
Lecture 39: GMW Protocol

GMW



Recall

Last lecture we saw that we can securely compute any function
using oblivious transfer (which can be constructed from the
RSA assumption)
However, the protocol is efficient only when the function has
constant size

GMW



Today’s Lecture: Summary

Today we shall learn the Goldreich-Micali-Wigderson (GMW)
Protocol to securely compute any function that can be
efficiently computed

GMW



Recall: Additive Secret Sharing Scheme I

Let (G , ◦) be a group

For any s ∈ G , we pick sA
$← G and define sB = inv(sA) ◦ s

Note that just given sA, the secret s is perfectly hidden

Note that just given sB , the secret s is perfectly hidden

But, given both sA and sB we can reconstruct s

This secret sharing scheme shall be referred to as the “additive
secret sharing scheme” (you have already seen this scheme in
the midterm)

GMW



Recall: Additive Secret Sharing Scheme II

An Example.

Consider the group ({0, 1},⊕), where ⊕ is the bit-xor

Then the additive secret shares of a secret bit s is sA
$←{0, 1}

and sB = sA ⊕ s

Note that the secret s = sA ⊕ sB

GMW



Basic Step I

Suppose we have two wires u and v

The values of these two wires in a circuit be val(u) and val(v)

Suppose the secret shares of val(u) be val(u)A and val(u)B
Suppose the secret shares of val(v) be val(v)A and val(v)B
Let G be a gate where wire u and v are inputs and wire w is
the output. For example, the gate G can be the AND-gate,
NAND-gate, XOR-gate, etc.

So, the value of the wire w is val(w) = G (val(u), val(v))

G

val(u)

val(v)
val(w)

GMW



Basic Step II

Suppose

Alice already has val(u)A and val(v)A
Bob already has val(u)B and val(v)B

Alice samples val(w)A
$←{0, 1}

What is the share val(w)B?

val(w)B = val(w)A ⊕ G

 val(u)︷ ︸︸ ︷
val(u)A ⊕ val(u)B ,

val(v)︷ ︸︸ ︷
val(v)A ⊕ val(v)B


So, the value val(w)B is a function of 3-bit input from Alice and
2-bit input from Bob, i.e., it is a function of constant size. Now, we
can efficiently and securely compute this function!

GMW



The GMW Protocol I

Suppose Alice has private input x = (x1, x2, . . . , xn)

Suppose Bob has private input y = (y1, y2, . . . , yn)

Alice and Bob are interested in computing a function that is
described by a circuit C . The output of the circuit is
z = C (x , y)

GMW



The GMW Protocol II

Base Case. Additively secret sharing the input wires

Suppose the wires {1, 2, . . . , n} correspond to Alice’s input
(x1, x2, . . . , xn), respectively. Alice picks random
val(i)A

$←{0, 1}, for i ∈ {1, 2, . . . , n}. Alice sends
val(i)B = xi ⊕ val(i)A to Bob.

Suppose the wires {n + 1, n + 2, . . . , 2n} correspond to Bob’s
input (y1, y2, . . . , yn), respectively. Bob picks random
val(n + i)B

$←{0, 1}, for i ∈ {1, 2, . . . , n}. Bob sends
val(n + i)A = yi ⊕ val(n + i)B to Alice.

GMW



The GMW Protocol III

Inductively Computing Internal Wires. Suppose Alice and Bob
want to securely compute the output of a gate G whose input wires
are u and v , and the output wire is w . Assume, by induction
hypothesis, that val(u)A and val(v)A are with Alice, and val(u)B
and val(v)B are with Bob.

First, Alice picks val(w)A
$←{0, 1}

Next, Alice and Bob securely compute the function that
outputs the following value to Bob (we already know how to
do this)

val(w)B = val(w)A⊕G

 val(u)︷ ︸︸ ︷
val(u)A ⊕ val(u)B ,

val(v)︷ ︸︸ ︷
val(v)A ⊕ val(v)B


Repeat this for all gates.

GMW



The GMW Protocol IV

Finalizing the Output. Suppose the output wires are
{s + 1, s + 2, . . . , s +m}. Alice has the values val(s + i)A and Bob
has the values val(s + i)B , for i ∈ {1, 2, . . . ,m}.

Alice and Bob exchange the values val(s + i)A and val(s + i)B ,
for i ∈ {1, 2, . . . ,m}, to reconstruct val(s + i) This is the
output z = (val(s + 1), val(s + 2) . . . , val(s +m))

So, we can securely evaluate any circuit in time proportional to its
size!

GMW



An Example I

Consider the following example understand how the GMW-protocol
can be helpful

Consider the example of Dutch flower auction

Suppose Alice has an n-bit bid that is even, and Bob has an
n-bit bid that is odd

So, each party has 2n−1 possible inputs (bids)

If we securely evaluate this function using the approach
introduced in the previous class, then we need 2n rounds,
which is inefficient

GMW



An Example II

How do we securely perform this task using the GMW-protocol?

Write an efficient circuit that evaluates the maximum of the
two inputs (x1, . . . , xn) and (y1, . . . , yn) (What is the smallest
circuit that you can design?)

Use RSA-based m-choose-1 OT protocol to securely compute
this circuit using the GMW-protocol

GMW



An Example III

What are the tradeoffs between these two protocols?

The first protocol is perfectly secure, while the second protocol
is secure only against computationally bounded parties

The first protocol is inefficient, while the second protocol is
efficient

GMW


