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Abstract— Scientists conducting microarray and other experiments use circular Venn and Euler diagrams to analyze and illustrate
their results. As one solution to this problem, this article introduces a statistical model for fitting area-proportional Venn and Euler
diagrams to observed data. The statistical model outlined in this report includes a statistical loss function and a minimization procedure
that enables formal estimation of the Venn/Euler area-proportional model for the first time. A significance test of the null hypothesis
is computed for the solution. Residuals from the model are available for inspection. As a result, this algorithm can be used for both
exploration and inference on real datasets. A Java program implementing this algorithm is available under the Mozilla Public License.
An R function venneuler () is available as a package in CRAN and a plugin is available in Cytoscape.
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1 INTRODUCTION

Venn diagrams are collections of n simple closed curves dividing the
plane into 2" nonempty connected regions uniquely representing all
possible intersections of the interiors and exteriors of the curves [51].
The requirement that the curves be simple means that no more than
two curves may intersect in a single point. The requirement that the
curves be closed means that each curve may have no endpoints and
each must completely enclose one or more regions. The requirement
that the regions be nonempty means that their area must be greater than
zero. The requirement that regions be connected means that there can
be only one region resulting from the intersection of any two closed
curves and that one curve may enclose only one region.

Venn diagrams are most frequently used to represent sets; in these
applications, there is a one-to-one mapping from set intersections to
connected regions in the diagram. Although this definition does not
restrict Venn diagrams to collections of circles, the popular form of
these diagrams displayed in Venn’s original paper and in most applica-
tions today involves two or three intersecting circles of constant radius
(circles are simple closed curves). Figure 3 shows an example.

Relaxing the restriction that all possible set intersections be rep-
resented and the restriction that curves be simple results in an Euler
diagram [11]. Figure 7 shows an example. Ruskey [39] discusses var-
ious subclasses of the general definitions of Venn and Euler diagrams
given here.

This paper involves Venn and Euler diagrams constructed from cir-
cles. There are some Venn and Euler diagrams that can be drawn with
convex or non-convex polygons that cannot be drawn with circles, so
this is a restriction. We add a further restriction in this paper, namely
that the areas of polygon intersections be proportional to the cardinal-
ities of intersections among the (finite) sets being represented by the
diagram. We call these area-proportional Venn and Euler diagrams
[5].

Venn and Euler diagrams have had wide use in teaching logic and
probability. In almost all of these applications, their use has been con-
fined to two or three circles of equal size. Venn diagrams based on
circles do not exist for more than three circles [39]. Higher-order Venn
and Euler diagrams can be drawn on the plane with convex or, in some
cases, nonconvex polygons [10, 39].

Recently, the microarray community has discovered a new use for
these diagrams [22, 33, 31, 9]. To reveal overlaps in gene lists, re-
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searchers use Venn and Euler diagrams to locate genes induced or
repressed above a user-defined threshold. Consistencies across ex-
periments are expected to yield large overlapping areas. An informal
survey of 72 Venn/Euler diagrams published in articles from the 2009
volumes of Science, Nature, and online affiliated journals shows these
diagrams have several common features: 1) almost all of them (65/72)
use circles instead of other convex or nonconvex curves or polygons,
2) many of them (32/72) make circle areas proportional to counts of
elements represented by those areas, 3) most of them (50/72) involve
three or more sets, and 4) almost all of them (70/72) represent data col-
lected in a process that involves measurement error. Figure 1 shows
examples from this survey (including popular types in the left column
and rare types in the right).

This paper is an attempt to provide an algorithm, called
venneuler(), that satisfies most of these needs. We use area-
proportional circles to construct Venn and Euler diagrams and we build
a statistical foundation that accommodates data involving measure-
ment error. As we show through examples and simulations in Section
5,

e The venneuler() algorithm produces a circular Venn diagram
when the data can be fit by a circular Venn diagram.

e The venneuler() algorithm produces an area-proportional cir-
cular Venn diagram when the data can be fit by an area-
proportional circular Venn diagram.

e It produces an area-proportional circular Euler diagram when
data can be fit by that model.

e It produces a statistically-justifiable approximation to an area-
proportional circular Venn or Euler diagram when the data can
be fit approximately by one of these models.

2 RELATED WORK

There have been two primary approaches to the drawing of Venn and
Euler diagrams: axiomatic and heuristic. Axiomatic researchers begin
with a formal definition (such as the definition of a Venn diagram given
in the Introduction) and then devise algorithms for fulfilling the con-
tract of the definition. These approaches are accompanied by proofs
that the algorithm cannot violate the terms of the definition. Heuristic
researchers begin with a similar definition, but devise algorithms that
produce pleasing diagrams that follow the definition closely, but not
provably.

2.1 Axiomatic Approaches

Although axiomatic approaches are distinguished by proofs of correct-
ness, they do vary in their definitions. Fish and Stapleton [13, 14], for
example, suggest modifying the definition of an Euler diagram given
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Fig. 1. Examples of Venn and Euler Diagrams excerpted from informal survey of 72 articles published in the 2009 volumes of Science, Nature, and
online affiliated journals. The three diagrams in the left column use circular elements, the most popular form in the journal articles. (a) Three-ring
Venn diagram from [52]. (b) Two-ring proportional-area Venn diagram from [34]. (c) Three-ring proportional-area Venn diagrams from [32]. The
three diagrams in the right column use non-circular elements, relatively rare forms in the journal articles. (d) Four-ellipse Venn diagram from [2].
(e) Venn diagram using rounded rectangles from [40]. (f) Area-proportional Euler diagram using squares from [20].



above by allowing non-simple curves (curves that may cross them-
selves). The relaxation allows one to realize any description of set
intersections in an Euler diagram. Other definitions may relax the
connectedness requirement, so that two or more disjoint regions can
represent a single set intersection. Other definitions may relax the
requirement that all possible intersections be represented in a Venn di-
agram by allowing empty regions to be shaded to indicate the lack of
a corresponding set intersection in the data. The algorithmic problem
in all these approaches is how to satisfy the definitional contract in a
single drawing. Proof of existence of a planar diagram does not always
translate directly to a practical algorithm.

Chow and Ruskey [5] solved the 2-circle area-proportional Venn
problem exactly by computing the area of the intersection of two
circles and using this computation to arrange the circles to meet
the proportionality requirement. They also solved the 3-circle area-
proportional Venn problem by extension, although they show that
a solution does not exist for all 3-set specifications. Variants of
the Chow-Ruskey algorithm have been used in several applications
[12, 21, 35, 42].

Several researchers have worked on axiomatic solutions for Euler
diagrams [16, 37, 38, 46] and area-proportional Euler diagrams [36].
In [47] Rodgers and Stapleton build Euler diagrams inductively, by
adding one curve at a time based on a dual graph of the diagram. They
show that building well-formed Euler diagrams can be guided recur-
sively by examining cycles in the dual graph. The result is an algo-
rithm that in theory can represent any set description with an Euler
diagram.

2.2 Heuristic Approaches

Heuristic approaches attempt to draw simple, pleasing diagrams that
meet the formal requirements approximately. These methods can
be useful for information visualization and informal diagramming of
complex information. There have been several approaches toward
achieving this goal. Most of these involve iterative refinement of a
goodness criterion based on mathematical and sometimes perceptual
aspects of diagrams. The most prevalent are summarized here.

Chow and Rodgers [4] fit three-circle area-proportional Venn dia-
grams to data by using an iterative procedure on an “ad hoc fitness
function.” The starting point for their solution is an approximation
based on axiomatic results in [5]. We will discuss this work further
in the last section of this paper.

Some have constructed Euler diagrams by working with the dual
graph of Euler regions and employing graph layout algorithms to com-
pute a solution [41]. While axiomatic ideas are involved in the devel-
opment of these algorithms, the heuristic aspect stems from the use
of force-reduction techniques from the graph layout literature [8]. By
contrast, Flower, Fish, and Howse [15] develop an axiomatic approach
to handling the graph layout itself.

In a series of papers that is most relevant to the present research,
Kestler et al. [25, 26] developed an algorithm for the area-proportional
generalized Euler problem (more than three sets, circles sized by set
cardinality, no connectivity restriction). To deal with the complex
intersection-area calculations required for dealing with more than a
few sets, they use regular polygons instead of circles. They use a va-
riety of hybrid optimization algorithms to minimize a mathematically
and aesthetically based loss function. We will consider their work in
more detail in the last section of this paper.

2.3 A New Statistical Approach

The present paper features an algorithm called venneuler() that pro-
duces generalized circular Euler diagrams for one or more sets based
on a statistical goodness-of-fit function. The advantage of this ap-
proach is that data with error can be handled appropriately and the
goodness-of-fit measure has a probabilistic interpretation. For data
without error, the algorithm converges to a solution consistent with
axiomatic definitions.

The remainder of this paper concerns this algorithm. We first intro-
duce the algorithm itself. In the following Section, we assess its statis-
tical characteristics. Then we present real and artificial data examples

to illustrate its performance. Finally, we compare the venneuler() al-
gorithm to other popular approaches to the circular area-proportional
Venn and Euler problem.

3 THE venneuler () ALGORITHM

The venneuler() algorithm is based on a simple statistical regression
model, a method for computing areas of intersections of circles, and a
minimization function. We present these in sequence.

3.1 Defining the Model

We begin with a list of finite data sets X = [X},X>,...,X,] varying in
cardinality. Let P = (*{X} be a list of all possible intersections of the
sets in X, including the void set and the intersections of each X; with
itself. P has m = 2" sets as entries and is ordered as

P = [@,Xl,Xz,Xl NXy,X3,X1 NX3,XoNX3,.... X1 NXoN .‘.Xn]

The ordering we use for P induces a binary n-bit pattern on each entry
of X that we use to index all of our other lists of length m. In other
words, each intersection structure in X is uniquely indexed by a length-
n binary string that we can use to map entries of X to entries of P [17].
For three sets, this bit pattern list is

B =[000,001,010,011,100, 101,110, 111]

Let P~ =Disjoint(P), where the Disjoint() function produces
disjoint entries through hierarchical set differencing, beginning with
the highest-order intersections. Figure 2 contains a graphical illustra-
tion of this function. In the left panel of the figure, the seven poly-
gons defined by the three circles and their pairwise and triple inter-
sections represent the non-null entries in the list P. The result of the
Disjoint() function is illustrated in the right panel.

P Disjoint(P)

LG

Fig. 2. lllustration of Disjoint () function. The function hierarchically
decomposes a list of sets and their intersections into a list of disjoint
subsets. The left panel represents three sets and their intersections
in a Venn diagram. The three two-set intersections share a subset,
namely the three-set intersection. The Disjoint () function partitions
the three sets into seven disjoint subsets of their union.

Next, we construct a list of disks, D = [Dy,...,Dy], each having
area A; = |X;|/|U{X }|. Each disk D; is centered on coordinates (x;, ;).
From D, we construct the corresponding list

Q= [@.,DI,DQ,Dl NDy,D3,D1 ND3,DyNDs3,...,Dy ﬂDgﬂ...Dn}

We then apply the same disjoint operation we used on P in order to
produce O~ =Disjoint(Q). We now have a one-to-one correspon-
dence between the entries of O~ (disjoint disk intersections) and the
entries of P~ (disjoint set intersections). Both are indexed by the same
list of binary strings B.

From P~ and Q™ we make a column vector ¢ = (|P |,...,|P, )
consisting of the counts of elements in each disjoint intersection of the
sets in X and a column vector a = Area(Q ,...,0,,) consisting of the
areas of the disjoint disk intersections.

Given these entities, a Venn diagram with areas proportional to
counts is defined by the equation

a=fc €))



The parameter 3 is a scalar coefficient that makes areas proportional
to counts.

There may not exist a set of coordinates (x;,y;) for which this equa-
tion is satisfied. Moreover, we will assume the elements in the data
sets X; are generated by a process having a random component. Our
model is therefore

a=fc+e¢ ?2)

where € is a random variable with zero expected value. Our ordinary
least-squares estimate of f in this case is

B=ac/dc 3)

The loss in fitting this model is the sum of squared residuals:

SSE =
) (a—4a) )

3.2 Computing Areas

For a few circles, analytic computation of areas in Q™ is straightfor-
ward [4, 5]. With more than three, computations increase exponen-
tially. Kestler et al. [25, 26] worked with regular polygons instead of
circles and employed standard polygon intersection algorithms. This
method is not only expensive, but it also fails to deal directly with the
circles that researchers want to use.

A simple method for solving this problem is based on numerical
quadrature and binary indexing. In order to compute areas on the en-
tries of O, we “draw” circles on n bit planes, each of resolution p X p.
Each “pixel” in a bit plane has the value 1 if it is inside a circle and
0 if not. The string of 1’s and 0’s derived from passing through the
corresponding pixel on each bit plane yields the same binary indexing
that we use for O itself. We simply sum the result over all pixels to
get intersection areas. The method is very fast. On the MacBook Pro
used for this paper, running through a 200x200 byte array to compute
these areas takes about a millisecond. Since we need to run through n
such grids to detect which entries of Q™ are indexed by each cell in the
grid, the complexity of this computation is O(n). In practice, p = 200
is sufficient resolution to allow the iterations to converge. On the ex-
amples in this paper, increasing resolution beyond 200 had no effect
on the visual appearance and led to changes in stress of less than .001.

3.3

The venneuler () algorithm will usually work with random start-
ing locations for the circles. It is more efficient, however, to begin with
a rational starting configuration. A rational start also reduces the like-
lihood of encountering a local minimum [45]. To accomplish this, we
adopt an approach from classical multidimensional scaling [49]. We
compute a Jaccard [23] distance matrix

Initial Circle Locations

D :d;j = |X;NX;|/|X; UX;]] ©)

We then choose an arbitrary row (col) in D and compute a matrix of
scalar products on the distances conditioned on this row k. The result-
ing matrix is

Wit wiji = digd ji cos Oy, (6)

where
cos O = (dj +d5 —djy) /2 (7

We then compute the singular value decomposition
W, =UvVU (8)
The starting coordinates (x;,y;) are found in the rows of the first two

columns of U. We standardize these coordinates so that they have unit
dispersion.

3.4 Circle Diameters

Initial circle diameters are scaled so that their areas sum to unity. Be-
cause the coordinates for the circle centers have been standardized,
the initial solution tends to have overlapping circles wherever inter-
sections occur in the data. Iterations proceed by holding diameters
fixed and moving the circle centers.

3.5 Minimizing Loss

Our remaining task is to find the coordinates (x;,y;) that minimize
the sum of squared residuals (SSE) from data fit by Equation 4. We
work with a normalized loss, which we call stress. Stress is defined as
SSE /SST (residual sum of squares divided by total sum of squares).

We use the method of steepest descent with a gradient approxima-
tion calculated from our model. The analytical gradient is a function of
circle intersection areas, however, and we do not have access to these
values except through numerical integration. Consequently, we work
with an approximation to the gradient. For each disk D; centered on
(i, yi) the descent step on each iteration, based on summing over all
the areas ay, is roughly proportional to

VF(x,y)i = i Y {(xi—xp)(ar—a), vi—yj)ak— )}, ()

k=1i#j

where By, (the kth element in the bit pattern list B) has nonzero bits i
and j. This last condition means that, for a given disk D;, we calcu-
late the gradient approximation based on every lune (intersection) it
contains.

We use a step size of .01 with this quasi-gradient to follow the de-
scent path. Iterations proceed rapidly because we already have residu-
als on each iteration from having computed stress.

If the residuals are relatively large, this gradient approximation is
relatively rough; it gets us toward the minimum, but it can overshoot
the minimum and retard convergence. Consequently, we compute a
final set of iterations using a closer (but more time consuming) ap-
proximation to the gradient. For this local gradient approximation, we
compute stress four times for each circle center by taking small steps
(.01) in a cross pattern on the plane (up, down, left, right). The gradi-
ent direction is the resultant of the lowest stress values for steps on x
and y.

This use of a quasi-gradient resembles the way a gradient is ap-
proximated in stochastic gradient descent [43], but it is deterministic.
Because we begin with a rational initial configuration, and because
gradient descent is fairly robust to disturbances in direction, the itera-
tions converge to a minimum in reasonable time.

3.6 Goodness of Fit
At convergence, a correlation coefficient can be computed as

r=+/1—stress

This correlation, based on regression without a constant, differs
from the ordinary Pearson correlation. It tends to be larger than the
Pearson in practice and needs to be interpreted with caution [29]. The
next section discusses a statistical test that should be used before any
interpretation.

(10)

4 THE DISTRIBUTION OF THE STRESS STATISTIC

We computed a Monte Carlo simulation to estimate the distribution of
our stress statistic. For each number of circles (n = 3,...10), we gen-
erated 100 simulations. For each simulation, we generated 2" uniform
random numbers to represent the areas based on the entries in O~. We
ran venneuler () on the random data and computed order statistics
on the resulting stress values. For the empirical stress fractiles s o; and
s 05, we fit the logistic function
s =exp?" /(1 +exp”" ")) (1
The fit for both equations was extremely close (> > .99). For S01s
¢=16.105,b=0.909 and for s g5, c =5.129,5 = 0.900. Table 1 shows
the critical values forn = 3,...,10.



These stress values are substantially higher than corresponding crit-
ical stress values in the multidimensional scaling literature, assuming
n represents the number of points [1, 7, 27, 44, 48]. The venneuler()
model is much more constrained than the MDS model, however. Not
only are all possible pairwise intersections included in the loss func-
tion, but also all higher-order intersections are included. Moving
points (disk centers) around on the plane affects 2"~ ! areas rather than
n(n—1)/2 distances as in MDS. Furthermore, the regression function
on which loss is based has a zero intercept; MDS ordinarily includes
an intercept parameter.

Table 1. Critical stress values for venneuler ()

n 5.01 $.05

3 0.056 0.128
4 0.129 0.266
5 0.268 0471
6 0.476  0.687
7 0.693 0.843
8 0.848 0.930
9 0.933 0.970
10 0972 0.988

5 EXAMPLES

Figure 3 shows a 2-ring Venn diagram produced by the input:
venneuler(A = {a,ab},B = {b,ab})

The stress value for this solution is zero, with each of the 3 areas equal
to a third.

Fig. 3. Two-ring Venn diagram produced by venneuler() on a list of the
elements in two sets. These sets share one element, namely ab.

Figure 4 shows a 3-ring Venn diagram produced by the input:
venneuler(A = {a,ab,ac,abc},
B = {b,ab,bc,abc},
C = {c,ac,bc,abc})

The stress value for this solution is 0.103, consistent with the fact that
an equal-area solution for 3 equal-sized circles does not exist even

though the ordinary Venn diagram requirement is met [5, 18]. Never-
theless, this is as close to equal-area as we can get; Figure 4 resembles
aesthetically the canonical “Ballantine” charts appearing in Venn dia-
gram tutorials [39].

Fig. 4. Three-ring Venn diagram produced by venneuler() on a list of
the elements in three sets.

Figure 5 shows a 4-ring diagram produced by venneuler() on data
that lack some 3-way intersections:

venneuler(A = {a,ab,ac,ad,abc,abd,acd,abcd},
B ={b,ab,bc,bd,abc,abd,bcd,abcd},
C ={c,ac,bc,cd,abc,acd,bed,abed},
D ={d,ad,bd,cd,abd,acd,bcd,abcd})
The resulting diagram has two 2-way intersections (A NC and BN D)
missing in the plot. It nevertheless approximates the Euler diagram
for this set in the way we would expect. There is a trade-off between
moving the circles outward to eliminate the 3-way areas and moving

them inward to represent the 4-way area. The stress for this solution
is .30.

Fig. 5. Four-ring diagram produced by venneuler() on a list of the ele-
ments in four sets, with some intersections missing.

Figure 6 contains a residual plot from the solution in Figure 2. This



plot reveals the trade-off the venneuler() algorithm made. The two
smallest residuals show that AC and BD are under-predicted. This
happens because the 3-way intersections (for which there are no data
values) are stealing area from these 2-way intersections (for which
there are data values). The largest residual reveals that the four-way
intersection is too large. Residual plots are a natural complement to
graphics produced by venneuler(). They are useful for diagnosing
the statistical properties of the solution, a feature unavailable in ad-hoc
algorithms.
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Fig. 6. Residuals for four-ring diagram in Figure 2.

Figure 7 shows a 6-ring Euler diagram produced from areas calcu-
lated from a pre-existing diagram. We drew six circles on a piece of
paper, measured intersection areas, and rounded each to the nearest
single-digit integer. In this version of the syntax, we directly input ar-
eas for each disjoint subset. For this type of input, the venneuler ()
program uses an ampersand to represent intersection.

venneuler(A=4,B=6,C=3,D=2E=17F =3,
A&B =2,A&F =2,B&C =2,B&D = 1,
B&F =2,C&D = 1,D&E = |, E&F =1,
A&B&F = 1,B&C&D = 1)

The stress for this solution is .006. Although we rounded the ar-
eas to integers, the reproduced diagram closely resembles the original,
confirming the ability of venneuler() to capture a moderately com-
plex, low-error structure.

The question remains whether venneuler() can reproduce other
error-free area-proportional Venn and Euler diagrams. For example,
venneuler() reproduces exactly the area-proportional Venn diagram
in Figure 3 of [5]. To test this proposition more generally, however,
we generated 100 proportional Euler diagrams with number-of-circles
varying from 2 to 11, diameters randomly varying from .3 to .7, and
center coordinates randomly varying between .15 and .85. We then
used the bitmap algorithm in Section 3.2 to calculate the areas of the
disjoint polygons produced by the circles and their intersections. We
then ran venneuler() on each input dataset. The average stress for
the venneuler() solutions on these datasets was .006 with a standard
deviation of .009.

There is a more stringent criterion we can use for this test, however.
This involves a worst-case analysis. To do the analysis, we normalized
the total areas of the input diagrams and the output diagrams to be 1 in
order to compare inputs and outputs. We then computed for each solu-
tion the maximum discrepancy between the area of any input disjoint
polygon and its corresponding output disjoint polygon. The average
worst error was .013 with a standard deviation of .009 across the 100
diagrams. These errors are not significantly different from zero. Fur-
thermore, errors of this magnitude are below the threshold of visual
detectability of area differences [30].

Figure 8 shows two diagrams for data shown in Figure 1 of [24]:

venneuler(SE = 13, Treat = 28,Anti-CCP = 101,
DAS28 =91,SE&Treat = 1,SE&DAS28 = 14,
Treat&Anti-CCP = 6,SE &Anti-CCP&DAS28 = 1)

These diagrams depict the overlap of genes detected in four different
populations. The left panel is from the original article. The original
graphic shows four circles, so the sets cannot be represented by a cir-
cular Venn diagram, Nevertheless, the Euler diagram in the right panel
computed by venneuler() quite accurately represents the data. The
stress for this solution is .001.

Fig. 7. Six-ring Euler diagram almost perfectly fit to an artificial dataset.
The input to venneuler() consists of the areas of the disjoint polygons
(see Figure 2) produced by this arrangement of circles. The stress for
this solution is .006.
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28 genes
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Anti-CCP
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91 genes SE
DAS28 Anti-CCP Treat

Fig. 8. Four-ring diagram of data underlying Figure 1 of [24]. Panel
(a) is reproduced from the original article. Panel (b) is the venneuler()
solution. The correlation between the areas of the circles and their in-
tersections is greater than .99.

Figure 9 shows an Euler diagram for 12 animals based on gene lists
downloaded from the Agilent DNA oligo microarray database (http:
//www.chem.agilent.com). The analysis was based on 404,528
gene symbols and 12 animal names. The stress for this solution is .01,
with corresponding correlation of .99. Many genes in these lists have
yet to be classified. When this task is completed, we would expect to
see more overlap in genomes. Nevertheless, the venneuler() solution
provides a reasonably accurate portrait of this work in progress.

Figure 10 shows an Euler diagram for six works of En-
glish literature (we treat the King James translation of the
Bible as English literature in this context because it is canon-
ical not only among English Bibles but also in English litera-
ture). We downloaded files from the Project Gutenberg Web
site (http://www.gutenberg.org/wiki/Main_Page). Stop
words (a, and, the, ...) were filtered and a list of distinct words
was constructed for each corpus. The combined lists (totaling 65,432
words) were submitted to venneuler ().

The stress for this solution is .04, with a corresponding correlation
of .98. The size of the circles is based on the number of unique words
in each book. Ulysses, the King James translation of the Bible, and
Moby Dick anchor the configuration; they contain the lion’s share of
unique words. Ulysses is notable for its large number of unique words
— a familiar aspect to anyone struggling to read that novel. The Bible
has a smaller number of unique words; many of these are proper names
not shared by the other literature. Not surprisingly, Shakespeare’s lan-
guage in Macbeth shares much with its contemporary, the King James
Bible.
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Fig. 9. Euler diagram for 12 gene lists containing 404,528 unique genes
from the Agilent DNA oligo microarray database. The sizes of the circles
and intersections are due to the number of genes listed for each animal
in the database as opposed to the count of the genome itself. The
correlation between the areas of the circles and their intersections and
the gene counts is .99.
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Fig. 10. Euler diagram for six works of English literature. The sizes of
the circles are proportional to the number of unique words in each of the
works. The areas of the intersections are proportional to the number of
shared words among the works. The correlation between the areas of
the circles and their intersections and the word counts is .99.

6 COMPARISONS WITH OTHER VENN/EULER ALGORITHMS

In this section we compare venneuler () with similar generalized
Venn and Euler algorithms. We will discuss first the most widely-
known generalized Euler program, VennMaster [26], and show in
more detail that it is unnecessarily complicated and rests on an in-
appropriate model. In addition, we compare venneuler () to
a proportional-area 3-ring Venn Diagram program by Chow and
Rodgers [4].

6.1 VennMaster

Several points are noteworthy.

1. VennMaster uses a complicated polygon intersection algorithm.
Areas of intersections are computed for a pair of polygons in
O(m+ n) time, where m and n are the number of vertices in
each polygon. The authors note that there are several excep-
tions to worry about and the code to implement the algorithm
is not simple. The complexity of this computation increases
exponentially with the number of polygons. By contrast, the
complexity of the venneuler () area calculation is linear in
the number of polygons (circles). And instead of employing
regular polygons, which reduces the precision of the solution,
venneuler () uses high-resolution quadrature directly on cir-
cles and their intersections. Increasing the number of polygon
vertices in VennMaster to approximate the resolution of the cir-
cles in venneuler () slows computation considerably.

2. VennMaster uses several different loss functions that appear to
be governed more by aesthetic considerations than by the con-
ventional definition of area-proportional Venn diagrams. One of
these includes weighting intersections differently for small poly-
gons than for large. However, “proportional” means a/c = k,
where k is a constant. The venneuler () loss function im-
plements this conventional definition: areas are proportional to
the sizes of subsets. There is no need to weight large areas
more heavily. The ordinary least squares zero-intercept regres-
sion model with equal weights gives large values greater leverage
by default [3].

3. VennMaster uses stochastic optimization algorithms (an evolu-
tionary algorithm with sensitive mutation parameters in one case,
and swarm optimization in another). This choice may be due to
the complexity of its loss functions, which do not lend them-
selves to simple gradient-based methods. These algorithms can
reach different solutions for different random starts. By contrast,
venneuler () uses ordinary steepest descent, which is a stan-
dard algorithm for multidimensional scaling and manifold learn-
ing. There is no random number generator in venneuler ().
Repeated runs produce the same result.

4. VennMaster assumes that “all sets have at least one intersecting
partner”” The venneuler () model does not require this as-
sumption.

5. VennMaster uses a fixed starting configuration of circles centered
at one location. There are numerous studies showing that fixed
and random initial configurations lead to local minima in opti-
mization problems like this, e.g., [6, 45]. The venneuler ()
program begins with a rational starting configuration computed
via a singular value decomposition. There is no need for global
optimization methods such as simulated annealing, genetic algo-
rithms, or swarm algorithms because the initial metric approxi-
mation is known to be close to the minimum [50, 28]. In addition
to avoiding local minima, a rational start speeds convergence.

6. Stochastic optimization and polygon intersection calculations
cause VennEuler to become unwieldy for larger problems. The
VennMaster program took over 10 minutes to compute a diagram
for the gene data in Figure 9. The venneuler () program com-
puted this diagram in 10 seconds. Both programs were run on a



2.5 GHz MacBook Pro running the Java 1.5 Virtual Machine in
2GB of allocated memory. Despite this order-of-magnitude dif-
ference in computation time, the stress value for VennMaster was
worse than that for venneuler () (.036 vs. .014).

A few examples suffice to illustrate the severity of these problems.
Figure 11 shows two Euler diagrams based on the test dataset (exam-
plel.list) that comes with the VennMaster installation. The diagrams
have been rotated and labeled to facilitate comparisons. The Venn-
Master (version 0.37.3) solution is in the top panel. The stress for
this solution is .79. (VennMaster stress values were computed by in-
putting the VennMaster solution to venneuler () without further
iterations). The venneuler () solution is in the bottom panel. The
stress for this solution is .41. Even though the solutions seem to be
similar in a cursory glance, the stress values for these solutions dif-
fer considerably and the Spiny polygon is in a completely different
location. This may be due to the use of a different loss function in
VennMaster, or it is possible that this program encountered a local
minimum. In any case, the VennMaster solution does not come close
to making areas proportional to cardinalities (except, of course, for the
setwise polygon sizes).

sea

plant animal

mammal

spiny

Fig. 11. VennMaster (top) and venneuler (bottom) solutions to an ex-
ample dataset in the VennMaster build. VennMaster has a stress of .79;
venneuler has a stress of .41.

Most importantly, however, the VennMaster program gives no in-
dication that its solution is not acceptable. Instead, it reports “no
inconsistencies.” The venneuler () program, in contrast, prints a
stressgs value of .47 and a stressy; value of .26. On the basis of
these critical values, our most reasonable conclusion regarding the
VennMaster solution is that it could have resulted from scaling ran-
dom data. The venneuler () solution, while having a considerably
lower stress, barely beats the conventional significance level itself. The
venneuler () program warns us not to take this layout seriously.

Finally, VennMaster does not converge probabilistically to a global
minimum, despite the use of global optimization. Figure 13 shows the

results of 10 VennMaster solutions on the dataset used in Figure 7.
Each solution was produced by initializing the random number seed
in VennMaster with a uniformly distributed random integer between
0 and 10,000. Only two of the ten solutions (top left and middle
right) are correct. Changing the optimizer from Particle Swarm to
Evolutionary-new did not improve this poor performance. The Ven-
nMaster performance is even worse with the data in Figure 5. In ten
random starts, VennMaster never came up with the minimum-loss so-
lution shown in Figure 5. The best it could do was to overlap two of the
four circles and display a three-ring Ballantine or, in a few instances,
overlap three of the four and display a two-ring diagram. For these de-
generate solutions, VennMaster reported no inconsistencies. However,
the residual plot in Figure 6 shows that we need to worry about areas,
not inconsistencies. The VennMaster solutions to this dataset are seri-
ously wrong because they imply that two or more sets are identical.

theéap

Fig. 12. Ten instances of VennMaster solutions on the dataset used in
Figure 7, each based on a different random number seed. Only two
solutions (top left and middle right) are correct.

6.2 Chow and Rodgers

The Chow/Rodgers algorithm is implemented in an applet at http:
//theory.cs.uvic.ca/venn/EulerianCircles/. It is
discussed in [4]. The authors acknowledge that the loss function and
minimization algorithm are ad hoc. Their loss differs from that in
venneuler () in a number of respects, so it is not easy to charac-
terize the differences. In particular, there are trade-offs between the



proportionality condition for subsets and for the circles themselves.
Furthermore, the circle sizes are free to vary from iteration to iteration,
so that the convergent solution may not represent set sizes accurately.

Figure 13 shows a comparison of solutions on a dataset from Figure
4 in [4]. The correlation between the areas and the data is .942 for
Chow/Rodgers and .988 for venneuler (). The differences between
solutions lead one to wonder whether the ad hoc loss function and
minimization in Chow/Rodgers is worth the effort, especially because
the use of an ad hoc loss function breaks the connection between the
conventional model (proportional areas) and the visualization. There
may be counterexamples to justify this effort, but they do not appear
in [4].

We can get an idea of the absolute discrepancy between the two so-
lutions by measuring the total absolute error in terms of counts. The
total absolute count error for the Chow/Rodgers solution is 202 (by
differencing the numbers across the colons in Figure 13 and summing
the absolute differences) and for venneuler () itis 98 (by inverting
the regression function of areas on counts and summing the absolute
residuals). This is not an insubstantial difference. Nevertheless, more
research needs to be done on whether adjusting areas via a psycho-
metric (Stevens) function might improve the accuracy of perception of
subset size in examples like this.

B 120;120

A120,117

BC 120,96

€ 160;259

Fig. 13. Chow/Rodgers (left) and venneuler () (right) solutions to an
example dataset in Chow and Rodgers [4]. The left diagram has a stress
of .113 and the right has a stress of .024.

6.3 Discussion

All three programs compared in this section produce pretty pictures
when given set-wise data. As we have seen, however, the VennMaster
solutions cannot be trusted and there is no way of recognizing bad
solutions by looking at them. Consequently, it is important to have
a statistical basis for evaluating the quality of a given solution. The
venneuler () loss function and its grounding in standard regression
methodology makes this possible.

The Chow/Rodgers algorithm is limited to 3-ring generalized Venn
diagrams, but it raises similar questions. More extensive study us-
ing a wider variety of datasets would be needed to establish a more
conclusive evaluation. In our testing, we did not encounter exam-
ples for Chow/Rodgers that were as seriously wrong as the Venn-
Master solutions. Since venneuler () solves a superset of the
Chow/Rodgers problem, however, there is no convincing evidence for
using Chow/Rodgers on simpler problems.

7 CONCLUSION

The algorithm described in this report provides for the first time a sta-
tistical basis for estimating area-proportional circular Venn and Euler
diagrams on real data. Its distinguishing features include a statistical
loss function that accommodates data with error, the ability to evaluate
probabilistically the goodness-of-fit of a solution, the ability to repre-
sent counts proportionally by areas, and the ability to accommodate
unconnected sets.

Based on these results, we can suggest one reasonable strategy for
producing Venn and/or Euler diagrams on setwise data. If the data are

known to contain no error, then we should employ an axiomatic algo-
rithm. First, however, it would be advisable to try venneuler ().
If the stress for the venneuler () solution is less than .01, then we
should consider staying with that result. The main reason for this ap-
proach is that the area-proportional circular model is widely known.
Non-circular closed curves are best used for those set specifications
that cannot be represented perfectly by the circular model. If the
venneuler () stress is nonzero in the error-free-data case, then one
should proceed up the hierarchy from axiomatic algorithms designed
for simple curves through the more complex models discussed in [13].

If the data are known to contain error (e.g., gene expression lists,
psychological and social science data), then axiomatic models are
likely to be inappropriate. The reason for this lies in the fact that
overfitting sample data (or, in the extreme, predicting sample data per-
fectly) can increase prediction error in new samples [19]. Error terms
are designed to model sample error without biasing the estimates of
other parameters (such as the shape, size, or location of Euler curves).
In practical terms, the shape of Euler curves from an axiomatic model
applied to data containing error cannot be expected to hold for new
samples from the same universe.

Faced with data containing error, the researcher has to rely on a sta-
tistical measure of goodness-of-fit. The venneuler () stress statis-
tic serves this role. If it is relatively small and significantly different
from the stress value expected for random data, then the researcher
has some confidence that a model is a good fit to the data and that the
model will generalize to new samples from the same universe.

The venneuler () model is not the only possible statistical
model for fitting Venn and Euler curves, of course. There is no reason
the axiomatic models described by Ruskey, Rodgers, Stapleton, Fish,
and others cannot be modified to accommodate error. Finding statisti-
cal algorithms to fit these more complex models is a nontrivial enter-
prise, however. In any case, the problem is important enough to merit
further research. Two areas would appear to be especially promising:
1) relaxing the circle requirement in order to implement a statistical al-
gorithm on ellipses or rectangles, and 2) embedding these algorithms
in an expert system that could recognize when an axiomatic approach
is more appropriate than a statistical approach on a given dataset.
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