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SUMMARY 
Gibbs sampling has enormous potential for analysing complex data sets. However, routine use of Gibbs sampling 
has been hampered by the lack of general purpose software for its implementation. Until now all applications have 
involved writing one-off computer code in low or intermediate level languages such as C or Fortran. We describe 
some general purpose software that we are currently developing for implementing Gibbs sampling: BUGS (Bayesian 
inference using Gibbs sampling). The BUGS system comprises three components: first, a natural language 
for specifying complex models; second, an 'expert system' for deciding appropriate methods for obtaining 
samples required by the Gibbs sampler; third, a sampling module containing numerical routines to perform the 
sampling. S objects are used for data input and output. BUGS is written in Modula-2 and runs under both DOS 
and UNIX. 

Keywords: Bayesian computation; Bayesian inference; Gibbs sampling; Graphical model; Statistical software 

1. Introduction 

Gibbs sampling (Geman and Geman, 1984; Hastings, 1970) is a technique for simulating 
samples from the joint posterior distribution of the unknown quantities in a statistical model. 
It has been shown to have enormous potential for the statistical analysis of complex data 
sets (see, for example, Gelfand and Smith (1990), Gelfand et al. (1990), Smith and Roberts 
(1993) and Gilks et al. (1993)). Gibbs sampling succeeds because it reduces the problem of 
dealing simultaneously with a large number of intricately related unknown parameters and 
missing data into a much simpler problem of dealing with one unknown quantity at a time, 
sampling each from its full conditional distribution (see Section 6). We pass over a description 
of the basic methodology of Gibbs sampling: a good introduction is given by Casella and 
George (1992). 

Notwithstanding the growing popularity of Gibbs sampling, its routine use has been 
hampered by a lack of general purpose software for its implementation. Until now all 
applications have involved writing one-off computer code in low or intermediate level 
languages such as C or Fortran. In our experience, writing and debugging a Gibbs sampler 
for a moderately complex application can take anything from a few days to several weeks. 
Thereafter, modifying the program (e.g. to elaborate the model or to apply it to different data) 
might take several hours. This compares dismally with model fitting in GLIM or S, for which 
model specification may take just a few minutes, and modifications may take just a few 
seconds. The fact that increasing numbers of statisticians are expending considerable effort 
to use Gibbs sampling clearly indicates that currently available software is inadequate in 
many applications. Our aim is to make Gibbs sampling as easy to implement as generalized 
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170 GILKS, THOMAS AND SPIEGELHALTER 

linear models in GLIM or S. For this we are developing BUGS: Bayesian inference using 
Gibbs sampling. In this paper we describe our approach. 

The main requirements of BUGS are that it should 

(a) accommodate a very large class of models, 
(b) enable models to be specified concisely and 
(c) construct and sample from full conditional distributions automatically. 

We discuss these requirements in the following sections. We begin with an example. 

2. Example: job exposure matrices 

Gilks and Richardson (1992) described an application of Gibbs sampling in occupational 
epidemiology. In this application the aim is to estimate disease risks associated with chronic 
exposure to industrial agents, such as chemicals, dust or fibres. A disease study has been 
conducted in which each individual's status for a particular disease has been recorded, but 
his exposure status on each of several agents is unknown. In another study called the exposure 
study, which is conducted on different individuals, exposure statuses have been recorded but 
disease statuses are unknown for each individual. Thus we have the usual ingredients for a 
logistic regression model: independent variables (exposure statuses) and a dependent variable 
(disease status); but unusually we know both of these for no one. The vital link between the 
two sets of individuals is occupation: we know the job description of eveiy individual. 

For the disease study individuals Gilks and Richardson (1992) proposed the following 
model: 

Di - Bernoulli(Oi) (1) 

where Di is the disease status (O not diseased; 1 diseased) for the ith individual, Oi is his 
probability of disease and 

logit(Oi) = f0 + Z fkEik, (2) 
k 

where Eik is the unobserved exposure status (O unexposed; 1 = exposed) of individual i to 
agent k. Equations (1) and (2) together define a classical logistic regression model. 

For the exposure study individuals, Gilks and Richardson (1992) proposed 

mfk- binomial(7r3k, nj) (3) 

where nj is the number of exposure study individuals in job type j, mJk is the number of these 
who were exposed to agent k and 7Cjk is an exposure probability. The set {mJk, nj} comprise 
a job exposure matrix. 

The link between the two studies is then provided by 

Eik Bernoulli(J(i),k) (4) 

where j(i) denotes the job type of disease study individual i. 
The Bayesian model specification is completed with priors 

f3k normal(jk, ak) (5) 

and 

logit(jk) = kJk (6) 

with 

-jk normal(lt*, C*2). (7) 
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COMPLEX BAYESIAN MODELLING 171 

2.1. Completing the model: directed acyclic graph 
The model set out in submodels (1H7) incompletely specifies the joint distribution of the 

model parameters and data. These submodels merely tie down a few conditional marginal 
distributions. However, in an intuitive sense, model (1H7) is already complete: if further 
structure had been required it could have been specified explicitly. Thus to complete the joint 
distribution of the parameters and data, one seeks some kind of assumption of 'independence' 
between the submodels. This is provided by the directed Markov assumption (Lauritzen et al., 
1990), which simply states that the joint distribution of all the model parameters and data is 
given by the product of all the submodels. Thus the joint distribution from model (1H7) is 

Hl p(DiIOi) H PA(fiIPk, ak) H p(EikJ1Ri(i)k) H (mjkIljrk, n,) H PQI'kIjkk, ask) (8) 
i k ik jk jk 

where deterministic equations (2) and (6) are assumed to hold. 
That the directed Markov assumption is natural for model (1H7) is most easily seen from 

a graph of the model (Fig. 1), in which round nodes denote unobserved stochastic variables 
(which may be model parameters or missing exposures), square nodes with a single border 
denote observed stochastic variables (i.e. data), square nodes with a double border denote 
fixed quantities in prior distributions, triangles denote deterministic variables and edges 
(arrows) denote dependences specified in the submodels. Fig. 1 is a directed acyclic graph 
(Whittaker, 1990), since all the edges are directed and it is not possible, just by following the 
directions of the edges, to return to a node after leaving it. Thus there is a partial ordering 
of the nodes, and the directed Markov assumption is seen simply to be a natural Markov-type 
assumption on the partial ordering. 

In~i,vIduaI k I 

Inclvpiduals o 

Fig. 1. Graphical representation of model OHF7) 
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172 GILKS, THOMAS AND SPIEGELHALTER 

We shall refer to the node on the left of a submodel, e.g. Di in model (1), as a child of the 
nodes on the right of that submodel, and the nodes on the right of the submodel as the 
parents of the node on the left. A stochastic parent of a given node is a stochastic node which 
is an ancestor (in an obvious extension of terminology) of the given node, where only 
deterministic nodes intervene between the two. Likewise, a stochastic child of a given node is 
a stochastic node which is a descendant of the given node where only deterministic nodes 
intervene between the two. For example, from Fig. 1, Oi is the only parent of Di, and Di is the 
child of Oi; Eik is one of the stochastic parents of Di, and Di is the stochastic child of Eik. 

We shall refer to a set of submodels such as model (1H7) corresponding to a directed 
acyclic graph, together with the directed Markov assumption, as a directed acyclic graphical 
(DAG) model. DAG models provide a very rich class of models which are particularly 
amenable to estimation by Gibbs sampling: see Sections 4 and 6. Within this class we would 
like the family of algebraic and stochastic forms for the individual submodels to be very 
general, accommodating non-linearity and all commonly used statistical distributions. Thus 
we have developed a user interface and corresponding facilitating algorithms, as we describe 
below. 

3. Model specification 

It is tempting to try to devise a graphical user interface to BUGS, allowing models to be 
specified through drawing graphs on the screen. However, a graph gives only structural 
information: the precise form of each submodel would still need to be specified. Moreover, 
a graph may not even give full structural information. For example in Fig. 1 the structure of 
the mapping of jobs onto individuals j(i) is suppressed. To express the full model structure in 
the form of a graph on the screen would entail drawing one node for each of possibly several 
thousand variables in the model. Thus a graph, although of conceptual value, is of limited 
practical value for model specification. 

Instead we have developed a semantic interface to BUGS which mimics as far as possible 
the natural model specification, as set out for example in equations (187). Thus the stochastic 
relationship (1) is specified by 

D[i] - Bernoulli(theta[i]); (9) 

and the deterministic relationship (2) is specified by 

Logit(theta[i]) +- beta[nAl ] + InProd(beta[1: nA], E[i,]);. (10) 

Each of these model statements declares the node on the left of the expression. The '-~' sign 
in expression (9) declares D[i] to be a stochastic node, and the '+-' in expression (10) declares 
theta[i] to be a deterministic node. In expression (10), InProd denotes an inner product; 
beta[l: nA] denotes 11, 2, .. , fAA and E[i,] denotes E,, E2,..., EnA, where nA is the 
number of agents in this example. The full BUGS specification of model (1H7) is given in 
Fig. 2. 

Explicit 'for' loops and implicit loops as in expression (10) enable models to be specified 
succinctly. Also, to aid succinctness, some of the structural details of the model can be 
suppressed in the model specification, instead being read into BUGS as data. For example, 
the occupation of each individual in the disease study appears in Fig. 2 only in the form J[i]. 
J[i] must be read in as data: BUGS deduces this since J[i] does not appear on the left of 
any declaration. 

In principle, the Gibbs sampler easily handles missing data by treating them as unknown 
model parameters. Since there could be many haphazardly scattered missing data in a given 
application, it would be rather tedious to have to identify them through individual model 
statements. To avoid this, BUGS adopts the convention that any stochastic variable declared 
on the left-hand side of a model statement, but which is not found in the data file, is to be 
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model Jobs; 
data in "bugs\dat\Jobs.dat"; 
inits in "bugs\in\Jobs.in"; 

const 
nl = 1000, # number of individuals 
nA = 4, # number of agents 
nJ = 2, # number of jobs 
nAl = nA + 1; 

var 
D [nl] ,J [nl] ,theta [nl] ,E [nl,nA] ,pi [nJ,nA], 
phi [nJ,nA] ,mu-star[nJ,nA] ,tau-star[nJ,nA], 
m [nJ,nA] ,n [nA] ,beta [nAl ] ,mu [nAl ],tau [nAl]; 

{ 
for (i in 1:nl) 
{ 

# disease model 
D[i] - Bernoulli(theta[i]); 
Logit(theta[i]) -- beta[nAl] + InProd(beta[1 :nA],E[i,]); 

for (k in 1 :nA) 
{ 

# exposure model 
E[i,k] - Bernoulli(pi[J[i],k]); 

} 

for (j in 1 :nJ) 
{ 

for (k in 1 :nA) 
{ 

# measurement model 
m[j,k] - Binomial(pi[j,k],n[j]); 
Logit(pi[j,k]) -phi [j,k]; 
phi[j,k] - Normal(mu-star[j,k],tau-star[j,k]); 

for (k in 1 :nAl) 

beta[k] - Normal(mu[k],tau[k]); 
} 

} 
Fig. 2. Model specification in BUGS 

treated as a free-model parameter in the Gibbs sampling and updated at each iteration. Any 
variables found in the data file are assumed known and will not be updated. 

It is important to understand that model specification statements in BUGS are declarative, 
i.e. they are not instructions to perform calculations per se; rather, they are declarations, 
specifying the type of each node and its relationships with other nodes. Indeed, in the Gibbs 
sampling, D[i] is never actually sampled from the Bernoulli distribution specified in expression 
(9), since D[i] is fixed. Thus the order of model specification statements in BUGS is, to a 
considerable extent, arbitrary. For example, the 'for' loops in Fig. 2 could have been specified 
in a different order, perhaps starting with the measurement model loop. Equally, the order 
of statements within the inner loops in Fig. 2 is arbitrary. 

4. Class of models 

The class of models that we would like to be able to handle in BUGS is extensive. This 
class should include most if not all of the models that have been applied in the Gibbs sampling 
literature, including cluster analysis models (Gilks et al., 1989), survival analysis models 
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(Clayton, 1991), image analysis models (Besag et al., 1991), econometric models (Blattberg 
and George, 1991), generalized linear random effects models (Zeger and Karim, 1991; 
Dellaportas and Smith, 1993), complex genetic models (Sheehan and Thomas, 1993; Thomp- 
son and Guo, 1991; Thomas, 1992), disease mapping models (Bernardinelli and Montomoli, 
1992; Clayton and Bernardinelli, 1992), hidden Markov models (Kirby, 1992), changepoint 
models (Carlin et al., 1992); non-linear pharmacokinetic models (Wakefield et al., 1994; 
Berzuini et al., 1992) and constrained data models (Gelfand et al., 1992). 

5. Structure of BUGS 

BUGS comprises three distinct modules: the parser, the code generator and the Gibbs 
sampler. 

5.1. Parser 
The parser is responsible for reading the user's code in the specification file and assimilating 

node declarations and dependences. For example, in Fig. 2, node E[i, k] is set up as a 
stochastic node having a Bernoulli distribution, and a pointer to node pi[J[i], k] is stored 
at node E[i, k]. Thus the parser builds up the partial ordering, the node tree, representing the 
full structure of the graphical model. For deterministic nodes, such as that defining theta[i] 
in Fig. 2, the functional form of the deterministic relationship is stored in the form of a stack 
associated with the node, containing instructions in reverse Polish notation. For example, the 
expression b * x + c would be stored as a stack: b, x, *, c, +, which will be interpreted as 
'push b; push x; pop b and x; push b * x; push c; pop b * x and c; push b * x + c'. 

The parser reads data from the data file specified by the user and stores these data at the 
relevant nodes. The parser also discerns which nodes are to be updated in Gibbs sampling 
and which are to remain fixed, as described in Section 3. Initial values for model parameters 
and any missing data are obtained from the user-defined inits file. Any free-model parameter 
that is not found in the inits file is assigned an initial value by forward sampling, provided 
that the user did not assign it an improper prior. Currently, all data and initial values read 
into BUGS must be stored in the input files in the form of S objects. 

A number of consistency checks are carried out by the parser, e.g. to ensure that all nodes 
that do not appear on the left-hand side of a model statement are assigned values in the data 
file, and to check that each stochastic and deterministic function has the right number of 
arguments, of the right type. 

5.2. Code generator 
The code generator fills out the node tree constructed by the parser, to store at each node 

pointers to its stochastic children (see Section 2). For example, in the example in Fig. 2, 
pointers to nodes E[i, k] for all individuals i in job j are stored at node phi[, k]. 

Having filled out the node tree, the code generator uses a small expert system to decide, 
for each node, how best to sample from its full conditional distribution in the Gibbs sampling 
module (see Section 6). 

The code generator generates a low level language which is outputted to a system file. The 
contents of this file are intelligible to the user, although it should not be necessary for the 
user to concern himself with this. The low level language describes all the attributes of each 
node, including references to parents and stochastic children, as well as an indicator of the 
method to be used for sampling from its full conditional distribution. In this low level 
language, subscripts are not used: each node has equal status with all other nodes, regardless 
of whether it derived originally from a subscripted variable. 
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5.3. Gibbs sampler 
The Gibbs sampler operates on the low level code produced by the code generator. In 

principle, the Gibbs sampler could be run on a machine other than that which produced the 
low level code, since the low level code can be read from a file. The Gibbs sampling module 
interprets the low level code, in particular the reverse Polish of deterministic nodes, constructs 
appropriate quantities relating to full conditional distributions (see Section 6), samples from 
full conditionals, controls the order in which nodes are resampled and prints results to a file 
in the form of S objects. 

6. Full conditional distributions 

6.1. Construction of full conditionals 
Thefull conditional distribution of a stochastic node is its conditional distribution condition- 

ing on the current values of all other stochastic nodes in the graph. For a DAG model, the 
full conditional distribution for a given stochastic node is proportional to the product of the 
submodel declaring the given node with the submodels declaring the stochastic children of 
the given node (see Section 2). For example, the full conditional for /B1 in model (1)-(7) is 
proportional to 

p(#,I lU, aJ) f1 p(Di I i) (1 1) 

where deterministic equation (2) holds. The proportionality constant, required to make the 
full conditional integrate to 1, will be a function of nodes other than ft1. However, methods 
of sampling from full conditionals used in BUGS (see below) do not require explicit evaluation 
of integration constants. 

BUGS also has a mechanism for dealing with models which are not DAG models, e.g. 
image analysis models (Besag et al., 1991) and disease mapping models (Bernardinelli and 
Montomoli, 1992; Clayton and Bernardinelli, 1992). There is no obvious rule here, analogous 
to the directed Markov assumption, for obtaining joint distributions from user-specified 
submodels. Moreover, it is easy to construct sets of submodels for which no consistent joint 
distribution exists. The rule used by BUGS in constructing the full conditional distribution 
for a given node in a non-DAG model is to form the product of the submodel declaring the 
given node with the submodels declaring the stochastic children of the given node, excluding 
any submodels declaring stochastic children which are also stochastic parents of the given 
node. This rule may not always make sense, but it allows BUGS to accommodate the above 
non-DAG models and would allow, for example, the full conditional for a given node to be 
supplied explicitly by the user. 

Note that in expression (11) the full conditional for f,B involves only a subset of the other 
nodes in the graph. This is generally true for DAG models and is important for computational 
efficiency. The ingredients required for constructing a full conditional for a given node are 
all identified explicitly through the list of pointers at that node in the low-level language 
produced by the code generator. 

6.2. Sampling from full conditionals 
The code generator contains a small expert system for deciding the best method of sampling 

from full conditionals. Currently the first choice is to identify conjugacy, where the full 
conditional reduces analytically to a well-known distribution, and to sample accordingly. For 
example, if y - N(C, a2) and i - N(v, -2), then the full conditional for p will be 

N(y2?2 Z -2 , 
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The expert system recognizes a small number of canonical cases of conjugacy and also 
recognizes conjugacy in situations which reduce to a canonical case through linear transforms. 
For example, if ,u is replaced with a linear form a + b,u, then the full conditional for ,u still 
reduces through conjugacy to 

N b(y -a)-[2 + VU2 1 
N 
b{2T2 + a2 b2U-2 + 

o 
-2? 

} 

The method of second choice for sampling from full conditionals is adaptive rejection 
sampling. The original method of adaptive rejection sampling (Gilks and Wild, 1992) requires 
the density to be log-concave (d2{log f(x)}/dx2 < 0) and the user to supply subroutines to 
calculate derivatives of the log-density. A second version (Gilks, 1992) does not use derivatives 
but still requires log-concavity. The most recent version (Gilks et al., 1994) accommodates 
non-log-concavity through use of a generalized rejection function and a post-acceptance 
Hastings-Metropolis step (Hastings, 1970). 

7. Discussion 

The BUGS program is still under development, but a version is currently undergoing trials 
at several sites worldwide. We have several plans for further development. In the short term 
we plan to allow input of data which are not S objects, to allow specification of multivariate 
priors and to implement the method of Gilks et al. (1994) for sampling from non-log-concave 
full conditional distributions. In the longer term we hope to include facilities for diagnosing 
convergence of the Gibbs sampler, and for diagnosing model adequacy. 
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