A is 
also quite important (recall the 3-biased coins models dis
cussed earlier), whereas for other problems (e.g. isolated 
word recognition problems) it is of less importance. 

The three problems for HMM's 

Given the form of the HMM discussed in the previous 
section, there are three key problems of interest that must 
be solved for the model to be useful in real world applica
tions. These problems are the following: 

Problem 1 - Given the observation sequence 0 = 
0 1 , O2 , ••• , OT, and the model A = 
(A,B,7T), how we compute Pr(OIA), the 
probability of the observation sequence. 

Problem 2 - Given the observation sequence 0 = 
0 1 , O2, ••• , OT, how we choose a state 
sequence I = i1, i2 , • ••• , iT which is opti
mal in some meaningful sense. 

Problem 3 - How we adjust the model parameters 
A = (A, B, 7T) to maximize Pr(O I A). 

Problem 1 is the evaluation problem: given a model and 
a sequence of observations, how we can compute the 
probability that the observed sequence was produced 
by the model. We can also view the problem as: given a 
model and a sequence of observations, how we "score" or 
evaluate the model. The latter viewpoint is very useful. If 
we think of the case in which we have several competing 
models (e.g. the four models of Fig. 1 for the coin tossing 
experiment), the solution to problem 1 allows us to 
choose the model which best matches the observations. 

Problem 2 is the one in which we attempt to uncover the 
hidden part of the model, i.e. the state sequence. This 
is a typical estimation problem. We usually use an opti
mality criterion to solve this problem as best as possible. 
Unfortunately, as we will see, there are several possible 
optimality criteria that can be imposed and hence the 
choice of criterion is a strong function of the intended use 
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for the uncovered state sequence. A typical use of the 
recovered state sequence is to learn about the structure of 
the model, and to get average statistics, behavior, etc. 
within individual states. 

Problem 3 is the one in which we attempt to optimize 
the model parameters so as to best describe how the ob
served sequence comes about. We call this a training se
quence in this case since it is used to train the model. The 
training problem is the crucial one for most applications 
of HMM's since it allows us to optimally adapt model 
parameters to observed training data...,-- i.e. to create best 
models for real phenomena. 

To fix ideas, consider the following speech recognition 
scheme. We want to design an N-state HMM for each word 
of a V-word vocabulary. Using vector quantization (VQ) 
techniques, we represent the speech signal by a sequence 
of VQ codebook symbols derived from an M-word code
book. Thus we start with a training sequence, for each 
vocabulary word, consisting of a number of repetitions of 
the spoken word (by one or more talkers). We use the 
solution to Problem 3 to optimally get model parameters 
for each word model. To develop an understanding of the 
physical meaning of the model states, we use the solution 
to Problem 2 to segment each of the word training se
quences into states, and then study the observations oc
curring in each state. The result of this study may lead to 
further improvements on the model. We shall discuss this 
in later sections. Finally to do recognition on an unknown 
word, we use the solution to Problem 1 to score each 
word model based upon the given test observation se
quence, and select the word whose word model score is 
the highest. 

We now present the formal mathematical solutions to 
each of the three fundamental problems for HMM's. And, 
as we shall see, these three problems may be linked to
gether under our probabilistic framework. 

SOLUTIONS TO THE THREE HMM PROBLEMS 

Problem 1 

We wish to calculate the probability of the observation 
sequence 0, given the model A. The most straightforward 
way of doing this is through enumerating every possible 
state sequence of length T (the number of observations). 
For every fixed state sequence I = i1i2 ' •• iT, the proba
bility of the observation sequence 0 is Pr(O II, A), where 

Pr( 0 II, A) = bil 01)bi2( O2) ••• bii OT) . 

The probability of such a state sequence I, on the other 
hand, is 

The joint probability of 0 and I, i.e., the probability that 
o and I occur simultaneously, is simply the product of the 
above two terms, Pr(O, II A) = Pr(O II, A) PrUI A). The 
probability of 0 then is obtained by summing this joint 
probability over all possible state sequences: 
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,~ti8rt':0f':~t(j),,1;..;t>.; T,:t·.s;I.s;"" . we 3see.hhat it . for theobservCltion symbolOt+1 in that state,anqthen 

(~;gl.lii~~()~}'tl1~·ord~r()fN2TcalculationSt:rather .. :than accc,untfortberestof the observation sequence, .... 
2Ti)I~¥asn:!quii"edby the:directcalculation.(Againto be Again thec6mputation of j3t(f) for 1.s; t.s; T, l:s;;;i~ N, 
pre.~i§~l,.~¢,.p.D~¢c:J/\'(J\I.+;1)(T .. :- '1)+ N ..•. mul~iplications rEfquirespry/the ()rder of .N2T.calcuICitions, and,cCif). be 
a,g9t:~r& /y~;~.,(t:t~\:j)Cl?~itions.)F()rN··.;;'·5iT=1()0,wecpmpute~·. in')llattke structure. similar to 'that of:Fig:3b. 

Pr(OIA) = 2: Pr(OI/,A) Pr(lIA) 
alii 

2: 1Ti1b;,( 01)a;,hbi/ O2) ... aiT-1irbirC OT) 
;1,;2,··· ,iT 

The interpretation of the computation in the above equa
tion is the following. Initially (at time t = 1) we are in state 
i1 with probability 1Ti, and generate the symbol 0 1 with 
probability b;,(01). We then make a transition to state i2 
with probability ai1i21 and generate symbol O2 with proba
bility bi2(02}. This process continues until we make the last 
transition from state ;T-1 to state iT with probability aiT-1ir 

Box 1 

and generate symbol OT with probability bir(OT). 
A little thought should convince the reader that the cal

culation of Pr(O I A), acn;rding to its direct definition, in
volves on the order of 2T • i - -:alculations, since at every 
time t = 1,2, ... ,T, there are ,\J possible states to go 
through and for each summand about 2T calculations are 
required. (To be precise, we need (2T - 1)N T multi
plications and NT - 1 additions.) This calculation is com
putationally unfeasible, even for small values of Nand T; 
e.g. for N = 5, T = 100, there are on the order of 
2 . 100 . 5100 = 1072 computations! Clearly a more efficient 
procedure is required to solve problem 1. Such a pro
cedure exists and is sometimes called the forward
backward procedure. (See Box 1) 
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ql" 

Qj.2 

qj a] 

qjoN 

t t+l 

at(l) at+,(j) 

b) 

OBSERVATION, t 

Figure 3. (al Illustration of the sequence of opera
tions required for the computation of the forward vari
able, at+1(jl. In order to be in state qj at time t + 1. 
the system must have been in any previous state qi a.t 
time t. (with probability a,{i)l and then made a transI
tion to state qj with probability 8ij. 

(bl the implementation of the recursive computation 
for the forward variable. at+1(jl, leads to a lattice 
structure in which computations of the type shown in 
part a are performed for each state. i. and for each 
observation, t. 

Problem 2 

There are several possible ways of solving Problem 2, 
namely finding the optimal state sequence associated with 
the given observation sequence, since there are several 
possible optimality criteria. One possible optimality cri
terion is to choose the states, it, which are individually 
most likely. This maximizes the expected number of cor
rect individual states. To implement this solution we de
fine the variable 

'}'t(i) = Pr(it = q;j 0, A) 

i.e. the probability of being in state qi at time t, given the 
observation sequence 0 and the model A. A little thought 
should convince the reader that '}'t(i) is trivially expressed 
in terms of the a's and f3's as 

10 IEEE ASSP MAGAZINE JANUARY 1986 

q. 
I 

Figure 4. Illustration of the sequence of opera.tions 
required for the computation of the backward variable. 
f3t(il. In order to be in state qi. at tim~ t. the syst~m 
would have to be in some state qjJ at time t + 1. with 
probability f3t+1(jl, having made a transition (with 
probability 8i) from state qi to state qj. 

since at(i) accounts for 0 1 , O2, ••• , Ot and state qi at t, and 
f3t(i) accounts for Ot+1, .•• , OT given state qi at t. The nor
malization factor, Pr(O I A), makes '}'t(i) a conditional 
probability, so that 2:~1 '}'t(i) = 1. 

Using '}'t(i), the individually most likely state, it, at time 
t is 

it = argmax[ '}'t(i)] 
1:s;.i~N 

There might be some problems with the above criterion 
and solution, however. When there are disallowed 
transitions-i.e. aij = 0 for some i and j, the obtained 
state sequence may in fact be an impossible state se
quence. The solution simply determines the most likel.y 
state at every instance without regard to the global trellis 
structure, the neighboring (in time) state, and the length 
of the observation sequence. It is still useful, though, as in 
practice such undesirab!e situations do not usually occur, 
and this instantaneous optimality provides insights for a 
theoretically tractable parameter smoothing scheme. 

The drawback of the above approach points to the ne
cessity of global constrains, of some type, on the derived 
optimal state sequence. Almost trivially, an optimality cri
terion of this type is to find the single best path (state 
sequence) with the highest probability, i.e. to maximize 
Pr(O,I/A). A formal technique for finding this single best 
state sequence exists and is called the Viterbi algorithm. 
(See Box 2) 

Problem 3 

The third problem is to adjust the model parameters 
(A, B, 7T) to maximize the probability of the observation 



sequence given the model. This is the most difficult of the 
three problems we have discussed. There is no known way 
to solve for a maximum likelihood model analytically. 
Therefore an iterative procedure, such as the Baum-Welch 
method, or gradient techniques for optimization must be 
used. Here we will only discuss the iterative procedure. It 
appears that with this procedure, the physical meaning of 
various parameter estimates can be easily visualized. 

To describe how we (re)estimate HMM parameters, we 
first define gt(i, j) as 

gt(i,j) = Pr(it = qi,it+1 = qjl O,A) 

i.e. the probability of a path being in state qi at time t and 
making a transition to state qj at time t + 1, given the 
observation sequence and the model. From Fig. 5 it 
should be clear that we can write gt(i,j) as 

In the above, at(i) accounts for the first t observations, 
ending in state qi at time t, the term aijbj(Ot+1) accounts 
for the transition to state qj at time t + 1 with the occur
rence of symbol Ot+1, and the term {3t+1(j) accounts for 

Box 2 

The·.· .• viterbi •• algOri{hrri'fs·sirt1ilar:'(~i!h6~t ... th~· ••• hatk
tra~king steps) 'i ~~,ilil~.leinent~tidn tQ 'th~ Jor~,~rd
~ac~",ard .' calelJ latioD ;S'b9\\,~ver ;;{l';~n1axi mization'9ye i" 

~~~ii~~%;~l~~~!{;~;1i:e1~jl~~~~i~Ni~\~~~; . 

I aljbJ (0'+1) I 
I I 
I I 
I I 
I a, (i) I 

'-1 ~ I 
: ,9'+1 ( j ~ 
I '+1 1+2 

I 

Figure 6. Illustration of the computation required for 
the calculation of the joint event that the system is in 
state qi at time t. and state qj at ti~e t + 1. This 
event occurs with probability atU) (which accounts for 
the path terminating in state qi at time t). times Bij bj 

W t+ 1) (which accounts for the local transition from 
state qj). times {3t+1(j) (which accounts for the path 
being in state j at time t + 1 and then being uncon
strained until the end of the observation sequence). 

.aox 3 

.;1i·~l7fi;';=1'1(i»;;fj)E,1 •• ~. i .~'N 

i~T'~}'<= ~1:gt~i;jj/~1 l'~m ., .' 
•• !·t·: ',: t=1"'~/ t=1.\" 

~<j~j(k) =±,;;U)/ ... ··· . ± Wj} , , 
·'.;'<'j'.)·i ':;01:>.'. t'C1 '.'." 

Tt1t;eestilllati6~·form~I~;for'Tri. 'i(;rivially:th~·p~oba-.; 
l>iHty>of beingJn stateqiat t==:1:The re~stim~tion . 
forrn~la for aijisthe ratio. oftheexpected~umb~r of 
transitions J!O nl state qito qj, divid~d by theeJ;<pectecl :. 
!'"lu rt1ber ciftra~sitions outofstate qi; FinaIlYJl;lereest-,: 
imation formula for bj(k) is the ratio of the expected ' 
hllmber oftim(:'!s of beinginstatej.andpbse,rving 
~Yrn601 kdivid,E!d by the expected number oftirri~s of 
b~ingin statej;Note that.thesurnmationforbj(k) is' 
fromt =ltot ~7T. '.. ';,:" .. 

, '(we define the initiaf model.as Aandthereesti
Mation modelasI, con~isting of the above '7ri; aij,'and 
0(k~,thenjt call, be proven that eit~er: . 

;'{The initialh,odel A defines a~ritical point of the 
'likelihood function, in which case I=: A, or 
2, Model lis mol'e likely in the serlcethat 

,,(>r(O II) > Pr(O I A),Le. we have found another 
model -A,from which the observation sequence is 
more likely to be produced. . ' 

Th~~efoJie, if~eiteratiyely .us~Iin:plac~:df'\~nd 
~epeat theabovereestim,ation calculation,' weth~rlcan ..• 

"irnpr():ve.thE!ptgbabilityof o being observedJrOfDthe 
r:T10c;leluntilsonl~limitingpoint isreached. Th~resultis . 

• the~stimate~,rngdeL" ' , . .' '. 
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the remainder of the observation sequence. The normal
ization factor Pr(O I A) provides the proper normalization 
for {t(i, i)· 

Recall that we have previously defined '}'t(i) as the proba
bility of being in state qi at time t, given the observation 
sequence and the model; hence we can relate '}'t(i) to 
{t(i,i) by summing {t(i,i) over i, giving 

N 

'}' t(i) = L {t(i, i) . 
j=1 

If we sum '}'t(i) over the time index t, we get a quantity 
which can be interpreted as the expected (over time) num
ber of times that state qi is visited, or equivalently, the 
expected number of transitions made from state qi, if we 
exclude the last moment, T, in the summation. Similarly, 
summation of {t(i,i) over t (from t = 1 to t = T - 1) can 
be regarded as the expected number of transitions from 
state qi to state qj. That is 

T-1 

L '}'t(i) = Expected number of transitions 
t=1 made from qi 

T-1 

L Ui,i) = Expected number of transitions 
t=1 from state qi to state qj 

Using the above formulas (and the concept of counting 
event occurrences) we can use the Baum-Welch method 
to reestimate values of the HMM parameters. (See Box 3) 

Summary of results 

We have shown how to define an HMM, how to score it 
on an observation sequence (Problem 1), how to make a 
best guess as to the hidden state sequence (Problem 2), 
and how to optimize model parameters to best match a 
given training sequence (Problem 3). In the next section 
we discuss some properties of the models, issues involved 
in practi<;al implementation, and some special cases of 
the B parameters. Finally, in Section V, we illustrate the 
application of HMM's to a simple speech recognition sys
tem to show one possible way of applying the concepts 
discussed here. 

ISSUES WITH HMM'S 

In this section we discuss several issues related to types 
of HMM's, issues in implementation, and extensions of 
the basic model to more advanced forms.--We will not be 
rigorous here, but will only give indications of the kinds of 
problems people have been concerned with. More detail 
on the mathematical aspects are given in the references. 

Types of HMM's 

The general HMM we have been dealing with until now 
is assumed to have essentially a full state transition matrix, 
i.e. transitions can be made from any state in some way to 
any other state. Such models are often ergodic in the 
sense that any state will be revisited with probability one 
and that such revisits are not required to take place at 
periodic intervals of time. We show an example of one 
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a] 

b] 

c] 

Figure 6. Illustration of three distinct types of hidden 
Markov models. The model of part (a), called an ergodic 
(or non-absorbing) model is one in which it is possible to 
reach any state from any other state. The model of 
part (b), called a left-to-right model, is one with a dis
tinct temporal structure in which a low numbered 
state always precedes a higher numbered state. (Such 
models are applicable to modelling time-varying signals 
such as speech). The model of part (c) is a parallel left
to-right model in which there are several paths through 
the states. 

such model in Fig. 6a. (Here N = 4 states). For some ap
plications we are interested in non-ergodic models where 
we impose constraints on the state transition matrix. For 
example, Figs. 6b and 6c show two examples of non
ergodic HMM's. For these cases the state transition matrix 
is upper triangular (i.e. transitions can only be made to a 
state whose index is as large or larger than the index of the 
current state). Such models have been called left-to-right 
models since the state sequence which produced the ob
servation sequence must always proceed from the left
most state to the rightmost state. Such left-to-right models 
inherently impose a temporal order to the HMM since 
lower numbered states account for observations occur
ring prior to those for higher numbered states. We shall 
see how we use this feature to our advantage in our dis
cussion of how we apply HMM's to speech recognition. 



Implementation issues 

In the section on Solutions to the Three HMM Prob
lems, we outlined several simple and straightforward pro
cedures for working with HMM's. For the most part the 
procedures work exactly as discussed. However there is 
at least one computational issue of significance, and a 
couple of practical aspects that must be kept in mind, for 
the procedures to be maximally useful. 

The computational issue concerns the implementa
tion of the forward-backward computation. A quick glance 
will convince the reader that both at(i) and f3t{i) tend 
to zero geometrically fast (recall that all probabilities are 
less than 1.0). Hence a scaling technique of the a's and 
f3's is required to avoid mathematical underflow. The de
tails of such scaling procedures are beyond the scope of 
this paper. 

A second issue concerns the use of a finite set of training 
data for estimating the HMM parameters. If we look at 
the reestimation formulas we see that a parameter will be 
set toO if there are no occurrences in the training set- i.e. 
if a symbol does not occur often enough in the observa
tion sequence, then the probability for that symbol will 
be 0 in some states. If this effect is due to the small size 
of the training observation sequ~nce, then special effort 
must be made to insure that no HMM parameter becomes 
too small. If it is a real effect, then a zero probability 
parameter is perfectly reasonable. In any case care must 
be taken to guarantee (perhaps via constraints on the 
parameter space) that the estimated HMM parameters 
are reasonable. 

Finally we point out that all the formulas presented in 
this paper for a single observation sequence can be modi
fied to handle the case of multiple observation sequences. 
Hence one could do training of an HMM from a long 
single sequence, or from a set of multiple observation 
sequences (particularly useful for non-ergodic models). 

Special cases of the B parameters 

Until now we have only considered the case of discrete 
symbol HMM's, i.e. where the observation sequence was 
one of a set of M discrete symbols. The model can readily 
be extended to the case where the observations are con
tinuous symbols, or more generally, continuous vectors, 
x. For such a model the bj(k) probability density is replaced 
by the continuous density, bj(x), 1 :s;; i :s;; N, where 

bj(x)dx = probability that observation vector, 0, lies be-
tween x and x + dx. 

There are several special forms for bj(x) which have been 
proposed, including: 

1. Gaussian M-component mixture densities of the form 

M 

bj(x) = 2: cjk.N'[x, /Ljk,Ujk] 
k=1 

wAere Cjk is the mixture weight, .N' is the normal density 
and /Ljk and Ujk are the mean vector and covariance matrix 
associated with state i, mixture k. 

2. Gaussian autoregressive M-component mixture densi
ties of the form 

M 

bj(x) = 2: Cjkbjk(X) 
k=1 

where 

p 

5(Xi a) = ra(O)rAO) + 22: ra(i)rAi) . 
;=1 

5(Xi a) is the standard LPC distance between a vector x (of 
dimension K) with autocorrelation rx , and an LPC vector a 
(of dimension p) with autocorrelation ra. 

These alternate density functions have been used to 
good advantage in several speech recognition systems. 

EXAMPLE OF THE USE OF HMM'S-ISOLATED WORD 
RECOGNITION 

Hidden Markov models have been found to be ex
tremely useful for ecology, cryptanalysis, and a wide spec
trum of speech applications. Here we consider the case 
of trying to use HMM's to build an isolated word recog
nizer. Assume we have a vocabulary of V words to be 
recognized. We have a training set of L tokens of each 
word (spoken by 1 or more talkers), and an independent 
testing set. To do speech recognition we perform the fol
lowing steps: 
1. First we build an HMM for each word in the vocabulary. 
We use the observations from the set of L tokens to esti
mate the optimum parameters for each word, giving 
model AV

, for the vth vocabulary word, 1 :s;; v :s;; V. 
2. For each unknown word in the test set, characterized by 
observation sequence a = 0 1 , O2, ••• , aT, and for each 
word model, AV

, we calculate Pv = Pr(O jA1 according to 
the procedure of the section on' Solution to the Three 
HMM Problems. 
3. We choose the word whose model probability is high
est, i.e. v* = argmax[P v] 

1::s;;v::s;;V 

The HMM based recognizer has been applied to several 
word recognition tasks using both a discrete symbol ob
servation set (VQ codebook symbols), and at least two 
continuous observation models. The table below (based 
on experiments performed at AT&T Bell Laboratories) 
gives some performance characteristics fo-r a speaker in
dependent system using a vocabulary of 10 digits. 

>~. Te~pl.at~Based. 
,\,)singJ)Yl}arniclime 

. "Wa/ping 

. . HMM using ';". 
Continuous Densities ,.'. 

,"'r">'}!:;' :":\«;,,< .;." , . 
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It can be seen that the performance of the HMM with a 
continuous observation symbol density performs as well 
as the best template based recognizer; the HMM using 
discrete symbols performed worse due to the quantiza
tion distortions in using small codebooks. 

We shall see in the following sections how HMM's ac
complish the word recognition task and how the above
mentioned salient features affect such a task. 

FRAME NUMBER 

Figure 7. Illustrations of several contours associated 
with the use of HMM's for isolated word recognition. 
The plot of part a is the log energy contour (i. e. log 
energy versus time or frame number) corresponding to 
the spoken word Isix/. One can readily identify the fric
ative regions, corresponding to the lsI sound, at the 
beginning and end of the contour, as well as the low 
energy, short; silence region due to the closure for the 
transient sound Ik/. The plot of part b is the accumu
lated log likelihood when "scoring" (using the solution to 
problem 1) the observations of the word Isixl against 
the HMM for the word Isixl using the Viterbi proce
dure. Finally the plot of part b is the estimated state 
segmentation (again from the Viterbi procedure) of the 
observation for a 5 state model. 

Markov chain structure 

For word recognition where the starting and ending 
points of the utterance are approximately known, it is 
found to be advantageous to use the above mentioned 
left-to-right models, particularly as shown in Fig. 6b. This 
is because, for word utterances, the progressive nature 
of the state sequence is rather unambiguous and the 
number of states needed for each word model is usually 
manageable. If the task were to model a long conver
sational speech signal such a constrained model might be 
impractical. 

The meaning of each state can be examined via the state 
sequence estimation procedure outlined in the section on 
Solutions to the Three HMM Problems. In one of the ex
amples, 5-state HMM's were used for the digits. Figure 7 
shows the estimated state sequence which resulted from 
using the Viterbi algorithm to segment an utterance of 
the digit "six". It can be seen that the states correspond 
roughly to the sounds in the word six. In particular, one 
observes that the sequentially changing -characteristics of 
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the word are appropriately represented. This progressive 
change in signal characteristics in each state marks the 
effectiveness of the Markov structure with which we have 
attempted to model the utterance. (In the previous biased 
coin toss example, this would mean that we are able to 
detect when a different biased coin is used in the toss
ing trial). 

Matching of state observation density 

For the resultant model to be accurate, the estimated 
observation density in each state should display some fit 
to the given observations. Since the assumed distribu
tion of the observations within the rh state, is bj(x) , a 
comparison can be made of the marginal distributions 
bj(x) I x=( ••• Xk ••• ) against a histogram of the actual obser
vations assigned to that rh state. Such a comparison is 
given in Fig. 8 for a 9-dimensional representation of the 
observation vectors. The results of Fig. 8 and Fig. 7 clearly 
confirm the goal we set out to accomplish as explained 
in the first section: to identify steadily or distinctively 
behaving periods, to characterize the sequentially evolv
ing nature of these periods, and to effectively represent' 
the signals spanning over these periods, all with good 
accuracy. 

Durational information 

Since the HMM allows us to perform segmentation (us
ing the solution to problem 2), we can use the measured 
state durations for word recognition purposes. Such du-

f
Z 

'" 8 

WORD: ZERO. STATE I 

.B~ 
-1.286 1.161 -1.113 0.254 -0.364 0.797 

.~ 
0.435 -0.55 0.223 -0.579 0.272 

.'. ...... . :~7 ····'cv·,·.': C8 •..... ' LOGE t]i ...... mJ····· ~ ;>ixr,;t Y;;~\< - .. 
-0.435 0.366 -0.483 0.375 -44.20 -4.112 

PARAMETER RANGE 

. Figure 8. Illustration of comparisons of theoretical 
Gaussian mixture fits and measured histograms for a 
9 parameter representation (8 cepstral coefficients 
and log energy) for state 1 of the word Izero/. It can 
be seen that, in some cases, a single Gaussian (with a 
diagonal covariance matrixlappears to provide good 
fits to the data (e.g. C5, CB, cn In other cases (e.g. 
C1, C2, C41, a single Gaussian is grossly inadequate 
and a mixture density is required. 



ational information is often represented in a normalized 
~orm for word models, (since the word boundary is essen
tially known), in the form: 

p.(lITl = probability of being in state j for exactly (lIT) of 
, the word, where T is the number of frames in the 

word and I is the number of frames spent in 
state j. 

A typical set of histograms of 'WIT) for a 5-state model 
for the word "six" is shown in Fig. 9. As seen from the 
figure, the first state is generally very brief; the second and 
third states have longer duration; the fourth state has a 
well-defined peak in the density with an average duration 
of about 20 percent of the word and is never skipped over 
(Le. liT = 0); the final state (the stop plus the fricative) 
covers about 50 percent of the word length and is also 
always present in the utterances. 
- It is found that this durational information is rather 
robust under different channel conditions and is quite 
useful for word recognition. The main effect appears to be 
from the resultant constraint that certain states must be 
present for some minimum duration. 

Score evaluation 

In the section on Solutions to the Three HMM Prob
lems, we already explained how the forward-backward 
procedure works in obtaining the quantityPr(O I '\). This 
quantity is the summation of Pr(O, 11'\) over all possible 
state sequences I. Since the Viterbi algorithm efficiently 
finds the maximum of Pr(O, I 1'\) over all I, a question 
is then: what is the relationship between Pr(O 1'\) and 
max, Pr(O,/1 ,\)? 

Interestingly enough, for speech signals and with some 
properly chosen model specifications, the dynamic range 

DIGIT: SIX 

NORMALIZED DURATION 

Figure 9. Illustration of the measured normalized du
ration density histograms for the 5 states of a hidden 
Markov model for the word Isix/. The plots show that 
state 1 represents a transient state, whereas state 5 
(which corresponds to the final fricative Isll, has an 
average normalized duration of over 0.5. 

of Pr(O, I 1'\) is usually very large and max, Pr(O,/1 A) is 
usually the only significant term in the summation for 
Pr(O I '\). Therefore, in such cases, either the forward
backward procedure or the Viterbi algorithm works 
equally well in the word recognition task. 

Other considerations 

HMM's provide a framework based upon which higher 
level structures in continuous speech signals may be inte
grally modelled. Care, however, must be taken in imple
menting such an extension. 

The above left-to-right word models effectively exploit 
such a priori information as the word boundaries. Direct 
concatenation of the above word model mayor may not 
be viable for continuous speech recognition, particularly 
when the vocabulary is large. Constructing a global HMM 
from small HMM's based upon such units as phonemes, 
etc. has been and is still being pursued. 

Another consideration relates to the robustness of the 
modeling technique. Different assumptions on the form 
of observation density, as well as the a priori Markov struc
ture constraints lead to different levels of robustness in 
performing the recognition task. This robustness issue, of 
course, is compounded by the various representations of 
the short-time speech symbols (spectra). Some represen
tations may be better characterized as Gaussian mul
tivariates and some may be less susceptible to channel 
fluctuations, speaker variations, and noise contamination 
etc. It is yet unknown what the best combination is: 

The above considerations in no way discourage the use 
of HMM in speech recognition. On the contrary, these 
are the main directions that research effort is pointing to 
for solving the ultimate recognition problem with HMM's. 
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