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ABSTRACT
Multi-view clustering has become a widely studied problem in the
area of unsupervised learning. It aims to integrate multiple views
by taking advantages of the consensus and complimentary informa-
tion from multiple views. Most of the existing works in multi-view
clustering utilize the vector-based representation for features in
each view. However, in many real-world applications, instances are
represented by graphs, where those vector-based models cannot
fully capture the structure of the graphs from each view. To solve
this problem, in this paper we propose a Multi-view Clustering
framework on graph instances with Graph Embedding (MCGE).
Specifically, we model the multi-view graph data as tensors and
apply tensor factorization to learn the multi-view graph embed-
dings, thereby capturing the local structure of graphs. We build an
iterative framework by incorporating multi-view graph embedding
into the multi-view clustering task on graph instances, jointly per-
forming multi-view clustering and multi-view graph embedding
simultaneously. The multi-view clustering results are used for refin-
ing the multi-view graph embedding, and the updated multi-view
graph embedding results further improve the multi-view clustering.
Extensive experiments on two real brain network datasets (i.e., HIV
and Bipolar) demonstrate the superior performance of the proposed
MCGE approach in multi-view connectome analysis for clinical
investigation and application.
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1 INTRODUCTION
Advances in capabilities for data acquisition have given rise to an
explosion of new information in the form of graph representations.
These data are inherently represented as a set of nodes and links,
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instead of feature vectors as in traditional data. Brain networks, for
example, are comprised of anatomic regions as nodes, and func-
tional/structural connectivities between the brain regions as links.
Linkage structures often come from different sources, called as
multi-view data. For instance, fMRI (functional magnetic resonance
imaging) and DTI (diffusion tensor imaging) are two major neu-
roimaging approaches widely used in neuroscience research and
in clinical applications [8, 24, 47]. Connections in brain networks
derived from fMRI brain images encode correlations in functional
activity among brain regions, whereas DTI networks provide infor-
mation concerning structural connections (i.e. white matter fiber
paths) between different brain regions. The different networks af-
ford two different views of the brain connectivity.

Multi-view clustering has received considerable attention for un-
labeled data with multiple views from diverse domains. While there
have been advances in multi-view clustering, most approaches are
based on vector representation of features in each view and com-
bining vectors from different views for the clustering task [21, 46].
However, the complex structures and the lack of vector represen-
tations within graph data, pose serious challenges for this kind
of vector-based approach. It is desirable to find a way that can
better capture and exploit graph structural information for multi-
view clustering of graph instances. To address this problem, this
paper explores an approach involving multi-view clustering of
graph instances based on graph embedding and its application to
connectome analysis in multi-view brain networks on HIV and
Bipolar. The goal of graph embedding is to find low-dimensional
representations of graphs that can preserve the inherent structure
and properties [26, 45]. While graph embedding technology has
been broadly used for graph mining, to the best of our knowledge,
this approach has not been used for multi-view clustering of graph
instances. There are two main challenges that must be addressed
for the problem of multi-view clustering with graph embedding:

• How to learn the graph embedding for each graph instance
with multiple views, such that the graph embeddings can
encode the multi-view structure information of the graphs?
Specifically, the embeddings of the similar nodes within the
graph instance should be close.
• How to leverage the multi-view graph embedding results to
facilitate the multi-view clustering task on graph instances?
The graph embeddings mainly captures the local structure

https://doi.org/10.1145/3132847.3132909


Group 1

Group 2

Subject 1

Subject 2

Subject 3

Subject 4

Subject 5

fMRI DTI

Learning Multi-view 

Graph Embedding

Embedding

Figure 1: An example of the MCGE problem

of graphs, while the similarity between the graph instances
holds their global structure information. For multi-view clus-
tering on graph data, it is critical to appropriately fuse these
two kinds of graph structure information .

To address the above challenges, we propose the MCGE (multi-
view clustering with graph embedding) framework. Our contribu-
tions can be summarized as:

• We model the multi-view graph data as tensors, and apply
tensor factorization to learn the multi-view embeddings of
graphs. In this manner, the graph embeddings can capture
the key local structure of the graphs in all the views, while
also encoding the latent correlations between different views.
• We employ graph kernel to measure the similarity between
graph instances in each view, construct a multi-view kernel
tensor based on kernel matrices, and obtain the common
latent factors that encode the global structure information.
• We propose to jointly perform the multi-view graph embed-
ding stage and the multi-view clustering stage in an iterative
manner. Considering the fact that the graphs clustered into
the same group tend to have similar local structure, for each
graph, we use the multi-view embeddings of the neighbour
graphs clustered in the same group to refine its multi-view
embedding. Then the updated multi-view embeddings of the
graphs will be used for the multi-view clustering stage in the
next iteration. Following this iterative two-stage process, the
multi-view graph embedding and multi-view clustering will
be improved until we obtain an optimal clustering results.
• We apply the proposed MCGE framework for unsupervised
multi-view connectome analysis on HIV and Bipolar. Specif-
ically, we study the connectome of fMRI and DTI brain net-
works and aim to cluster the subjects with similar neuro-
logical status into the same group as shown in Figure 1.
Experimental results on the HIV and Bipolar datasets show
the effectiveness of MCGE for multi-view clustering in con-
nectome analysis.

The rest of this paper is organized as follows. In the next section,
problem formulation and background are given. The details of the
proposed MCGE framework are presented in Sections 3 and 4. Ex-
tensive experimental results and analysis are shown in Section 5.
Related work is discussed in Section 6 and followed by the conclu-
sion in Section 7.

Table 1: List of basic symbols.

Symbol Definition and description

x each lowercase letter represents a scale
x each boldface lowercase letter represents a vector
X each boldface uppercase letter represents a matrix
X each calligraphic letter represents a tensor
⟨·, ·⟩ denotes inner product
◦ denotes tensor product (outer product)
⊗ denotes Kronecker product
⊙ denotes Khatri-Rao product

2 PRELIMINARIES
In this section, we first introduce some notations and terminologies
that we will use throughout the paper. Then we formulate the
problem of interest formally.

Notations. Vectors are denoted by boldface lowercase letters,
matrices are denoted by boldface capital letters, and tensors are
denoted by calligraphic letters. An element of a vector x, a matrix
X, or a tensor X is denoted by xi , xi j , xi jk , etc., depending on the
number of indices (also known as modes). For a matrix X ∈ Rn×m ,
its i-th row and j-th column are denoted by xi and xj , respectively.

The Frobenius norm of X is defined as ∥X∥F =
√∑n

i=1 ∥x
i ∥22 . For

any vector x ∈ Rn , Diaд(x) ∈ Rn×n is the diagonal matrix whose
diagonal elements are xi . In denotes an identity matrix with size n.
We denote an undirected graph asG = (V ,E), where V is the set of
nodes and E ⊂ V ×V is the set of edges. An overview of the basic
symbols used in this paper can be found in Table 1.

Definition 2.1 (Tensor). An nth-order tensor X ∈ RI1×I2×···×In is
an element of the outer product of n vector spaces, each of which
has its own coordinate system.

Definition 2.2 (Outer product). The outer product of vectors x(k ) ∈
RIk for k = 1, 2, · · · ,n is an n-th order tensor and defined elemen-
twise by

(
x(1) ◦ x(2) ◦ · · · ◦ x(n)

)
i1,i2, · · · ,in = x

(1)
i1

x
(2)
i2
· · · x

(n)
in
=∏n

k=1 x
(k)
ik

for all values of the indices.

Definition 2.3 (Kronecker Product). The Kronecker product of
two matrices A ∈ RI×J ,B ∈ RK×L is a matrix in the dimension of
IK × JL:

A ⊗ B =
©­­­­«
a11B a12B · · · a1JB
a21B a22B · · · a2JB
...

...
...

...

aI1B aI2B · · · aI JB

ª®®®®¬
(1)

Definition 2.4 (Khatri-Rao Product). The Khatri-Rao product of
two matrices A ∈ RI×K ,B ∈ RJ×K is a matrix in dimension of
I J × K :

A ⊙ B = (a1 ⊗ b1,a2 ⊗ b2, · · · ,aK ⊗ bK ) (2)
where a1,a2, · · · ,aK are the columns of A and b1,b2, · · · ,bK are
the columns of B.

Definition 2.5 (Mode-k Matricization). The mode-k matricization
of a tensor X ∈ RI1×I2×···×In , denoted by X(k ) ∈ RIk×J , where
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Figure 2: The CP Factorization for a third-order tensor X

J = Πn
q=1,q,k Iq . Each tensor element with indices (i1, i2, · · · , in )

maps to a matrix element (ik , j), such that

j = 1 +
m∑

p=1,p,k
(ip − 1)Jp , with

Jp =

{
1, if p = 1 or (p = 2 and k = 1)
Π
p−1
q=1,q,k Iq , otherwise.

(3)

Definition 2.6 (CP Factorization). For a general tensorX ∈ RI1×···×In ,
its CANDECOMP / PARAFAC (CP) factorization is

X = JX(1), · · · ,X(n)K ≡
R∑
r=1

x(1)r ◦ · · · ◦ x
(n)
r , (4)

where for k = 1, 2, · · · ,n, X(k ) = [x(k )1 , · · · , x
(k )
R ] are factor matri-

ces of size Ik × R, R is the number of factors, and J·K is used for
shorthand. Figure 2 shows the form of the CP Factorization for a
third-order tensor example.

To obtain the CP factorization JX(1), · · · ,X(n)K, the objective is
to minimize the following estimation error:

L = min
X(1), · · · ,X(n)

∥X − JX(1), · · · ,X(n)K∥2F (5)

However, L is not jointly convex w.r.t. X(1), · · · ,X(n). A widely
used optimization technique is the Alternating Least Squares (ALS)
algorithm, which alternatively minimize L for each variable while
fixing the other, that is,

X(k ) ← argmin
X(k )

∥X(k ) − X
(k )(⊙ni,kX

(i))T∥2F (6)

where ⊙ni,kX
(i) = X(n) ⊙ · · ·X(k+1) ⊙ X(k−1) · · · ⊙ X(1).

Problem Definition We study the problem of multi-view clus-
tering of graph instances with multi-view graph embedding. As-
sume we are given a set of instances D = {G1,G2, · · · ,Gn } with
v views, where each instance is represented with a graph with
m nodes in each view. For the j-th view, we have a set of graphs
with the affinity matrices D(j) = {G(j)1 ,G

(j)
2 , · · · ,G

(j)
n }. The goal

of multi-view clustering on D is to cluster the graphs in D into k
subsets. Figure 1 shows a simple two-view example of the MCGE
problem intuitively. Given the fMRI and DTI brain networks of five
subjects, MCGE aims to learn multi-view graph embedding for each
of them, and cluster these subjects into different groups based on
the obtained multi-view graph embeddings.

3 MCGE FRAMEWORK
In this section, we first present the proposed MCGE framework con-
sisting of two stages: multi-view graph embedding and multi-view

clustering with graph embedding. Then we describe the optimiza-
tion scheme of our framework.

3.1 Multi-view Graph Embedding
Graph embedding is an important tool in topological graph the-
ory, which has been widely used in data analysis [2, 13, 45]. In
the unsupervised situation, conventional methods for multi-view
graph embedding either glued the graph affinity matrices from
all the views together into a big graph [11, 14], or collaboratively
explored the consensus embedding from different views (individual
affinity matrices) [43, 44, 48]. However these methods can only
capture the linear relationships in multi-view graph data. In or-
der to achieve better embeddings, here we develop a multilinear
embedding approach via tensorization as follows.

To model the multiple views for each graph instance Gi , we
build a tensor Ti by stacking the graph affinity matrices from all
the v views of the graph. Assume that the dimension of the row
vectors in the graph embeddings is c , and let Fi ∈ Rm×c be the
graph embedding of Gi , i.e., the j-th row vector of Fi represent the
embedding of node j on graph instance Gi . Then we can formulate
the multi-view graph embedding as the following optimization
problem based on CP factorization:

min
Fi,Hi



Ti − JFi , Fi ,Hi K


2
F

s.t. FiTFi = Ic (7)

where Fi ∈ Rm×c and Hi ∈ Rv×c are the latent factor matrices.
Besides, as we discussed earlier, the graphs clustered into the

same group tend to have more similar local structure. That is, for
two graphs in the same cluster, the closer they are, the more similar
local structure they tend to have. Based on this assumption, we
incorporate such global cluster information to further improve the
multi-view graph embedding result in Equation (7). Assuming we
can obtain a weight matrixW, wherewi j denotes the weight ofG j
for Gi and a larger wi j implies a closer distance between Gi and
G j in the same cluster. By incorporating the weighted influence
from the neighbor graphs into Equation (7), we have the following
objective function:

min
Fi,Hi



Ti − JFi , Fi ,Hi K


2
F + β




Fi −∑
j
wi jFj




2
F

s.t. FiTFi = Ic

(8)

where β is a parameter balancing the two parts.
In the following section, we will show how to incorporate the

graph embeddings into the multi-view clustering framework and
how to obtain the weight matrixW from the clustering results.

3.2 Multi-view Clustering via Graph
Embedding

Since graph embedding usually encodes local structure of graphs,
and the original affinity matrix holds the global structure, we pro-
pose to consider both of these two kinds of structure information
for the multi-view clustering task. Specifically, we employ the graph
kernel to measure the similarity of the global structure between
different graphs. Graph kernel is a pervasive method for comparing
graphs [37]. Here we employ the random walk graph kernel [37],
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Figure 3: The framework of the proposed model MCGE.

which is one of the most widely used graph kernels, to measure
the similarity between the affinity matrices of different graphs in
each view. Since we have n graphs in v views, we will get v kernel
matrices, each with dimension of n × n. In order to integrate the
multiple views, we propose to stack the v kernel matrices together,
which form a tensor X ∈ Rn×n×v . Then we apply CP factorization
on the tensor X to get the common factor matrices across all the
views. Suppose the number of factors is k , X can be factorized as:

X = JB,B,AK (9)

where B ∈ Rn×k and A ∈ Rv×k are the latent factor matrices.
Notably, B can be interpreted as the common latent factor across
all the views, which can be used for clustering the graphs.

Now let us consider how to incorporate the results of multi-
view graph embedding into the multi-view clustering stage. As we
discussed above, the multi-view graph embeddings imply the local
structure of the graphs, and graphs with similar local structure tend
to be close to each other in the original multi-view feature space.

Suppose we have obtained a set of graph embeddings F =
{F1, F2, · · · ,Fn }, where Fi ∈ Rm×c is the multi-view graph em-
bedding forGi , we can build a similarity matrix S ∈ Rn×n , where
si j denotes the similarity between two examplesGi andG j in terms
of graph embedding, and we define it as:

si j = 1 −


Fi − Fj

2F (10)

Then we can formulate the following objective function on the
basis of the spectral analysis [38]:

min
B
=

n∑
i, j=1

si j






 bi
√
dii
−

bj√
dj j






2
2
= Tr

(
BTLB

)
s.t. BTB = Ik

(11)

where L = D−
1
2 (D− S)D−

1
2 is the symmetric normalized Laplacian

matrix, and D is a diagonal matrix with dii =
∑n
j=1 si j .

By combining the above tensor CP factorization strategy with Equa-
tion (11), we can formulate the multi-view clustering task as the

following optimization problem:

min
B,A



X − JB,B,AK


2
F + αTr

(
BTLB

)
s.t. BTB = Ik

(12)

where α is a parameter balancing two parts.
After we obtain matrix B, we can apply k-means clustering on

the row vectors of B and then we know which graphs are clustered
into the same group and which ones are not. This result will help de-
termine the weight matrix W for the multi-view graph embedding
stage. Specifically, for graph Gi we consider the graphs from the
same cluster withGi , and we aim to infer the weights of influence
they should have on Gi . Suppose we use Xi to represent both the
global and local structure ofGi ,then this problem can be formulated
as the following minimization problem based on LLE method [31]:

min
W

∑
i




Xi −
∑
j
wi jXj




2
F

s.t.
∑
j
wi j = 1 (13)

wherewi j denotes the weight ofG j forGi , andwi j = 0 ifG j andGi
are not in the same cluster. Note that there is no need for an explicit
definition of Xi here, as it will be implicitly represented with both
the affinity matrices and the multi-view graph embedding results,
which will be used for the optimization of W. The details will be
illustrated in Section 4.

3.3 The Overall Framework: MCGE
With the two stages discussed above, we can formulate the over-
all iterative process for the MCGE framework. As the multi-view
graph embedding and multi-view clustering depend on each other,
we propose to jointly perform these two stages. In each iteration,
we first perform the multi-view graph embedding on each graph,
and then utilize the obtained graph embedding in the multi-view
clustering stage. Then the resulted graph cluster information will
be used for refining the multi-view graph embeddings in the next
iteration. Following this alternate two-stage process, the multi-view
graph embedding and multi-view clustering will be improved by
each other until convergence.



An overview of our framework is shown in Figure 3. The upper
part demonstrates the multi-view graph embedding stage in MCGE,
and the lower part shows the multi-view clustering stage, while
the blue arrow and red arrow indicate the interaction of the two
stages. Overall, given a set of graph instancesD = {G1,G2, · · · ,Gn }

with v views, we aim to obtain a multi-view graph embedding for
each of these graph instances, and then use the multi-view graph
embeddings as key features for clustering graph instances.

As shown in Figure 3, in the multi-view graph embedding stage,
for each graph instance Gi , we stack its affinity matrices from all
the v views together to form a multi-view tensor instance Ti . Then
we apply tensor factorization in Equation (8) to learn its multi-view
embedding, which partially depend on the embeddings of the other
graphs from the same cluster that is determined by the multi-view
clustering stage. Meanwhile, in the multi-view clustering stage, we
first measure the similarity between each pair of the graphs by
calculating the graph kernel from each view, and then we stack
the kernel matrices from all the views, resulting in a multi-view
kernel tensor X. By utilizing the CP factorization on X, we can
get the common factor B across all the views. Considering the
importance of graph embedding in capturing graph structure, we
compute the similarity between graphs based on the multi-view
graph embedding results and incorporate it into the CP factorization
schemewith a spectral analysis term, as shown in Equation (12). The
latent factor B obtained from this step will indicate which graphs
are closer to each other, thus can be further used for computing the
weight matrixW, which will be used for updating the multi-view
graph embeddings in the next iteration. Vice versa, the new multi-
view graph embeddings will be used for updating the similarity S,
thus improving the multi-view clustering stage.

4 OPTIMIZATION
Since the objective function in Equation (12) is not convex with
respect to A and B jointly, and Equation (8) is not convex with
respect to Fi , there is no closed-form solution for such problem. We
employ an Alternating Direction Method of Multipliers (ADMM)
scheme [4, 40] to solve these problems, which alternately updates
one variable while fixing others until convergence.

We first solve the optimization problem in Equation (12). The
variables to be estimated include B and A.
Update factor matrix B. We first update B while fixing A. Due
to the fourth-order term, the objective function in Equation (12) is
not convex with respect to B, thus being difficult to optimize. We
employ the variable substitution technique to solve this problem.
By substituting the second B with P in Equation (12), we obtain the
equivalent form of Equation (12):

min
B
∥X − JB, P,AK∥2F + αTr(B

TLB)

s.t. P = B, BTB = Ik
(14)

where P is auxiliary variable. The augmented Lagrangian function
for (14) is:

L (B, P) =


X − JB, P, AK



2
F + Tr

(
UT (P − B)

)
−
µ
2
∥P − B∥2F + αTr

(
BTLB

) (15)

where U ∈ Rn×k are Lagrange multipliers, and µ is the penalty
parameter. Then the objective function with respect to B can be
derived as:

min
B




BQT − X(1)



2
F
+

µ

2





B − P− 1µU



2F + αTr (BTLB)
s.t. BTB = Ik

(16)

where Q = P ⊙ A ∈ R(n∗v)×k and X(1) ∈ Rn×(n∗v) is the mode-1
matricization of X.

As such an optimization problem with orthogonal constraint
has been well studied, and can be solved by a few solvers [1, 41],
here we employ the solver Algorithm 2 in [41] to solve Equation
(16), which is a more efficient optimization algorithm with code
publicly available. Since this algorithm requires the derivative of
the objective function as one input, we obtain the derivative of
Equation (16) with respect to B:

∇BL (B) =2BQTQ − 2X(1)Q + µ (B − P) −

U + α
(
2LB + LTB

) (17)

Then the auxiliary matrix P can be optimized by setting the
derivative of Equation (15) with respect to P as 0. We have:

P =
(
2X(2)O + µB − U

) (
2OTO + µI

)−1
(18)

where O = B ⊙ A ∈ R(n∗v)×k and X(2) ∈ Rn×(n∗v) is the mode-2
matricization of tensor X.

After updating B and P, we optimize the Lagrangian multipliers
U by gradient ascent:

U← U + µ (P − B) (19)

Note that in our experiment, we initialize µ as 10−6, and set µmax =

107. Each time afterU is updated, we adjust µ by µ = min(ρµ, µmax ),
where we set ρ = 1.05.
Update factormatrixA. Next, we fix B and optimizeA. Following
Equation (12), the objective function with respect to A is:

min
A




AZT − X(3)


2F (20)

where Z = B ⊙ P ∈ R(n∗n)×k and X(3) ∈ Rv×(n∗n) is the mode-3
matricization of X, thus this can be solved directly.

By performing the above optimization steps iteratively until
convergence, we can obtain the optimal indicator matrix B for the
multi-view clustering stage, thus knowing which graphs are clus-
tered together by performing k-means algorithm on the row vectors
of B. The resulted cluster information will be used for determining
the weight matrixW in the multi-view graph embedding stage.

Now we solve the optimization problem in Equation (13) with
respect to the weight matrix W. According to the locally linear
embedding approach proposed in [32], such aminimization problem
with respect to vectors can be solved as a constrained least squares
problem. Since the Frobenius norm for matrices can be regarded as
a generalization of the l2 norm for vectors, we can directly derive
the following equation based on the analysis in [32]:


Xi −

∑
j
wi jXj




2
F
=
∑
jr

wi jwirCjr (21)



Algorithm 1MCGE
Input: X, {T1, · · · , Tn }, c , k , α , β
Output: B, F
1: Initialize B s.t. BT0 B0 = Ik ;
2: Initialize Fi for i = 1, 2, · · · , n s.t. Fi T0 Fi 0 = Ic ;
3: while not converge do
4: ComputeW according to Equation (24);
5: for i = 1 : n do
6: t ← 0;
7: while not converge do
8: Compute Fi t+1 by solving Equation (8);
9: t ← t + 1;
10: end while
11: end for
12: Update B by solving Equation (14);
13: Update A by solving Equation (20);
14: Cluster B by k -means;
15: end while

whereG j andGr are two neighbor graphs ofGi in the same cluster.
Cjr is the local covariance matrix, and it can be computed by

Cjr =
1
2
(Mj +Mr −mjr −M0) (22)

wheremjr denotes the squared distance between the jth and r th
neighbors of Gi , and we compute it based on both the original
affinity matrices from v views and the graph embeddings ofG j and
Gr by

mjr =
1
2
(
1
d

v∑
d=1




G(d )j − G(d )r




2
F
) +

1
2
(


Fj − Fr 

2F ) (23)

Mj =
∑
zmjz ,Mr =

∑
zmrz andM0 =

∑
jr mjr . Then the optimal

weights can be obtained by:

wi j =

∑
r C−1jr∑
lz C−1lz

(24)

For details about the above derivation for the solution, readers
can refer to the illustrations in [32].

Once the weight matrixW is obtained, we can easily solve the
optimization problem in Equation (8) following the same ADMM
steps as shown above for solving (12). The overall optimization
algorithm of MCGE is summarized in Algorithm 1.

5 EXPERIMENTS AND EVALUATION
In order to evaluate the performance of the proposed method for
multi-view clustering of graphs, we test our framework on real fMRI
and DTI brain network data for connectome analysis and compare
with a few of state-of-the-art multi-view clustering methods.

5.1 Data Collection and Preprocessing
In this work, we use two real datasets as follows:
• Human Immunodeficiency Virus Infection (HIV): This dataset
is collected from the Chicago Early HIV Infection Study at
Northwestern University[30]. This clinical study involves 77
subjects, 56 of which are early HIV patients (positive) and
the other 21 subjects are seronegative controls (negative).
These two groups of subjects do not differ in demographic
characteristics such as age, gender, racial composition and
education level. This dataset contains both the functional
magnetic resonance imaging (fMRI) and diffusion tensor

imaging (DTI) for each subject, from which we can construct
the fMRI and DTI brain networks.
• Bipolar : This dataset consists of the resting-state fMRI and
DTI image data of 52 bipolar I subjects who are in euthymia
and 45 healthy controls with matched age and gender [9, 25].

We perform preprocessing on the HIV dataset using the standard
process as illustrated in [8]. First, we use the DPARSF toolbox1 to
process the fMRI data. We realign the images to the first volume,
do the slice timing correction and normalization, and then use an
8-mmGaussian kernel to smooth the image spatially. The band-pass
filtering (0.01-0.08 Hz) and linear trend removing of the time series
are also performed. We focus on the 116 anatomical volumes of
interest (AVOI), each of which represents a specific brain region, and
extract a sequence of responds from them. Finally, we construct
a brain network with the 90 cerebral regions. Each node in the
graph represents a brain region, and links are created based on the
correlations between different brain regions. For the DTI data, we
use FSL toolbox2 for the preprocessing and then construct the brain
networks. The preprocessing includes distortion correction, noise
filtering, repetitive sampling from the distributions of principal
diffusion directions for each voxel. We parcellate the DTI images
into the 90 regions same with fMRI via the propagation of the
Automated Anatomical Labeling (AAL) on each DTI image [36].

For the Bipolar dataset, the brain networks were constructed
using the CONN3 toolbox [42]. The raw EPI images were first
realigned and co-registered, after which we perform the normaliza-
tion and smoothing. Then the confound effects frommotion artifact,
white matter, and CSF were regressed out of the signal. Finally, the
brain networks were derived using the pairwise signal correlations
based on the 82 labeled Freesurfer-generated cortical/subcortical
gray matter regions.

5.2 Baselines and Metrics
We compare our MCGE framework with six other baseline methods
for the multi-view clustering task on brain networks. To the best
of our knowledge, our proposed framework is the first work that
jointly performs multi-view graph embedding and multi-view clus-
tering of graph instances. Therefore, for the evaluation, we apply
the following state-of-the-art multi-view clustering methods and
adapt them to perform the multi-view clustering task here.
• SingleBest applies spectral clustering on each single view
and reports the best performance among them.
• SEC is a single view spectral embedding clustering frame-
work proposed in [28]. It imposes a linearity regularization
on the spectral clustering model and uses both local and
global discriminative information for the embedding.
• CoRegSc is the co-regularized based multi-view spectral
clustering framework proposed in [19]. The centroid based
approach is applied for the multi-view clustering task.
• MultiNMF is the multi-view clustering method based on
joint nonnegative matrix factorization proposed by [21]. It
aims to search for a factorization that gives compatible clus-
tering solutions across multiple views.

1http://rfmri.org/DPARSF.
2http://fsl.fmrib.ox.ac.uk/fsl/fslwiki.
3http://www.nitrc.org/projects/conn



Table 2: Results on HIV dataset (mean ± std).

Methods Accuracy NMI

SingleBest 0.561 ± 0.010 0.104 ± 0.007
SEC 0.523 ± 0.012 0.092 ± 0.011
AMGL 0.563 ± 0.002 0.132 ± 0.008
SCMV-3DT 0.576 ± 0.013 0.123 ± 0.019
MultiNMF 0.613 ± 0.016 0.197 ± 0.021
CoRegSc 0.626 ± 0.020 0.254 ± 0.013
MCGE 0.682 ± 0.019 0.390 ± 0.015

Table 3: Results on Bipolar dataset (mean ± std).

Methods Accuracy NMI

SingleBest 0.553 ± 0.012 0.098 ± 0.006
SEC 0.536 ± 0.012 0.103 ± 0.009
AMGL 0.558 ± 0.026 0.101 ± 0.012
SCMV-3DT 0.585 ± 0.009 0.132 ± 0.010
MultiNMF 0.642 ± 0.011 0.192 ± 0.015
CoRegSc 0.619 ± 0.024 0.170 ± 0.008
MCGE 0.703 ± 0.013 0.264 ± 0.012

• AMGL is a recently proposed multi-view spectral learn-
ing framework [27] that can automatically learn an optimal
weight for each graph without introducing additive parame-
ters.
• SCMV-3DT is a tensor based multi-view clustering method
recently proposed in [46]. It uses t-product in third-order
tensor space, and represents multi-view data by a t-linear
combination with sparse and low-rank penalty based on the
circular convolution.
• MCGE is the proposed multi-view clustering framework in
this paper, which jointly performs multi-view graph embed-
ding and multi-view clustering of the graph instances.

There are three main parameters in our model, which include the
α in objective function (12), the β in objective function (8), and the
dimension c of the row vectors in the graph embeddings. We apply
the grid search to find the optimal values for the parameters. For
details, we do grid search for α and β in {10−4, 10−3, · · · 104}, and
the optimal c is selected by the grid search from {2, 3, · · · , 12}. For
evaluation, since there are two possible labels of the brain network
instances in both of the two datasets, we set the number of clustersk
to be 2, and test how well our method can group the brain networks
of subjects with disorders and those of normal controls into two
different clusters.

For fair comparisons of the baseline methods, we employ Litek-
means [6] for all the k-means clustering step if it is needed in the
implementation of the six methods listed above. We repeat cluster-
ing for 20 times with random initialization as k-means depends on
initialization.

To evaluate the quality of the clusters produced by different
approaches, we use Accuracy and Normalized Mutual Information
(NMI) as the evaluation metrics. For each experiment, we repeat
50 times and report the mean value along with standard deviation
(std) as the results.

5.3 Performance Evaluations
5.3.1 Clustering Accuracy and NMI. As shown in Table 2 and

Table 3, our MCGE framework performs the best in the multi-view
clustering task on both of the two datasets in terms of accuracy and
NMI. Among the seven methods, the first two methods are single
view clustering methods, both of which achieve lower accuracy
and NMI compared with the multi-view methods. In particular,
the lowest accuracy is from SEC, which is a single view clustering
method applied here by concatenating the features of all the views.
Although the SEC method considers both global structure and
local structure of graphs, it does not distinguish the features from
different views, which leads to a poor performance in the multi-
view clustering. The SingleBest achieves its best performance on the
fMRI brain networks for both datasets, which means that the fMRI
data provide more discriminative information for the SingleBest
method. By comparing SingleBest with SEC, we can find that if
the multiple views are combined improperly, it may perform even
worse than only using information from a single view.

Among the multi-view clustering methods, CoRegSc and Mult-
iNMF have quite good performance, though not as good as the
proposed MCGE method. This is mainly because that they consider
the interactions between different views via joint modeling with
the multiple views, while the other two multi-view methods do not.
Comparatively, CoRegSc achieves slightly better results than the
MultiNMF method on HIV dataset and vice versa on the Bipolar
dataset. Compared to the proposed MCGE method, the common
property of the other four multi-view clustering methods is that
the features they learn for each view are based on vector represen-
tations. However, for graph instances, the structural information
could barely be preserved by such vector representations, which
could be the underlying reason of why these methods could not out-
perform our MCGE method. Moreover, by using tensor technique
to model the multi-view graph-graph affinity as illustrated in Equa-
tion (9), MCGE can not only encode the latent interaction across
different views, but also capture the graph-specific features through
the graph kernels. From Table 2 and Table 3, we can see that, as
another tensor-based multi-view method, the SCMV-3DT does not
achieve compatible results to MCGE. The reason behind this might
be that although SCMV-3DT models the data into third-order ten-
sor, it does not consider the local structure of graphs, making it less
effective for the multi-view clustering of graphs.

5.3.2 MCGE for Connectome Analysis. To evaluate the effective-
ness of the proposed MCGE framework for connectome analysis,
we investigate this approach for capturing the inner structure of
connectomes in analysis of brain alterations induced by HIV infec-
tion and Bipolar affective disorder, respectively.

HIV is associated with heterogeneous changes in the brain and
in cognitive function [39]. In many CNS(Central Nervous System)
disorders, etiology is unknown. In contrast, HIV involves a known
viral etiology. Therefore it is possible to study the brain in the
early stages of injury. Studies of early HIV infection have found
alterations in both structural and functional connectivity [39]. More-
over, a hallmark of HIV is neuroinflammation, which is a common
characteristic of neurological injury from diverse causes, including
traumatic, ischemic, developmental and neurodegenerative brain
disorders. Since HIV infection is broadly relevant to many other



neurological disorders, it represents an ideal model for evaluating
the sensitivity of new frameworks for neuroimaging analysis.

We apply the proposed MCGE framework on the multi-view
brain networks of the HIV dataset and obtain the clustering results
as well as the multi-view graph embedding for each brain network.
We further employ k-means algorithm (with k = 6) on the row
vectors of the multi-view graph embedding for each brain network,
and obtain the clustering relationship of their inner nodes, i.e., the
brain regions. Figure 4 shows an example of the resulting brain
region clusteringmap of a normal control and that of an HIV patient.
In this figure, each node represents a brain region, and each edge
indicates the correlation between two brain regions. Nodes of the
same color represent the brain regions that are grouped into the
same cluster by MCGE. As we can see from Figure 4, the clustering
pattern of the HIV patient is quite different from the normal control.
Nodes of the normal brain network are well grouped into several
clusters, while nodes in the HIV brain network are less coherent.
In addition, for the normal control, edges within each cluster are
much more intense than the edges across different clusters. For
example, in Figure 4(a), the pink nodes in the lower left and the
pink nodes in the upper right are strongly connected with each
other. While in Figure 4(b), the corresponding nodes in the lower
left, which are mostly marked in yellow, have very few connections
with those yellow nodes in the upper right. By looking into the
connections, we can find that for the normal control, there are
several pink nodes in the center of the brain which bridge the
lower left part and the upper right part, while these intermediate
nodes in the HIV brain are clustered in blue or pink instead of the
same color (yellow) as the lower left part and the upper right part.
This implies that the intermediate regions are probably injured so
that they are no longer the bridges (or hubs) across other related
regions. Some studies in neuroscience [12] show that the highly-
interconnected hub nodes are biologically costly due to higher blood
flow or connection distances, and thus tend to be more sensitive to
injury. Our observations in Figure 4 potentially reflect this evidence.

Then we apply the MCGE framework on the Bipolar dataset with
the same steps as illustrated above for HIV dataset. The visualized
results of a normal control and a bipolar subject are shown in Figure
5. Similarly to the observations above, as we can see from Figure 5,
the cluster information of normal control is quite different from the
bipolar subject. The connectomes of the normal control are well
organized, while the corresponding nodes in the brain network of
the bipolar subject spread out irregularly across different clusters.
We can also find that for normal control, edges within each cluster
are much more intense than the edges across different clusters,
while this is less the case for bipolar subject. The reason behind this
observation is probably that the collaborative activities of different
brain regions of the bipolar subject are not organized in a proper
order as those of normal controls are.

These findings indicate that our proposed MCGE framework can
distinguish brain alterations in neurological disorders from healthy
controls. It also yields new information and insights concerning
network perturbations in brain injury and neuroinflammation for
further investigation and interpretation.

(a) normal control (b) HIV patient

Figure 4: Comparison of the connectomes captured from the
brain networks of a normal control and an HIV patient

(a) normal control (b) bipolar subject

Figure 5: Comparison of the connectomes captured from the
brain networks of a normal control and a bipolar subject
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Figure 6: Accuracy and NMI with different c

5.4 Parameter Sensitivity Analysis
In this section, we study the sensitivity of the proposed MCGE
framework to the three parameters α , β , and c , and explore how
the different values for parameters would affect the performance of
MCGE in the multi-view clustering.We first look into the parameter
c , which is the dimension of the row vectors in graph embedding.
Figure 6 shows the multi-view clustering performance of MCGE on
the two datasets with the c value varying from 2 to 12. From the
figure, we can see that the value for c affects the performance of
MCGE in both accuracy and NMI. The highest accuracy is achieved
when c equals to 8 for HIV dataset and the best NMI occurs at 9. For
Bipolar dataset, both the accuracy and NMI reach the peak when
c equals to 6. The changing of accuracy and NMI with different c
values has similar trend on the two datasets. With the increase of
the c value, the performance first keeps rising up until it reaches the
peak, and then it starts to decline. This changing trend is reasonable
as when the dimension of graph embedding is too small, it could
not encode enough local structure information of the graph, result-
ing in poor performance for the clustering. When the dimension
of graph embedding is set to be a large number, it may include
much redundant information, making it less discriminative for the
clustering task.



(a) Accuracy on HIV (b) NMI on HIV

(c) Accuracy on Bipolar
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Figure 7: Accuracy and NMI with different α , β

Now we evaluate the sensitivity of MCGE to α and β . As illus-
trated in Equation (12), α is the weight parameter which determines
the extent that the local embedding structure is utilized for the
multi-view clustering task. The higher the value for α , the more
emphasis we put on the graph embeddings for multi-view clus-
tering modeling. Similarly, the parameter β balances how much
influence the embeddings of neighbor graphs would have on the
multi-view graph embedding of each graph. For the evaluation, we
set c to be 8 and run the MCGE framework with different values
of α and β . The clustering accuracy and NMI achieved at different
values of parameters for the two datasets are shown in Figure 7(a),
Figure 7(b), Figure 7(c) and Figure 7(d), respectively. As we can
see from the figures, MCGE achieves different levels of accuracy
and NMI when the values of α and β vary. The highest accuracy
on HIV dataset is achieved when α = 103, and β = 102, while the
best NMI on HIV is achieved at α = 103, and β = 103. On Bipolar
dataset, both the highest accuracy and the best NMI are achieved
when α = 103, and β = 103. Notably, when the value for α is too
small, both the accuracy and NMI achieved by MCGE are quite low,
and the same situation holds for β . This is mainly because that if
we set a small value to α , little information of graph embeddings
would be used for the multi-view clustering stage. Similarly, when
β is too small, the graph embeddings of neighbor graphs would
hardly influence the multi-view graph embedding stage of each
graph. On the other hand, when α and β are set to be large values,
the performance drops as well, as the influence imposed on those
parts is too much. Therefore, finding an optimal combination of
these parameter values is very important when applying MCGE
framework for multi-view clustering.

6 RELATEDWORK
Our work relates to several branches of studies, which include
multi-view clustering, graph embedding and connectome analysis.

Multi-view clustering is a clustering strategy for analyzing data
with multiple views [3] and it has been widely studied and ap-
plied in various domains [22, 33, 34]. For example, the Canonical
Correlation Analysis (CCA) based methods focus on constructing

projections using multiple views[3]. In [10], a CCA based method
is proposed and applied for audio-visual speaker clustering and
hierarchical Wikipedia document clustering. Another main cate-
gory of algorithms aim to integrate multiple views in the cluster-
ing process directly by optimizing the loss functions[3]. A typical
work from this category is the co-regularized multi-view spec-
tral clustering method proposed by [19], which is also a baseline
method used in our experiment. It performs multi-view clustering
by co-regularizing the clustering hypotheses. In addition, matrix
factorization based methods also form a category of multi-view
clustering methods[18, 21], which use constraints to push multiple
views towards consensus.

Graph embedding is a hot research topic in graph mining. The
goal of graph embedding is to find low-dimensional representations
of nodes in graphs that can preserve the important structure and
properties of graphs [45]. It has drawn great interest from the data
mining community, and has been extensively studied for various
kinds of applications. In [26], a new graph embedding algorithm
is proposed based on Laplacian type operator on manifold, and
it is applied for recovering the geometry of data and extending
a function on new data points. Recently, a high-order proximity
preserved embedding method is proposed in [29]. They first de-
rive a general formulation that covers multiple popular high-order
proximity measurements, and then propose a scalable embedding
algorithm to approximate the high-order proximity measurements.

Connectome analysis is a prominent emphasis area in the field of
medical data mining. The "connectome", refers to the vast connec-
tivity of neural systems at different levels involving both global and
local structure information of the connections [17]. Connectome
analysis has been the focus of intense investigation owing to the
tremendous potential to provide more comprehensive understand-
ing of normal brain function and to yield new insights concerning
many different brain disorders [7, 25, 35]. Most connectome analy-
ses, however, aim to learn the structure from brain networks based
on an individual neuroimaging modality [9, 15, 16, 20]. For exam-
ple, in [9], the identification of discriminative subgraph patterns is
studied on fMRI brain networks for bipolar affective disorder anal-
ysis. In [23], a multi-graph clustering method is proposed based on
interior-node clustering for connectome analysis in fMRI resting-
state networks. Although some recent work [5] use multi-view
brain networks in connectome analysis, they focus on the group-
wise functional community detection problem instead of doing
multi-view clustering of the subjects. Here, we apply the proposed
graph embedding based approach to facilitate the multi-view clus-
tering of multiple brain networks simultaneously, thus providing
a more comprehensive strategy for further neurological disorder
identification.

7 CONCLUSION
In this paper, we presentMCGE, aMulti-viewClustering framework
with Graph Embedding, to solve multi-view clustering problem on
graph instances. MCGE first models the multi-view graph data
as tensors and then learns the multi-view graph embeddings via
tensor factorization. We further incorporate multi-view graph em-
bedding into an iterative multi-view clustering framework, jointly



performing multi-view clustering and graph embedding simulta-
neously. The results of multi-view clustering are used to refine
the multi-view graph embeddings, in turn, the updated multi-view
graph embedding results are used to improve the multi-view clus-
tering. By updating the clustering results and graph embeddings
iteratively, the proposed MCGE framework will result in a better
multi-view clustering solution. We apply our MCGE framework
for unsupervised multi-view connectome analysis on HIV-induced
brain alterations and bipolar affective disorder. Extensive exper-
imental results on real multi-view HIV brain network data and
Bipolar brain network data show the effectiveness of MCGE for
multi-view clustering in connectome analysis.
ACKNOWLEDGMENTS
This work is supported in part by NSF through grants IIS-1526499,
and CNS-1626432, and NSFC 61672313, and NSFC 61503253.

REFERENCES
[1] P-A Absil, Robert Mahony, and Rodolphe Sepulchre. 2009. Optimization algo-

rithms on matrix manifolds. Princeton University Press.
[2] Mikhail Belkin and Partha Niyogi. 2001. Laplacian eigenmaps and spectral

techniques for embedding and clustering. In NIPS.
[3] Steffen Bickel and Tobias Scheffer. 2004. Multi-View Clustering. In ICDM.
[4] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. 2011.

Distributed optimization and statistical learning via the alternating direction
method of multipliers. Foundations and Trends® in Machine Learning 3, 1 (2011),
1–122.

[5] Nathan D Cahill, Harmeet Singh, Chao Zhang, Daryl A Corcoran, Alison M
Prengaman, Paul S Wenger, John F Hamilton, Peter Bajorski, and Andrew M
Michael. 2016. Multiple-View Spectral Clustering for Group-wise Functional
Community Detection. arXiv preprint arXiv:1611.06981 (2016).

[6] D Cai. 2011. Litekmeans: the fastest matlab implementation of kmeans. Software
available at: http://www. zjucadcg. cn/dengcai/Data/Clustering. html (2011).

[7] Bokai Cao, Lifang He, Xiaokai Wei, Mengqi Xing, Philip S. Yu, Heide Klumpp,
and Alex D. Leow. 2017. t-BNE: Tensor-based Brain Network Embedding. In
SDM.

[8] Bokai Cao, Xiangnan Kong, Jingyuan Zhang, S Yu Philip, and Ann B Ragin.
2015. Identifying HIV-induced subgraph patterns in brain networks with side
information. Brain informatics 2, 4 (2015), 211–223.

[9] Bokai Cao, Liang Zhan, Xiangnan Kong, Philip S Yu, Nathalie Vizueta, Lori L
Altshuler, and Alex D Leow. 2015. Identification of discriminative subgraph
patterns in fMRI brain networks in bipolar affective disorder. In BIH.

[10] Kamalika Chaudhuri, Sham M Kakade, Karen Livescu, and Karthik Sridharan.
2009. Multi-view clustering via canonical correlation analysis. In ICML.

[11] Rodrigo Cilla Ugarte. 2012. Action recognition in visual sensor networks: a data
fusion perspective. (2012).

[12] Nicolas A Crossley, Andrea Mechelli, Jessica Scott, Francesco Carletti, Peter T
Fox, Philip McGuire, and Edward T Bullmore. 2014. The hubs of the human
connectome are generally implicated in the anatomy of brain disorders. Brain
137, 8 (2014), 2382–2395.

[13] Yun Fu and Yunqian Ma. 2012. Graph embedding for pattern analysis. Springer
Science & Business Media.

[14] Jing Gao, Nan Du, Wei Fan, Deepak Turaga, Srinivasan Parthasarathy, and Jiawei
Han. 2013. A multi-graph spectral framework for mining multi-source anomalies.
In Graph Embedding for Pattern Analysis. Springer, 205–227.

[15] Lifang He, Xiangnan Kong, Philip S Yu, Xiaowei Yang, Ann B Ragin, and Zhifeng
Hao. 2014. Dusk: A dual structure-preserving kernel for supervised tensor
learning with applications to neuroimages. In SDM.

[16] Lifang He, Chun-Ta Lu, Guixiang Ma, Shen Wang, Linlin Shen, S Yu Philip, and
Ann B Ragin. 2017. Kernelized support tensor machines. In ICML.

[17] Marcus Kaiser. 2011. A tutorial in connectome analysis: topological and spatial
features of brain networks. Neuroimage 57, 3 (2011), 892–907.

[18] Mahdi M Kalayeh, Haroon Idrees, and Mubarak Shah. 2014. Nmf-knn: Image
annotation using weighted multi-view non-negative matrix factorization. In
CVPR.

[19] Abhishek Kumar, Piyush Rai, and Hal Daume. 2011. Co-regularized multi-view
spectral clustering. In NIPS.

[20] Chia-Tung Kuo, Xiang Wang, Peter Walker, Owen Carmichael, Jieping Ye, and
Ian Davidson. 2015. Unified and contrasting cuts in multiple graphs: application
to medical imaging segmentation. In SIGKDD.

[21] Jialu Liu, Chi Wang, Jing Gao, and Jiawei Han. 2013. Multi-view clustering via
joint nonnegative matrix factorization. In SDM.

[22] Chun-Ta Lu, Lifang He, Weixiang Shao, Bokai Cao, and Philip S Yu. 2017. Multi-
linear Factorization Machines for Multi-Task Multi-View Learning. In WSDM.

[23] Guixiang Ma, Lifang He, Bokai Cao, Jiawei Zhang, S Yu Philip, and Ann B Ragin.
2016. Multi-graph Clustering Based on Interior-Node Topology with Applica-
tions to Brain Networks. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases. Springer, 476–492.

[24] Guixiang Ma, Lifang He, Chun-Ta Lu, Philip S Yu, Linlin Shen, and Ann B Ragin.
2016. Spatio-temporal tensor analysis for whole-brain fMRI classification. In
Proceedings of the 2016 SIAM International Conference on Data Mining. SIAM,
819–827.

[25] Guixiang Ma, Chun-Ta Lu, Lifang He, S Yu Philip, and B Ragin Ann. 2017. Multi-
view Graph Embedding with Hub Detection for Brain Network Analysis. In
ICDM.

[26] Saman Mousazadeh and Israel Cohen. 2015. Embedding and function extension
on directed graph. Signal Processing 111 (2015), 137–149.

[27] Feiping Nie, Jing Li, Xuelong Li, and others. 2016. Parameter-Free Auto-Weighted
Multiple Graph Learning: A Framework for Multiview Clustering and Semi-
Supervised Classification. International Joint Conferences on Artificial Intelli-
gence.

[28] Feiping Nie, Zinan Zeng, Ivor W Tsang, Dong Xu, and Changshui Zhang. 2011.
Spectral embedded clustering: A framework for in-sample and out-of-sample
spectral clustering. IEEE Trans on Neural Networks 22, 11 (2011), 1796–1808.

[29] M Ou, Peng Cui, Jian Pei, Z Zhang, and W Zhu. 2016. Asymmetric transitivity
preserving graph embedding. In SIGKDD.

[30] Ann B Ragin, Hongyan Du, Renee Ochs, Ying Wu, Christina L Sammet, Alfred
Shoukry, and Leon G Epstein. 2012. Structural brain alterations can be detected
early in HIV infection. Neurology 79, 24 (2012), 2328–2334.

[31] Sam T Roweis and Lawrence K Saul. 2000. Nonlinear dimensionality reduction
by locally linear embedding. Science 290, 5500 (2000), 2323–2326.

[32] Lawrence K Saul and Sam T Roweis. 2000. An introduction to locally linear
embedding. http://www. cs. toronto. edu/˜ roweis/lle/publications. html (2000).

[33] Weixiang Shao, Lifang He, Chun-Ta Lu, XiaokaiWei, and S Yu Philip. 2016. Online
unsupervised multi-view feature selection. In ICDM.

[34] Weixiang Shao, Lifang He, and S Yu Philip. 2015. Clustering on multi-source
incomplete data via tensor modeling and factorization. In PAKDD.

[35] Olaf Sporns, Giulio Tononi, and Rolf Kötter. 2005. The human connectome: a
structural description of the human brain. PLoS Comput Biol 1, 4 (2005), e42.

[36] Nathalie Tzourio-Mazoyer, Brigitte Landeau, Dimitri Papathanassiou, Fabrice
Crivello, Olivier Etard, Nicolas Delcroix, Bernard Mazoyer, and Marc Joliot. 2002.
Automated anatomical labeling of activations in SPMusing amacroscopic anatom-
ical parcellation of the MNI MRI single-subject brain. Neuroimage 15, 1 (2002),
273–289.

[37] S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M
Borgwardt. 2010. Graph kernels. Journal of Machine Learning Research 11, Apr
(2010), 1201–1242.

[38] Ulrike Von Luxburg. 2007. A tutorial on spectral clustering. Statistics and
computing 17, 4 (2007), 395–416.

[39] Xue Wang, Paul Foryt, Renee Ochs, Jae-Hoon Chung, Ying Wu, Todd Parrish,
and Ann B Ragin. 2011. Abnormalities in resting-state functional connectivity in
early human immunodeficiency virus infection. Brain connectivity 1, 3 (2011),
207–217.

[40] Yichen Wang, Robert Chen, Joydeep Ghosh, Joshua C Denny, Abel Kho, You
Chen, Bradley A Malin, and Jimeng Sun. 2015. Rubik: Knowledge guided tensor
factorization and completion for health data analytics. In SIGKDD.

[41] Zaiwen Wen and Wotao Yin. 2013. A feasible method for optimization with
orthogonality constraints. Mathematical Programming 142, 1-2 (2013), 397–434.

[42] Susan Whitfield-Gabrieli and Alfonso Nieto-Castanon. 2012. Conn: a functional
connectivity toolbox for correlated and anticorrelated brain networks. Brain
connectivity 2, 3 (2012), 125–141.

[43] Tian Xia, Dacheng Tao, Tao Mei, and Yongdong Zhang. 2010. Multiview spec-
tral embedding. IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics) 40, 6 (2010), 1438–1446.

[44] Bo Xie, Yang Mu, Dacheng Tao, and Kaiqi Huang. 2011. m-SNE: Multiview sto-
chastic neighbor embedding. IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics) 41, 4 (2011), 1088–1096.

[45] Shuicheng Yan, Dong Xu, Benyu Zhang, Hong-Jiang Zhang, Qiang Yang, and
Stephen Lin. 2007. Graph embedding and extensions: a general framework for
dimensionality reduction. IEEE transactions on pattern analysis and machine
intelligence 29, 1 (2007), 40–51.

[46] Ming Yin, Shengli Xie, Yi Guo, and others. 2016. Low-rank Multi-view Clustering
in Third-Order Tensor Space. arXiv preprint arXiv:1608.08336 (2016).

[47] Jingyuan Zhang, Bokai Cao, Sihong Xie, Chun-Ta Lu, Philip S Yu, and Ann B
Ragin. 2016. Identifying connectivity patterns for brain diseases via multi-side-
view guided deep architectures. In SDM.

[48] Lefei Zhang, Qian Zhang, Liangpei Zhang, Dacheng Tao, Xin Huang, and Bo
Du. 2015. Ensemble manifold regularized sparse low-rank approximation for
multiview feature embedding. Pattern Recognition 48, 10 (2015), 3102–3112.


	Abstract
	1 Introduction
	2 Preliminaries
	3 MCGE Framework
	3.1 Multi-view Graph Embedding
	3.2 Multi-view Clustering via Graph Embedding
	3.3 The Overall Framework: MCGE

	4 Optimization
	5 Experiments and Evaluation
	5.1 Data Collection and Preprocessing
	5.2 Baselines and Metrics
	5.3 Performance Evaluations
	5.4 Parameter Sensitivity Analysis

	6 Related Work
	7 Conclusion
	References

