Towards Network Triangle Inequality Violation Aware
Distributed Systems-

Guohui Wang Bo Zhang T. S. Eugene Ng
Dept. of Computer Science, Rice University
Houston, TX 77005, USA

ABSTRACT inequality. Numerous studies have reported the existehtréan-
gle inequality violations (T1V) in the Internet delay spdeey. [25,
4,17, 39, 11, 35]). As discussed in [39], delay space TIV ier&c
sequence of the Internet’s structure and routing policies thus
will remain a property of the Internet for the foreseeablkeirfe.

In what ways does this property matter? Of course this ptpper
does not break the basic best-effort datagram deliveryicgepro-
vided by the Internet. However, this property can degradept-
formance of distributed systems that assume the triangbpiaity
holds for Internet delays. Investigating such impacts arehaes
w fo reduce them is the subject of this study.

For distributed systems whose performance is dominatetioy t
efficiency of network communications, it is important thatamu-
nication neighbors are selected to minimize delays. Fangi&, in

Many distributed systems rely on neighbor selection meishas
to create overlay structures that have good network peegnoe.
These neighbor selection mechanisms often assume thegléian
inequality holds for Internet delays. However, the real#tythat
the triangle inequality is violated by Internet delays. sphe-
nomenon creates a strange environment that confuses peigéb
lection mechanisms. This paper investigates the progeofidri-
angle inequality violation (TIV) in Internet delays, thepacts of
TIV on representative neighbor selection mechanisms,ifsgaty
Vivaldi and Meridian, and avenues to reduce these impacts.
propose a TIV alert mechanism that can inform neighbor selec
mechanisms to avoid the pitfalls caused by TIVs and imprbeée t

effectiveness.
a tree-based overlay multicast system, a joining node niesdfifsd
. . . an existing group member who is nearby to serve as its pament i
Categories and Subject Descriptors the tree. This neighbor selection operation is crucial fanyndis-
C.2.m [Computer-Communication Networks]: Miscellaneous tributed systems including those that are based on stedtwer-
lays (e.g. [31, 23, 38, 22]) and unstructured overlays (§13.6,
24)).
General Terms) _ When neighbor selection is based on brute-force network mea
Measurement, Performance, Experimentation surements, the quality of the selected neighbor cannotfbetefl
by delay TIVs. However, as the number of nodes in the system
Keywords scales up, brute-force measurements become unattraggéve the

communication overhead and the time it takes to collect tha-m
surements. In order to perform neighbor selection withgutes
force measurements, it is often useful to make certain gstons
about the properties of the delay space. Many existing isolsito

Internet delay space, triangle inequality violations,|lgsia, neigh-
bor selection, distributed system

1. INTRODUCTION this problem assume the triangle inequality holds for imtede-
The Internet is an interesting environment where delaga- lays in order to infer delays between nodes (e.g. [3, 34, 2338

surements do not always “make sense”. Often, even if nbde 7]).

close to nodeB and nodeB is close to nod€”, nodeA can be very Two representative solutions are Vivaldi [3], which is s

far from nodeC. That is, Internet delays often violate the triangle the network embedding approach, and Meridian [34], whitiased
on the recursive probing approach. Both solutions requsmall

" This research was sponsored by the NSF under CAREER Award gmount of offline network delay measurements that help giliee
CNS-0448546. Views and conclusions contained in this decum selection of a nearby neighbor. Vivaldi is expected to bs ks

are those of the authors and should not be interpreted asseapr

ing the official policies, either expressed or implied, of NG the curate, but requires no online network measurements. Ovthiee
U.S. government. hand, Meridian requires online network measurements aed-is
For simplicity, we will use “delay” in place of “round-tripeday.” pected to be highly accurate. Both solutions rely on theglia

inequality assumption to infer the delays between noddsesys-

tem.

How do TIVs impact the performance of these neighbor selec-

Permission to make digital or hard copies of all or part 0§ tiwork for tion solutions? Is it possible to reduce the problems cabsed
personal or classroom use is granted without fee providatidbpies are TIVs? To shed light on these questions, we first analyze therse
not made or distributed for profit or commercial advantage that copies ity of TIVs in several available delay data sets. This leadthe
beargpshn?twe at”d the full C'tatt'on %r.‘ tth'i ﬁtrsttp?ge. .Tw‘ﬂ’.'efw'se'_p following observations. First, although it makes intuitsense that
:Jieumi;io’n(zaﬁglsorog fseeervers orto redistribute to listguitkes prior specific the larger the delay of an edge (i.e. a path between two natthes)
IMC 07, October 24-26, 2007, San Diego, California, USA. more severe the TIV it causes, such generalization is nbiel

Copyright 2007 ACM 978-1-59593-908-1/07/0010 ...$5.00.

because the TIV severities of edges of similar delays arbhhig
variable. Thus, it is not accurate to predict the TIV seyeoit an
edge simply by considering its delay. Secondly, even if tdiges
AB andCD have very nearby end-nodes (i.d.has small delay
to C and B has small delay tdD), the difference between their
TIV severities is no smaller than the difference between taro
domly chosen edges. Therefore, it is also not accurate digbre
the TIV severity of an edge by simply considering the TIV siye
of another nearby edge.

Even though these observations highlight complex anduteeg
characteristics in TIV that we cannot yet explain compietale
can identify the impact of TIV on Vivaldi and Meridian by styidg
their behavior under TIV. When faced with TIV, Vivaldi reseb
the TIV by forcing edges to shrink or stretch in the embedding
space. This results in oscillations in the embedding. Megedhe
magnitude of such oscillation is so large that the predicteldy

for a 10ms edge can vary by as much as 175ms. This behavior

hurts the neighbor selection performance of Vivaldi. Forriste
ian, the online recursive probing approach is expecteddiad yiery
good neighbor selection accuracy. Under ideal conditioheres
probing overhead is unrestricted and without TIV, the Miamidap-
proach is expected to find the correct nearest neighbor. tAawe
due to TIV, the ring structures created by Meridian contaton-
sistencies. The result is that, even under ideal conditidiesidian
cannot find the nearest neighbor for 13% of the cases.

We continue the investigation by testing several strawnirates
gies for coping with TIVs. We test existing models for netiwoo-
ordinates that accommodate TIV [16, 11] but find that thesthme
ods do not benefit the neighbor selection problem. We alsdttes
naive approach of removing edges that cause the most sefxése T
given the global information. What we learn is that Vivaldida
Meridian fail on this strategy for different reasons andstiewen
with full knowledge of TIVs, fine-grained strategies are the to
avoid the impact of TIVs in different neighbor selection mac
nisms.

Finally, we propose a TIV alert mechanism. This TIV alert
mechanism does not predict the severity of TIV of an edgeh&tat
it simply identifies edges that are likely to cause severesTVhe
design of this TIV alert mechanism stems from our basic ebser

vation that when a delay space with TIV is embedded into an Eu-

clidean space, the edges that have severe TIVs tend to hekshru
the resulting embedding. We explain this mechanism and shaiv
it can help identify edges with severe TIVs. Furthermoreiropr-
porating this mechanism into Vivaldi and Meridian, it is pilde
to reduce the impact of TIV and improve their neighbor sébect
performance. We believe these findings serve as a first siepde
building robust TIV-aware distributed systems.

The rest of this paper is organized as follows. Section 2ueval
ates the TIV characteristics of measured Internet delagsti& 3
explains how TIVs impact the performance of Vivaldi and Meri
ian. Section 4 explores several strawman strategies tlahtndth
TIVs. Unfortunately, the benefits of these strategies ar djm-
ited. Section 5 introduces a TIV alert mechanism, and etesuhe
application of this mechanism in Vivaldi and Meridian. Tle¢ated
work is presented in Section 6 and Section 7 concludes tipisrpa

2. ANALYZING TIVS IN INTERNET
DELAYS

We begin the discussion by analyzing the characteristig$\¢é
in several available Internet delay data sets.

1 T
L
i
0.8f } TIV severity
5 i
5 i
2 I
E 065 B
o [H
= I:
2 : ;
£ 0.4t ‘ (1-fraction of TIV)
= |
£ |
= I
&) |
0.2r }
|
0 | , . .
0 1 2 3 4 5
Triangulation ratio
Figure 1: lllustration of the TIV severity metric
1 B E—
- - DS?-4000-data
- 0.8f - - - Meridian—-2500-data
'% —— p2psim-1740-data
Q
£ 06| PlanetLab-229-data]
2z
Q
= i
< 0.4y,
] 1
£ i
= !
o d
0.2}
0
0 0.2 0.4 0.6 0.8 1
TIV Severity

Figure 2: Cumulative distribution of TIV severity

2.1 Evaluation Metric for TIV Severity

Given any three noded, B andC in the Internet, they form a
triangle ABC'. EdgeAC is considered to cause a triangle inequal-
ity violation if d(A, B) + d(B,C) < d(A,C), whered(X,Y)
is the measured delay betweghandY. The triangulation ra-
tio of the violation caused bylC' in triangle ABC'is defined as
d(A,C)/(d(A, B) + d(B,C)). Previous studies (e.g. [25, 4, 39,
11, 35]) have reported characteristics of TIVs in the Ine¢ielay
space by triangulation ratio distribution and the fractétriangles
that suffer from TIV. However, to achieve a better underdiag on
the TIV properties, we would like to define a numeric metriatth
captures theeverity of TIV for any particular edge.

The fraction of triangles that suffer from TIV is not the righet-
ric to use when evaluating the TIV severity of an edge becthese
triangulation ratios of these violations were not consgderin the
DS2 data, among the top 10% edges causing the highest fractio
of triangles suffer from TIV, 16% of them do indeed have therav
age triangulation ratio belonging to the lowest 10%. Sirhyjjahe
average triangulation ratio is not the right metric to usithee, be-
cause it does not take the number of TIVs caused by the ednye int
account. In the DS2 data, among the top 10% edges with the high
est average triangulation ratio, 64% of them only cause tless
3 TIVs. Hereby we define the TIV severity metric as following:
Given a delay space where the set of all nodes, ifor two nodes
A, C € S, the TIV severity of the edgd C is:

> d(A,C)/(d(A, B) + d(B,C))
151

whereB € S andd(A,C) > d(A, B) + d(B,C).

To illustrate this metric, Figure 1 shows the cumulativeréisi-
tion of triangulation ratios for an hypothetical edg€”. The TIV
severity of the edgelC is then proportional to the area of the shad-
owed region. Note that the intersection between the doteetical
line and the curve indicates the fraction of triangles tlzaise TIV.
In the rest of this paper, we use this TIV severity metric taleate
the TIVs caused by an edge. A TIV severity value of 0 means the
edge does not cause any violation and larger TIV severitynmea
more violations.

2.2 Analysis of TIV Characteristics

Figure 2 shows the extent of TIVs found in 4 different meagure
Internet delay data sets: p2psim data (1740 nodes) [19]idMer
data (2500 nodes) [34], BSlata (4000 nodes) [35], and PlanetLab
data. Here, the PlanetLab data is the measured delay matorg
229 PlanetLab nodes we collected. Clearly, TIVs are pregeait
datasets. For all the data sets, most of the edges only chgise s
violations, but a small fraction of edges do cause sevelatidns
and all the curves have long tails.

Our previous study [35] classified nodes in a delay space into
major clusters that correspond to major continents and stidiat
edges within the same major cluster cause fewer violatidmngew
edges across different clusters cause more violations t\lg the
TIV severity of the edges using the same clustering method.

The experiment is based on tii&S? data matrix. We use the
same clustering algorithm as presented in [35] to classiiyes
into three major clusters and the nodes that did not getifiess
into any of the three major clusters form the noise clusterstiow
how the TIV severities are distributed over the major clissteve
present a matrix in Figure 3. To produce this figure, we first-re
ganize the original matrix by grouping nodes in the sametetus
together. The top left corner has index (0,0). The matrixdesl
of the nodes in the largest cluster are the smallest, theesdor
nodes in the second largest cluster are next, then the mdlice
nodes in the third largest cluster, followed by indices fodes in
the noise cluster. Each poift, j) in the plot represents the TIV
severity of the edgeéj as a shade of gray. A black point indicates
least severe violation and a white point indicates mostrgevie
olation encountered for any edge in the analysis. Missilgesa
in the matrix are drawn as black points. This result confirha t
clustering is also useful for classifying TIV severity. lrche seen
that edges within the same cluster (i.e. the 3 blocks aloaglitg-
onal) tend to have less severe TIVs (darker) than edges itbss ¢
clusters (lighter}. This is because when restrained in one cluster,
most edges are relatively short, and would cause violaticeigly
with the nodes in the same cluster, thus limits the numbenl\é§ T
While for crossing cluster edges, although they can noteaasy
high ratio violations since their end nodes are far apasgy ten
still induce a large number of violations with nodes existedny
clusters, due to the fact that intercontinental routingallgthave
many alternative paths . This trend could be observed in tB2 D
data, the average number of TIVs caused by edges within the sa
cluster is 80, while the average number of TIVs caused bysangs
cluster edges is 206.

In order to understand what kind of edges cause severe TIVs,
we first study the relationship between TIV severity and dmgth
of edges. All edges in the delay matrix are first grouped ifto 1
millisecond bins based on their lengths, then we plot the Sedver-
ity of edges within each bin. Figure 4 shows the median TI\ésev
ity versus lengths of edges based on ih&? data. The error bars
show the 90th and 10th percentile TIV severity. The geneeald

2Note that [11] uses a different definition for TIV and thus the
sults are different

Figure 3: TIV severity by cluster (a white point represents he
most severe TIV).

is that longer edges cause more severe violations. For dgamp
the edges shorter than 200 ms usually only cause slighttidoka
and edges longer than 300 ms cause increasingly more segere v
lations. The other observation from Figure 4 is that edgeseof
different lengths can cause violations of the same severigl. For
example, a 600 ms edge may have violations of the same severit
level as both a 300 ms edge and a 800 ms edge. Moreover, the TIV
severity of edges has an irregular relationship with themgths.
For example in Figure 4 the median TIV severity has a peakfor t
edges around 500-600 ms. Similar irregular behavior canbbe o
served in Figure 5, Figure 6 and Figure 7 that show the relsitip
between length of edges and TIV severities for p2psim dagaidv

ian data and PlanetLab data respectively. Sincgaceroute data

is available to completely understand this irregular bérawur
surmise is that it is caused by the irregular routing inedficy. In
Figure 8, The top graph shows in the DS2 data, the fractiodgése
that are within the same cluster as the edge length is inetded$e
bottom graph shows in the DS2 data, the distribution of tteatsh
est path lengths for all edges at different edge lengths. eFfar
bars represent the 10th and 90th percentile values. Agrihes!,
most edges longer than 200ms are crossing cluster edgegeand
erally, longer edges have longer shortest paths. Howevemhe
edge lengths increase from 300ms to 550ms, the lengths iof the
shortest paths do not reveal a very clear increment, whicinse
most of these edges can find short alternative paths, andvihdd
also cause severe TIVs. When the edges are longer than 550ms,
the lengths of their shortest paths make a significant junipchw
indicates for many edges in this area, even their shortébtga
still very long, therefore they are not possible to causeiseVIVs.
From the above results, we can see that although long edgés te
to cause more severe violation, the relationship betwe¥rs&Ver-

ity and edge length is unclear, which indicates that it iy Vveard to
determine whether one edge is causing severe violatiogdaskd

on its length.

Next, we study whether TIVs can be predicted based on proxim-
ity. The hypothesis is that two close-by nodes may have aimiV
characteristics because they are more likely to shareagirmter-
net routes. Obviously, if noded and A; belong to the same local
area network, and nodd3 and B; belong to the same local area
network, thenA B and A; B, should have very similar TIV sever-
ity. However, we are more interested in whether a more génera
proximity based relationship exists for nodes that do natrigeto
the same local area network. To test this hypothesis, fdr data
set, we randomly choose 10,000 edges. Each edge is assighed w

10

— Median TIV severit

TIV severity

200 400 600
Delay (ms)

0

0 800 1000

Figure 4: Relation between delay and TIV severity for D.S*
data. Error bar shows the 10%, median and 90%.

a nearest pair edge by the following method: For an ediffewith

end nodesA and B, A,, and B,, are the nearest neighbors df
and B respectively, then the edgé, B,, is the nearest pair edge
of AB. For comparison, each edge is also assigned with a ran-
dom pair edge. We calculate the TIV severity differencesaathe
edge and its pair edges to evaluate their similarity. FiQusaows

the cumulative distributions of the TIV severity differ&scof the
nearest-pair edges and random-pair edges for four dataFsetall

the four data sets, the nearest-pair edges are just sliglotlg sim-

ilar to each other than the random-pair edges in terms of €iéis

ity. This means that close-by nodes do not necessarily hiaas

TIV severity characteristic. Note that the methodologyduisecol-

lect the four data sets actually tend to avoid nodes thahpeimthe
same local area network. In these data sets, the nearebboeigf

a node is typically a few milliseconds away and may belong to a
different ISP. This result indicates that, in general, i@ possible

to predict the TIV severity of edges based on their proximity

In summary, our results show that TIV is a complex phenomenon
in the Internet. Most edges only cause slight TIVs but songesd
do cause very severe TIVs. The relationship between TIVrigve
and edge length is irregular in all data sets, which meansaneat
determine whether an edge will cause severe violations lmesed
on its length. In addition, it is hard to predict the TIV sateof an
edge by simply considering the TIV severity of some nearlyesd
because they can have very different TIV severities.

Since the results in this section show that the 4 data se&s hav
similar TIV properties, for simplicity, in the rest of thisper, the
experiments are performed on tfisS® 4000-node delay data set
unless otherwise noted.

3. UNDERSTANDING THE PROBLEMS
CAUSED BY TIVS

Many distributed systems rely on neighbor selection meishas
to create overlay structures with good network performande
valdi and Meridian are two representative solutions to tharn
est neighbor selection problem. They represent two irtieges
but very different design points. Vivaldi is based on netwvem-
bedding techniques. The benefit of Vivaldi is that it onlyuiegs
very few offline measurement probes. However, Vivaldi isvesy
accurate at finding the nearest neighbor. On the other hand, a

though Meridian can find the nearest neighbor much more accu-

rately, Meridian requires online measurement probes.oAilifn the
basic principles of Vivaldi and Meridian are quite diffetethey
both make the assumption that, the underlying Interneydsdace
is a metric space in which triangle inequality holds amonghed

w

— Median TIV severit

N
o

TIV severity
-
4] N

i

o
3

0 =il
200

0 400 800

Delay (ms)

600

Figure 5: Relation between delay and TIV severity for p2psim

data. Error bar shows the 10%, median and 90%.

20

——Median TIV severit

i
3

TIV severity
=
o

600 800 1000
Delay (ms)

Relation between delay and TIV severity for Merid-
Error bar shows the 10%, median and 90%.

Figure 6:
ian data.

delays. A recent study [11] has shown that TIV among the inter
net delays causes inaccuracies in network coordinatersgdtke
Vivaldi, however, it remains unclear in what ways does TI\: im
pact Vivaldi. Moreover, to our knowledge, the impact of TI¥ o
Meridian has not been previously studied. In this sectioa,tmy

to understand how TIVs impact the performance of Vivaldi and
Meridian.

3.1 Principles Underlying Vivaldi and
Meridian

Vivaldi is a distributed network coordinate system that sitm
embed the network delays into a low dimension metric spadaleN
any metric space can potentially be used, this paper usesEusD
clidean space for simplicity. Regardless of what metriccepia
used, it is important to note that all metric spaces obeyrthadle
inequality and are therefore incompatible with delay TIV.Vi-
valdi, each node is assigned a virtual coordinate and theonkt
delay between a pair of nodes is estimated by the Euclidean di
tance given by their coordinates. To compute the coordinfite
each node, Vivaldi simulates a physical spring system. paih
of nodes(i, j) corresponds to a spring with a rest length set to the
measured delay betweéandj. The current length of the spring is
the estimated Euclidean distance between the nodes. Téetiabt
energy of the spring is proportional to the square of theldisp
ment from its rest length, which is actually the square ofabg-
mation error. Vivaldi uses an adaptive procedure to minintie
spring energy. Each node has several neighbors in the Visxdd
tem. At each step, when a node measures the delay betwelén itse

Meridian

14 p2psim 1
—— Median TIV severit s 1 5
12 = 5 .
H 08 —— nearest-pair-edges .-é 08 —nearest-pair-edges|
101 g 0.6 - - - random-pair-edges Zos - - - random-pair-edges|
[f
2 .%’ 0.4 204
T 8 8 X
5
3 Eo2 Eo2
12} =3
> 6r O O
= 0 0
0 0.5 1 15 0 0.5 1 15
4k TIV severity difference TIV severity difference
PlanetLab DS?
2f 1 e 1
5 - 5
o . T _‘§ 0.8 nearesl—pallr—edges § 0.8 ——nearest-pair-edges|
0 200 400 600 800 1000 %06 -~ ~ random-pair-edges %06 - - - random-pair-edges
Delay (ms) = 0.67, 20
[} N Q
2 0.4 204
5 g
Figure 7: Relation between delay and TIV severity for Planet Eo2 Eo2
. &) O
Lab data. Error bar shows the 10%, median and 90%. % o5 : s % o5 ; s
TIV éeverity difference ' TIV 'severily difference ’
9]
g 1
2 Figure 9: Proximity property of TIVs
<
2 0.5F
k<]
c
£ 100 :
g 0o - - -Edge A-B
i 200 400 600 800 1000 ——Edge B-C
- Delay(ms) - - Edge C-A
£ 300 b
=
5
& 200 =
< E
S 100} S .
S oE PRI Y TR TR (AN o
7 200 400 600 800 1000 _gob W v hut ! Lo
Delay(ms) (-
. . o .
_ ~100
Figure 8: Shortest path length for edges ofD.S* data at differ: 5 50 w0 ~ 5 0
ent delays Simulation Time(second)

Figure 10: Vivaldi error trace for a simple 3-node network with

and one of its neighbors, the node will be pulled toward ohpds ~ TIV
away from that neighbor to a new position that decreasesitrgge

of the corresponding spring. The system evolves so thatddes
move to the positions that minimize the squared error of tka-m
sured delays. Ideally, if network delays are perfectly edalable in
the Euclidean space, Vivaldi can generate a set of coostirthat
predict all network delays very well. However, real netwdetays
are not Euclidean and violate the triangle inequality. Tlugen-
eral, it is not possible to predict all the network delaysuaately.
Many edges will still have high prediction error in Vivaldi.

Wong et al. proposed another system, Meridian, which isase
on active online probing and recursive query. Meridian foran
loosely-structured overlay network and uses online measents
to solve neighbor selection problems. Each Meridian nodpge
track of a fixed number of other nodes in the system as its membe
Then a Meridian node organizes all its members into a finita-nu
ber of concentric, non-overlapping rings based on the nredsu
delays between itself and these members. The rings haveenpo

the target node should be among this set of ring members.eThes
ring members measure their delays to the target online agr th
report back taN. The query is then forwarded to the ring mem-
ber who is closest to the target. This process repeats sdahthat
query is gradually forwarded to the node that is closest éatain-
get, or until the termination condition is satisfied. Thertgration
condition is if next Meridian node’s delay to the target isder
than3 x d. TIV can reduce the effectiveness of Meridian. This
is because TIV makes the ring membership information uaipési
Two nearby nodes should be placed in the same ring or verg clos
rings of a Meridian node. However, TIVs can make the two ngarb
nodes have very different delays to the Meridian node ansl ltieu
misplaced. Such placement mistakes hurt performance bethe
true closest node to the target may be misplaced and nevemnbe c
sidered during the query forwarding process.

tially increasing radii. The-th ring has inner radius; = as** .
and the outer radiu®; = as®, wherea is a constant and is 3.2 ”IUStr_atmg the TIV PrOblems)
the multiplicative factor. One Meridian node needs to kepda In the following, we use concrete scenarios to show how ‘dival

k members for each of its rings. To find the closest neighbor to a and Meridian may behave when there are triangle inequaltitpv
target node, a random Meridian nodeis chosen to start a recur- tions.

sive query. NodeV first measures the delaibetween itself and .

the target. ThenV simultaneously queries all of its ring members ~ 3-2.1 Vivaldi

whose delays are withifl — 3) x d to (1+ 3) x d from N, where Suppose we have a network with 3 nodésB andC, where
B < 1is an acceptance threshold. The idea is that, if the triangle the delay of edged B, d(A, B), is 5ms, d(B,C) is 5ms, and
inequality holds, then any ring member that is witlink d from d(C, A) is 100ms because of inefficient routing or routing policy.

500

—— Median oscillation range

400
300

200

Oscillation range(ms)

100

y

400 600
Delay(ms)

0 200 800 1000

Figure 11: Distribution of the oscillation range of all the edges

Obviously, the triangle inequality is violated becaufel, B) +
d(B,C) < d(C,A). We run Vivaldi over this 3-node network,
and Figure 10 shows the error trace of edg§B, BC, andC A
over 100 second simulation time. Here the error is definedeto b
(euclidean_distance — measured_delay).

As we can see from Figure 10, Vivaldi cannot find perfect po-
sitions for the nodes and it is stuck in endless oscillatidfisve
look into the detailed behavior of a node what is happening here
is, every timeA probes a neighbaB, nodeA will adjust its coor-
dinates based on this probe to decrease the predictionadrtoe
edgeA B. However, because of triangle inequality violation among
ABC, there does not exist good positions for nodesB, C in the
Euclidean space to preserve the deldy3, AC and BC perfectly.
So, the result is, every movemestmakes to decrease the error of
edgeAB will increase the error of edgdC' and the overall error
of node A remains high. For the whole network, the effect is, all
the nodes are adjusting their coordinates to decrease ritvefer
the currently probed edges, but it does not help to incrésesewver-
all prediction accuracy. All the nodes in the system are w&and
rapidly and the error of edges fluctuates. This result shbais the
existence of TIV can hurt the embedding of the whole netwaoik a
introduce large prediction errors on edges.

Let’s extend our analysis from the simple scenario to reirin
net measurements. Among all the triangles constructed py8an
nodes in theDS? data set, around 12% of them violate triangle in-
equality. Itturns out that, these violations in the meaggiata have
a significant impact on Vivaldi’'s performance. When Vivaklrun

@) Client node
(O Initial server A

& Target node T
@ Second server B
.@. Ring member of A O Ring member of B

@ Closest node N ---» Latency probe

Figure 12: A client node sends a “closest neighbor to target™
request to a Meridian node A, which determines its delayd to
T and asks its ring members within(1—3) x dand (1+3) xd to
probe T (G is the constant acceptance threshold). The request
then is forwarded to another Meridian node B, which is the
closest tol' among A’s eligible ring members. Similarly B also
asks its relevant ring members to probel” and finally finds out
that B itself is closest toT'. B is returned to the client as the
found closest neighbor even though the real closest neighbis
N. Meridian fails to find N due to incorrect ring membership
caused by triangle inequality violations.

tion is no longer true with TIVs, and thus Meridian’s perfance
is inevitably affected.

In Figure 12, a simple example is presented to show how TIV
can affect Meridian’s performance. A client node issuescmiest
for the closest neighbor to targét Meridian performs a recur-
sive query and ends up with the chosen neighBarhile the real
closest neighbor i&v. The left picture in Figure 12 explains why
Meridian fails to find the real closest neighbor. As can be$emm
the picture, four nodes form four triangles, three of whidblate
the triangle inequality property. For exampld, is 12 andT'N is
only 1, but AN is 25. In this exampleN and B will be placed in
different rings ofA although they are close to each other. So when
Ais chosen as the initial node to start the queryyill not ask N to
probeT becauseV is too far. What is worse, after nodgis deter-
mined as the second node to continue the quBrstill cannot ask
N to probeT since it is still relatively far fromV due to a triangle

on theDS” data, the median absolute error is 20ms and the 90th inequality violation. So in this example, the Meridian systfails

percentile absolute error is 140ms. Moreover, the nodesiaving

to find the real closest neighbor mainly because of the taodle

rapidly. The median movement speed is 1.61 ms per step and theinequality violations. Note that the fact that is involved in trian-

90th percentile movement speed is 6.18 ms per step. To gata se
of the ranges the predicted distances are oscillating imlefiae the
oscillation range of an edge to kevax (prediction_distance) —
min(prediction_distance)) and collect the oscillation range for
all the edges during a 500s simulation period. In Figure ¥ divx
vide all the edges into 100 bins with the width of 10ms, andthee
error bar to plot the distribution of the oscillation randgele edges
in each bin. The ceiling of the error bar is the 90th percenthie
bottom is the 10th percentile, and the marked line is the amed\s
can be seen, the prediction values are oscillating ovee lagges,
and the range is large even for edges that are very short.

3.2.2 Meridian

Meridian assumes that the triangle inequality propertydsioh
the underlying delay space. So, intuitively, if two close+ibdes
are both selected as ring members of another node, thenttbelds
be placed in the same or very close rings of that node. Thiggss

gle inequality violations does not mean thétwill never be found
as the closest neighbor 1a If the client chooses another Meridian
node as the initial node to start the recursive query, itilispstssi-
ble for the Meridian system to find the real closest neighpbut
the existence of TIV increases the difficulty for Meridiarfitad the
closest neighbor.

Meridian uses active online probings during the recursiverg
so Meridian is not as sensitive to TIVs as Vivaldi. In additio
Meridian already can tolerate some TIVs. For examplg, i§ set
to a large value, then more ring members are allowed to ptobe t
target. This can mask the TIV-induced placement errorsenitig
membership. In the above example, a lafgéhough unrealistic)
may allow N to be selected to probe the target and thus Meridian
will find the correct closest neighbor 6. The downside of using
a largeg is increased probing overhead. This simple mechanism
however is not sufficient to handle severe TIVs.

The following experiment is used to quantitatively show hafw

0.8

—beta=0.1
beta = 0.5

Delay (ms)

o
©

t |— Vivaldi-original

---IDES

Percentage penalty

---beta=0.9 _5

E /

506 5 06f K

£ ° /

804 g 0.4}
£ /
s}

02 i 0.2
\ i | M g
. } o "‘"“““‘”’\’“‘"meﬂ“"ﬂ‘\“ -
Sl - 0 : ‘
200 400 600 800 1000 10 10° 10° 10*

Figure 13: Percentage of Meridian ring members misplaced Figure 15: Neighbor selection performance for IDES

- - - Vivaldi-with-LAT|
L | — Vivaldi-original

o
©

5
508 E
g o
= — - £ 0.6
206 - - - Meridian-Euclidean-4k-data g
g . —— Meridian-DS?~4k~data 'q):
3 & 0.4f
8 : /
g 0.4 : /
° 3
o
0.2r P
0.2 P
0 . .

: ‘ ‘ ‘ ! 2 3 4

10° 10! 10° 10° 10" 10 10 10 10

Percentage penalty Percentage penalty

Figure 14: Neighbor selection performance of Meridian with Figure 16: Neighbor selection performance for Vivaldi-LAT
ideal settings

the results. Meridian nearly always finds the closest naighihen

run over the artificial Euclidean data set where the triairgdqual-

ity is satisfied. The reason that the performance of the Naerid
on Euclidean data is not perfect is, given the taffjebccasion-
ally the distance between the closest seeand current chosen
Meridian node)M is not within the range betwedn — 3) x dyr
and(1+ 8) x dyr andM has no other ring members within that
range at all, sa\/ has to stop. For the measured delay data, as
can be seen, severe TIVs can clearly affect Meridian’s perdoce
even itis run under idealized settings.

ten Meridian will make a mistake due to TIVs. For thes? data
set, given any nod#/;, for any other nodeV; that has delay of;;
to IV;, we find the set of nodes that are within the delay efd;; to
N; and then we count the number of nodes in the set whose delays
to IV; are not in the range frorfll — 3) x d;; to (1 + 3) x ds;.
This condition indicates that such nodes will cause placgrae
rors in the ring membership. Figure 13 shows the result fbr di
ferentg values. The x-axis organizes the results for all node pairs
N; and N; by the delayd;;. The y-axis shows the percentage of
nodes that will cause placement errors. As we can obsergerla
gives Meridian better tolerance to TIVs but largealso increases
the probing overhead significantly. If we s@tto 0.5 just as rec-
ommended in [34], we can see that placement errors are fieque WITH TIVS IN NEIGHBQR SELECTION
especially with respect td;; larger than 400 ms. Even fak; less _ Recent studies have reported the inaccuracy of network @mbe
than 400 ms, placement mistakes occur 10% to 30% of the times. ding caused by TIVs and several techniques have been pbpose
Next, we run Meridian simulations to study how TIVs will afte ~ t0 accommodate TIVs [16, 11]. Thus, we would like to deternin
its performance in practice. Simulations are run with twifedi how much these techniques can help improve the performance o
ent data sets, one is an artificial Euclidean matrix and therds neighbor selection. Furthermore, we would also like to wisiee
the DS? delay matrix. We us@ = 0.5 for both simulations. For ~ Whether removing edges that have large TIV severity can teelp
each data set, we randomly pick 200 nodes as Meridian nodes an duce the impact of TIVs on the neighbor selection mechanisms

use the other 3800 nodes as clients. In order to filter outhall t 41 Neighbor Selecti E . i
factors that can potentially degrade Meridian’s perforoganve let : elghbor selection experimen
Methodology

each Meridian node to use all other 199 Meridian nodes asgs r
For the rest of this paper, unless otherwise noted, the rdetho

members, then we turn off the termination condition, i.e,alfow

Meridian to continue to search even when the new Meridiareisod ology for the closest neighbor selection experiments iHsws.

delay to the target is longer thghx d. This provides an idealized All experiments are performed using thss? 4000-node measured
Internet delay data set [35].

setting for Meridian. Note that in reality, we usually do nse all
other Meridian nodes as ring members and we have to use the ter For Vivaldi, each node picks 32 random nodes as Vivaldi prob-
ing neighbors and iteratively perform Vivaldi embeddingnmuta-

mination condition to limit overhead. Thus, this experimeies to
show an upper bound of Meridian’s performance. Figure 14vsho tions for 100 seconds (simulation time). The metric spaesl us

4. STRAWMAN SOLUTIONS TO DEAL

a 5-dimensional Euclidean space. A random subset of 200snode
are selected as candidates for the closest neighbor selesgperi-
ment, the remaining 3800 nodes act as clients. This is dotteaso
the chance that a candidate is a Vivaldi probing neighboratitat

is small. One closest neighbor selection test is perforrnegdch
client based on the delay predictions given by Vivaldi camates.

We record the percentage penalty for each test, where pgageen
penalty is defined as

(delay_to_selected — delay_to_optimal) x 100

delay_to_optimal

We run the experiment 5 times using 5 different random ssbset
of 200 nodes as candidates. Results reported are cumutetve
the 5 runs.

For Meridian, we set the parameters as folloks= 16 nodes
per ring at most, 11 rings per node, multiplicative increfee
tors = 2,8 0.5, « = 1. We select a random subset of
2000 nodes as Meridian nodes and build Meridian rings among
them. This is done so that there are enough Meridian nodesto ¢
struct reasonable Meridian rings. The remaining 2000 nadeas
clients. One closest neighbor selection test is perforneeclent.

A client sends its closest neighbor request to a random Kéerid
node. Again, we record the percentage penalty for each Tést.
experiment is run 5 times using 5 different random subse2000
nodes as Meridian nodes. Results reported are cumulatéretios
5 runs.

4.2 Existing Models for Accommodating TIV
in Network Embedding

Several existing proposals for improving network embegddiys-
tems attempt to accommodate TIVs. In this section, we focus o
these existing proposals. IDES [16] is a network coordmates-
tem designed to allow for triangle inequality violationglatelay
asymmetry in the delay space. It is not based on embeddiagint
metric space. Instead, in IDES, each node is assigned amingo
and an outgoing vector by matrix factorization techniqeesh as
Singular Value Decomposition (SVD) or Non-negative Maffac-
torization (NMF). The distance between nadandj is estimated
by the inner product ofs outgoing vector angl's incoming vector.

On the other hand, Lee et al. [11] proposed to add a localided a
justment term (LAT) to Euclidean coordinates to accountliidfs.

In this method, each node has ad dimension Euclidean coordi-
natec, and a non-Euclidean adjustment and(c.; e,) is used to
denote the final coordinates of noge The distancel,, between
two nodest andy is estimated byl,.,, = d(c., ¢,) +e. +e,, Where
d(cz, c¢y) is the Euclidean distance betweenandc,. Thee, is set

to half of the average error for all the measurements frone nad

a set of sampled nodes. L&tdenote the set of randomly sampled

dyy—d,
nodes measured from nodethene, = W

Both IDES and LAT have been shown to provide better aggregate
prediction accuracy for Internet delays than the basic iesh
network embedding approach. However, it remains to be seether
they can successfully improve performance with respetigoeigh-
bor selection problem. Figure 15 and Figure 16 show the beigh
selection results of IDES and Vivaldi with LAT on theS? data
set. We can see that, neighbor selection performance of IBES
actually worse than that of Vivaldi, and Vivaldi with LAT ity
slightly better than the original Vivaldi. For IDES, althgluit does
not constrain predicted delays to satisfy the triangle uiadity as
in an Euclidean model, it is hard to find vectors that sim@tarsly
approximate TIVs and estimate network delays accuratelyalio
nodes. For the LAT technique, although the localized adjest

o o
o ©

Cumulative distribution
I
=

7" | — Vivaldi-original
== - - - Vivaldi-TIV-severity—filter|

o

[N}

.
S

10° 10° 10

Percentage penalty

Figure 17: Neighbor selection performance for Vivaldi with
TIV severity filter

term can introduce the non-Euclidean effects with respeet set
of sampled nodes, it is still very hard to predict the triangi-
equality violations over the entire network accuratelytirohtely,
increase in aggregate prediction accuracy does not alwayslate
into increased neighbor selection performance.

4.3 Naive avoidance of TIVs

In this section, we consider another high level strateggtham
removing edges that cause TIVs. If we assume we have global
information about the delay space, then all the TIVs can séyea
calculated and identified. In this case, a straight forwarategy
is to clean up the delay matrix by removing the edges thatecaus
severe TIVs.

To test this strategy, we identi§0% of the edges in the delay
matrix that have the largest TIV severity. These edges ane si
ply not used by Vivaldi probing neighbors or by Meridian ring
construction. Neighbor selection performance of this apph is
shown in Figure 17 and Figure 18.

From Figure 17, we can see that simply excluding some high vi-
olation edges only marginally improve the neighbor setecper-
formance of Vivaldi. The reason for this result is that TN\aisvide
spread feature of Internet delays. Thus, naively remowingesout-
liers in the delay matrix cannot remove the fundamental lerob
caused by TIVs in Vivaldi.

For Meridian, as can be seen from Figure 18, the TIV outlier re
moval approach actually degrades Meridian’s performakfteid-
ian relies on recursive routing to find the closest serveus the
TIV filter approach may inevitably remove some edges that are
needed for Meridian to route queries to the closest nodesoiWe
serve that, certain rings of a Meridian node may become under
populated by upto 50%. When a query needs to be routed through
a member of that ring, the under-population of that ring mayse
Meridian to fail to route the query further, resulting in spdr per-
formance.

In summary, given the global information, simply excludsame
TIV outliers to clean the delay matrix does not help to imgrany
of the two neighbor selection mechanisms mentioned abogacéd
even with full knowledge of TIVs, we still need specificallfined
strategies for different applications to avoid the impdcT¥/s.

5. TIVALERT MECHANISM

In this section, we propose a TIV alert mechanism and shotv tha
it can be used to introduce TIV awareness into systems likalfi
and Meridian and improve their performance.

1
0.8 B
S 4
8 .
E :
= 0.6 J
k4]
5
o
2
Zo04
E]
€
=3 -
o - . .
0.2 PP e Meridian—-original
[~ - - - Meridian-TIV-severity-filtel
0 0 1 2 3 4
10 10 10 10 10

Percentage penalty

Figure 18: Neighbor selection performance for Meridian with
TIV severity filter

14

——Median TIV severity

TIV severity
[P
(=] [oe] o N

I

N

M,
1 2 3 4 5
Euclidean distance/Measured distance

OO

Figure 19: TIV severity for edges with different prediction ra-
tios

5.1 Alerting Severe TIVs by Metric
Embedding Error

Based on our findings so far, it seems difficult to derive a &mp
model that can predict the TIV severity of an edge accurately
stead, we ask, is it possible to at least identify edges tledilely
to cause severe TIV based on a small random sample of detays fr
the network? In other words, if we measure a small numberref ra
dom edges in the network, can we infer information about héret
a given edge causes severe TIVs? An interesting observation
network embedding mechanisms can help in this case.

——Worst 1%
——Worst 5% | |
——Worst 10%
—=—Worst 20%

0.81

Accuracy
o
o

T

1N
»
T

0.2r

0 0.2 0.4 0.8 1

0.6
Alert ratio threshold

Figure 20: Accuracy of TIV alert mechanism

—=—Worst 1%
——Worst 5%
—+—Worst 10%
——Worst 20%

0.81

0.61

Recall

0.4r

0.2r

0 0.2 0.4 0.8 1

0.6
Alert ratio threshold

Figure 21: Recall rate of TIV alert mechanism

to measure the Vivaldi prediction error. For the predictiatio be-
tween 0 and 5, we set up 50 bins each with the range of 0.1. For
each bin, we collect all the edges whose prediction ratiméain

this bin. We use an error bar to demonstrate the distributfahe

TIV severity of all the edges in this bin. The ceiling of theasr
bar indicates the 90th percentile, the bottom is the 10tbgmeile,

and the marked line shows the median value. Figure 19 shaws th
TIV severity of the edges with different prediction ratiésr those
edges whose prediction ratio is very small, i.e. those edugts
are shrunk a lot in the Euclidean space, their TIV severihdse

to be very high. As the prediction ratios of edges incredseir t
TIV severities decrease. For those edges whose predictasr

In network embedding mechanisms, each node can measure thare larger than 2, their TIV severity is almost 0. Although TV
delays to a small number of random nodes and the measurgadela severity is highly variable within each prediction ratimbthere is
are embedded into a metric space. Because of the TIVs ameng th a clear trend that as the prediction ratio becomes smatierlis-

network delays, it is impossible to predict all the delaysurately
by fitting all the nodes into a metric space. However, an astng
observation is, if an edge causes severe TIVs with othersdlge
highly likely that this edge will be shrunk significantly ing metric

tribution of TIV severity shifts towards higher values. $hiend
is consistently observed for any snapshot of Vivaldi's dyestate
coordinates.

Based on the result in Figure 19, it is not possible to exaurtty

space. The reason behind this is that, if an edge betweenode dict the TIV severity of an edge based on its prediction raat
and B causes a lot of TIVs with other edges, there must be many the result inspires our idea to use the prediction ratio itwoek
alternate paths betweehandB that are shorter than the measured embedding as a heuristic indicator for the TIV severity of\eng

delay. Thus, the optimization procedures in network eminedd
mechanisms will tend to sacrifice the accuracy of the edgkin
order to preserve the many other short edges to minimize/mlb
prediction error.

To demonstrate this observation, we embed Ih%* data into
a 5D Euclidean space using the Vivaldi algorithm, take a shaip
of the produced steady state coordinates, and study thiorela
ship between the prediction error of edges and the TIV sigveri
caused by them. We defined the prediction rgfiglidean distance

Tneasured_distance

edge. The question is, how effective can the predictioro raé
used as a TIV alert mechanism? To answer this question, e eva
uate the accuracy of using different prediction ratio thodds to
alert the worst 1%, 5%, 10% and 20% of edges with the highest
TIV severity. The accuracy and recall rate are shown in Q@
and Figure 21. As can be seen, if we use a tight threshold ge rai
alerts, the alerting accuracy is very high. For example dfuse a

0.1 threshold, we can report the top 1% worst edges with tbe-ac
racy of 92%, and report the top 5% worst edges with the acgurac

of 98%. However, the problem of a tight threshold is that #eai

rate is very low, which means we can only report few edges gmon . — valdi-original

all the ones with severe TIV. For example, as shown in Figdre 2 - -~ Vivaldi-dyn-neigh-iter1 |
if we use a 0.1 threshold, we can only report 1% of the worst 10% s Vivaldi-dyn-neigh-iter2
edges. As we relax the alert threshold, the recall rate izased é -~ Vivaldi-dyn-neigh-iter5 ||
but the accuracy is decreased. Thus, there is a trade-ofébatthe § — Vivaldi-dyn-neigh-iter10
recall rate and the alert accuracy. To use this TIV alert rarisim 2

in practice, we can choose a threshold to provide enough eumb E

of alerts while preserving reasonable accuracy. For examyth 3 0.2

a 0.6 threshold, the TIV alert mechanism raises alert onratd@o

of the edges. Among those edges, 70% of the worst 1% edges are o ‘ ‘ ‘ ‘
reported, and 65% of them belong to the worst 20% edges. The 0 o ey Y%

recall rate for the worst 20% edges is relatively low, thisiig-

ply because the TIV alert mechanism raises alert on only 4% of

the edges. What is more important is that the edges identfied
highly probable to cause severe TIVs.

In summary, we have shown that the prediction ratio of an edge

in network embedding has a useful relationship with its TévVes-

ity. The prediction ratio can thus be used to provide a TI\ftale
mechanism. This makes it possible to introduce TIV awarenes
into the design of distributed systems. In the followingtsets,

we demonstrate how the TIV alert mechanism can be used in Vi-

valdi and Meridian.

5.2 Using TIV Alert Mechanism in Vivaldi

Since Vivaldi is itself a distributed network embedding im&c
nism, it is easy to determine the prediction ratio for theesdtpat
have been measured. So it does not require any additional ove
head to use the TIV alert mechanism in Vivaldi. A convenieayw
to use the TIV alert mechanism in Vivaldi is to use the predict
ratio to identify those edges with high TIV severities, aefirre the
neighbor set for each node.

In particular, the enhanced system we dgthamic neighbor \Vi-
valdi can be explained as follows: Vivaldi is started normallythwi
each node having 32 random neighbors. After Vivaldi runsafor
period T, all the nodes begin to update their neighbors. Tiate
the neighbor set, each node samples another 32 random oesghb

Figure 22: TIV severity of Vivaldi neighbor edges

o
©

o
o

/
7| —— Vivaldi-original

1N
>

//4l - - - Vivaldi-dyn-neigh-iterl
Vivaldi-dyn-neigh-iter2
--- Vivaldi-dyn—neigh-iter5
— Vivaldi-dyn—neigh-iter10|
]
10"

Cumulative distribution

10 10° 10°
Percentage penalty

Figure 23: Neighbor selection performance of dynamic neigh
bor Vivaldi

ous sections, we have shown that just removing TIV outlieessd
not help to improve Vivaldi's performance. The reason why dy
namic neighbor Vivaldi can perform better is that, instefityong

to remove outliers, dynamic neighbor Vivaldi refines thegheor

Combined with the original 32 neighbors, each node now has 64 Set to eliminate TIVs among Vivaldi neighbors. Furthermdhe

neighbor candidates. The 64 neighbor candidates are rdmked
their prediction ratio based on the current Vivaldi cooedés. The
prediction ratio here is defined to lﬁe%% If the pre-
diction ratio of an edge is very small, it means this edge iargha

lot and it is more likely to cause severe TIV. So we remove the 3
nodes with smallest prediction ratios among the 64 neigkbhor
didates, and the remaining 32 nodes are used as the neighbors
the next iteration. This procedure is performed iteragivahd the
neighbor set is updated every T time. Currently, T is set 1@ 10
second simulation time to make sure that Vivaldi coordigatee
converged in each iteration.

To evaluate dynamic neighbor Vivaldi, we first want to showho
effectively the TIV alert mechanism can remove edges thasea
severe TIV in the neighbor update procedure. Figure 22 sliogvs
TIV severity of all the neighbor edges when we update neighbo
set from iteration O (original random 32 neighbors) to itiera 10.
From this figure, we can clearly see that the TIV severity afime
bor edges become smaller and smaller when we iterativelgtepd
neighbor set for each node, which means we effectively remov
those edges with high TIV severities.

Figure 23 shows the neighbor selection performance of di;mam
neighbor Vivaldi. We can see that, our technique can effelsti
improve the neighbor selection performance of Vivaldi wienit-
eratively update Vivaldi neighbor sets. After only 10 itwas, the
performance is clearly better than that of original Vivaldi previ-

dynamic neighbor technique does not add much overhead. [vhe T
alert mechanism is effective at making Vivaldi TIV aware.

5.3 Using TIV Alert Mechanism in Meridian

The operations of Meridian can be separated into two stages:
ring construction and online recursive query. In the ringstauc-
tion stage, each Meridian node needs to selévg V) other Merid-
ian nodes as its ring members and then organizes them intecon
tric rings of exponentially increasing radii. After thegisonstruc-
tion stage, participating Meridian nodes form a loosefyatured
overlay, on which we can perform the second stage operators
line recursive query. The second stage performs recursieeyq
routing and active probing to search for the nearest neighbo

The goal is to show that even straight-forward applicatién o
the TIV alert mechanism to ring construction and recursivery
stages can reduce the impact of TIV on Meridian’s perforreanc
More sophisticated ways to use the TIV alert mechanism thaset
presented here may exist.

Ring Construction - In the ring construction stage, each Merid-
ian node needs to sample a set of other Meridian nodes afgts ri
members, measures the delays between itself to all its rieig-m
bers and then puts all ring members into appropriate ringsdan
the measured delays. As we have shown in Figure 13, thissimpl
ring construction procedure cannot handle all TIVs. Seldkés

can mislead a Meridian node to put two close-by nodes thattoug

to be placed in the same or very close rings in two very differe
rings. So the idea here is to use the TIV alert mechanism ® hel
adjust the ring memberships in order to accommodate thaseese
TIVs. We can either bring the node placed in the far ring back t
the close ring or push the node placed in the close ring toghe f
ring. We assume an independent network embedding mechanism
say, Vivaldi, provides the prediction ratios for the TIV e

The membership adjustment algorithm works as follows: fyr a
Meridian nodeM, we need to check each of its ring membéfs
to see whether the prediction ratio of the edge betweeand M;
is within a safe range. That is, if the prediction ratio of duge is
smaller than certain threshald or larger than another threshald
we need to place that corresponding node into rings not casgdh
on the real measured delay but also based on the predictad del
So, in the worst case, a ring member will be placed into twggin
In this section, we always ugse = 0.6 andt; = 2. These threshold
values by no means represent the optimal setting and we lvave n
yet determined the optimal setting. The goal is simply tonstiwat
using reasonable thresholds can already provide benefits.
Online Recursive Query- During the recursive query stage, the
Meridian system recursively hands off the query to a nodeitha
closer to the target. In order to limit the number of iteratiand
the corresponding probing overheads, [34] suggests toruse-a
ceptance threshol@dto determine when to stop the recursive query.
If, in one iteration, the chosen Meridian node cannot finceast
one node that is closer thahtimes the distance to the target, it
will stop searching. We believe that TIVs in the underlyirgjay
space often misguide Meridian to prematurely stop at a dirhap
node. The idea here is: when the chosen Meridian node candot fi
one node that is closer thahtimes its distance to the target, it will
check the prediction ratio of the edge between itself andaiget,
if the prediction ratio is smaller than certain thresholdthen the
chosen Meridian node will select another set of its ring mersb
to restart the query based on the predicted delay to thettarpe
goal is that if the edge between the current Meridian nodetlaed

0.81

0.6f

0.4r - - Meridian-original

—— Meridian-TIV-aler{

Cumulative distribution

0.2r

02 3

10" 10 10

Percentage penalty

Figure 24: Neighbor selection result of Meridian using TIV
alert mechanism. This technique cause8% more on-demand
probes.

0.8f
- - - Meridian—original

—— Meridian-TIV-alert

0.6f --—-Meridian-no-termination

0.4r

Cumulative distribution

0.2r

3

10" 10° 10 10
Percentage penalty

Figure 25: Neighbor selection result of Meridian using TIV
alert mechanism. This technique cause8% more on-demand
probes.

target causes severe TIVs, then we may have a better chance to

find a node that is closer to the target by using the predicééalyd
to choose a subset of ring members to query. Again, we set the
thresholdt; t0 0.6.

We evaluate the effectiveness of applying the TIV alert nmech
nism to Meridian using the normal setting, where there a@20
Meridian nodes out of 4000 nodes afid= 0.5, a = 1, s = 2,

k = 16 andl = 4. Figure 24 shows the neighbor selection results
of Meridian after using the TIV alert mechanism. As we can see
the TIV alert mechanism does improve Meridian's perfornganc

applying the TIV alert mechanism is even better than thelizieé
Meridian which disables the termination condition and aaoses
about5% more online probing overhead. This improvement is be-
cause Meridian is made aware of TIVs and cope with TIVs diyect

In summary, a simple application of the TIV alert mechanism
can improve Meridian. Although the magnitude of improvemen
is modest, more effective ways to apply the TIV alert mecani
may exist.

Because some ring members are placed into 2 rings and becaus§g,. RELATED WORK

we need to restart query based on the predicted delay ooedlgjo
the online probing overhead increases by ali%at For compari-
son, allowing the same additional probing overhead by axirey
the value ofg3 in regular Meridian provides less performance im-
provement.

We also evaluate our techniques under another setting where
there are only 200 Meridian nodes out of 4000 nodes and each
Meridian node uses all other 199 Meridian nodes as its rinmme
bers. Figure 25 shows the result. There are three sets dfsiesu
“Meridian original” uses the acceptance threshgle: 0.5. “Merid-
ian TIV alert” stands for Meridian with the TIV alert mecham
used. “Meridian no termination” uses the idealized se€itigt is
the same as what we used in Section 3.2.2. As can be seen, if all
Meridian nodes are used as ring members, Meridian’s peeioca
is already very good. But after applying the TIV alert medbam
we can still improve its performance with only ab@% more on-
line probing overhead. Note that the performance of Menidifter

Our work on the impact of triangle inequality violations agigh-
bor selection mechanisms is closely related to many prevétud-
ies on performance analysis of network coordinate systems.

Network coordinate systems are regarded as a promising ap-
proach for neighbor selection because of its simplicity acala-
bility to predictO(N?) pair-wise delays by a constant number of

measurement on each node. The basic idea of this method is to

embed the Internet delay space into a geometric space.wkiogo
the basic idea of network embedding, several schemes have be
proposed to set up an efficient and scalable network codalina
systems. Centralized methods such as GNP [17], Big-Ban [27
PCA [32, 12] and Hyperbolic [28] require a fixed set of landksar
which could be a bottleneck of the system. Therefore, sornerde
tralized methods such as NPS [18], Vivaldi [3], PIC [2] andlht-
houses [20] were proposed to improve the scalability of ngtw
coordinate systems. We choose Vivaldi as a typical netwodk-c
dinate system in our study. The findings and techniques vagestu

in this paper can potentially be applied to other networkdoate
systems.

While relative error evaluations and theoretical analj@is 29]
demonstrate the remarkable accuracy of network coordisyse
tems, some recent studies explore the limitations of thelsenses
in applications. Lua et al. [13] evaluate the network coaatk
schemes by application oriented metrics such as relative loss
and closest neighbors loss, and show that, these schenfemper
poorly under the new metrics. Zhang et al. [37] study thegrerf
mance of these network coordinate algorithms under ovenlai-
cast, server selection and overlay construction. The nfimdings
are that network coordinate schemes are inadequate foptiie a
cations in terms of the prediction accuracy, and the higbremm
short links has a big impact on application performance. dr p
allel, many Internet measurement studies repeatedly corifie
wide-spread TIVs found in the Internet delays [39, 11, 36].39],
Zheng et al. argue that, TIV is a natural feature of Intermetcs
ture and routing policies and it poses a big problem on networ
coordinate systems. Lee et al. [11] analyze the error of ortw
coordinate schemes and claim that the inaccuracy of Eatliden-
bedding is caused by a large degree of TIVs in the Internetydel
Furthermore, some recent studies [21, 10, 9] report thdlitgab
problems of Vivaldi in practical deployment, but this prefu is
out of the scope of this paper.

Several techniques have been tried to deal with TIVs in ndtwo
coordinate systems by introducing TIVs to the delay préafict
IDES [16] assigns an incoming and an outgoing vector to eade n
by matrix factorization techniques, such as Singular V&laeom-
position (SVD) or Non-negative Matrix Factorization(NMH}he
distance between nodeand ; is estimated by the inner product
of 4's outgoing vector ang’s incoming vector. This method re-
moves the constraint of triangle inequality. Lee et al. [irjposes
to add a localized adjustment term (LAT) to Euclidean cauaitis
to account for the non-Euclidean effect. However the evalna
results in this paper have shown that, these techniques tdono
prove the neighbor selection performance of network coate
system. In [36], a hierarchical approach is proposed todwvgthe
performance of network coordinate system. The idea of this a
proach is, each node is assigned with multiple coordinatdglze
network delays in different scales are predicted by difieset of
coordinates. The difficulty of this approach is, it is veryd&o
predict which scale an edge belongs to without measuringlit.
the above results inspire our work to understand the imdadis
on network coordinate systems.

Faced with the inaccuracy problem of network coordinate sys
tems, Wong et al. [34] proposes a totally different neighbelec-
tion mechanism, Meridian, which is based on recursive aagc
The Meridian system still assumes triangle inequality i lifter-
net delays. To the best of our knowledges, this paper is the fir
work to study the impact of TIVs on the Meridian system and to
propose technigues to deal with TIVs in the Meridian system.

In addition to network coordinates and the Meridian systesme
other location techniques requiring information beyond-amend

delay have also been proposed. The OASIS system [5] selects

closest servers using geographical locations. iPlaneld#tand

S® [26] propose to predict network delays with network topglog
map information gathered lyaceroute measurements. Although
these techniques are quite different from Vivaldi and Merid
iPlane and % are still based on the triangle inequality assumption
for network delays. Thus, the findings of this paper can ftky

be helpful for improving the performance of iPlane aridifsface

of TIVs in the future.

7. CONCLUSIONS

TIVin Internet delays can degrade the performance of thsted
systems that neglect TIV when choosing overlay neighbore W
have investigated the severity of TIV in several delay deta and
highlighted the irregular behavior of TIV. We have also istve
gated the problems caused by TIV in two representative beigh
selection mechanisms (Vivaldi and Meridian) and the fakiyib
of several strawman solutions. Finally, we have proposedva T
alert mechanism that can help identify edges with severesBivd
shown that it can enhance Vivaldi and Meridian to become TIV-
aware. We believe these findings serve as a first step towailds b
ing robust TIV-aware distributed systems.

Acknowledgment

We would like to thank our shepherd Albert Greenberg and the
anonymous reviewers for their valuable feedback on eavber
sions of this paper.

8. REFERENCES
[1] Y. Chu, S. G. Rao, and H. Zhang. A case for end system
multicast. InProceedings of ACM SSGMETRICS, June 2000.
[2] M. Costa, M. Castro, A. Rowstron, and P. Key. PIC: Pratic
Internet coordinates for distance estimation. Technical
Report MSR-TR-2003-53, Microsoft Research, September
2003.
F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A
decentralized network coordinate systemPfoceeding of
ACM S GCOMM, August 2004.
P. Francis, S. Jamin, V. Paxson, L. Zhang, D.F. Gryniewic
and Y. Jin. An architecture for a global Internet host distan
estimation service. IRroceedings of IEEE INFOCOM ' 99,
New York, NY, March 1999.
Michael J. Freedman, Karthik Lakshminarayanan, andiav
Mazieres. Oasis: Anycast for any service Pioceedings of
ACM NSDI, May 2006.
[6] J.Jannotti, D. Gifford, K. L. Johnson, M. F. Kaashoekdan
J. W. O'Toole Jr. Overcast: Reliable multicasting with an
overlay network. IrProceedings of the Fourth Symposium on
Operating System Design and Implementation (OSDI),
October 2000.
David R. Karger and Matthias Ruhl. Finding nearest
neighbors in growth restricted metrics.Pnoccedings of
ACM Symposium on Theory of Computing, 2002.
C. Kommareddy and B.Bhattacharjee. Finding close fiten
on the internet. IfProceedings of the Ninth International
Conference on Network Protocol s(ICNP), November 2001.
[9] J. Ledlie, P. Gardner, , and M. Seltzer. Network coortisa
in the wild. InProceeding of USENIX NSDI’ 07, April 2007.
J. Ledlie, P. Pietzuch, and M. Seltzer. Stable and ateur
network coordinates. IRroceeding of International
Conference on Distributed Computing Systems, 2006.
[11] Sanghwan Lee, Zhi-Li Zhang, Sambit Sahu, and Debanjan
Saha. On suitability of Euclidean embedding of Internet
hosts. InProc. SGMETRICS 2006, June 2006.
H. Lim, J. Hou, and C.-H. Choi. Constructing internet
coordinate system based on delay measurement. In
Proceedings of IMC, Miami, FL, October 2003.
Eng Keong Lua, Timothy Griffin, Marcelo Pias, Han Zheng,
and Jon Crowcroft. On the accuracy of embeddings for
internet coordinate systems. Rnoceedings of IMC,
Berkeley, CA, October 2005.
H. Madhyastha, T. Anderson, A. Krishnamurthy, N. Sgrin
and A. Venkataramani. A structural approach to latency
prediction. InProceedings of Internet Measurement
Conference, Rio de Janeiro, Brazil, 2006.
Harsha V. Madhyastha, Tomas Isdal, Michael PiatekirCol
Dixon, Thomas Anderson, Arvind Krishnamurthy, and Arun

(3]

(4]

(5]

(7]

(8]

[10]

[12]

[13]

[14]

[15]

Venkataramani. iPlane: an information plane for distréolut
services. IrProc. OSDI 2006, November 2006.

[16] Y. Mao and L. K. Saul. Modeling distances in large-scale
networks by matrix factorization. IRroceedings of Internet
Measurement Conference, Sicily, Italy, October 2004.

[17] T. S. E. Ng and H. Zhang. Predicting Internet networking
distance with coordinates-based approacheBraoeedings
of IEEE INFOCOM, June 2002.

[18] T. S. E. Ng and H. Zhang. A network positioning system for
the internet. IProceedings of USENIX Annual Technical
Conference, 2004.

[19] p2psim. http://www.pdos.lcs.mit.edu/p2psim/.

[20] M. Pias, J. Crowcroft, S. Wilbur, T. Harris, and S. Bhatt
Lighthouses for scalable distributed location Riroceedings
of IPTPS, 2003.

[21] P. Pietzuch, J. Ledlie, and M. Seltzer. Supporting 1oekw
coordinates on planetlab. Rroceeding of the Second
Workshop on Real Large Distributed Systems (WORLDS 05),
2005.

[22] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. In
Proceedings of ACM SGCOMM, 2001.

[23] A. Rowstron and P. Druschel. Pastry: Scalable, distet
object location and routing for large-scale peer-to-peer
systems. INFIP/ACM International Conference on
Distributed Systems Platforms (Middleware), 2001.

[24] B. Bhattacharjee S. Banerjee and C. Kommareddy. Skealab
Application Layer Multicast. IProceedings of ACM
S GCOMM, August 2002.

[25] S. Savage, A. Collins, E. Hoffman, J. Snell, and T. Arsder.
The End-to-end Effects of Internet Path Selection. In
Proceedings of ACM Sgcomm, August 1999.

[26] P. Sharma, Z. Xu, S. Banerjee, and S. Lee. Estimating
network proximity and latencyACM Computer
Communication Review, pages 39-50, 2006.

[27] Y. Shavitt and T. Tankel. Big-bang simulation for embéed
network distances in Euclidean spacePhoceedings of
IEEE INFOCOM, San Francisco, CA, March 2003.

[28] Y. Shavitt and T. Tankel. On the curvature of the Inteaned
its usage for overlay construction and distance estimakion
Proceedings of IEEE INFOCOM, April 2004.

[29] A. Slivkins. Distributed Approaches to Triangulatiand
Embedding. IrProceedings 16th ACM-S AM Symposium on
Discrete Algorithms (SODA), 2004.

[30] A. Slivkins, J. Kleinberg, and T. Wexler. Triangulatiend
Embedding using Small Sets of BeaconsPtoceedings of
FOCS, 2004.

[31] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for Internet applications. RProceedings of ACM
S GCOMM, 2001.

[32] L. Tang and M. Crovella. Virtual landmarks for the intet.
In Proceedings of IMC, Miami, FL, October 2003.

[33] Marcel Waldvogel and Roberto Rinaldi. Efficient
Topology-Aware Overlay Network. IRirst Workshop on
Hot Topicsin networks (HotNets-1), October 2002.

[34] Bernard Wong, Aleksandrs Slivkins, and Emin Gun Sirer.
Meridian: A lightweight network location service without
virtual coordinates. IfProceedings of ACM SGCOMM,
August 2005.

[35] B. Zhang, T.S.Eugene Ng, A.Nandi, R.Riedi, P.Druschet
G.Wang. Measurement-based analysis, modeling, and
synthesis of the internet delay spacePhaceedings of ACM
S GCOMM/USENIX Internet Measurement Conference
(IMC), October 2006.

[36] R. Zhang, Y. Hu, X. Lin, and S. Fahmy. A hierarchical
approach to internet distance predictionPhoceedings of
IEEE ICDCS Lisboa, Portugal, 2006.

[37] R. Zhang, C. Tang, Y. Hu, S. Fahmy, and X. Lin. Impact of
the inaccuracy of distance prediction algorithms on irgern
applications: an analytical and comparative study. In

[38]

[39]

Proceedings of IEEE INFOCOM, Barcelona, Spain, April
2006.

B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An
infrastructure for wide-area fault-tolerant location and
routing. U.C. Berkeley Technical Report
UCB//CSD-01-1141, 2001.

Han Zheng, Eng Keong Lua, Marcelo Pias, and Timothy
Griffin. Internet routing policies and round-trip times.the
6th anual Passive and Active Measurement \orkshop,
Boston, MA, 2005.

