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The administration of large Role-Based Access Control (RBAC) systems is a challenging prob-
lem. In order to administer such systems, decentralization of administration tasks by the use of
delegation is an effective approach. While the use of delegation greatly enhances flexibility and
scalability, it may reduce the control that an organization has over its resources, thereby dimin-
ishing a major advantage RBAC has over Discretionary Access Control (DAC). We propose to use
security analysis techniques to maintain desirable security properties while delegating administra-
tive privileges. We give a precise definition of a family of security analysis problems in RBAC,
which is more general than safety analysis that is studied in the literature. We show that two
classes of problems in the family can be reduced to similar analysis in the RT[«,N] role-based
trust-management language, thereby establishing an interesting relationship between RBAC and
the RT framework. The reduction gives efficient algorithms for answering most kinds of queries
in these two classes and establishes the complexity bounds for the intractable cases.
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and Protection; D.4.60perating Systems]: Security and Protection — Access Controls
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1. INTRODUCTION

The administration of large Role-Based Access Control (RBsystems is a challenging
problem. A case study carried out with Dresdner Bank, a majsopean bank, resulted
in an RBAC system that has around 40,000 users and 1300 &xtésgd et al. 2001]. In
systems of such size, it is impossible for a single systemarggofficer (SSO) to admin-

ister the entire system. Several administrative modelfRBBAC have been proposed in
recent years, e.g., ARBAC97 [Sandhu et al. 1999], ARABCR[DE and Sandhu 2002],
and CLO3 (Crampton and Loizou) [Crampton and Loizou 2003kll these models, del-
egation is used to decentralize the administration tasks.
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A major advantage that RBAC has over discretionary accassadDAC) is that if an
organization uses RBAC as its access control model, theortfenization (represented
by the SSO in the system) has central control over its ressur@his is different from
DAC, in which the creator of a resource determines who caesscthe resource. In most
organizations, even when a resource is created by an enaplihyeresource is still owned
by the organization and the organization wants some levabatrol over how the resource
is to be shared. In most administrative models for RBAC, t8®$lelegates to other users
the authority to assign users to certain roles (therebytigiguthose users certain access
permissions), to remove users from certain roles (thereligking certain permissions
those users have), etc. While the use of delegation in therdsinaition of an RBAC system
greatly enhances flexibility and scalability, it may redtiee control that the organization
has over its resources, thereby diminishing a major adgan®BAC has over DAC. As
delegation gives a certain degree of control to a user thgtlmeeaonly partially trusted,

a natural security concern is whether the organization thetess has some guarantees
about who can access its resources. To the best of our kngeyltte effect of delegation
on the persistence of security properties in RBAC has nat beasidered in the literature
as such.

In this paper, we propose to use security analysis techsifiet al. 2005] to maintain
desirable security properties while delegating admiafste privileges. In security analy-
sis, one views an access control system as a state-transytiteem. In an RBAC system,
state changes occur via administrative operations. Sgcamialysis techniques answer
guestions such as whether an undesirable state is reachatlgshether every reachable
state satisfies some safety or availability properties.ntptas of undesirable states are a
state in which an untrusted user gets access and a statedh whiser who is entitled to
an access permission does not get it.

Our contributions in this paper are as follows.

—We give a precise definition of a family of security analysisigems in RBAC. In
this family, we consider queries that are more general themigs that are considered
in safety analysis [Harrison et al. 1976; Koch et al. 2002@tdn and Snyder 1977;
Sandhu 1988].

—\We show that two classes of the security analysis problerRBiC can be reduced to
similar ones inRT[«, N], a role-based trust-management language for which sgcurit
analysis has been studied [Li et al. 2005]. The reductioagy@fficient algorithms for
answering most kinds of queries in these two classes antlisbies the complexity
bounds for the intractable cases.

Our contributions are significant in that our work present&g to capture and represent
a large class of security properties of interest in complBAR systems such as the one
discussed by [Schaad et al. 2001]. Our work also shows hogralkinds of these security
properties can be efficiently verified. Our establishmentarhplexity bounds for the in-
tractable cases gives us a clear understanding of the dtiffimfithe problems so that future
work can develop efficient heuristics. In Section 2.2, weuks how security analysis is
used in RBAC systems, which further demonstrates the signifie of our contributions.

The rest of this paper is organized as follows. In Section€define a family of security
analysis problems in RBAC and summarize our main resultsgiéan overview of the
results for security analysis iRT[«,N] in Section 3. We present the reduction from
security analysis in RBAC to that iRT[«—, N] in Section 4. Related work is discussed in
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Section 5. We conclude with Section 6. An appendix contaisfs not included in the
main body.

2. PROBLEM DEFINITION AND MAIN RESULTS

In [Li et al. 2005], an abstract version of security analyisiglefined in the context of
trust management. In this section we restate the definitidhd context of general access
control schemes.

Definition 1. (Access Control Scheme&n access control scheme is modelled as a
state-transition systefit’, Q, -, ¥), in which T is a set of states) is a set of queriesp is
a set of state-change rules, and” x Q — {true, false} is called the entailment relation,
determining whether gueryis true or not in a given state. state v € I, contains all
the information necessary for making access control datisat a given time. When a
query,q € @, arises from an access request; ¢ means that the access corresponding
to the requesy is granted in the state, and~ t/ ¢ means that the access corresponding
to ¢ is not granted. One may also ask queries other than thosespomding to a specific
request, e.g., whether every principal that has accessédsaairce is an employee of the
organization. Such queries are useful for understandimgtbperties of a complex access
control system.

A state-change rule) € ¥, determines how the access control system changes state.
Given two states andy; and a state-change rule we writey —., 1 if the change from
~ to v, is allowed by, and~y »iw, ~1 if a sequence of zero or more allowed state changes

leads fromry to ;. If ~ 'i’w ~1, We say thaty; is ¢-reachablefrom ~, or simply~; is
reachable when~ and+) are clear from the context.

An example of an access control scheme is the HRU schemdsttatived from the
work by Harrison et al. [Harrison et al. 1976]. The HRU schambased on the access
matrix model [Graham and Denning 1972; Lampson 1971]. Warmasshe existence of
three countably infinite setsS, O, and. A, which are the sets of all possible subjects,
objects, and access rights. We assume furtherdhatO. In the HRU scheme:

—T is the set of all possible access matrices. Formally, eaehl’ is identified by three
finite sets,S, ¢ S, O, C O, andA, C A, and a functionM,[]: S, x O, —
24+, where M, [s, o] gives the set of rights has overo. An example of a statey, is
one in whichS, = {Admin},O, = {employeeData} U S,, A, = {own, read}, and
M., [Admin, Admin] = ), and M., [Admin, employeeData] = {own, read}. In this state,
two objects exist, of which one is a subject, and the systeasssciated with the two
rights, own andread.

—Q is the set of all queries of the formi € [s,0], wherea € Ais aright,s € Sisa
subject, and € O is an object. This query asks whether the righexists in the cell
corresponding to subjestand objecb.

—The entailment relation is defined as follows: - a € [s,0] if and only if s €
Sy, 0 € Oy, anda € M,[s,0]. For example, let the query; be read €
M[Admin, employeeData]. and the queryy, be own € M[Admin, Admin] Then, for
the state;y, discussed above,t ¢; and~ t/ gs.

—Each state-transition rulg is given by a set of commands. Givénthe change fromy
to v, is allowed if there exists commandnsuch that the execution of the command in
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the statey results in the state,. An example ofy is the following set of commands.

command createObject(s, o) command grant_a(s,s’,0)
create object o if own € [s, 0]
enter own into [s, o] enter a into s, 0]

The set of queries is not explicitly specified in [Harrisoraktl976]. It is conceivable
to consider other classes of queries, e.g., comparing tloé akk subjects that have a given
right over a given object with another set of subjects. Infamework, HRU with different
classes of queries can be viewed as different schemes.

Definition 2. (Security Analysis in an Abstract Sett)rgiven an access control scheme
(T, Q,F, T), a security analysis instance takes the féfny, ¢, IT), wherey € T'is a state,
g € Qisaqueryy € ¥ is a state-change rule, afile {3, V} is a quantifier. An instance
(7, ¢,,3) asks whether there exists such thaty 'iw, ~1 andvy; F ¢. When the answer
is affirmative, we say is possible(given~y andv). An instance(v, ¢, v, V) asks whether
for every~; such thaty ’i’w ~v1, 71 F ¢q. If so, we sayy is necessarygiven~ andi).

For our example HRU scheme from above, adpps the start state. h, there is only
one subject (namelyadmin) and the access matrix is empty. The system is associated
with the two rights,own andr. Let the queryg be r € M][Alice, employeeData] for
Alice € § andemployeeData € O. Let the state-change rujebe the set of two commands
createObject and grant_r. Then, the security analysis instangg ¢, v, 3) is true. The
reason is that although in the start stateAlice does not have the right over the object
employeeData, there exists a reachable state fronin which she has such access. The
security analysis instanag, ¢, v, V) is false, as there exists at least one state reachable
from ~ (v itself) that does not entail the query.

Security analysis generalizes safety analysis. As we gésguthe following section,
with security analysis we can study not only safety, but alsgeral other interesting prop-
erties, such as availability and mutual-exclusion.

2.1 A family of security analysis problems in Role-Based Access Control

We now define a family of security analysis problems in theexirof RBAC by specifying
T', Q, andt, while leavingV¥ abstract. By considering different possibilities #&r one
obtains different classes of RBAC security analysis prwislén this family. We consider
two specific instances af in sections 2.3 and 2.4.

We assume a basic level of familiarity with RBAC; readers i@ferred to [Ferraiolo
etal. 2001; Sandhu et al. 1996] for an introduction to RBA@.a8sume that there are three
countable setd4 (the set of all possible usersy, (the set of all possible roles), afi(the
set of all possible permissions). The family of analysishpems is given by specializing
the analysis problem defined in Definition 2 to consider azcestrol schemes that have
T', Q, andt specified as follows.

States (I'): I'is the set of all RBAC states. An RBAC statg,is a 3-tuple{UA, PA, RH),

in which the user assignment relatié™ C U/ x R associates users with roles, the per-
mission assignment relatiad?b4d C P x R associates permissions with roles, and the role
hierarchy relatiolRH C R x R is a partial order among roles fd. We denote the partial
order by>. r; = r, means that every user who is a memberois also a member af;,

and every permission that is associated witls also associated with .
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Bob _Carol > Users
Role
@‘@ Hierarchy

‘ Engineer‘ ‘ PartTime‘ ‘ FuIITime‘ ‘ HumanResourcé

| Permission

RH = { (Engineer, Employee), (FullTime, Employee),
(PartTime, Employee) , (ProjectLead, Engineer),
(Manager, FullTime) }.

PA = { (Access, Employee) , (View, HumanResource),

(Edit, Engineer) }.

(Alice, PartTime) , (Alice, Engineer),

(Bob, Manager) , (Carol, HumanResource) }.

{
UA = {
Fig. 1. An example RBAC state with a role hierarchy, users and permissions.s Rateshown in

solid boxes, permissions in dashed boxes and users in ovals. A line@seggpresents a role-role
relationship, the assignment of a permission to a role or the assignmentsef to a role.

ExAMPLE 1. Figure 1is an example of an RBAC state. It reflects an orgdioin that
has engineers, and whose human-resource needs are oats(Le¢ human-resource per-
sonnel are not employees). Everyone in the organization engployee, and therefore a
member of the rol&mployee. Some of the employees are full-time (members of the role
FullTime), and the others are part-time (members of the Pale Time). All managers are
full-time employees. All employees have access to the offiod therefore have the per-
missionAccess. Engineers may edit code (have the permis&odi), and human resource
personnel may view employee-details (have the permisgiom).

We now discuss some example memberé/df, PA and RH. The usefAlice is an en-
gineer who is a part-time employee. Therefdlice, Engineer) and (Alice, PartTime)
are members ofUA. All employees have access to the office, and therefore,
(Access, Employee) is a member ofPA. Project leads are engineers, and therefore
(ProjectLead, Engineer) is a member ofRH (i.e., ProjectLead = Engineer).

Given a statey = (UA, PA, RH), every role has a set of users who are members of that
role and every permission is associated with a set of useoshabe that permission. We
formalize this by having every statedefine a functiorusers., : R UP — 2V, as follows.
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For anyr € R andu € U, u € users,[r] if and only if either(u, ) € UA or there exists
r1 such that, > r and(u,r) € UA. Foranyp € P andu € U, u € users,[p] if and
only if there exists- such that(p, 1) € PA andu € users,[r1]. Note that the effect of
permission propagation through the role hierarchy is diydaken into consideration by
the definition ofusers, [r].

ExamMPLE 2. Letthe RBAC state shown in Figure 1 HeThen, for the rol€ngineer,
users[Engineer] = {Alice}. Similarly, for the permissiorAccess, users,|[Access| =
{Alice, Bob}.

Queries (Q): The purpose of a query is to encode some property of a statéstioh
interest. For this, we introduce the notionugfer setdy extending our definition of the
functionusers,,. The intuition is as follows. Given a state, a user set evauto a set of
users. A query encodes a comparison of user sets, whichageal(in the entailment of a
guery) to a comparison of two sets of users. As we demonsabh a representation for
a query is quite powerful; indeed, we are able to capturerabpeoperties of interest. The
reason is that properties regarding users, roles and p@amsscan all be captured using
user sets.

A query ¢ has the forms; 1 so, wheres;, s € S, andS is the set of alluser sets
defined to be the least set satisfying the following condg&io(1)R UP C S, i.e., every
role r and every permissiop is a user set; (2Juy, uo, - ,ux} € S, wherek > 0 and
u; € Uforl < i <k,i.e., afinite set of usersis a user set; anc(8)sz, s1Ns2, (s1) € 5,
wheresy, so € S, i.e., the set of all user sets is closed with respect to ynitearsection
and paranthesization. We extend the functieers, in a straightforward way to give a
valuation for all user sets. The extended functisars,: S — 2V is defined as follows:
users, [{u1,ua, - ,up}] = {u1,ua, - ,up}t, users,[(s)] = users,[s], users,[s1 U sa| =
users, [s1] U users,[ss], andusers, [s; N s3] = users,[s1] N users,[ss]. We say a query
s1 O so is semi-statidf one of s1, s, can be evaluated independent of the state, i.e., no
role or permission appears in it. The reason we distingueshi-static queries is that (as
we assert in Sections 4.1 and 4.2) a security analysis icstamolving only such queries
can be solved efficiently.

Entailment (F): Given a statey and a querys; J so, v b s1 O so if and only if
users.[s1] D users,[sa].

ExamPLE 3. Continuing from the previous examples, an example of aygue is
FullTime N Access I {Alice}, for the roleFull Time, the permissior\ccess and the user
Alice. This query is semi-static; the user $&ice} can be evaluated (to itself) independent
of the state.

The queryg asks whetheAlice is a full-time employee that has access to the office. To
find out whethery entailsq or not, we evaluate as follows. We evaluate the user set
FullTime to the set of user§Bob}. We evaluate the user sAtcess to the set of users
{Alice, Bob}. We intersect the two sets of users to obtain the set of y&is}. The user
set{Alice} does not need further evaluation; it is already a set of usés now check
whether the set of usefd\lice} is a subset of the set of usefBob} and determine that
~ I/ q. If another query,’ is Edit J ProjectLead (i.e., whether project leads can edit code),
theny - ¢'.

The state of an RBAC system changes when a maodification is neadecomponent of

ACM Journal Name, Vol. V, No. N, Month 20YY.



(UA, PA, RH). For example, a user may be assigned to a role, or a role tigrae-
lationship may be added. In existing RBAC models, both qairss and administrative
models affect state changes in an RBAC system. For examglenstraint may declare
that rolesr; andr, are mutually exclusive, meaning that no user can be a menfibetto
roles. If a usew is a member of, in a state, then the state is not allowed to change to a
state in whichu is a member of, as well. Anadministrative modahcludes administra-
tive relations that dictates who has the authority to chahgerarious components of an
RBAC state and what are the requirements these changesdthsatisfy. Thus, in RBAC
security analysis, a state-change rule may include canttradministrative relations, and
possibly other information.

In this section, we leave the state-change rule abstracth@rfollowing reasons.
First, there are several competing proposals for consttaimguages [Ahn and Sandhu
2000; Jaeger and Tidswell 2001; Crampton 2003] and for adimitive models in
RBAC [Sandhu et al. 1999; Oh and Sandhu 2002; Crampton armbud003; Ferraiolo
et al. 2003]; a consensus has not been reached within the eoitym~urthermore, RBAC
is used in diverse applications. It is conceivable thaedéht applications would use dif-
ferent classes of constraints and/or administrative nspdbkerefore different classes of
problems in this family are of interest.

Given a statey and a state-change rule one can ask the following questions using
security analysis.

—Simple Safetyis s O {u} possible? This asks whether there exists a reachable state i
which the user set includes the (presumably untrusted) userA ‘no’ answer means
that the system is safe.

—Simple Availability: is s J {u} necessary? This asks whether in every reachable state,
the (presumably trusted) useris always included in the user set A ‘yes’ answer
means that the resources associated with the useragetalways available to the user
u.

—Bounded Safetyis {u1,us, ..., u,} 3 s necessary? This asks whether in every reach-
able state, the user sets bounded by the set of usefrg;, us, . .., u, }. A'yes’ answer
means that the system is safe. A special case of boundeg safdttual Exclusion
which asks: ig) O (s; N s2) necessary? This asks whether in every reachable state, no
user is a member of both user sefsands,. A ‘yes’ answer means that the two user
sets are mutually exclusive.

—Liveness is ) O s possible? This asks whether the userssalways has at least one
user. A ‘no’ answer means that the liveness of the resoussscated withs holds in
the system.

—Containment is s; O so necessary? This asks whether in every reachable statg, ever
user in the user set, is in the user set;. Containment can be used to express a
safety property, in which case, a ‘yes’ answer means thagafety property holds. An
example of containment for the RBAC state in Figure 1 and ssi@i-change rule is:

“is Employee O Access necessary?”, for the rolemployee and the permissioAccess.
This asks whether in every reachable state, every user whthbgoermissiomccess
(i.e., has access to the office) is a member of theEaigloyee (i.e., is an employee). A
‘yes’ answer means that our desired safety property holds.

Containment can express availability properties also.., Eig Access J Employee
necessary?” asks whether the permisshaness (i.e., access to the office) is always
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available to members of the rognployee (i.e., employees). A ‘yes’ answer means that
the availability property holds.

We point out that that all the above properties (except fort@ioment) use semi-static
queries, and therefore, as we mention in the context of @sieni this section, we can
efficiently determine whether those properties are satisfie

2.2 Usage of RBAC security analysis

In an RBAC security analysis instan¢e, g, ¢, IT), the statey fully determines who can
access which resources. In addition to administrativecpatiformation, the state-change
rule ¢ also contains information about which users are trustedani access control
system there arfusted usersthese are users who have the authority to take the system
to a state that violates security requirements but areeusbt to do so. An SSO is an
example of a trusted user.

Security analysis provides a means to ensure that secagtjrements (such as safety
and availability) are always met, as long as users identifgettusted behave according to
the usage patterns discussed in this section. In other weedsrity analysis helps ensure
that the security of the system does not depend on usersthdrethose that are trusted.

Each security requirement is formalized as a security aiaigstance, together with an
answer that is acceptable for secure operation. For examnpilee context of the RBAC
system whose state in shown in Figure 1, a security requitemay be that only employ-
ees may access the office. This can be formalized as an iestanc v, V), wherey is the
current stateg is Employee 3 Access, andy specifies administrative policy information.
The rulesy should precisely capture the capabilities of users thahatérusted. In other
words, any change that could be made by such users shouldobedlby+. The rule
1 could restrict the changes that trusted users can makeysetiaese are trusted not to
make a change without verifying that desirable securitypprties are maintained subse-
guent to the change. For the example discussed above, thptable answer is “yes”, as
we want to ensure that everyone who has the permigsiosss is an employee. The goal
is to ensure that such a security requirement is alway<isaltis

Suppose that the system starts in a staseich that the answer o/, ¢, v, V) is “yes”.
Further, suppose a trusted user (such as the SSO) attemptkoa change that is not
allowed by, e.g., the SSO decides to grant certain administrativelgges to a user
u. Before making the change, SSO performs security analysig, ', V), wherey’ and
¢’ are resulted from the prospective change. Only if the anssvgres”, does the SSO
actually make the change. The fact tljalimits the SSO from making changes does not
mean that we require that the SSO never make such changefletts the requirement
that the SSO perform security analysis and make only thoaeggs that do not violate
security properties.

This way, as long as trusted users are cooperating, theityeofian access control
system is preserved. One can delegate administrativdguis to partially trusted users
with the assurance that desirable security propertiesyallvald. By using different)’s,
one can evaluate which sets of users are trusted for a gigemitygproperty. In general, it
is impossible to completely eliminate the need to trust peogdowever, security analysis
enables one to ensure that the extent of this trust is weknstood.
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2.3 Assignment and trusted users (AATU)

In this paper, we present solutions to two classes of sgcamitlysis problems in RBAC.
Both classes use variants of the URA97 component of the ARBA&Iministrative model
for RBAC [Sandhu et al. 1999]. URA97 specifies how tlid relation may change.

The first class is called Assignment And Trusted Users (AATU)vhich a state-change
rule ) has the form(can_assign, T). The relationcan_assign C R x C x 2% determines
who can assign users to roles and the preconditions thesehae to satisfyC is the set
of conditions, which are expressions formed using roles two operators) andu, and
parenthesesr,, ¢, rset) € can_assign means that members of the relgecan assign any
user whose role memberships satisfy the conditiclo any roler € rset. For example,
(ro, (r1 Urg) Nrs, {ry, r5}) € can_assign means that a user that is a member of the role
ro is allowed to assign a user that is a member of at least ome afdr,, and is also a
member ofr3, to be a member aof, orrs. T' C U is a set of trusted users; these users are
assumed not to initiate any role assignment operation pthpose of security analysis.
The setl" is allowed to be empty.

Definition 3. (Assignment And Trusted Users — AATThe class AATU is given by
parameterizing the family of RBAC analysis problems in $ec®.1 with the following
set of state-change rules. Each state-changeyrlias the form{can_assign,T) such
that a state change from = (UA, PA, RH) to v, = (UA;, PA;, RH,) is allowed by
¥ = (can_assign,T) if PA = PA;, RH = RHy, UA; = UAU {(u,r)}, where(u,r) ¢
UA and there exist$r,, c, rset) € can_assign such thatr € rset, u satisfiese, and
users,,[rq] € T (i.e., there exists at least one user who is a member of the y@nd is not
in T, so that such a user can perform the assignment operation).

ExAMPLE 4. In this example, we consider the question of whether aqodatt user,
Alice, can become ®rojectLead given a system in AATU. In our example, we do not
wantAlice to become &rojectLead unless the trusted administratadarol is involved. We
encode this question as a security analysis instance.

For the state;y, shown in Figure 1 and discussed in the previous example@gte: s
change ruley, in the class AATU ig can_assign, T, where

can_assign = {(Manager, Engineer A FullTime, {ProjectLead}),
(HumanResource, true, {Full Time, PartTime})}

T = {Carol}

That is,v) authorizes managers to assign a user to theR@dgctLead provided that the
user is a member of the rol&ngineer and FullTime. In addition,+) authorizes anyone
that is a member of the roldumanResource to assign users to the rolésll Time and
PartTime. SettingT to {Carol} implies that we wish to analyze what kinds of states can
be reached via changes made by users otherGhau.

Let ¢ be the queryProjectLead 1 {Alice}. Then,~ I/ ¢. The analysis instance
(v, q,%,3) asks whether there exists a reachable state in whigk is a project lead.
The instance is false. This is because Adite to become a member ¢frojectLead, she
would first need to be a full-time employee, and ofiltol can grant anyone membership
to FullTime. As Carol is in T, she cannot initiate any operation. If we consider, instead
the state-change rulg, with the samean_assign asiy from above, but withl" = (), then
the analysis instancg, ¢, v, 3) is true.
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Main resultsfor AATU

—If ¢ is semi-static (see Section 2.1), then an AATU instapce, ¢, IT) can be answered
efficiently, i.e., in time polynomial in the size of the instze.

—Answering general AATU instancesy, ¢, v, V) is decidable but intractablee¢ NP-
complete).

2.4 Assignment and revocation (AAR)

In this class, a state-change rule has the form({can_assign, can_revoke), where
can_assign is the same as in AATU, andan_revoke C R x 2% determines who can
remove users from roles. Thét,, rset) € can_revoke means that the members of role
r, can remove a user from a rolec rset. No explicit set of trusted users is specified
in AAR, unlike AATU. In AATU and AAR, the relations:an_assign and can_revoke are
fixed in+. This means that we are assuming that changes to these ttiomslare made
only by trusted users.

Definition 4. (Assignment And Revocation — AARhe class AAR is given by para-
meterizing the family of RBAC analysis problems in Sectioft @ith the following set
of state-change rules. Each state-changeuf@as the form{can_assign, can_revoke)
such that a state-change from= (UA, PA,RH) to vy = (UA:, PA;, RH,) is al-
lowed by = (can_assign, can_revoke) if PA = PA;, RH = RH,, and either (1)
UAy = UA U {(u,r)} where(u,r) ¢ UA and there existér,, ¢, rset) € can_assign
such thatr € rset, u satisfiesc, andusers,[r,] # 0, i.e., the usew being assigned to
r is not already a member of and satisfies the preconditien and there is at least one
user that is a member of the rolg that can perform the assignment operation; or (2)
UA; U (u,r) = UA where(u,r) ¢ UA;, and there existér,, rset) € can_revoke such
thatr € rset andusers,[r,] # 0, i.e., there exists at least one user in the rql¢hat can
revoke the user’s membership in the role.

We assume that an AAR instance satisfies the following thregguties. (1) The admin-
istrative roles are not affected layn_assign andcan_revoke. The administrative roles are
given by those that appear in the first component of amy assign or can_revoke tuple.
These roles should not appear in the last component ofcanyassign Or can_revoke
tuple. This condition is easily satisfied in URA97, as it ases the existence of a set of
administrative roles that is disjoint from the set of normwés. (2) If a role is an adminis-
trative role (i.e., appears as the first component afra assign or can_revoke tuple), then
it has at least one user assigned to it. This is reasonabég administrative role with no
members has no effect on the system’s protection statef §3)h_assign tuple exists for
arole, then aan_revoke tuple also exists for that role.

ExXAMPLE 5. Inthis example, we ask whether it is possible that onlygutdeads have
access to the office, and whethice can ever edit code, both in the same AAR system.
The former is an example of an availability question while tatter is an example of a
safety question. We encode both questions as securitysamaigtances.

For the state;y, from Figure 1, an example of a state-change rule in AAR) is=
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(can_assign, can_revoke), where

can_assign = {(Manager, Engineer A FullTime, {ProjectLead}),
(HumanResource, true, {FullTime, PartTime})}

can_revoke = {(Manager, {ProjectLead, Engineer}),
(HumanResource, {FullTime, PartTime})}

We point out that thean_assign we use in this example is the same asdfe_assign we
use in Example 4. Then, if is the queryProjectLead J Access (i.e., only project leads
have access to the office), the AAR analysis instance, v, 3) is true. If¢’ is the query
Edit 3 {Alice} (i.e.,Alice can edit code), then the analysis instatigg)’, ¢, V) is false.

Main resultsfor AAR

—If ¢ is semi-static (see Section 2.1), then an AAR instance, v, IT) can be answered
efficiently, i.e., in time polynomial in the size of the instze.

—Answering general AAR instancés, ¢, vy, V) is coNP-complete.

2.5 Discussion of the definitions

Our specifications otan_assign and can_revoke are from URA97, which is one of the
three components of ARBAC97 [Sandhu et al. 1999]. The sthtarge rules considered
in AAR are similar to those in URA97, but they differ in the lfmking two ways. One,
URA97 allows negation of roles to be used in a preconditioARAdoes not allow this.
Two, URA97 has separate administrative roles; AAR does eqtire the complete sep-
aration of administrative roles from ordinary roles. AATlfers from URA97 in two
additional ways. One, AATU does not have revocation ruleso,TAATU has a set of
trusted users, which does not exist in URA97.

The other components of ARBAC97 are PRA97 and RRA97, for adering
permission-role assignment/revocation, and the roleahiér, respectively. In this paper,
we study the effect of decentralizing user-role assignraedtrevocation, and assume that
changes to the permission-role assignment relation ancbt@édierarchy are centralized,
i.e, made only by trusted users. In other words, whoeverdasvatl to make changes to
permission-role assignment and the role hierarchy willthexsecurity analysis and only
make changes that do not violate the security properties. atiministration of the user-
role relation is most likely to be delegated, as that is threponent of an RBAC state that
changes most frequently.

AATU and AAR represent two basic cases of security analysi®RBAC. Although
we believe that they are useful cases, they are only theérgfgrbint. Many other more
sophisticated cases of security analysis in RBAC remaim.ogdeor example, it is not
clear how to deal with negative preconditions in role assignt, and how to deal with
constraints such as mutually exclusive roles.

3. OVERVIEW OF SECURITY ANALYSIS IN RT[«,N]

In [Li et al. 2005], Li et al. study security analysis in thentext of theRT" family of Role-
based Trust-management languages [Li et al. 2002; Li eQ8BP In particular, security
analysis inRT[«,N] and its sub-languages is studie®T [«, N] is a slightly simplified
(yet expressively equivalent) version of th; language introduced in [Li et al. 2003]
(RT[«,N] is calledSRTin [Li et al. 2005]). In this section we summarize the restdis
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Simple Member
syntax: Kor+«— K;
meaning: members(K.r) D {K;}
LP clause: m(K,r, K1)
Simple Inclusion
syntax: Kr«— Ky
meaning: members(K.r) O members(K;.rq)
LP clause: m(K,r,?Z) :— m(K1,r1,?Z)
Linking Inclusion
syntax: Kor«— Kuryrg
meaning: members(K.r) 2 g cx.,., members(K;.r2)
LP clause: m(K,r,?Z) :— m(K,r1,?Y), m(?Y,rq,?2)
Intersection Inclusion
syntax: Kr— Ki.riNKs.rg
meaning: members(K.r) DO members(K7.r1) N members(Ks.rz)
LP clause: m(K,r,?Z) :— m(K1,r1,?2Z), m(Ka,r2,72Z)

Fig. 2. Statements iRT[«,N]. There are four types of statements. For each type, we
give the syntax, the intuitive meaning of the statement,taed_P (Logic-Programming)
clause corresponding to the statement. The clause use®mreyt predicaten, where
m(K,r, K;) means thaf(; is a member of the rol&.r Symbols that start with?" rep-
resent logical variables.

security analysis ifRT[«, N]. We summarize the concepts from and resultRfof«, N]
so that we can leverage those results in the security apatfyshe RBAC schemes we
consider in this paper (AATU and AAR). In Section 4 we reduseusity analysis in AATU
and AAR to that inRRT[«, N].

3.0.0.1 Syntax oRT[«,N]. The mostimportant concept in tf&" languages is also
that of roles. A role in RT[«,N] is denoted by a principal (corresponding to a user in
RBAC) followed by a role name, separated by a dot. For examyen K is a principal
andr is a role name[.r is a role. Each principal has its own name space for roles. For
example, the ‘employee’ role of one company is differentrfrthe ‘employee’ role of
another company. Aole has a value which is a set of principals that are members of the
role.

Each principalK has the authority to designate the members of a role of tha for
K.r. Roles are defined bgtatements Figure 2 shows the four types of statements in
RT[«,N]; each corresponds to a way of defining role membership. Alsimgmber
statementK.r «—— K; means that<; is a member ofK’s r role. This is similar to a
user assignment in RBAC. A simple inclusion statem&nt «— K;.r; means tha#’s
r role includes (all members off;’s r; role. This is similar to a role-role dominance re-
lationshipK;.r; = K.r. Alinking inclusion statemenk’.r «— K.r;.ro means thaf{.r
includesK.r, for every K, that is a member of.r;. An intersection inclusion state-
mentK.r «—— K;.r1 N Ky.ro means thakl.r includes every principal who is a member of
both K.y and K5.r5. Linking and intersection inclusion statements do notaliyecor-
respond to constructs in RBAC, but they are useful in exjimgsaemberships in roles that
result from administrative operations. Our reduction athms in Sections 4.1 and 4.2 use
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linking and intersection inclusion statements to captser-wole memberships affected by
administrative operations.

3.0.0.2 States.An RT[«,N] statey” consists of a set RT[«, N] statements. The
semantics oRT[«, N] is given by translating each statement into a datalog claiBz-
alog is a restricted form of logic programming (LP) with \abies, predicates, and con-
stants, but without function symbols.) See Figure 2 for th@lkbg clauses corresponding
to RT[«, N] statements. We call the datalog program resulting fronstedgimg each state-
ment inyT into a clause that is theemantic progranof 47, denoted bySP(yT).

Given a datalog progranP, its semantics can be defined through several equivalent
approaches. The model-theoretic approach viB#sas a set of first-order sentences and
uses the minimal Herbrand model as the semantics. We Witte/'”) = m(K,r, K')
whenm(K,r, K') is in the minimal Herbrand model &fP (v T).

3.0.0.3 State-change RulesA state-change rule is of the fort’ = (G, S), whereG
ands are finite sets of roles.

—Roles inG are calledgrowth-restricted(or g-restricted; no statements defining these
roles can be added. (A statement defines a role if it has teetodhe left of +—'.)
Roles not inG are calledgrowth-unrestrictedor g-unrestrictedl.

—Roles inS are calledshrink-restricted(or s-restricted; statements defining these roles
cannot be removed. Roles not$hare calledshrink-unrestrictedor s-unrestrictegl

3.0.0.4 Queries. Lietal. [Lietal. 2005] consider the following three formbgqueries:

—  Membership Ar 3{Dy,...,Dyp}
Intuitively, this means that all the principalsDy,...,D, are mem-
bers of A.r. Formally, v + Ar 23 {Dy,...,D,} if and only if
{Z| SP(vT) Em(A,r,Z2)} D {Dy,...,D,}.

— Boundedness {Di,...,D,} JAr
Intuitively, this means that the member set4Af is bounded by the given set of prin-
cipals. Formallyy” + {Dy,...,D,} 3 Arifandonlyif {Dy,...,D,} D {Z |
SP(y") £ m(4,r, Z)}.

— Inclusion XudAr
Intuitively, this means that all the members4f- are also members of.u. Formally,
AT+ X J Arifandonly if {Z | SP(vT) = m(X,u,Z)} 2 {Z | SP(vT) &
m(A,r, Z)}.

Each form of query can be generalized to allow compound mpeessions that use
linking and intersection. These generalized queries caredhced to the forms above by
adding new roles and statements to the state. For instahcg, A.r N A;.r1.75 can be
answered by adding.u; «— A.r N B.ug, B.ug «+— B.ug.ry, and B.ug «— Aj;.rq to
~T, in which B.u1, B.us, andB.us are new g/s-restricted roles, and by posing the query

Main resultsfor security analysisin RT[«, N]

Membership and boundedness queries (both whether a qupossble and whether
a query is necessary) can be answered in time polynomialeirsite of the input. The
approach taken in [Li et al. 2005] uses logic programs toveeginswers to those security
analysis problems. This approach exploits the fact®idt—, N] is monotonic in the sense
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that more statements will derive more role membership fatkss follows from the fact
that the semantic program is a positive logic program.

Inclusion queries are more complicated than the other twmdski In [Li et al. 2005],
only theV case (i.e., whether an inclusion query is necessary) isestudt is not clear
what the security intuition is of af inclusion query (whether an inclusion query is pos-
sible); therefore, it is not studied in [Li et al. 2005]. Theplem of deciding whether an
inclusion query is necessary, i.e., whether the set of mesrdd@ne role is always a super-
set of the set of members of another role is calledtainment analysislt turns out that
the computational complexity of containment analysis dejgeon the language features.
In RT[], the language that allows only simple member and simpleigich statements,
containment analysis is IR. It becomes more complex when additional policy language
features are used. Containment analysé»i P-complete folRT[N] (RT[ ] plus intersec-
tion inclusion statementspSPA CE-complete forRT[«] (RT[] plus linking inclusion
statements), and decidabledaNEXP for RT[«, M.

4. SOLVING AATU AND AAR BY REDUCTIONS TO SECURITY ANALYSIS IN
RT[«,N]
In this section, we solve AATU (Definition 3) and AAR (Defirati 4). Our approach is
to reduce each of them to security analysiRif[«, N]. Each reduction is an efficiently
computable mapping from an instance of AATU/AAR to a seguaihalysis instance in
RT[«,N]. We precisely articulate the properties of the reductiarBropositions 1 and 4
respectively. Intuitively, the reductions preserve theutts of security analysis across the
mapping.

4.1 Reduction for AATU

The reduction algorithmAATU_Reduce is given in Figure 4; it uses the subroutines
defined in Figure 3. Given an AATU instangg = (UA, PA,RH), g = s1 3 sq,

¥ = (can_assign,T), I € {3,V}), AATU_Reduce takes (v,q,v) and outputs
(vT',qT,4T) such that theRT[«,N] analysis instancéy”, ¢T, T 1I) has the same
answer as the original AATU instance.

In the reduction, we use one principal for every user thaeappiny, and the spe-
cial principalSys to represent the RBAC system. TRd [«,N] role names used in the
reduction include the RBAC roles and permissionsyiand some additional temporary
role names. The&kT[«,N] role Sys.r represents the RBAC role and theRT[«,N]
role Sys.p represents the RBAC permissipn Each(u,r) € UA is translated into the
RT[«,N] statemenSys.r «—— u. Eachr; > rs is translated into th&®T[«, N] state-
mentSys.rs «— Sys.rq (asry is senior tore, any member of; is also a member afs.)
Each(p,r) € PA is translated int®ys.p «— Sys.r (each member of the role has the
permissiorp.)

The translation of thean_assign relation is less straightforward. Each,,r.,r) €
can_assign is translated into th&T[«, N] statemenBys.r «— Sys.r,.r N Sys.r.. The
intuition is that a user, who is a member of the role, assigning the uset to be a
member of the role is represented as adding R&[«, N] statementi,.r «— u. ASu, IS
a member of thé&ys.r, role, the uset: is added as a member to tBgs.r role if and only
if the useru is also a member of the. role.

In the reduction, all th&ys roles (i.e.,Sys.x) are fixed (i.e., both g-restricted and s-

ACM Journal Name, Vol. V, No. N, Month 20YY.



15

1 Subroutine Trans(s, 77) {

2 /= Trans(s, %) returns an RT[«,N] rol e corresponding
3 to the user set s*/

4 if sis an RBAC role then return Sys.s;

5 else if s is an RBAC permi ssion then return Sys.s;

6 elseif sis a set of users then {

7 name=newName(); foreach ues {

8 yT+= Sys.name«—u; }

9 return Sys.name; }

10 elseif (s = s1 U s2) then {

11 name=newName(); 7 +=Sys.name «— Trans(s1,77);
12 ~vT+= Sys.name«— Trans(sz,v7);

13 return Sys.name; }

14 elseif (s = s1 N s2) then {

15 name=newName( ) ;

16 T +=Sys.name «— Trans(s1,77) N Trans(s2,v%);
17 return Sys.name; }

18 } /* End Trans */

19

20 Subroutine QTrans(s, 77) {

21 [+ Translation for users sets that are used at top
22 level in a query */

23 if sis a set of users then return s;

24 else return Trans(s, v7);

25 } /* End QTrans */

26

27 Subroutine HTrans(s, %) {

28 if sis an RBAC role then return HSys.s;

29 else if (s = s1 U s2) then {

30 name=newName(); ~7+= Sys.name——HTrans(s1,77);
31 vT+= Sys.name«—HTrans(s2,747); return Sys.name; }
32 else if (s = s1 N s2) then {

33 name=newName( ) ;

34 T +=Sys.name «— HTrans(s1,v7) N HTrans(s2,v7);

35 return Sys.name; }

36 } /* End HTrans */

Fig. 3. SubroutineSrans, QTrans, andHTrans are used by the two reduction algorithms. We assume call-by-
reference for the parametet .

restricted). In addition, for each trusted usein 7, all the roles starting with is also
g-restricted; this is because we assume that trusted usérsotvperform operations to
change the state (i.e., user-role assignment operatigvis)may also make roles starting
with trusted users s-restricted; however, this has no effemo statement defining these
roles exists in the initial state.

ExAMPLE 6. Consider the state-change rulewe discuss in Example 4, in which
can_assign consists of the two tuple@Manager, Engineer A Full Time, ProjectLead) and
(HumanResource, true, {FullTime, PartTime}), andT = {Carol}. Let v be the RBAC
state shown in Figure 1, and lgbe the queryrojectLead J Alice. Then, we represent the
output of AATU _Reduce ({,¢,%)) as{(yT, ¢*,4T). ¢* is Sys.ProjectLead 3 {Alice}.
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37 AATU_Reduce ((~=(UA,PA,RH), q=s1 ds2, 9 = (can_assign,T)))
38 {

39 /+* Reduction algorithmfor AATU */

40

41 AT = 0; ¢¥ = QTrans(s1,vT) JQTrans( s2, vT);

42 foreach (ui,rj) € UA { ~T+= Sysrje—u;; }

43  foreach (ri,r;) € RH { y¥+= Sys.rj«—Sys.ri; }

44  foreach (p;,r;) € PA { vT+= Sys.p;«—Sys.r;; }

45  foreach (ai,s,rset) € can_assign {

46 if (s==true) { foreach rerset {

47 yT+= Sys.r«—Sys.air; } }

48 el se { tmpRole=Trans(s, v7);

49 foreach r € rset { name=newNane() ;

50 vT+= Sys.name «— Sys.a;.r;

51 ~T+= Sys.r«— Sys.name N tmpRole

52 11}

53 foreach RT role nanme z appearing in 7 {

54 G+=Sys.xz; S+=Sys.z; foreach user we T { G+=u.z; } }

54 return (7, ¢7, (G,9));
55 } /+ End AATU_Reduce */

Fig. 4. Reduction Algorithm for AATU

The following RT statements i’ result fromUA:

Sys.Engineer «—— Alice Sys.PartTime «—— Alice
Sys.Manager «—— Bob Sys.HumanResource «— Carol

The following statements in’' result fromRH:

Sys.Employee «— Sys.Engineer Sys.Employee «— Sys.FullTime
Sys.Employee «— Sys.PartTime Sys.Engineer «—— Sys.ProjectLead
Sys.FullTime «— Sys.Manager

The following statements in” result fromPA:

Sys.View «— Sys.HumanResource Sys.Access «— Sys.Employee
Sys.Edit «— Sys.Engineer

The following statements in” result fromcan_assign. The first two statements reflect
the ability of a member dflumanResource to assign users tBull Time andPart Time with
no precondition, and the remaining statements reflect thigyadf a member ofManager

to assign users tBrojectLead provided that they are already membersFofi Time and
Engineer.

Sys.FullTime «— Sys.HumanResource.FullTime
Sys.PartTime «— Sys.HumanResource.PartTime
Sys.NewRole; «— Sys.Engineer N Sys.FullTime
Sys.NewRole, «— Sys.Manager.ProjectLead
Sys.ProjectLead «— Sys.NewRole; N Sys.NewRole;

+T = (G, S), whereG is the growth-restricted set of roles, afids the shrink-restricted
set of rolesGG consists of every role of the forBys.« and every role of the formtarol.x.
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The latter is included id- becaus&€arol is in the set of trusted usefs S consists of every
role of the formSys.x. Itis clear that the security analysis instagé, g7, 7, 3) is false,
asAlice can never become a memberSyk.ProjectLead. If we adopt as the state-change
rule T, that is the same ag’ except thafl’ = (), then roles of the forn€arol.z would be
growth-unrestricted. And there exists a stafethat is reachable from? which has the
following statements in addition to all the statementsin

Carol.FullTime «— Alice Bob.ProjectLead «—— Alice

These statements are necessary and sufficieBt/goProjectLead «— Alice to be inferred
inv¥. Thus, the security analysis instang€ , ¢, v{ , 3) is true.

The following proposition asserts that the reduction issshuneaning that one can use
RT security analysis technigues to answer RBAC securitlyaisgproblems.

PROPOSITION 1. Given an AATU instance(y,q,v, ), let (yI ¢7 »T) =
AATU_Reduce({v, ¢, %)), then:

—Assertion 1:For every RBAC state’ such thaty ~,, 7/, there exists aRT[«, N] state
v such thaty” +,r 47" andy’ - ¢ if and only ify™" I ¢7".

—Assertion 2:For everyRT[«, N] statey?” such thaty” +,,» 477, there exists an RBAC
statey’ such thaty +, 7" and+’ I ¢ if and only ify™" I ¢

See Appendix A.1 for the proof. As we discuss in detail in unitara and Li 2004],
the above proposition asserts tAsTU_Reduce is security-preserving in the sense that an
AATU analysis instance is true if and only if tfRT [« N] analysis instance that is the out-
put of AATU_Reduce is true. ThatisSAATU_Reduce preserves the answer to every security
analysis instance. We argue the need for assertion 1 in dpogition by considering the
case that there exists a reachable state the RBAC system, but no corresponding reach-
able statey”” in theRT[«, N] system produced b&%ATU_Reduce. Let the corresponding
query beg. If v/ + ¢, then letll bed, and ify’ t/ ¢, then letlI beV. In the former case, the
security analysis instance in RBAC is true, but the instandbe RT[«, N] system that is
the output ofAATU_Reduce is false. In the latter case, the analysis instance in RBAC is
false, but the instance IRT[«, N] is true. Therefore, foAATU_Reduce to preserve the
answer to every analysis instance, we need assertion 1.

Similarly, we argue the need for assertion 2 by considefiegcontrary situation. Let
+T" be a reachable state RIT[«,N] for which there exists no corresponding state in
RBAC. Let the corresponding query R [«—,N] beqT. If 47/ I- ¢7, then letll be 3, and
let IT be V otherwise. AgainAATU_Reduce would not preserve the answer to a security
analysis instance, and we would not be able to use the ansvear analysis instance in
RT[«, N] as the answer to the corresponding instance in RBAC.

THEOREM 2. An AATU instancéy, ¢, v, IT) can be solved efficiently, i.e., in time poly-
nomial in the size of the instancegifs semi-static.

PrROOF Let the output of AATU_Reduce corresponding to the inputy,q,v) be
(vT,q",¥T). If ¢ is semi-static, we observe that is semi-static as well. Furthermore,
AATU_Reduce runs in time polynomial in its input. We know from Li et al. [kt al. 2005]
that inRT[«, N], a security analysis instance with a semi-static query esariswered in
time polynomial in the size of”. Therefore, in conjunction with Proposition 1, we can
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conclude that a security analysis instance with a semiesjaery in the RBAC system can
be answered in time polynomial in the size of the system (he.size of(v, ¢, v)). O

THEOREM 3. An AATU instancéy, q, 1, IT) is coNP-complete.

PROOFE We show that the general AATU problem é@NP-hard by reducing the
monotone 3SAT problem to the complement of the AATU problévtanotone 3SAT is
the problem of determining whether a boolean expressioanjuactive normal form with
at most three literals in each clause such that the litenadsdlause are either all positive
or all negative, is satisfiable. Monotone 3SAT is known taNdB-complete [Garey and
Johnson 1979].

Let ¢ be an instance of monotone 3SAT. Ther=c; A...c; AC41 A ... A S, Where
c1, ..., ¢ are the clauses with positive literals, afds, ..., ¢, are the clauses with
negative literals. Letq, ..., p,s be all the propositional variables ¢n For each clause with
negative literalsy = (- pg, V 2Pk, V 7 Diy), defined, = = ¢ = (g A Dy A Pis)-
Then, ¢ is satisfiable if and only ity A ... A = (di41 V...V d,) is satisfiable. Let
n=(aAN...N¢q) — (d+1V...Vd,) where— is logical implication. Theng; A
. AN (dip1 V...V d,) = 0. Thereforeg is satisfiable if and only if) is not valid.
We now constructy, ) andq in an AATU instance such that= z; 3 25 is true for user
setsz; andz, in all states reachable fromif and only if  is valid.

In v, we have a role (which is for administrators) anfA contains(A, a) whereA is
a user (i.e., the role is not empty in terms of user-membership). With each prajoosil
variablep; in 7, we associate a role. For eachr;, we add(a, true,r;) to can_assign.
That is, anyone can be assigned to the rgléVe letT (the set of trusted users) be empty.
For eachj such thatl < j <, we associate the clausge= (p;, V p;, V pj, ), with a user
sets; = (r;, Ur;, Urj,). For eachk such thatl + 1) < k < n, we associate the clause
dr, = (Pky N Dky A Dis), With @ user set, = (g, N7k, N7x,). INOUr queryy = z; J 29,
weletz; = s;41 U...Us, andzy = 51N ... N s;.. We now need to show that 1 25 in
every state reachable fromif and only if n is valid. We show that; J z is nottrue in
every state reachable fromif and only if  is not valid.

For the “only if” part, we assume that there exists a stgtéhat is reachable frony
such that iy’ there exists a userthat is a member of the user ggt but notz;. Consider
a truth-assignment for the propositional variables in as follows: ifu is a member of
the roler; in 4/, thenI(p;) = true. Otherwisel(p;) = false. Underl, n is not true, as
(c1 A...A¢)istrue, but(d;41 V...V d,) is false. Thereforey is not valid.

For the “if” part, we assume thatis not valid. Therefore, there exists a truth-assignment
I such thatlc; A ... A¢)is true, but(d; 1 V...V d,) is false. Consider a statg that
has the following members itfA in addition to the ones iny: for eachp; that is true under
I, (u,r;) € UA. Otherwise(u,r;) ¢ UA. v is reachable fromy, and invy/, z; 3 2y is
not true.

To prove that the problem is iloINP, we need to show that when an instance is false,
there exists evidence of size polynomial in the input that loe verified efficiently. The
evidence is a user and a sequence afstate-changes from the start-state to some state
such that imy’, u is a member of the user sgf but not ofz;. We know that: is bounded
by the number of roles in the system as there can be only as usamto-role assignment
operations for a particular user as the number of roles. Ehiéaation of this evidence is
certainly efficient. Therefore the problem isdiaNP. [
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56 AAR_Reduce ( (v = (UA, PA,RH), q=s1 J s,

57 1 = (can_assign, can_revoke) ))

58 { /* Reduction algorithmfor AAR */

59 AT =0; 47 = QTrans(s1,v") 3 QTrans( s2, v7);
60 foreach (u;,r;) e UA {

61 ’yT+= HSys.rj «—u; ’yT+= RSys.rj «—u;

62 vT+= Sys.r; «——RSys.rj; }

63 foreach (r;,r;) € RH {

64 vT+= Sys.r; «—Sys.ri; ~T+= HSys.rj «——HSys.r;; }

65 foreach (pi,r;) € PA { ~T+= Sys.p;«—Sys.rj; }
66 foreach (as,s,rset) € can_assign {

67 if (s==true) {

68 foreach r € rset {

69 4T+= HSys.r«—BSys.r; ~y7+= Sys.r«—ASys.r; }

70 } el se { tmpRole = HTrans(s,vy7); [/* precondition =/
71 foreach r € rset {

72 4T+= HSys.r «— BSys.r N tmpRole;

73 yT+= Sys.r«— ASys.r N tmpRole; }

741}

75 foreach RT role nane z appearing in 47 {

76 G+=Sys.x; S+=Sys.r; G+=HSys.x; S+=HSys.z; G+=RSys.z;
77 S+=BSys.z; S+=RSys.z; S+=ASys.z;

78 } I+ when a can_revoke rule exists for r, ASys. r and
79 RSys. r can shrink =/

80 foreach (a;,rset) € can_revoke {

81 foreach r in rset { S-=RSys.r; S-=ASys.r; } }

82 return (v, ¢7, (G,9));
83 } /* End AAR_Reduce */

Fig. 5. AAR_Reduce: the reduction algorithm for AAR

We observe from the above proof that the AATU problem remeddSP-complete even
when every precondition that occurs éan_assign is specified agrue; the expressive
power of the queries is sufficient for reducing the monotoB8AT3problem to the general
AATU problem.

4.2 Reduction for AAR

The reduction algorithm for AAR is given in Figure 5. The retlan algorithm includes in
the set of principals a principal for every userlinand five special principalSys, RSys,
HSys, ASys, andBSys. Again, theSys roles simulate RBAC roles and permissions. In this
reduction, we do not distinguish whether a role assignmpatation is effected by one
user or another, and use only one principgedys, to represent every user that exercises
the user-role assignment operation. The roles of the pah&iSys contain all the initial
role memberships ifVA4; these may be revoked in state changdSys.r maintains the
history of the RBAC roler; its necessity is argued using the following scenario. A ise

a member of-;, which is the precondition for being added to another rele After one
assigns the user tg, and revokes the user from. The user's membership i, should
maintain, even though the precondition is no longer satighesimilar justification for this
approach is provided in the context of ARBAC97 [Sandhu el889] as well).BSys is
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similar to ASys, but it is used to construct tHéSys roles. An administrative operation to
try to add a uset; to the roler; is represented by adding the statem&fys.r; «— u;
andBSys.r; «— u; to 7. An administrative operation to revoke a userfrom the role
r; is represented by removing the statemd®figs.r; «— u; andASys.r; «—— u; if either
exists iny”.

ExAMPLE 7. Consider the state-change rulewe discuss in Example 5, in which
can_assign consists of the two tuple@anager, Engineer A Full Time, ProjectLead) and
(HumanResource, true, {FullTime, PartTime}), and can_revoke consists of the two tu-
ples(Manager, { Engineer, ProjectLead}) and(HumanResource, {Full Time, PartTime}).
Let v be the RBAC state shown in Figure 1, and debe the queryProjectLead 1
Alice. Then, we represent the output AATU _Reduce ((, ¢, %)) as {(y*,¢7,¢T). ¢T
is Sys.ProjectLead 1 {Alice}. The following RT statements i’ result from UA:

HSys.Engineer «— Alice RSys.Engineer «— Alice
HSys.PartTime «—— Alice RSys.PartTime «— Alice
HSys.Manager «— Bob RSys.Manager «— Bob
HSys.HumanResource «— Carol RSys.HumanResource «— Carol
Sys.Engineer «—— RSys.Engineer Sys.FullTime «— RSys.FullTime

Sys.HumanResource «— RSys.HumanResource
Sys.PartTime «— RSys.PartTime

The following statements in” result fromRH:

Sys.Employee «— Sys.Engineer HSys.Employee «— HSys.Engineer
Sys.Employee «— Sys.FullTime HSys.Employee «— HSys.FullTime
Sys.Employee «— Sys.PartTime HSys.Employee «— HSys.PartTime
Sys.Engineer «+— Sys.ProjectLead HSys.Engineer «— HSys.ProjectLead
Sys.FullTime «— Sys.Manager HSys.FullTime «— HSys.Manager

The following statements in” result fromPA:

Sys.View «— Sys.HumanResource Sys.Access «— Sys.Employee
Sys.Edit «— Sys.Engineer

The following statements in” result fromcan_assign:

HSys.FullTime «— BSys.FullTime Sys.FullTime «— ASys.FullTime
HSys.PartTime «— BSys.PartTime Sys.PartTime «— ASys.PartTime
Sys.NewRole; «— HSys.Engineer N HSys.FullTime

HSys.ProjectLead «— BSys.ProjectLead N Sys.NewRole;

Sys.ProjectLead «— ASys.ProjectLead N Sys.NewRole;

YT = (G, S), whereG is the growth-restricted set of roles, afds the shrink-restricted
set of roles. Unlikecan _assign, can_revoke results only in some roles not being added to
S. G is comprised of all roles of the fori®ys.x, HSys.2 andRSys.z (but notBSys.x or
ASys.x). S is comprised of all roles of the for8ys.x, HSys.z, RSys.x andASys.x, except
the rolesRSys.Manager, ASys.Manager, RSys.Engineer, ASys.Engineer, RSys.Full Time,
ASys.FullTime, RSys.PartTime, andASys.PartTime. This is because those roles appear
in can_revoke rules, and therefore may shrink.
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There exists a statg] that is reachable from? that has the following statements in
addition to the ones in”".

BSys.FullTime «— Alice ASys.ProjectLead «— Alice

We can now infer that inqf, HSys.FullTime «— Alice, and therefore,
HSys.NewRole; «— Alice, and so,Sys.ProjectLead «— Alice. Thus, the security
analysis instancé&y”', ¢, 47, 3) is true. If we consider, instead, the query which is
Sys.PartTime O Alice, then asRSys.PartTime is a shrink-unrestricted role, there exists
a statey? that is reachable from” in which the statemerRSys.PartTime «— Alice is
absent. Therefore, we would conclude tBgd.ProjectLead does not includélice. Con-
sequently, the analysis instan@e’ , ¢7', 7, V) is false.

We are able to also demonstrate the need for the roles atbwiith the principal$iSys
andBSys. Consider the state] that can be reached fronf by removing the statement
RSys.FullTime «— Alice. Now, Sys.FullTime does not includélice. This is equivalent
to Carol revoking the membership of the uséfice to the roleFullTime. This affects
the precondition that one can be assigned to the PedgectLead only if one is already
a member of the roleEngineer and FullTime. Nonetheless, we observe thgt - ¢7,
as indeed it should. That iglice should continue to be a member RfojectLead even
if subsequent to her becoming a memberPedjectLead, her membership is removed
from FullTime. We observe that this is the case because theB®ye.Full Time is shrink-
restricted, and therefore one cannot remove the stateBtsntFull Time «— Alice once
it has been added, and consequertilyys.Full Time «— Alice is true, and thereforAlice
continues to be a member of the rélejectLead (i.e., is included irbys.ProjectLead). Of
course Alice can later have her membership revoked from the PotgectLead (by Bob),
and this is equivalent to the statemélys.ProjectLead «— Alice being removed.

The following proposition asserts that the reduction isgbu

PROPOSITION 4. Given an AAR instance(y,q,v,11), let (47, ¢7,9T) =
AAR_Reduce((v, q, %)), then:

—Assertion 1:For every RBAC state’ such thaty ~,, 7/, there exists aRT[«, N] state
v such thaty” +,r 47" andy’ - ¢ if and only ify™" I ¢7".

—Assertion 2:For everyRT[«, N] statey?” such thaty” +>,,r 477, there exists an RBAC
statey’ such thaty +, 7" and+’ I ¢ if and only ify™" F ¢

The proofisin Appendix A.2. Our comments regarding the rfeedssertions 1 and 2 to
preserve answers to security analysis instances, that e im¢éhe previous section in the
context of AATU_Reduce, apply to the above proposition in the contextAdkR_Reduce
as well. If either of the assertions does not hold, then wenaanse the answer to the
RT[«, N] analysis instance as the answer to the corresponding RBg@nice.

THEOREM 5. An AAR instancéy, ¢, ¢, IT) can be solved efficiently, i.e., in time poly-
nomial in the size of the instancegifs semi-static.

PROOF. Let the output oAAR_Reduce for the input(v, ¢, ) be (v, ¢%, »T). If qis
semi-static, so ig”. As AAR_Reduce runs in time polynomial in its input angl’ can be
answered in time polynomial in the size-f (which is shown by Li et al. [Li et al. 2005]),
g can be answered in time polynomial in the size of the system the size of~, ¢, ¥)).
Thus, an AAR instance with a semi-static query can be solffeziently. [

ACM Journal Name, Vol. V, No. N, Month 20YY.



22

THEOREM 6. An AAR instancey, ¢, ¢, IT) is coNP-complete.

PrROOF We deduce that an AAR instance isdtaNP from the fact thahAR_Reduce
runs in time polynomial in the size of the system, and theesponding security analy-
sis problem in theRT[N] system that is the output @&AR_Reduce is coNP-complete.
(RT[N] is a sub-language & T[«, N] that allows only the first, second and fourth kinds
of statements from Figure 2.) That isgifs not true in every state reachable fromthen
we offer as counterproof the algorittdAR_Reduce and the counterproof in tHeT [«, N]
system thay” is not true in every state reachable frorh.

We can show that the general AAR problencsNP-hard in almost exactly the same
way that we show the result for the AATU problem in the proafTtheorem 3. The only
difference is that for every role; that is associated with a propositional variapjeapart
from a rule incan_assign, we add the ruléa, r;) to can_revoke. We construct the query
q the same way as in that proof, and show in the same waygtigatrue in every state
reachable fromy if and only if n is valid. O

5. RELATED WORK

Simple safety analysis, i.e., determining whether an @&ccestrol system can reach a
state in which an unsafe access is allowed, was first foredhliy Harrison et al. [Harrison
et al. 1976] in the context of the well-known access matrixigigLampson 1971; Graham
and Denning 1972], and was shown to be undecidable in the HRiehjHarrison et al.
1976]. There are special cases for which safety is decidabkbe HRU model; safety is
decidable if (1) no subjects or objects are allowed to beteted2) at most one condition
is used in a command but subjects or objects cannot be dedtror(3) only one operation
is allowed in a command.

Following that, there have been various efforts in desigraecess control systems
in which simple safety analysis is decidable or efficienticidable, e.g., the take-grant
model [Lipton and Snyder 1977], the schematic protectiodeh§Sandhu 1988], and the
typed access matrix model [Sandhu 1992].

One may be tempted to reduce the security analysis probléimedan this paper to a
problem in one of the other models such as HRU and use existgwdts. However, this
approach has several difficulties. First, we consider aifiekinds of queries, while only
safety is considered in other models. It is not clear, fotanse, how one would reduce
containment in RBAC to safety in HRU. Second, even when weicesur attention to
simple safety, the reduction of either AATU or AAR into HRUstdts in a set of command
schemas that does not fall into any known decidable speasd of HRU. (1) New users
are implicitly created when being assigned to roles. (2)dBee of preconditions in AATU
and AAR, an assignment operation requires checking botlkedh@mand initiator’s privi-
leges and the user’s role memberships. The resulting HRUraomd schema would not be
mono-conditional. (3) Adding a user to a role results in therwattaining several permis-
sions simultaneously. The resulting command in HRU is @hjiko be mono-operational.
Last but not least, even if some further restricted subcaSB8AC security analysis can
be reduced to decidable subcases of HRU, no efficient digowixists for those cases. For
example, even in the subcase where no subjects or objeclawed to be created, safety
analysis in HRU remainBP SPA CE-complete (which implies that it iNP-hard).

Recently, Li et al. [Li et al. 2005] proposed the notion of w#y analysis, and studied
security analysis in the context &T|[«,N], a role-based trust management language.
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They showed that a security analysis instanc&Ri«—, N] involving only semi-static
queries can be solved efficiently (in time polynomial in tlieesof the start-state in the
analysis), and for more general queries, they showed tleaalalysis is decidable, but
intractable.

Crampton and Loizou [Crampton and Loizou 2003] claim thiatiministrative (or con-
trol) permissions are assigned to subjects, then the safebfem is undecidable. Indeed,
Munawer and Sandhu [Munawer and Sandhu 1999] and Cramptamjfion 2002] have
shown independently that the safety problem for RBAC96 degidable.” We disagree
with this claim, and we show in this paper that simple safatyd(even more sophisticated
analysis) can be decidable when administrative permissima given to subjects. The
simulation by Munawer and Sandhu [Munawer and Sandhu 12@fjests only that when
an overly complicated administrative model is added to RBA&Gafety analysis may be
undecidable.

The work by Koch et al. [Koch et al. 2002a] considers safetRBAC with the RBAC
state and state-change rules posed as a graph formalisrh f{ad. 2002b]. They show
that safety (defined as whether a given graph can become grapb-of another graph)
is decidable provided that a state-change rule does notrbothve and add components
to the graph that represents the protection state. It isleat evhat import the property
of safety, as defined in the context of the graph-based fismalhas in the context of
an RBAC system. In particular, it is not clear whether thearobf safety as defined in
that work captures the notions of simple or bounded safetyptainment that we discuss
in Section 2.1. Also, specific complexity bounds for decidgafety are not provided in
that work, and therefore it is not clear how useful the dduilitst result for safety is. In
particular, we do not know whether safety can be decidediefily. Furthermore, the
administrative model (set of state-change rules) consdlar that work is limited in that
all roles are considered to be of the same type, and theradta® correspond to nodes in
the graph each of which has the same label as another. Camgguve cannot express
preconditions to user-role assignment as we can with ARBA@®d the administrative
models considered in this paper. Such preconditions, asiseaist in Section 2.3, are
expressions formed using roles. Recently, the graph-Hasedlism [Koch et al. 2002b]
has been extended to consider a more realistic and flexilmenétrative model [Koch
et al. 2004]. This new administrative model considers sthsnge rules that consist of
commands such a&ldFEdge and deleteEdge. The commands do not satisfy a criterion
for the decidability of the safety property that was showfKach et al. 2002a]; some of
the commands remove and add components to the graph. Whatasr @s defined for
the graph-based formalism) is indeed decidable or not givemew state-change rules is
not known. Our work differs from that work in that we considegeneral class of queries,
and provide specific algorithms and complexity bounds. bfitazh, our state-change rules
are based on ARBAC97, whose usefulness has been argueditetatire [Sandhu et al.
1999].

Previous work on ensuring security properties in RBAC tatkesapproach of using
constraints [Ahn and Sandhu 2000; Crampton 2003; Jaegeridsaell 2001]. In this ap-
proach, a set of desirable properties are explicitly spetifis constraints on the relations
in an RBAC state. Each time the state of an access contr@myistabout to change, these
constraints are checked. A change is allowed only when tbesstraints are satisfied.
We believe that security analysis and constraints are cammgahtary. Constraints directly
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specify desirable properties on the state of an RBAC systagurity analysis uses con-
ditions specified on what kinds of state changes are allowddrder security properties
on all reachable states. An advantage of using constraititeat sophisticated conditions
can be specified and enforced efficiently. In the securityyaigapproach, fewer security
properties can be analyzed efficiently, because of the meaxalyze potentially infinitely
many reachable states. On the other hand, the constrairtaagbprequires that the system
controls all changes to the RBAC state, because of the negerform constraint check-
ing. Security analysis can handle decentralized contrailloying the parts of a state that
are not controlled by the system to change freely. It can lpe t help enforce security
properties even when the RBAC system itself is maintaineddecentralized manner and
one cannot ensure that constraints are checked when sonué {er RBAC state changes.
Another advantage of security analysis is that it can beopeéd less often than checking
constraints. Analysis only needs to be performed when adengt allowed by the state-
transition rule are made, while constraints need to evatlaach time a state changes.

6. CONCLUSION AND FUTURE WORK

We have proposed the use of security analysis techniquesitttain desirable security
properties while delegating administrative privilegesor®lspecifically, we have defined a
family of security analysis problems in RBAC and two classkgroblems in this family,
namely AATU and AAR, based on the URA97 component of the ARBA@dministra-
tive model for RBAC. We have also shown that AATU and AAR canmdmuced to similar
analysis problems in thBT[«, N] trust-management language, establishing an interest-
ing relationship between RBAC and tfi&" (Role-based Trust-management) framework.
The reduction gives efficient algorithms for answering niastls of queries in these two
classes and helps establish the complexity bounds for trectable cases.

While security analysis is especially effective in cases tiha associated problems are
tractable, as we have demonstrated in this paper, sevetaityeanalysis problems can be
intractable or even undecidable. Consequently, admat@s may be constrained in the
kinds of queries they can pose or the states in which theyltam the RBAC system to be.
In any case, unless efficient heuristics can be developeithéantractable cases, security
analysis may not be effective or usable.

Much work remains to be done for understanding securityyaigin RBAC. The family
of RBAC security analysis defined in this paper can be pararzed with more sophisti-
cated administrative models, e.g., those that allow negatieconditions, those that allow
changes to the role hierarchy or role-permission assigtspamd those that allow the
specification of constraints such as mutually exclusivegol

Commercial products such as database management systdnteiaupport for RBAC
and for decentralized administration. We believe that sscanalysis will be effective
in such contexts; a detailed discussion those RBAC schemeseurity analysis in their
context is part of future work. Security analysis is alsolejple in several other access
control schemes, including UCON [Park and Sandhu 2004; gkéal. 2004; Zhang et al.
2005], which extends RBAC. The use of security analysis ghschemes is also part of
future work.
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A.1 Proof for Proposition 1

PROOF For Assertion 1: A state change in AATU occurs when a user assignment
operation is successfully performed. For every RBAC stdtsuch thaty -, v/, let
Y0,Y15 " -+ »Ym D€ RBAC states such that= vy —y 11 g - oy Ym = 7. We
construct a sequence BfT [« N] statesy?, 77, --- , 7L as follows:1d = ~7; for each
¢ = [0..m — 1], consider the assignment operation that changes ;. 1, let it be the
operation in which a user; adds(u, ) to the user-role assignment relation; the stgtg
is obtained by adding;.r < uto~7. LetyT’ bevL.

Step one:Prove that ify’ F ¢ theny™’ - ¢. It is sufficient to prove the following:
for eachi € [0..m], if ~; implies that a certain user is a member of a role (or has
the permissiorp), then~7 implies thatu is a member of the&RT[«,N] role Sys.r (or
Sys.p). We use induction omnto prove this. The base case (i=0) follows directly from the
AATU_Reduce algorithm; lines 42—44 reproducé&d, RH, PA in theRT[«, N] stateyl .

For the step, assumes that the induction hypothesis hotdg fe- - ,v;, considery; ;.
Let the operation leading t;; be one in whichu; assignsu to a roler. Since both
sequences of states are increasing, we only need to considenemberships implied by
~;+1 but not;; these are caused (directly or indirectly) by this assignmé&here must
exists a(r,, c,r) € can_assign to enable this assignment; thus+n u, is a member of
the roler, andu satisfies the condition By induction hypothesis, in/, u; is a member
of Sys.r, andu satisfies the condition. From the translation and the construction of
vE 1, 71, has the following statementsi;.r «— w, Sys.r «— Sys.r,.r, andSys.r «—
Sys.name N tmpRole (WheretmpRole corresponds to the preconditien Furthermore,
in %T+1- u1 IS a member of the role, andu satisfies the condition. Thereforeu is a
member of théSys.r role in/, ;.

Step two:Prove that ify”’ - ¢T theny’ |- q. Itis sufficient to show that if aRT[«—, N]
role membership is implied by?”, then the corresponding RBAC role membership (or
permission possession) is also implied. A detailed proegusduction on the number of
rounds in which a bottom-up datalog evaluation algorithripats a ground fact. Here, we
only point out the key observations. (For details of simflesofs, see the Appendix in [Li
et al. 2005].) ART[«,N] role membership is proved by statements generated on lines
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42-52. The first three cases correspond tolile RH, PA. For the last case, there must
exist a statement,.r «—— w in 477, and it implies that:. is a member of the rol8ys.r.
By the construction of”’, the usern: has been assigned to the relduring the changes
leading toy'.

For Assertion 2:Given anRT[«, N] statey”” such thaty” »iw,T ~T’, we can assume
without loss of generality thag”” adds toy” only simple member statements. Also, we
only need to consider statements defining-;, whereu; is a user iny andr; is a role in
~. Consider the set of all statementsyifi’ having the formu;.r; «— w;,. For each such
statement, we perform the following operation on the RBA&eststarting fromy, have
u; assignuy to the roler;. Such an operation may not succeed either becaygenot
in the right administrative role or becausg does not satisfy the required precondition.
We repeat to perform all operations that could be performEaat is, we loop through
all such statements and repeat the loop whenever the Igstdsalts in a new successful
assignment. Let’ be the resulting RBAC state. It is not difficult to see thaimplies the
same role memberships @8’; using arguments similar to those used above.

A.2 Proof for Proposition 4

PrROOF For Assertion 1:A state change in AAR occurs when a user assignment or a
revocation operation is successfully performed. GivenRBAC statey’ such thaty »iw
v, letyo, 71, ,¥m be RBAC states such that= vy =y 71—y -+ =y Tm = 7.
We construct a sequence R [«—, N] statesy? ,~T,--- 4L as follows: v = ~T; for
eachi = [0..m — 1], consider the operation that changgso ;1. If it is an assignment
operation in which a user, adds(u, ) to the user-role assignment relation; the stgtg
is obtained by addin§ys.r «— u andBSys.r —— u to~}". For each revocation that revokes
a useru from a roler, we remove (if they exist) from thBT[«, M| state the statements
ASys.r «——u and RSys.r < u. Lety?’ be~L.

Step 1:Prove that ify’ - ¢ theny™’  ¢T. Step 1a:We prove that iny”’, HSys.r
captures all users that are ever a member of the rof¢ some time, i.e., for each
i € [0..m], if u € users,,[r], thenu is @ member of th&kT[«,N] role HSys.r in v1,
(SP(v.L) = m(HSys,r,u)). We prove this by induction oi The basis = 0) is true,
since iny?" we reproducel/A and RH in the definition of theHSys roles (see lines 60—
64 in Figure 5); furthermore, theSys roles never shrink. For the step, we show that if
(u,r) € UA;11, thenu is a member of th&T[«, N] role HSys.r in 42 . This is sufficient
for proving the induction hypothesis because the effectopagation through role hierar-
chy is captured by the definition fSys roles. If (u,r) € UA;41, then eithefu,r) € UA
(in which caseHSys.r «—— u € v1”), or there is an assignment operation that assigtes
r (in which caseBSys.r «— u € y1'). Let (rq,c,7) € can_assign be an administrative
rule used for this assignment, themjn the usem satisfiesc. By induction hypothesis’s
role memberships in; is captured in's role memberships ikl Sys.r; thereforeu would
satisfy the translated preconditiempRole. Thereforeu is a member of the rolélSys.r
in L (because of the statemeti$ys.u «— BSys.r N tmpRole).

Step 1b: We prove that imy”’ the Sys roles capture all the role membershipsin
It is sufficient to prove the following: leU/A’ be the user assignment relation-jf if
(u,r) € UA’, thenu is a member of the rol8ys.r in v7’. If (u,r) € UA, then either
(u,r) € UA and this is never revoked (in which ca®8ys.r «—— u € v and this statement
is never removed, therefoRSys.r ——u € 4T7); or there is an assignment operatior(in
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and this assignment is not revoked after it (in which c&Ses.r «—u € 7").

Step two:Prove that ify”” - T theny’ |- q. Itis sufficient to show that if aRT[«—, N]
role membership is implied by?”, then the corresponding RBAC role membership (or
permission possession) is also implied. A detailed proegusduction on the number of
rounds in which a bottom-up datalog evaluation algorithripats a ground fact. Here, we
only point out the key observation. RT[«, N] role membership is proved by statements
generated on lines 60-65 or 71-74. The first three casessporrd to thel/A, RH, PA.
For the last case, there must exist a statemM&gs.r —— u in 477, and it implies that: is
a member of the rolBys.r. By the construction of 7", the usem: has been assigned to the
role r during the changes leading46 and the assignment is not revoked after that.

Also, we only need to consider statements defining;, whereu; is a user iny andr;
is a role invy. Consider the set of all statementsyifi’ having the formu;.r; «— uy,. For
each such statement, we perform the following operatiomerRBAC state, starting from
~, haveu; assignuy, to the roler;. Such an operation may not succeed either becatise
not in the right administrative role or becaugedoes not satisfy the required precondition.
We repeat to perform all operations that could be perforniéuht is, we loop through all
such statements and repeat the loop whenever the last Isafisrin a new successful
assignment. Let’ be the resulting RBAC state. It is not difficult to see thaimplies the
same role memberships @8’; using arguments similar to those used above.

For Assertion 2:Among theRT[«, N] roles,Sys roles andHSys roles are fixedASys
roles can grow or shrink®Sys roles can shrink but not grow; abys roles can grow but
not shrink. Given aRT[«, ] statey”’ such thaty” +>,,» v7’, we can assume without
loss of generality that”” adds toy” only simple member statements. Consider the set of
all statements in/”” definingASys, BSys, andRSys roles. We construct the RBAC state
~' as follows. (1) For every statemeBEys.r «—— v in 477, assign the uset to the role
r. Repeat through all such statements until no new assignsneneeds. Using arguments
similar to those used for proving assertion 1, it can be shtvahnow the RBAC roles have
the same memberships as thgys roles. (2) Do the same thing for all t#Sys.r «— u
statements. At this point, all the role memberships foiSjreroles iny?” are replicated in
the RBAC roles, because all thi5ys memberships have been added. (3) Remove the extra
role membership in the RBAC state, i.e., those not inS§xeroles. The ability to carry out
this step depends upon the requirement (in Definition 4)ifhbere is acan_assign rule
for a role, then there is also revoke rule for the rolgel
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