
Approximate Q-Learning
3-25-16

Exploration policy vs. optimal policy
Where do the exploration traces come from?
● We need some policy for acting in the environment before we understand it.
● We’d like to get decent rewards while exploring.

○ Explore/exploit tradeoff.

In lab, we’re using an epsilon-greedy exploration policy.

After exploration, taking random bad moves doesn’t make much sense.
● If Q-value estimates are correct a greedy policy is optimal.

On-policy learning
Instead of updating based on the best action from the next state, update based on
the action your current policy actually takes from the next state. SARSA update:

When would this be better or worse than Q-learning?

Demo: Q-learning vs SARSA
https://studywolf.wordpress.com/2013/07/01/reinforcement-learning-sarsa-vs-q-
learning/

https://studywolf.wordpress.com/2013/07/01/reinforcement-learning-sarsa-vs-q-learning/
https://studywolf.wordpress.com/2013/07/01/reinforcement-learning-sarsa-vs-q-learning/
https://studywolf.wordpress.com/2013/07/01/reinforcement-learning-sarsa-vs-q-learning/

Problem: large state spaces
If the state space is large, several problems arise.

● The table of Q-value estimates can get extremely large.

● Q-value updates can be slow to propagate.

● High-reward states can be hard to find.

State space grows exponentially with feature dimension.

PacMan state space
● PacMan’s location (107 possibilities).
● Location of each ghost (1072).
● Locations still containing food.

○ 2104 combinations.
○ Not all feasible because PacMan can’t jump.

● Pills remaining (4 possibilities).
● Whether each ghost is scared (4 possibilities … ignoring the timer).

1073 * 42 = 19,600,688 … ignoring the food!

Reward Shaping
Idea: give some small intermediate rewards that help the agent learn.

● Like a heuristic, this can guide the search in the right direction.
● Rewarding novelty can encourage exploration.

Disadvantages:
● Requires intervention by the designer to add domain-specific knowledge.
● If reward/discount are not balanced right, the agent might prefer accumulating

the small rewards to actually solving the problem.
● Doesn’t reduce the size of the Q-table.

Function Approximation
Key Idea: learn a reward function as a linear combination of features.

● We can think of feature extraction as a change of basis.

● For each state encountered, determine its representation in terms of features.

● Perform a Q-learning update on each feature.

● Value estimate is a sum over the state’s features.

PacMan features from lab

● "bias" always 1.0
● "#-of-ghosts-1-step-away" the number of ghosts (regardless of whether

they are safe or dangerous) that are 1 step away from Pac-Man
● "closest-food" the distance in Pac-Man steps to the closest food pellet

(does take into account walls that may be in the way)
● "eats-food" either 1 or 0 if Pac-Man will eat a pellet of food by taking the

given action in the given state

Exercise: extract features from these states
● bias
● #-of-ghosts-1-step-away
● closest-food
● eats-food

Approximate Q-learning update
Initialize weight for each feature to 0.

Note: this is performing gradient descent; derivation in the reading.

Advantages and disadvantages of approximation
+ Dramatically reduces the size of the Q-table.
+ States will share many features.

+ Allows generalization to unvisited states.
+ Makes behavior more robust: making similar decisions in similar states.

+ Handles continuous state spaces!

- Requires feature selection (often must be done by hand).
- Restricts the accuracy of the learned rewards.

- The true reward function may not be linear in the features.

discount: 0.9 learning rate: 0.2

Use these exploration traces:

(0,0)→(1,0)→(2,0)→(2,1)→(3,1)

(0,0)→(0,1)→(0,2)→(1,2)→(2,2)→(3,2)

(0,0)→(0,1)→(0,2)→(1,2)→(2,2)→(2,1)→(3,1)

(0,0)→(0,1)→(0,2)→(1,2)→(2,2)→(3,2)

Exercise: approximate Q-learning

+1

-1

S

2

1

0

0 1 2 3

Features:
COL ∈ {0, ⅓, ⅔, 1},
R0 ∈ {0, 1}, R1 ∈ {0, 1}, R2 ∈ {0, 1}

