Compiler Backend IR

e Variable home location
e Front-end — every variable in memory
e Back-end — maximal but safe register promotion
¢ All temporaries put into registers
¢ All local scalars put into registers, except those accessed via &
¢ All globals, local arrays/structs, unpromotable local scalars put in
memory. Accessed via load/store.
e Backend IR (intermediate representation)
¢ machine independent assembly code — really resource indep!
e AKA: RTL (register transfer language) or 3-address code

Prof. David August e rl =r2 + r3orequivalentlyadd r1, r2, r3
¢ Opcode — not machine independent

Department of Computer Science « Operands
Princeton University * Virtual registers — infinite number of these

¢ Special registers — stack pointer (SP), PC, etc. (AKA Macro Regs)
e Literals — compile-time constants

Lecture 2: Basic Control Flow Analysis

COS 598C - Advanced Compilers

COS598C - Advanced Compilers A Prof. David August
Control Flow Basic Block (BB)
e Control transfer = branch (taken or fall-through) e Main Idea: Group operations into units with equivalent

Control flow execution conditions

e Branching behavior of an application
¢ What sequences of instructions can be executed

e Basic block — a sequence of consecutive operations in
which flow of control enters at the beginning and leaves

e Execution - Dynamic control flow at the end without halt or possibility of branching except
 Direction of a particular instance of a branch at the end
e Predict, speculate, squash, etc. Straight-line sequence of instructions

e Compiler > Static control flow If one operation is executed in a BB, they all are

e Not executing the program
e Input not known, all outcomes possible (conservative)

e Finding BB's
. e The first operation in a program/function starts a BB
Control Flow Analysis e Any operation that is the target of a branch starts a BB
e Determining properties of the program branch structure « Any operation that immediately follows a branch starts a BB
¢ Determining instruction execution conditions

COS598C - Advanced Compilers Prof. David August COS598C - Advanced Compilers Prof. David August

Identifying BBs — Example Control Flow Graph (CFG)

e Control Flow Graph — Directed

— graph, G = (V,E) where each @
Ll'. r7) load(r8) vertex V is a basic block and
L2:rl=r2+r3 there is an edge E, v1 (BB1) > BB1
L3: beqrl, O, L10 v2 (BB2) if BB2 can immediately ~_
L4 r4=r5*ré6 follow BB1 in some execution 552 853
Lo:rl=prl1+1 sequence
L6: beqr1 100 L2 A BB has an edge to all blocks it ooa
L7: beq r2 100 L10 can target
L8: r5=r9+1 o Standard representation used —
L9:r7=r7 &3 by many compilers BB5 BB6
L10: r9 = load (r3) e Often have 2 pseudo V's
L11: store(r9, r1) * entry node BB7
e exit node
COS598C - Advanced Compilers A Prof. David August COS598C - Advanced Compilers . Prof. David August
Weighted CFG Dominator
e Profiling — Run the application on 1 e Dominator — Given a CFG(V, E, Entry, Exit), a node x
or more sample inputs, record some @ domi .
behavior ominates a node vy, if every path from the Entry block to
o Control flow profiling** BB1 y contains X
; edge profte « 3 properties of dominators
¢ block profile
e path profiling BB2 BB3 e Each BB dominates itself
« Cache profiling _ e If x dominates y, and y dominates z, then x dominates z
* Memory dependence profiling BB4 « If x dominates z and y dominates z, then either x dominates y or y
e Annotate control flow profile onto a dominates x
CFG - weighted CFG .
BB5 BB6 e Intuition
o Key idea: optimize more effectively S e Given some BB, DOM blocks are guaranteed to have executed prior
with profile info BB7 to executing the BB

e Optimize for the common case
¢ Make educated guesses @

COS598C - Advanced Compilers Prof. David August COS598C - Advanced Compilers Prof. David August

Dominator Examples Dominator Analysis

e Compute DOM(BB,) = set of BBs that

Entry—] 8B dominate BB,
| Algorithm:

BBI BB2 BRI
[DOM entry) = entry
BB2 BR3 BB3 DOM everything el se) = all nodes BR2 BR3
_ change = true ~.
BB4 BB4 BB4
S / whi | e change, do ~_
BB5 BB6 BB5 Change = fal se BB5 BB6
r for each BB (except the entry BB)
BR7 BB6 TMP(BB) = BB + {intersect of DOM RR7

of all predecessor BB s}
if (TMP(BB) != DOV BB))

DOM BB) = TMP(BB)
change = true

COS598C - Advanced Compilers . Prof. David August COS598C - Advanced Compilers S Prof. David August

Immediate Dominator Class Problem 1

e Immediate Dominator (IDOM)-

Each node 7 has a unique @ CD]

immediate dominator m that is BB1
the last dominator of 7 0on any BB1
path from the initial node to n o~ BR2 RBR3
¢ Closest node that dominates BB2 BB3 /
BB4
/
BB5
BB6
BB7

Exit)——

COS598C - Advanced Compilers Prof. David August COS598C - Advanced Compilers Prof. David August

Post Dominator Post Dominator Examples

. . . Entry—{ 881
e Post Dominator — Given a CFG(V, E, Entry, Exit), a node x @ I
post c]ominates a node vy, if every path from y to the Exit 281 BR2
contains x T
BB2 BB3 BB3
o Reverse of dominator S
BB4 BB4
g = /
e Intuition BR5 BB6 BB5
e Given some BB, which blocks are guaranteed to have executed after aF
executing the BB BR7 BB6
COS598C - Advanced Compilers m Prof. David August COS598C - Advanced Compilers T Prof. David August
Post Dominator Analysis Immediate Post Dominator
e Compute PDOM(BB,) = set of BBs that post ¢ Immediate post dominator (IPDOM) —
dominate BB; Each node 7 has a unique immediate @
post dominator /m that is the first post
PDOM exit) = exit BB1 dominator of 7 on any path from nto BB1
PDOM everyt hing el se) = all nodes s the Exit ~.
change = true 252 BB3 « Closest node that post dominates BB2 BB3
= « First breadth-first successor that post o~
whil e change, do - dominates a node BB4
change = fal se Pl N
for each BB (except the exit BB) BB5 BB6 BB5 BB6
TMP(BB) = BB + {intersect of
PDOM of all successor BB' s} — BR7

if (TMP(BB) != PDOVBB)) BB7 — |
PDOV(BB) = TMP(BB) CExit)
=

change = true

COS598C - Advanced Compilers Prof. David August COS598C - Advanced Compilers Prof. David August

Class Problem 2 Why Do We Care About Dominators?

e For Loop detection (next subject)

@ e Dominator
e Guaranteed to execute before

BB e Redundant computation — a result is BB1
redundant if it is computed in a
BB2 BB3 dominating BB
s BB2 BB3
e Most global optimizations use
dominance info ~._
BB4 BB5 _
e Post dominator BB4
BB6 ¢ Guaranteed to execute after
» Make a guess (ie 2 stores do not BB5 BB6
l access the same location) ~.__
BB7 e Check they really do not point to one BB7
another in the post dominating BB
COS598C - Advanced Compilers e Prof. David August COS598C - Advanced Compilers T Prof. David August
Natural Loops Backedge Example
e Cycle suitable for optimization
e Discuss optimization later Entr BBI1
—— |
. BB2
e 2 properties .
. . — |
¢ Single entry point called the header BR3
¢ Header dominates all blocks in the loop
e Must be one way to iterate the loop (ie at least 1 path back to the R4
header from within the loop) called a backedge =
BB5
e Backedge detection '
o Edge, x> y where the target (y) dominates the source (x) BB6

COS598C - Advanced Compilers Prof. David August COS598C - Advanced Compilers Prof. David August

Loop Detection Loop Detection Example

Identify all backedges using DOM info

e Each backedge (x = y) defines a loop Sl B81

e Loop header is the backedge target (y) —lml;z

e Loop BB — basic blocks that comprise the loop T

o All predecesso'r blocks of x for which control can reach x without going BB3
through y are in the loop

e Common: Merge loops with the same header Ez;

e For example, a loop with 2 continues —

e LoopBackedge = LoopBackedgel + LoopBackedge2 BR5

e LoopBB = LoopBB1 + LoopBB2 T,
e Important property maintained BB6

e Header dominates all LoopBB — ‘

¢ All backedges target header @
COS598C - Advanced Compilers o0 Prof. David August COS598C - Advanced Compilers o Prof. David August
Class Problem 3 Important Parts of a Loop

€y Header, LoopBB

BB1 * Backedges, BackedgeBB
o Exitedges, ExitBB
BBZ/\ BB3 e For each LoopBB, examine each outgoing edge
e e If the edge is to a BB not in LoopBB, then its an exit
BB4 Preheader (Preloop)
5 ég e New block before the header (falls through to header)
e Whenever you invoke the loop, preheader executed
/ e Whenever you iterate the loop, preheader NOT executed
BB ¢ All edges entering header
e Backedges — no change
BB7 « All others, retarget to preheader

ExitD——

Postheader (Postloop) - analogous

COS598C - Advanced Compilers Prof. David August COS598C - Advanced Compilers Prof. David August

ExitBB/Preheader Example Characteristics of a Loop

¢ Nesting (generally within a procedure scope)

Entr BBl e Inner loop — Loop with no loops contained within it
— e Quter loop — Loop contained within no other loops
BB2 ¢ Nesting depth
—al e depth(outer loop) = 1
BB3 ¢ depth = depth(parent or containing loop) + 1
E 2 e Invocation count
— e How many times the loop is activated (loop header weight)
BB5 e Trip count (average trip count)
aF e How many times (on average) does the loop iterate
BB6 e for (I=0; I<100; I++) - trip count = 100
— o Average trip count = weight(header) / weight(preheader)
COS598C - Advanced Compilers - Prof. David August COS598C - Advanced Compilers o Prof. David August

Class Problem 4: Trip Count Calculation

Entr BRI

BB4

BB5

II
Uy

BB6

COS598C - Advanced Compilers Prof. David August

