
QuickCheck:
A Lightweight Tool for Random Testing

of Haskell Programs

Koen Claessen
Chalmers University of Technology

koen@cs.chalmers.se

John Hughes
Chalmers University of Technology

rjmh@cs.chalmers.se

ABSTRACTQuickCheck is a tool which aids the Haskell programmer informulating and testing properties of programs. Propertiesare described as Haskell functions, and can be automati-cally tested on random input, but it is also possible to de-�ne custom test data generators. We present a number ofcase studies, in which the tool was successfully used, andalso point out some pitfalls to avoid. Random testing is es-pecially suitable for functional programs because propertiescan be stated at a �ne grain. When a function is built fromseparately tested components, then random testing su�cesto obtain good coverage of the de�nition under test.
1. INTRODUCTIONTesting is by far the most commonly used approach toensuring software quality. It is also very labour intensive,accounting for up to 50% of the cost of software develop-ment. Despite anecdotal evidence that functional programsrequire somewhat less testing (`Once it type-checks, it usu-ally works'), in practice it is still a major part of functionalprogram development.The cost of testing motivates e�orts to automate it, whollyor partly. Automatic testing tools enable the programmerto complete testing in a shorter time, or to test more thor-oughly in the available time, and they make it easy to repeattests after each modi�cation to a program. In this paper wedescribe a tool, QuickCheck, which we have developed fortesting Haskell programs.Functional programs are well suited to automatic testing.It is generally accepted that pure functions are much easierto test than side-e�ecting ones, because one need not beconcerned with a state before and after execution. In animperative language, even if whole programs are often purefunctions from input to output, the procedures from whichthey are built are usually not. Thus relatively large unitsmust be tested at a time. In a functional language, purefunctions abound (in Haskell, only computations in the IO
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICFP ’00, Montreal, Canada.
Copyright 2000 ACM 1-58113-202-6/00/0009 ..$5.00

monad are hard to test), and so testing can be done at a�ne grain.A testing tool must be able to determine whether a testis passed or failed; the human tester must supply an auto-matically checkable criterion of doing so. We have chosento use formal speci�cations for this purpose. We have de-signed a simple domain-speci�c language of testable speci�-cations which the tester uses to de�ne expected propertiesof the functions under test. QuickCheck then checks that theproperties hold in a large number of cases. The speci�ca-tion language is embedded in Haskell using the class system.Properties are normally written in the same module as thefunctions they test, where they serve also as checkable doc-umentation of the behaviour of the code.A testing tool must also be able to generate test cases au-tomatically. We have chosen the simplest method, randomtesting [11], which competes surprisingly favourably withsystematic methods in practice. However, it is meaninglessto talk about random testing without discussing the distri-bution of test data. Random testing is most e�ective whenthe distribution of test data follows that of actual data, butwhen testing reuseable code units as opposed to whole sys-tems this is not possible, since the distribution of actualdata in all subsequent reuses is not known. A uniform dis-tribution is often used instead, but for data drawn fromin�nite sets this is not even meaningful { how would onechoose a random closed �-term with a uniform distribution,for example? We have chosen to put distribution under thehuman tester's control, by de�ning a test data generationlanguage (also embedded in Haskell), and a way to observethe distribution of test cases. By programming a suitablegenerator, the tester can not only control the distributionof test cases, but also ensure that they satisfy arbitrarilycomplex invariants.An important design goal was that QuickCheck should belightweight. Our implementation consists of a single pureHaskell'98 module of about 300 lines, which is in practicemainly used from the Hugs interpreter. We have also writ-ten a small script to invoke it, which needs to know verylittle about Haskell syntax, and consequently supports thefull language and its extensions. It is not dependent on anyparticular Haskell system. A cost that comes with this deci-sion is that we can only test properties that are expressibleand observable within Haskell.It is notoriously di�cult to say how e�ective a testingmethod is in detecting faults. However, we have used Quick-Check in a variety of applications, ranging from small exper-

iments to real systems, and we have found it to work wellin practice. We report on some of this experience in thispaper, and point out pitfalls to avoid.The rest of this paper is structured as follows. Section2 introduces the concept of writing properties and checkingthem using QuickCheck. Section 3 shows how to de�ne testdata generators for user-de�ned types. Section 4 brie
y dis-cusses the implementation. Section 5 presents a number ofcase studies that show the usefulness of the tool. Section 6concludes.
2. DEFINING PROPERTIES

2.1 A Simple ExampleAs a �rst example, we take the standard function reversewhich reverses a list. This satis�es a number of useful laws,such as reverse [x] = [x]reverse (xs++ys) = reverse ys++reverse xsreverse (reverse xs) = xsIn fact, the �rst two of these characterise reverse uniquely.Note that these laws hold only for �nite, total values. Inthis paper, unless speci�cally stated otherwise, we alwaysquantify over completely de�ned �nite values. This is tomake it more likely that the properties are computable.In order to check these laws using QuickCheck, we repre-sent them as Haskell functions. Thus we de�neprop_RevUnit x =reverse [x] == [x]prop_RevApp xs ys =reverse (xs++ys) == reverse ys++reverse xsprop_RevRev xs =reverse (reverse xs) == xsNow, if these functions return True for every possible argu-ment, then the properties hold. We load them into the Hugsinteractive Haskell interpreter [14], and call for exampleMain> quickCheck prop_RevAppOK: passed 100 tests.The function quickCheck takes a law as a parameter and ap-plies it to a large number of randomly generated arguments| in fact 1001 | reporting \OK" if the result is True inevery case.If the law fails, then quickCheck reports the counter-example. For example, if we mistakenly de�neprop_RevApp xs ys =reverse (xs++ys) == reverse xs++reverse ysthen checking the law might produceMain> quickCheck prop_RevAppFalsifiable, after 1 tests:[2][-2,1]where the counter model can be extracted by taking [2] forxs, and [-2,1] for ys.1100 is a rather arbitrary number, so our library provides away to specify this as a parameter.

In fact the programmer must provide a little more infor-mation: the function quickCheck is actually overloaded, inorder to be able handle laws with a varying number of vari-ables, and the overloading cannot be resolved if the law itselfhas a polymorphic type, as in these examples. Thus the pro-grammer must specify a �xed type at which the law is to betested. So we simply give a type signature for each law, forexampleprop_RevApp :: [Int] -> [Int] -> BoolOf course, the property prop_RevApp holds polymorphically,but we must specify which monomorphic instance to testit at, so that we can generate test cases. This turns outto be quite important in the case of overloaded functions.For example, + is associative for the type Int, but not forDouble! In some cases, we can use parametricity [17] toargue that a property holds polymorphically.
2.2 FunctionsWe are also able to formulate properties that quantify overfunctions. To check for example that function compositionis associative, we �rst de�ne extensional equality (===) by(f === g) x = f x == g x, and then write:prop_CompAssoc :: (Int -> Int) -> (Int -> Int)-> (Int -> Int) -> Int -> Boolprop_CompAssoc f g h =f . (g . h) === (f . g) . hThe only di�culty that function types cause is that, if acounter-example is found (for example if we try to checkthat function composition is commutative), then the func-tion values are printed just as \<<function>>". In this casewe discover that the `law' we are checking is false, but notwhy.
2.3 Conditional LawsLaws which are simple equations are conveniently repre-sented by boolean function as we have seen, but in generalmany laws hold only under certain conditions. QuickCheckprovides an implication combinator to represent such condi-tional laws. For example, the lawx <= y =) max x y == ycan be represented by the de�nitionprop_MaxLe :: Int -> Int -> Propertyprop_MaxLe x y = x <= y ==> max x y == yLikewise, the insertion function into ordered lists satis�esthe lawprop_Insert :: Int -> [Int] -> Propertyprop_Insert x xs =ordered xs ==> ordered (insert x xs)Note that the result type of the property is changed fromBool to Property. This is because the testing semanticsis di�erent for conditional laws. Instead of checking theproperty for 100 random test cases, we try checking it for100 test cases satisfying the condition. If a candidate testcase does not satify the condition, it is discarded, and a newtest case is tried.Checking the laws prop_MaxLe and prop_Insert succeedas usual, but sometimes, checking a conditional law producesthe output

Arguments exhausted after 64 tests.If the precondition of a law is seldom satis�ed, then we mightgenerate many test cases without �nding any where it holds.In such cases it is hopeless to search for 100 cases in whichthe precondition holds. Rather than allow test case gener-ation to run forever, we generate only a limited number ofcandidate test cases (the default is 1000). If we do not �nd100 valid test cases among those candidates, then we sim-ply report the number of successful tests we were able toperform.In the example, we know that the law passed the test in 64cases. It is then up to the programmer to decide whether thisis enough, or whether it should be tested more thoroughly.
2.4 Monitoring Test DataPerhaps it seems that we have tested the law for insertthoroughly enough to establish its credibility. However, wemust be careful. Let us modify prop_Insert as follows2prop_Insert :: Int -> [Int] -> Propertyprop_Insert x xs =ordered xs ==>classify (null xs) "trivial" $ordered (insert x xs)Checking the law now produces the messageOK, passed 100 tests (43% trivial).The classify combinator does not change the meaning of alaw, but it classi�es some of the test cases, in this case thosewhere xs is the empty list were classi�ed as \trivial". Thuswe see that a large proportion of the test cases only testedinsertion into an empty list.We can get more information than just labelling some testcases. The combinator collect will gather all values thatare passed to it, and print out a histogram of these values.For example, if we write:prop_Insert :: Int -> [Int] -> Propertyprop_Insert x xs =ordered xs ==>collect (length xs) $ordered (insert x xs)we might get as a result:OK, passed 100 tests.49% 0.32% 1.12% 2.4% 3.2% 4.1% 5.So we see that only 19 cases tested insertion into a list withmore than one element. While this is enough to providefairly strong evidence that the law holds, it is worrying thatvery short lists dominate the test cases so strongly. Afterall, it is easy to de�ne an erroneous version of insert whichnevertheless works for lists with at most one element.The reason for this behaviour, of course, is that the pre-condition ordered xs skews the distribution of test casestowards short lists. Every generated list of length 0 or 1is ordered, but only 50% of the lists of length 2 are. Thustest cases with longer lists are more likely to be rejected by2$ is Haskell's in�x function application.

the precondition. There is a risk of this kind of problem ev-ery time we use conditional laws, so it is always importantto investigate the proportion of trivial cases among thoseactually tested.The best solution, though, is to replace the condition witha custom test data generator for ordered lists. We writeprop_Insert :: Int -> Propertyprop_Insert x =forAll orderedList $ \xs ->ordered (insert x xs)which speci�es that values for xs should be generated bythe test data generator orderedList. Checking the law nowgives \OK: passed 100 tests", as we would expect.QuickCheck provides support for the programmer to de�nehis or her own test data generators, with control over thedistribution of test data, which we will look at in the nextsection.
2.5 Infinite StructuresThe Haskell function cycle takes a non-empty list, andreturns a list that repeats the contents of that list in�nitely.Now, take a look at the following law, formulated in Quick-Check as3:prop_DoubleCycle :: [Int] -> Propertyprop_DoubleCycle xs =not (null xs) ==>cycle xs == cycle (xs ++ xs)Although intuitively the law is true, it cannot be checkedsince we are comparing two in�nite lists using computableequality ==, which does not terminate. Instead, we can refor-mulate the property as a logically equivalent one, by usingthe fact that two in�nite lists are equal if all �nite initialsegments are equal.prop_DoubleCycle :: [Int] -> Int -> Propertyprop_DoubleCycle xs n =not (null xs) && n >= 0 ==>take n (cycle xs) == take n (cycle (xs ++ xs))Another issue related to in�nite structures is quanti�cationover them. We will later see how to deal with propertiesthat for example hold for all in�nite lists, but in general itis not clear how to formulate and execute properties aboutstructures containing bottom.
3. DEFINING GENERATORS

3.1 ArbitraryThe way we generate random test data of course dependson the type. Therefore, we have introduced a type classArbitrary, of which a type is an instance if we can generatearbitrary elements in it.class Arbitrary a wherearbitrary :: Gen aGen a is an abstract type representing a generator for typea. The programmer can either use the generators built into QuickCheck as instances of this class, or supply a customgenerator using the forAll combinator, which we saw in theprevious section. For now, we de�ne the type Gen as3Note that leaving the condition not (null xs) out resultsin an error, because cycle is not de�ned for empty lists.

newtype Gen a = Gen (Rand -> a)Here Rand is a random number seed; a generator is just afunction which can manufacture an a in a pseudo randomway. But we will treat Gen as an abstract type, so we de�nea primitive generatorchoose :: (Int, Int) -> Gen Intto choose a random number in an interval, and we programother generators in terms of it.We also need combinators to build complex generatorsfrom simpler ones; to do so, we declare Gen to be an instanceof Haskell's class Monad. This involves implementing themethods of the Monad classreturn :: a -> Gen a(>>=) :: Gen a -> (a -> Gen b) -> Gen bthe �rst one of which contructs a constant generator, andthe second one being the monadic sequencing operator whichgenerates an a, and passes it to its second argument to gen-erate a b. The de�nition of (>>=) needs to pass indepen-dent random number seeds to its two arguments, and is onlypassed one seed, but luckily the Haskell random number li-brary provides an operation to split one seed into two.De�ning generators for many types is now straightfor-ward. As examples, we give generators for integers andpairs:instance Arbitrary Int wherearbitrary = choose (-20, 20)instance (Arbitrary a, Arbitrary b) =>Arbitrary (a,b) wherearbitrary = liftM2 (,) arbitrary arbitraryIn the second case we use a standard monadic function,liftM2, which is de�ned in terms of return and (>>=), tomake a generator that applies the pairing operator (,) tothe results of two other generators. QuickCheck containssuch declarations for most of Haskell's prede�ned types.
3.2 Generators for User-Defined TypesSince we de�ne test data generation via an instance ofclass Arbitrary for each type, then we must rely on the userto provide instances for user-de�ned types. In principle wecould try to generate these automatically, in a pre-processoror via polytypic programming [2], but we have chosen in-stead to leave this task to the user. This is partly becausewe want QuickCheck to be a lightweight tool, easy to imple-ment and easy to use in a standard programming environ-ment; we don't want to oblige users to run their programsthrough a pre-processor between editing them and testingthem. But another strong reason is that it seems to be veryhard to construct a generator for a type, without knowingsomething about the desired distribution of test cases.Instead of producing generators automatically, we pro-vide combinators to enable a programmer to de�ne his owngenerators easily. The simplest, called oneof, just makes achoice among a list of alternative generators with a uniformdistribution. for example, if the type Colour is de�ned bydata Colour = Red | Blue | Greenthen a suitable generator can be de�ned byinstance Arbitrary Colour wherearbitrary = oneof[return Red, return Blue, return Green]

As another example, we could generate arbitrary lists usinginstance Arbitrary a => Arbitrary [a] wherearbitrary = oneof[return [], liftM2 (:) arbitrary arbitrary]where we use liftM2 to apply the cons operator (:) to anarbitrary head and tail. However, this de�nition is not reallysatisfactory, since it produces lists with an average lengthof one element. We can adjust the average length of listproduced by using frequency instead, which allows us tospecify the frequency with which each alternative is chosen.We de�neinstance Arbitrary a => Arbitrary [a] wherearbitrary = frequency[(1, return []), (4, liftM2 (:) arbitrary arbitrary)]to choose the cons case four times as often as the nil case,leading to an average list length of four elements.However, for more general data types, it turns out thatwe need even �ner control over the distribution of generatedvalues. Suppose we de�ne a type of binary trees, and agenerator:data Tree a = Leaf a | Branch (Tree a) (Tree a)instance Arbitrary a => Arbitrary (Tree a) wherearbitrary = frequency[(1, liftM Leaf arbitrary), (2, liftM2 Branch arbitrary arbitrary)]We want to avoid choosing a Leaf too often, hence the useof frequency.However, this de�nition only has a 50% chance of termi-nating! The reason is that for the generation of a Branch toterminate, two recursive generations must terminate. If the�rst few recursions choose Branches, then generation termi-nates only if very many recursive generations all terminate,and the chance of this is small. Even when generation ter-minates, the generated test data is sometimes very large.We want to avoid this: since we perform a large number oftests, we want each test to be small and quick.Our solution is to limit the size of generated test data.But the notion of a size is hard even to de�ne in general foran arbitrary recursive datatype (which may include func-tion types anywhere). We therefore give the responsibilityfor limiting sizes to the programmer de�ning the test datagenerator. We change the representation of generators tonewtype Gen a = Gen (Int -> Rand -> a)where the new parameter is to be interpreted as some kindof size bound. We de�ne a new combinatorsized :: (Int -> Gen a) -> Gen awhich the programmer can use to access the size bound:sized generates an a by passing the current size bound toits parameter. It is then up to the programmer to inter-pret the size bound in some reasonable way during test datageneration. For example, we might generate binary treesusinginstance Arbitrary a => Arbitrary (Tree a) wherearbitrary = sized arbTreearbTree 0 = liftM Leaf arbitrary

arbTree n = frequency[(1, liftM Leaf arbitrary), (4, liftM2 Branch (arbTree (n `div` 2))(arbtree (n `div` 2)))]With this de�nition, the size bound limits the number ofnodes in the generated trees, which is quite reasonable.Now that we have introduced the notion of a size bound,we can use it sensibly in the generators for other types suchas integers and lists (so that the absolute value respectivelength is bounded by the size). So the de�nitions we pre-sented earlier need to be modi�ed accordingly.We stress that the size bound is simply an extra, globalparameter which every test data generator may access; ev-ery use of sized sees the same bound4. We do not attemptto `divide the size bound among the generators', so that forexample a longer generated list would have smaller elements,keeping the overall size of the structure the same. The rea-son is that we wish to avoid correlations between the sizesof di�erent parts of the test data, which might distort thetest results.We do vary the size between di�erent test cases: we begintesting each property on small test cases, and then grad-ually increase the size bound as testing progresses. Thismakes for a greater variety of test cases, which both makestesting more e�ective, and improves our chances of �ndingenough test cases satisfying the precondition of conditionalproperties. It also makes it more likely that we will �nd asmall counter example to a property, if there is one.
3.3 Generating FunctionsIf we are to check properties involving function valuedvariables, then we must be able to generate arbitrary func-tions. Rather surprisingly, we are able to do so. To un-derstand how, notice that a function generator of type Gen(a->b) is represented by a function of type Int -> Rand ->a -> b. By reordering parameters, this is equivalent to thetype a -> Int -> Rand -> b, which represents a -> Gen b.We can thus de�nepromote :: (a -> Gen b) -> Gen (a->b)and use it to produce a generator for a function type, pro-vided we can construct a generator for the result type whichsomehow depends on the argument value. We take care ofthis dependence by de�ning a new class,class Coarbitrary a wherecoarbitrary :: a -> Gen b -> Gen bwhose method coarbitrary modi�es a generator in a waydepending on its �rst parameter. We will think of coarbitraryas producing a generator transformer from its �rst argu-ment. Given this class, we can de�neinstance (Coarbitrary a, Arbitrary b) =>Arbitrary (a->b) wherearbitrary =promote (\a -> coarbitrary a arbitrary)which generates an arbitary function that uses its argumentto modify the generation of its result.In order to de�ne instances of Coarbitrary we need a wayto construct generator transformers. We therefore de�ne thefunction4Unless the programmer explicitly changes it using theresize combinator.

variant :: Int -> Gen a -> Gen awhere variant n g constructs a generator which transformsthe random number seed it is passed in a way depending onn, before passing it to g. This function must be de�ned verycarefully, so that all the generators we construct using it areindependent. Given any list of integers [n1,n2,...nk], wecan construct a generator transformervariant n1 . variant n2 variant nkWe de�ne variant so that di�erent lists of integers giverise to independent generator transformers (with a very highprobability).Now we can de�ne instances of coarbitrary that choosebetween generator transformers depending on the argumentvalue. For example, the boolean instanceinstance Coarbitrary Bool wherecoarbitrary b =if b then variant 0 else variant 1transforms a generator in independent ways for True and forFalse; the generators coarbitrary True g and coarbitraryFalse g will be independent. In a similar way, we can de-�ne suitable instances for many other types. For example,the integer instance just converts its integer argument intoa sequence of bits, which are then used as generator trans-formers in turn.Instances of Coarbitrary for recursive datatypes can bede�ned according to a standard pattern. For example, thelist instance is justinstance Coarbitrary a => Coarbitrary [a] wherecoarbitrary [] = variant 0coarbitrary (x:xs) =variant 1 . coarbitrary x . coarbitrary xsThe goal is that di�erent lists should be mapped to inde-pendent generator transformers; we achieve this by map-ping each constructor to an independent transformer, andcomposing these with transformers derived from each com-ponent. Other recursive datatypes can be treated in thesame way. Since the programmer is responsible for makingthese de�nitions for user-de�ned types, it is important thatthey be straightforward.Finally, we can even interpret functions as generator trans-formers, with an instance of the forminstance (Arbitrary a, Coarbitrary b) =>Coarbitrary (a->b) wherecoarbitrary f gen =arbitrary >>= \a -> coarbitrary (f a) genThe idea is that we apply the given function to an arbitraryargument, and use the result to transform the given gener-ator. In this way, two functions which are di�erent will giverise to di�erent generator transformers.Note that, if we had tried to avoid needing to split randomnumber seeds by de�ning the Gen monad as a state trans-former on the random seed, rather than a state reader, thenwe would not have been able to de�ne the promote func-tion, and we would not have been able to generate randomfunctions.
4. IMPLEMENTING QUICKCHECKAs we have seen, the function quickCheck can handleproperties with a varying number of arguments and di�er-ent result types. To implement this, we introduce the typeProperty, and we create the type class Testable.

class Testable a whereproperty :: a -> PropertyThe Property type represents predicates that can be checkedby testing. This means that it needs to be able to gener-ate random input, and �nally product a test result. So, aProperty is a computation in the Gen monad, ending in anabstract type Result, which keeps track of the boolean re-sult of the testing, the classi�cations of test data, and thearguments used in the test case.newtype Property = Prop (Gen Result)Let us take a look at some instances of Testable. An easytype to check is of course Bool. Further, functions for whichwe can generate arbitrary arguments can be tested. Andlastly, even the property type itself is an instance, so thatwe can nest property combinators.instance Testable Bool whereproperty b = Prop (return (resultBool b))instance (Arbitrary a, Show a, Testable b) =>Testable (a->b) whereproperty f = forAll arbitrary finstance Testable Property whereproperty p = pUsing the function property, it becomes easy to de�ne thefunction quickCheck. Its type is:quickCheck :: Testable a => a -> IO ()More details of the implementation can be found in the ap-pendix.
5. SOME CASE STUDIES

5.1 UnificationAs a �rst (and rather pathological) case study, we dis-cuss a un�cation algorithm which we have developed alongwith a QuickCheck speci�cation. This was quite revealing,both as regards the impact that QuickCheck has on program-ming, and the pitfalls that must be avoided. It is too largeto present in detail, so we will just discuss the lessons welearned.
5.1.1 Impact on Type DefinitionsFirst of all, the use of QuickCheck had an impact on thedesign of the types in the program. We de�ned the type ofterms to be uni�ed asdata Term = Var Var | Constr Name [Term]newtype Var = Variable Natnewtype Name = Name Stringrather than the equivalentdata Term = Var Int | Constr String [Term]which we would probably have chosen otherwise. The typewe used distinguishes between a string used as a constructorname, and a string used in other contexts, and between anatural number used as a variable name, and an integer usedin other contexts.The reason we chose to make these distinctions in thetype is that it enabled us to de�ne a di�erent test datagenerator for Names for example, than for strings. Had we

generated terms using the default test data generator forstrings, then it is very unlikely that we would ever generateuni�able terms, since it is unlikely we would generate thesame constructor name twice. Instead, we chose to generateconstructor names usinginstance Arbitrary Name wherearbitrary = sized $ \n -> oneof[return (Name ("v" ++ show i))| i <- [1..log n+1]]which gives us a good chance that generated terms will beat least partially uni�able. Likewise, we limited uni�cationvariables in test data to a small set.Of course, we could have used the second Term type aboveand speci�ed a custom test data generator with an explicitforAll in each property. But it is more convenient to let testdata be automatically generated using arbitrary, so one isencouraged to make distinctions explicit in types. Thereare other advantages to doing so also: it permits the typechecker to detect more errors. So, using QuickCheck changesthe balance of convenience in the question of introducingnew types in programs.
5.1.2 Checking Functional PropertiesA uni�er needs to manage the current substitution, andalso the possibility of failures in recursive calls. A convenientway to do so is to use a monad. We de�ned a uni�cationmonad M, represented by a function, with operationssetV :: Var -> Term -> M ()getV :: Var -> M Termto read and write variables, among others. We were ableto de�ne an `extensional equality' operator eqM on monadicvalues, and check both the monad laws and properties suchasprop_SetGet v t = (do setV v t; getV v)`eqM` (do setV v t; return t)
5.1.3 Errors FoundIt would be nice to be able to report that QuickCheckfound a large number of errors in this example. In fact, noerrors at all were found in the uni�er itself. This is probablymore a re
ection on the number of times the authors haveprogrammed uni�ers previously, than on the e�ectiveness ofQuickCheck | we know how to do it, quite simply.On the other hand, we did �nd errors in the speci�cation.For example, we de�ned a substitution function which re-peatedly substitutes until no variables in the domain of thesubstitution remain, and stated the obvious propertyprop_SubstIdempotent s t =subst s (subst s t) == subst s tQuickCheck revealed this property to be false: it holds onlyfor acyclic substitutions (otherwise an in�nite term is gen-erated, and the equality test loops). This error was foundusing the function verboseCheck, which prints out the ar-guments to every test case before it checks it.We were obliged to correct the speci�cation toprop_SubstIdempotent s t =acyclic s ==> subst s (subst s t) == subst s tThus QuickCheckmade us think harder about the propertiesof our code, and document them correctly.

On the downside, formulating the speci�cation correctlyturned out to be quite a lot of work, perhaps more thanwriting the implementation. This was partly because pred-icates such as acyclic are non-trivial to de�ne; a good settheory library would have helped here.
5.1.4 A False Sense of SecurityThe most serious pitfall we uncovered with this experi-ment was the false sense of security that can be engenderedwhen one's program passes a large number of tests in trivialcases. We have already referred to this problem when wediscussed conditional properties; in this example, it bit ushard.Many properties of uni�cation apply to the case whenuni�cation succeeds. They can be stated conveniently inthe formprop_Unify t1 t2 = s /= Nothing ==> : : :where s = unifier t1 t2since our uni�er returns Nothing when it fails. With a lit-tle re
ection, we see that two randomly chosen terms arefairly likely to be uni�able, since variables occur quite often,and if either term is a variable then uni�cation will almostcertainly succeed. On the other hand, if neither term is avariable then the probability that they will unify is small.Thus the case where one term is a variable is heavily over-represented among the test cases that satisfy the precondi-tion | we found that over 95% of test cases had this prop-erty. Although QuickCheck succeeded in `verifying' everyproperty, we can hardly consider that they were thoroughlytested.The solution was to use a custom test data generatorprop_Unify =forAll probablyUnifiablePair $ \(t1,t2) ->s /= Nothing ==> : : :where s = unifier t1 t2We generated `probably uni�able pairs' by generating onerandom term, and replacing random subterms by variablesin two di�erent ways. This usually generates uni�able terms,although may fail to when variables are used inconsistentlyin the two terms. With this modi�cation, the proportion oftrivial cases fell to a reasonable 20{25%.This experience underlines the importance of investigatingthe distribution of actual test cases, whenever conditionalproperties are used.
5.2 Circuit Properties

5.2.1 Lava in a NutshellLava [3, 7] is a tool to describe, simulate and formally ver-ify hardware. Lava is a so-called embedded language, whichmeans that the circuit descriptions and properties are allexpressed in an existing programming language, in this caseHaskell.The idea is to view a hardware circuit as a function fromsignals of inputs to signals of outputs. The Lava systemprovides primitive circuits, such as and2, xor2, and delay.More complicated circuits are de�ned by combining these.Circuits de�ned in Lava can be simulated as follows: oneprovides inputs and the outputs are calculated.Main> simulate and2 (high, low)high

Furthermore, the Lava system de�nes combinators for cir-cuits, such as sequential composition (>->), parallel com-position (<|>), and column, which takes one circuit andreplicates it in a column of circuits, connecting the verticalwires.
5.2.2 Properties in LavaProperties of circuits can be de�ned in a similar way. Forexample, to de�ne the property that a certain circuit is com-mutative, we say:prop_Commutative circ (a, b) =circ (a, b) <==> circ (b, a)where <==> is logical equivalence lifted to arbitrary typescontaining signals, in this case a pair.Properties can be formally veri�ed. We do this by provid-ing symbolic inputs to the circuit or property, and calculat-ing a concrete expression in a Haskell datatype, representingthe circuit.We can then write this expression to a �le and call anexternal theorem prover. All this is done by the overloadedLava function verify. Here is how we can use it to verifythat a so-called half adder component is commutative:Main> verify (prop_Commutative halfAdd)Proving: ... Valid.The Lava system provides a number of functions and combi-nators to conveniently express properties and formally verifythem.
5.2.3 QuickCheck in LavaThough we are able to verify properties about circuits inLava, we greatly bene�t from extending it with a testingtool like QuickCheck. There are two main reasons for that.The �rst one is that calling an external theorem proveris a very heavyweight process. When verifying, say, a 32-bit multiplier, the formulas that we generate for externaltheorem proving are quite big and we often have to wait fora long time to get an answer.So, a typical development cycle is to write down the spec-i�cation of the circuit �rst, then make an implementation,QuickCheck it for obvious bugs, and lastly, call the externaltheorem prover for verifying the correctness.Here is an example of how to use QuickCheck in Lava:Main> quickCheck (prop_Commutative halfAdd)OK: passed 100 tests.Adding this testing methodology to Lava turned out to bequite straightforward, because Lava already had a notion ofproperties. Testing can be done for all circuit types, evensequential circuits (containing latches). We simply check thecircuit property for a sequence of inputs.
5.2.4 Higher Order TestingThe second reason for using testing in Lava is simply thatwe can test more properties than we can formally verify!The external theorem provers that are connected to Lavacan only deal with at most �rst-order logics, and the Lavasystem is only able to generate formulas of that type.Sometimes, we would like to verify properties about com-binators. For example, proving that column distributes over(>->):prop_ComposeSeqColumn circ1 circ2 inp =column (circ1 >-> circ2) inp<==> (column circ1 >-> column circ2) inp

is very hard to verify in Lava for all circ1 and circ2. Infact, such properties are hard to verify automatically in gen-eral (we can do it for small �xed sizes however). But sincewe can randomly generate functions, we can at least testthese kind of properties for arbitrary circuits.A drawback is that we have to �x the types of these cir-cuits, whereas the combinators themselves, and thus theproperties about them, are polymorphic in the circuits' in-put and output types.
5.2.5 Errors FoundThe authors used the QuickCheck library while developinga collection of arithmetic circuits. Previously, testing wasalready used in the development process, but only in a verylimited and ad-hoc way. Now, much more thorough testingwas possible.The errors we found in these particular circuits were oftwo kinds. Firstly, we found errors that our formal veri�ca-tion method would have found as well: logical errors in thecircuits. But secondly, we also found errors due to the factthat random input also means random input size. For ex-ample, for an n-bit � m-bit adder, we only use and formallyverify the circuit for speci�c input sizes. Random testingchecks many more combinations, and it often turned outthat we had forgotten to de�ne one of these cases!
5.3 Propositional Theorem ProvingFor teaching purposes, we implemented two di�erent well-known methods of checking if a set of propositional logicclauses is contradictory. One of these methods was theDavis-Putnam method [8], which uses backtracking to gen-erate a list of all models. The other one was St�almarck'smethod [16], which is an incomplete method and uses avariant on the dilemma proof system to gather informationabout the literals in the clause set.type Clause = [Lit] -- disjunctiontype Model = [Lit] -- conjunctiondavisPutnam :: [Clause] -> [Model]st�almarck :: Int -> [Clause] -> Maybe ModelThe st�almarck function takes an extra argument, an Int,which is the so-called \saturation level", a parameter whichlimits the depth of the proofs, and usually lies between 0 and3. If the result of st�almarck is Nothing, it means that therewas a contradiction. If the result is Just m, it means thatevery model of the clause set should have m as a sub-model.Since davisPutnam is much more straight-forward to im-plement than st�almarck, we wanted to check the latteragainst the �rst. Here is how we formulate the informalproperty stated above:prop_St�almarck_vs_DP :: Propertyprop_St�almarck_vs_DP =forAll clauses $ \cs ->forAll (choose (0,3)) $ \sat ->case st�almarck sat cs ofNothing ->collect "contradiction" $davisPutnam cs == []Just m ->not (null m) ==>collect (length m) $all (m `subModel`) (davisPutnam cs)

Note that we collect some statistics information: \contra-diction" when the result was Nothing, and the size of m inthe case of Just m. We also expressed that we disqualify atest case when st�almarck returns Just [].With the help of this property, QuickCheck found 3 bugs!These bugs were due to implicit unjusti�ed assumptions wehad about the input. The implementations of both algo-rithms assumed that no clauses in the input could containthe same literal twice, and the st�almarck function assumedthat none of the input clauses was empty.The data generator clauses is de�ned using the sametechniques as in section 5.1.1. Testing the property tookabout 30 seconds, and from the output we could see thatthe distribution of Nothing vs. Just m was about 50/50.
5.4 Pretty PrintingAndy Gill reported an interesting story about using Quick-Check to us. He used it in developing a variant of Wadler'spretty printing combinator library [18] in Java. First, heimplemented his variant functionally, using Haskell. Then,still using Haskell, he used a state monad with exceptions todevelop an imperative implementation of the same library.The idea was that the second implementation models whatgoes on in a Java implementation.Then, he expressed the relationship between the two dif-ferent implementations using QuickCheck properties. Hewrites: \This quickly points out where my reasoning is faulty,and provides great tests to catch the corners of the implemen-tation. Three problems were found, the third of which showedthat I had merged two concepts in my implementation thatI should not have."Furthermore, he made an improvement in the way Quick-Check reports counter examples. Sometimes, the counterexamples found are very large, and it is di�cult to go backto the property and understand why it is a counter example.However, when the counter example is an element of a tree-shaped datatype, the problem can often be located in one ofthe sub-trees of the counter example found. Gill extendedthe Arbitrary class with a new methodsmaller :: a -> [a]which is intended to return a list of smaller, but similarvalues to its argument { for example, direct subtrees. Headapted the quickCheck function so that when a counterexample is found, it tries to �nd a smaller one using thisfunction. In some cases much smaller counterexamples werefound, greatly reducing the time to understand the bugfound.The last step Gill made in developing his Java prettyprinting library was porting the state and exception monadmodel in Haskell to Java. He then used QuickCheck to gen-erate a large number of test inputs for the Java code, inorder to check that the Java implementation was equivalentto the two Haskell models.
5.5 EdisonChris Okasaki's Edison is a library of e�cient data struc-tures suitable for implementation and use in functional pro-gramming languages. He has used QuickCheck to state andtest properties of the library. Every data structure in thelibrary has been made an instance of Arbitrary, and hehas included several extra modules especially for formulatingproperties about these data structures. He reports: \My ex-perience has mostly been that of a very satis�ed user. Quick-

Check lets me test Edison with probably 25% (maybe less!)of the e�ort of my previous test suite, and does a much betterjob to boot."Okasaki also mentions a drawback, having to do with theHaskell module system. He often uses one speci�cation ofa data structure together with di�erent implementations.A natural way to do this is to place the speci�cation in onemodule, and each implementation in a seperate module. Butsince the speci�cation refers to the implementation, then thespeci�cation module must import the implementation onecurrently under test. Okasaki was obliged to edit the spec-i�cation module by hand before each test, so as to importthe right implementation! Much preferable would be to pa-rameterise the speci�cation on an implementation module;ML-style functors would be really helpful here!
6. DISCUSSION

6.1 On Random TestingAt �rst sight, random selection of test cases may seema very naive approach. Systematic methods are often pre-ferred: in general, a test adequacy criterion is de�ned, andtesting proceeds by generating test cases which meet theadequacy criterion. For example, a simple criterion is thatevery reachable statement should be executed in at leastone test, a more complex one that every feasible control-
ow path (with exceptions for loops) be followed in at leastone test. A wide variety of adequacy critera have been pro-posed; a recent survey is [19].We have chosen not to base QuickCheck on such an ade-quacy criterion. In part, this is because many criteria wouldneed reinterpretation before they could be applied to Haskellprograms { it is much less clear, for example, what a control-
ow path is in a language with higher-order functions andlazy evaluation. In part, such a criterion would force us touse much more heavyweight methods { even measuring pathcoverage, for example, would require compiler modi�cationsand thus tie QuickCheck to a particular implementation ofHaskell (namely the one we modi�ed to collect path infor-mation). Generating test data to exercise a particular pathrequires constraint solving: one must �nd input values whichmake the series of tests along the given path produce spec-i�ed results. While such constraint solving may be feasiblefor arithmetic data, for the rich symbolic datatypes foundin Haskell programs it is a di�cult research problem in itsown right.However, apart from the di�culty of automating system-atic testing methods for Haskell, there is no clear reason tobelieve that doing so would yield better results. In 1984,Duran and Ntafos compared the fault detection probabilityof random testing with partition testing, and discovered thatthe di�erences in e�ectiveness were small [9]. Hamlet andTaylor repeated their study more extensively, and corrobo-rated the original results [12]. Although partition testing isslightly more e�ective at exposing faults, to quote Hamlet'sexcellent survey [11], \By taking 20% more points in a ran-dom test, any advantage a partition test might have had iswiped out."For small programs in particular, it is likely that randomtest cases will indeed exercise all paths, for example, so thattest coverage is likely to be good by any measure. UsingQuickCheck, we apply random testing at a �ne grain: wecheck properties of individual functions, but the functions

they call are tested independently. So even when QuickCheckis used to test a large program, we always test a small partat a time. Therefore we may expect random testing to workparticularly well.Given this, together with the much greater di�culty ofautomating systematic testing for Haskell, our choice of ran-dom testing is clear.
6.2 Correctness CriteriaThe problem of determining whether a test is passed ornot is known as the oracle problem. One solution is to com-pare program output with that of another version of the pro-gram, perhaps an older one, or perhaps a simpler, slower,but `obviously correct' version. Alternatively, an executablespeci�cation might play the same rôle. This kind of oraclecan easily be expressed as a QuickCheck property, althoughour properties are much more general.However, often one can check that a program's output iscorrect much more e�ciently than one can compute the out-put. Blum and Kannan exploit this in their work on result-checking [4]: a program checker is de�ned to be anotherprogram which classi�es the program's output as correct orbuggy, with a high probability of classifying correctly, anddoes so with strictly lower complexity. They distinguish pro-gram checking from program testing: their proposal is thatprograms should always check their output, and indeed infurther work Blum et al. showed how programs which usu-ally produce correct answers can even correct wrong output[5] (in particular domains). Of course, result checkers canalso be expressed as QuickCheck properties, although we usethem for testing rather than as a part of the �nal program.QuickCheck's property language is however more generalthan result checking. Via conditional properties or speci�ctest data generators, we can express properties which holdonly for a subset of all possible inputs. Thus we avoid testingfunctions in cases which lead to run-time errors, or cases inwhich we do not care about the result. For example, we donot test insertion into an unordered list | there is no pointin doing so. Yet a result checker must verify that a programproduces the `correct' output in all cases, even those whichare uninteresting. Moreover, QuickCheck properties are notlimited to checking the result of an individual function call| the property that an operator is associative, for example,cannot really be said to check the result of any individual useof the operator, but still expresses a useful `global' propertythat can be checked by testing.The idea of testing the properties in a speci�cation di-rectly was used in the DAISTS system [10] for testing ab-stract data types, which compiled equational properties intotesting code, although test cases had to be supplied by theuser. Lacking automatic test case generation, DAISTS didnot need equivalents of our conditional and quanti�ed prop-erties. Although the language used was imperative, abstractdata type operations had to be forbidden to side-e�ect theirarguments, thus the programs to be tested were essentiallyrestricted to be functional. Later work aims to relax thisrestriction: Antoy and Hamlet describe a technique for test-ing C++ classes against an algebraic speci�cation, which isanimated in order to predict the correct result [1]. How-ever, the speci�cation language must be restricted in orderto guarantee that speci�cations can be animated.There seems to be no published work on automatic test-ing of functional programs against speci�cations. We simply

observe that functional programs and property based speci-�cations are a very good match: we can use the given prop-erties directly for testing. Moreover, embedding the speci�-cation language in Haskell permits us to write very powerfuland
exible properties, with a minimum of learning e�ortrequired.
6.3 Test Data GenerationCommercial random testing tools generate test data inlimited domains, with the goal of matching the distributionof actual data for the system under test { the so-called oper-ational pro�le. In this case, statistical inferences about themean time between system failures can be drawn from thetest results.In order to generate more complex data, it is necessaryto provide a description of the data's structure. A popu-lar approach to doing so uses grammars. However, it wasrealised very early that context-free grammars cannot ex-press all the desired properties of test data { for example,that a generated random program contains no undeclaredidenti�ers. Therefore the grammars were enhanced with ac-tions [6], or extended to attribute grammars. This approachhas been most used for testing compilers, although Maurerargues for its use in many contexts [15].Grammars have been used for systematic testing, wherefor example the generated test data is required to exerciseeach production at least once. Such an adequacy crite-rion maybe be particularly appropriate for compiler test-ing. Maurer also used grammars for random testing [15],and noted the termination problem for recursive grammars.His solution, though, was just to increase the probabilities ofgenerating leaves so that eventual termination is guaranteed.Our experience is that this results in far too high a propor-tion of trivial test cases, and therefore ine�cient testing {more tests must be run to exercise the program properly.We believe our method of controlling sizes is much superior.It seems that the need to learn a complex language of ex-tended grammars has hindered the adoption of these meth-ods in practice. By embedding a test generator languagein Haskell, we provide (at least) the same capabilities, butspare the programmer the need to learn more than a few newoperators. At the same time we provide all the power and
exibility needed to generate test data satisfying complex in-variants, in a language the programmer already knows. Bylinking generators to types via Haskell's class system, we re-lieve the programmer of the need to specify generators at allin many cases, and where they must be speci�ed, the pro-grammer's work is usually limited to specifying generatorsfor his or her own new types.
6.4 On RandomnessWe have encountered some interesting problems in reason-ing about programs which use random number generation.In particular, the Gen monad which QuickCheck is based onis not a monad at all! Consider the �rst monad law:return x >>= f = f xSince our implementation of bind splits its random numberseed to yield the seeds passed to each operand, then f ispassed di�erent seeds on the two sides of the equation, andmay therefore produce di�erent results. So the law simplydoes not hold. Morally, however, we consider the law to betrue, because the two sides produce the same distribution ofresults, even if the results di�er for any particular seed.

But what, precisely, do we mean by `morally'? We cannot�x the problem just by reinterpreting equality for the Gentype, claiming the two sides are just di�erent representationsof the same abstract generator. This isn't good enough,because we can actually observe the di�erence at other typesby supplying a random number seed - something we have tobe able to do if the Gen type is to be useful. Instead we haveto reinterpret what we mean by program equivalence in thepresence of random number generation.We note that this di�culty is by no means con�ned toHaskell: the imperative programa := random(); b := random(); c := a - b;is morally equivalent to the same program with the assign-ments reversed in the same sense, but of course produces adi�erent result. There is some interesting semantic theoryto be done here.
6.5 On Lazy EvaluationWe have argued in the past that lazy evaluation is an in-valuable programming tool, that radically changes the wayprograms can be structured [13]. Yet QuickCheck is (ofcourse) only able to test computable properties. Is therea con
ict here?In fact, the con
ict is much less than one might imag-ine. As we have shown above, we can perfectly well usein�nite structures in speci�cations, provided the propertieswe actually test are computable { for example, we can testthat arbitrarily long pre�xes of in�nite lists are equal, ratherthan comparing the lists themselves. Our Gen monad has alazy bind operation (because we split the random numberseed, rather than threading it through �rst one operand,then the other), and so we can freely de�ne generators thatproduce in�nite results. What we cannot do is observe non-termination in a test result. So we cannot test, for example,the propertyreverse (xs++undefined) == undefinedOn the other hand, in a sense a human tester cannot ob-serve non-termination either, and if we have been able totest lazy programs satisfactorily by hand so far, then we arenot in a worse position if we use QuickCheck. Yet a humantester can observe that reverse (xs++undefined) producesan error message (from the evaluation of undefined) withoutproducing any other output �rst, and can thus infer that theproperty above holds. The problem is that the Haskell stan-dard provides no way for a program to make the same ob-servation. Yet there are various extensions of Haskell whichdo indeed make this possible. Some work done by Andy Gillhas shown that, given such extensions, we could formulateand check properties such as the one above using QuickCheckalso.
6.6 Some ReflectionsWe are convinced that one of the major advantages ofusing QuickCheck is that it encourages us to formulate for-mal speci�cations, thus improving our understanding of ourprograms. While it is open to the programmer to do thisanyway, few really do, perhaps because there is little shortterm payo�, and perhaps because a speci�cation is of lessvalue if there is no check at all that it corresponds to theimplemented program. QuickCheck addresses both these is-sues: it gives us a short-term payo� via automated testing,

and some reason to believe that properties stated in a mod-ule actually hold.We have observed that the errors we �nd are dividedroughly evenly between errors in test data generators, er-rors in the speci�cation, and errors in the program. The�rst category is useless to discover (except insofar as it helpswith further testing) { it tells us nothing about the actualprogram. The third category is obviously useful { in a sensethese are the errors we test in order to �nd. But the secondcategory is also important: even if they do not reveal a mis-take in the code, they do reveal a misunderstanding aboutwhat it does. Correcting such misunderstandings improvesour ability to make use of the tested code correctly later.When formulating speci�cations one rapidly discovers theneed for a library of functions that implement commonmath-ematical abstractions. We are developing an implementa-tion of �nite set theory for use with QuickCheck; many ofthe abstractions in it are too ine�cient to be of much use inprograms, but in speci�cations, where the object is to stateproperties as clearly and simply as possible, they come intotheir own. Because of this di�erence in purpose, there is aneed for libraries speci�cally targeted at speci�cations.The major limitation of QuickCheck is that there is nomeasurement of test coverage: it is up to the user to in-vestigate the distribution of test data and decide whethersu�ciently many tests have been run. Although we provideways to collect this information, we cannot compel the pro-grammer to use them. A programmer who does not risksgaining a false sense of security from a large number of in-adequate tests. Perhaps we could de�ne adequacy measuresjust on the generated test data, and thus warn the user atleast in this kind of situation.
7. CONCLUSIONSWe have taken two relatively old ideas, namely speci�ca-tions as oracles and random testing, and found ways to makethem easily available to Haskell programmers. Firstly, weprovide an embedded language for writing properties, giv-ing expressiveness without the learning cost. The languagecontains convenient features, such as quanti�ers, condition-als and test data monitors. Secondly, we provide type-baseddefault random test data generators, including random func-tions, greatly reducing the e�ort of specifying them. Thirdly,we provide an embedded language for specifying custom testdata generators, which can be based on the default genera-tors, giving a �ner control over test data distribution. Wealso introduce a novel way of controlling size when generat-ing random elements of recursive data types.Further, we demonstrate that the combination of theseold techniques works extremely well for Haskell. The func-tional nature allows for local and �ne-grained properties,since all dependencies of a function are explicit. And pre-cisely random testing is known to work very well for small,�ne-grained programs, and is e�ective in �nding faults.Lastly, the tool is lightweight and easy to use, and pro-vides a short-term payo� for explicitly stating properties offunctions in a program, which greatly increases the under-standing of the program, for the programmer as well as fordocumentation purposes.Acknowledgements: We would like to thank Andy Gill,Chris Okasaki, and the anonymous referees for their usefulcomments on this paper.

8. REFERENCES[1] S. Antoy and R. Hamlet. Automatically checking animplementation against its formal speci�cation. InIrvine Software Symposium, pages 29{48, March 1992.[2] Roland Backhouse, Patrik Jansson, Johan Jeuring,and Lambert Meertens. Generic Programming - AnIntroduction. In Lecture notes in Computer Science,volume 1608, 1999.[3] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh.Lava: Hardware Design in Haskell. In InternationalConference on Functional Programming, Baltimore,1998. ACM.[4] M. Blum and S. Kannan. Designing programs thatcheck their work. In Proc. 21st Symposium on theTheory of Computing, pages 86{97. ACM, May 1989.[5] M. Blum, M. Luby, and R. Rubinfeld.Self-testing/correcting with applications to numericalproblems. In Proc. 22nd Symposium on the Theory ofComputing, pages 73{83. ACM, May 1990.[6] A. Celentano, S. C. Reghizzi, P. Della Vigna, andC. Ghezzi. Compiler testing using a sentencegenerator. Software { Practice & Experience,10:897{918, 1980.[7] K. Claessen and D. Sands. Observable Sharing forFunctional Circuit Description. In Asian ComputerScience Conference, Phuket, Thailand, 1999. ACMSigplan.[8] M. Davis and H. Putnam. A computing procedure forquanti�cation theory. Journal of the Association forComputing Machinery, 7(3):201{215, 1960.[9] J. Duran and S. Ntafos. An evaluation of randomtesting. Transactions on Software Engineering,10(4):438{444, July 1984.[10] J. Gannon, R. Hamlet, and P. McMullin. Dataabstraction implementation, speci�cation, and testing.Trans. Prog. Lang. and Systems, (3):211{223, 1981.[11] D. Hamlet. Random testing. In J. Marciniak, editor,Encyclopedia of Software Engineering, pages 970{978.Wiley, 1994.[12] R. Hamlet and R. Taylor. Partition testing does notinspire con�dence. Transactions on SoftwareEngineering, 16(12):1402{1411, December 1990.[13] J. Hughes. Why Functional Programming Matters. InD. Turner, editor, Research Topics in FunctionalProgramming. Addison Wesley, 1990.[14] M. P. Jones. The Hugs distribution. Currentlyavailable from http://haskell.org/hugs, 1999.[15] P. M. Maurer. Generating test data with enhancedcontext-free grammars. IEEE Software, 7(4):50{56,1990.[16] Gunnar St�almarck. A System for DeterminingPropositional Logic Theorems by Applying Values andRules to Triplets that are Generated from a Formula,1989. Swedish Patent No. 467 076 (approved 1992),U.S. Patent No. 5 276 897 (1994), European PatentNo. 0403 454 (1995).[17] Philip Wadler. Theorems for free! In InternationalConference on Functional Programming and ComputerArchitecture, London, September 1989.[18] Philip Wadler. A prettier printer, March 1998. Draftpaper.

[19] H. Zhu, P. Hall, and J. May. Software unit testcoverage and adequacy. Computing Surveys,29(4):366{427, December 1997.
Appendix: ImplementationHere, we show the implementation of the QuickCheck library,except for the function quickCheck. The source code ofQuickCheck is available from www.cs.chalmers.se/~rjmh/-QuickCheck/.module QuickCheck whereimport Monad ; import Random-- Gennewtype Gen a = Gen (Int -> Rand -> a)choose :: Random a => (a, a) -> Gen achoose bounds = Gen (\n r -> fst (randomR bounds r))variant :: Int -> Gen a -> Gen avariant v (Gen m) = Gen (\n r ->m n (rands r !! (v+1)))whererands r0 = r1 : rands r2 where (r1, r2) = split r0promote :: (a -> Gen b) -> Gen (a -> b)promote f = Gen (\n r -> \a ->let Gen m = f a in m n r)sized :: (Int -> Gen a) -> Gen asized fgen = Gen (\n r ->let Gen m = fgen n in m n r)instance Monad Gen wherereturn a = Gen (\n r -> a)Gen m1 >>= k =Gen (\n r0 -> let (r1,r2) = split r0Gen m2 = k (m1 n r1)in m2 n r2)elements :: [a] -> Gen aelements xs = (xs !!) `liftM` choose (0, length xs - 1)vector :: Arbitrary a => Int -> Gen [a]vector n = sequence [arbitrary | i <- [1..n]]oneof :: [Gen a] -> Gen aoneof gens = elements gens >>= idfrequency :: [(Int, Gen a)] -> Gen afrequency xs = choose (1, sum (map fst xs)) >>= (`pick` xs)wherepick n ((k,x):xs) | n <= k = x| otherwise = pick (n-k) xs-- Arbitrary ; Coarbitraryclass Arbitrary a wherearbitrary :: Gen ainstance Arbitrary Bool wherearbitrary = elements [True, False]instance Arbitrary Int wherearbitrary = sized (\n -> choose (-n,n))instance (Arbitrary a, Arbitrary b) => Arbitrary (a, b) wherearbitrary = liftM2 (,) arbitrary arbitraryinstance Arbitrary a => Arbitrary [a] wherearbitrary = sized (\n -> choose (0,n) >>= vector)instance (Arbitrary a, Arbitrary b) => Arbitrary (a -> b) wherearbitrary = promote (`coarbitrary` arbitrary)class Coarbitrary a wherecoarbitrary :: a -> Gen b -> Gen b

instance Coarbitrary Bool wherecoarbitrary b = variant (if b then 0 else 1)instance Coarbitrary Int wherecoarbitrary n| n == 0 = variant 0| n < 0 = variant 2 . coarbitrary (-n)| otherwise = variant 1 . coarbitrary (n `div` 2)instance (Coarbitrary a, Coarbitrary b)=> Coarbitrary (a, b) wherecoarbitrary (a, b) = coarbitrary a . coarbitrary binstance Coarbitrary a => Coarbitrary [a] wherecoarbitrary [] = variant 0coarbitrary (a:as) =variant 1 . coarbitrary a . coarbitrary asinstance (Arbitrary a, Coarbitrary b)=> Coarbitrary (a -> b) wherecoarbitrary f gen =arbitrary >>= ((`coarbitrary` gen) . f)-- Propertynewtype Property = Prop (Gen Result)data Result = Resultfok :: Maybe Bool, stamp :: [String], arguments :: [String]gnothing :: Resultnothing = Resultfok = Nothing, stamp = [], arguments = []gresult :: Result -> Propertyresult res = Prop (return res)class Testable a whereproperty :: a -> Propertyinstance Testable Bool whereproperty b = result (nothingf ok = Just b g)instance Testable Property whereproperty prop = propinstance (Arbitrary a, Show a, Testable b)=> Testable (a -> b) whereproperty f = forAll arbitrary fevaluate :: Testable a => a -> Gen Resultevaluate a = gen where Prop gen = property aforAll :: (Show a, Testable b) => Gen a -> (a->b) -> PropertyforAll gen body = Prop $do a <- genres <- evaluate (body a)return (arg a res)wherearg a res = resf arguments = show a : arguments res g(==>) :: Testable a => Bool -> a -> PropertyTrue ==> a = property aFalse ==> a = result nothinglabel :: Testable a => String -> a -> Propertylabel s a = Prop (add `fmap` evaluate a)where add res = resf stamp = s : stamp res gclassify :: Testable a => Bool -> String -> a -> Propertyclassify True name = label nameclassify False _ = propertycollect :: (Show a, Testable b) => a -> b -> Propertycollect v = label (show v)

