Proving the Correctness of Algorithmic Debugging for
Functional Programs

Yong Luo and Olaf Chitil

Computing Laboratory, University of Kent, Canterbury, KoK
Email: {Y.Luo, O.Chitil}@kent.ac.uk

Abstract

This paper presents a formal model of tracing for functiqguralgrams based on a
small-step operational semantics. The model records tim@etation of a functional
program in a graph which can be utilised for various purpasesh as algorithmic
debugging. The main contribution of this paper is to prowedbrrectness of algorith-
mic debugging for functional programs based on the modethotigh algorithmic
debugging for functional programs is implemented in sdveaaers such as Hat, the
correctness has not been formally proved before. The diffiefithe proof is to find
a suitable induction principle and a sufficiently generdliction hypothesis.

1 INTRODUCTION

Usually, a computation is treated as a black box that pesdmput and output
actions. However, we have to look into the black box when wetw@see how the
different parts of the program cause the computation tooperthe input/output
actions. The most common need for doing this is debuggingeMthere is a
disparity between the actual and the intended semanticspobgram, we need
to locate the part of the program that causes the disparitadifflonal debug-
ging techniques are not well suited for declarative prognamg languages such
as Haskell, because it is difficult to understand how programecute (or their
procedural meaning). Algorithmic debugging (also calledldrative debugging)
was invented by Shapiro [8] for logic programming languadester the method
was transferred to other programming languages, incluflingtional program-
ming languages. A question of an algorithmic debugger muigt tlescribe a
subcomputation; hence algorithmic debugging works beaspiwely declarative
languages, which do not use side-effects but make all datecantrol flow ex-
plicit. As Haskell is a purely functional programming larzme that even separates
input/output operations from the rest of the language, pigicularly suitable for
algorithmic debugging. There exists three algorithmiodgers for Haskell: Freja
[4], Hat [11] and Buddha/Plargleflarp [7].

In contrast to this advance of algorithmic debugging in psacand the rel-
ative simplicity of the underlying idea, there are few thetaral foundations and
no proofs that these debuggers do actually work correctly.nééd a full under-
standing of algorithmic debugging for functional langusige determine its limits
and to develop more powerful extensions and variationst iBhithe problem we

address in this paper. We shall give a direct and simple diefinof tracethat will
enable us to formally relate a view to the semantics of a nogrTheevaluation
dependency tree (EDWIll be generated from a computation graph. We can cor-
rectly locate program faults, and the correctness will benfdly proved. This is

a non-trivial proof since the simple induction principleetsize of graph, does not
work.

In the next section we give a brief overview of algorithmitcdgging. Related
work is also discussed. In Section 3, some basic definitiodistlhe augmented
redex trail(ART) are formally presented. In Section 4, we show how tcegate an
EDT from an ART. In Section 5, we prove the properties of an Ei particular,
the correctness of algorithmic debugging. Future work beldiscussed in the last
section.

2 ALGORITHMIC DEBUGGING

Algorithmic debugging can be thought of searching a faulh iprogram. When
a program execution has produced a wrong result an algaatdebugger will
ask the programmer a number of questions about the computdiach question
asks whether a given subcomputation is correct, that isthenet agrees with
the intentions of the programmer. After a number of questiand answers the
algorithmic debugger gives the location of a fault in thegueon.

For example, for an execution of the Haskell program

main = inplies True Fal se
inplies x y =not y || x

a session with an algorithmic debugger might be as follovith, answers given by
the programmer in italics:

1) main = True ? no
2) inplies True False = True ? no
3) not False = True ? yes
4) True || True = True ? yes

Fault | ocated. The definition of "inplies’ is faulty.

The principle of algorithmic debugging is relatively sirmpFrom the compu-
tation that produces the wrong result@mputation treés built; each node of the
computation tree is labelled with a question about a subcoation:

main = True|no
|

inmplies True Fal se = True|no

not Fal se = True|yes True || True = True|yes

An algorithmic debugger traverses the computation tremgdke questions of
the nodes until it locates a so-callfedilty nodethat is, a node whose computation
is erroneous according to the programmer’s intentions theitcomputations of
all its children are correct. The algorithmic debugger répthe definition of the
function reduced in the faulty node as the fault location.

Naish [3] gives an abstract description of algorithmic dghing, independent
of any particular programming language. He proves thatridlguic debugging
is completan the sense that if the program computation produces a wiesgt,
then algorithmic debugging will locate a fault. No such gahproof exists for the
soundnessf algorithmic debugging, that is, the property that theicgated fault
location is indeed faulty. Soundness depends on the exéoita of the com-
putation tree. Programming languages with different saitsrfor example logic
languages vs. functional languages, require differenthiieins of the computa-
tion tree. Even for a single programming language sevefalitiens are possible.
For lazy functional programming languages Nilsson and &p#8, 5, 9] intro-
duced the evaluation dependency tree (EDT) as computaten The EDT has
the property that the tree structure reflects the statictiomeall structure of the
program and all arguments and results are in their most aeduform. The ex-
ample computation tree given above is an EDT. The algorithdebuggers Freja,
Hat and Buddha/Plargleflarp are based on the EDT. The catistnuof an EDT
during the computation of a program is non-trivial, becathsestructure of the
EDT is very different from the structure of the computatiendetermined by the
evaluation order.

For a lazy functional logic language Caballero et al. [1pgformal definition
of an EDT and sketch a soundness proof of algorithmic delmggdilowever, this
approach relies on the EDT being defined through a high-lewvetdeterministic
big-step semantiés Thus this definition of the EDT is far removed from any real
implementation of an algorithmic debugger.

3 FORMALISING THE AUGMENTED REDEX TRAIL (ART)

An augmented redex trail (ART) is a graph that representsnapatation of a
functional program. A graph enables sharing of subexprassivhich is the key
both to a space efficient trace structure and closeness timgilementations of
functional languages. The one essential difference talatahgraph rewriting of
functional language implementations is that ART rewritdh@es not overwrite a
redex with its reduct, but adds the reduct to the graph, kegipie reduct and thus
the computation history.

In this section we give some basic definitions which will bedishroughout
the paper, and we describe how to build an ART.

Definition 1. (Atoms, Terms. Patterns, Rewriting rule and Program)

INon-determinism is essential for this approach, irrespectf whether the
programming language has logical features or not.

3

e Atoms consist of function symbols and constructors.

e Terms: (1) an atom is a term; (2) a variable is a term; (3) MN is a ternvif
and N are terms.

e Patterns: (1) a variable is a pattern; (2) cp..p, is a pattern if c is a con-
structor and g,..., ph are patterns, and the arity of c is n.

e Arewriting ruleis of the form f p...pn = R where f is a function symbol
and p,..., ph (n > 0) are patterns and R is a term.

e Aprogramis a finite set of rewriting rules.

Example 2. id x= x, not True= False map f(x:xs)=f x : map f xs
andones= 1 : onesare rewriting rules.

Note that we only allow disjoint patterns if there is morertioae rewriting rule for
a function. We also require that the number of arguments ohation in the left-
hand side must be the same. For example, if there is a regyritle f ¢; = g, then
f co c3 =c4is not allowed. The purpose of disjointness is to preventars giving
different values to the same argument when we define a funcbisjointness is
one of the ways to guarantee the property of Church-Rosserahy programming
languages such as Haskell the requirement of disjointseisstineeded, because
the patterns for a function have orders. If a closed term ngst¢he first pattern,
the algorithm will not try to match the rest patterns. We aksguire that all the
patterns are linear because conversion test is difficulesioms. Many functional
programming languages such as Haskell only allow linedepad.

Now, we define computation graphs and choose a particulamgascheme
to name the nodes in a computation graph. The leftargla mean the function
component and the argument component of an applicatioectsgely. The letter
r means a small step of reduction.

Definition 3. (Node, Node expression and Computation graph)
e Anodeis a sequence of lettersf anda, i.e. {r,f,a}".

¢ A node expression is either an atom, or a node, or an application of two
nodes, which is of the form em.

e A computation graph is a set of pairs which are of the fortn,e), where n
is a node and e is a node expression.

Example 4.We have a Haskell program:
g (JustX =hx
hxy=y&& x

The following is a computation graph for the starting teydust True (id (not False).

4

{(r,rfora), (rf, rff o rfa), (rff,9), (rfa, rfaf o rfaa), (rfaf, Just), (rfaa, True),
(ra,raforaa), (raf,id), (raa,raaforaaa), (raaf, not), (raaa, False),
(rar,raa), (raar, True), (rfr, rfrf o rfaa), (rfrf,h), (rr,rrf o rfaa), (rrf, rrffora),
(rrff,&&), (rrr, True) }

It can be depicted as follows:

The dashed edges represent the computation steps. If amasién a graph then
there is a computation from the nodeto mr. So, the pairs of the forrfm,nr) are
omitted in the formal representation of the graph. For edanip,rr) and(rf, rfr)
are not included in the above graph.

Notation: dom(G) denotes the set of nodes in a computation gi@ph

Pattern matching in a graph

The pattern matching algorithm for a graph has two differesatilts, either a set of
substitutions or “doesn’t match”.

e The final node in a sequence of reductions starting at npdiast(G, m):

last(G,mr) if mr € domG)
last(G,m) = last(G,n) if (m,n) € Gandnis a node

m otherwise

The purpose of this function is to find out the most evaluateidtpfor m.
For example, ifG is the graph in Example 4, then we hdest(G,r) = rrr
andlast(G,ra) = raar.

e The head of the term at node head G, m), whereG is a graph andnis a

node inG:
head G, last(G,i)) if (mioj)eG

headG,m) = a if (m,a) € Gandais an atom
undefined otherwise

For example, ifG is the graph in Example 4, then we hawead G,r) = h
andheadG,rf) = g.

e The arguments of the function at nogeargs(G, m):

B (args(G,last(G,i)),j) if (mioj)eG
args(G,m) = { () otherwise

Note that the arguments of a function are a sequence of nBdesxample,
if G is the graph in Example 4, then we haams(G,r) = (rfaa,ra) and
args(G,ra) = (raa).

Now, we define two functionmatch andmatch which are mutually recursive.
The arguments ahatch are a node and a pattern. The argumentaatfch are a
sequence of nodes and a sequence of patterns.

e match (G, m,x) = [m/x] wherex is a variable.

match (G, m,cas...0k)
[match(G,args(G,n7),(ty,...,0k)) if headG,m) =c
"] does not match otherwise

wherem' = last(G,m).

matCQ(Ga <m17 ey rTh>, <pla ey pn>)
=match (G, my, p1)U...Uumatch (G, my, pn)

whereU is the union operator. Notice thatnf= 0 then

match (G, (), () =[]

If any m; does not matchp;, (my,...,m,) does not matckips, ..., pn). If the
length of two sequences are not the same, they do not matclex&mple,
(my, ...,ms) does not matckips, ..., ps) if S#£5.

e We say thatG at nodem matches the left-hand side of a rewriting rule
fp1...pn = Rwith [my/xq, ...,mk/x] if head G,m) = f and

match (G, args(G,m), (P, ..., Pn)) = [M1/X4, ..., Mk /%]

In the substitution fornim/x], mis not a term but a node. In Example 4, the graph
at noder matchesh x y with [rfaa/x,ra/y]. The definition of pattern matching
and its result substitution sequence will become impofftarmhaking computation
order irrelevant when we generate graphs. In Example 4, ritemahich node is

reduced firstra or raa, the final graph will be the same.
Graph for label termsDuring the computations all the variables in a term will
be substituted by some nodes. When the variables are sibdtlly a sequence

6

of shared nodes, it becomes a label term. For exaniple& x)[rfaa/x,ra/y] =
ra && rfaa is a label term. The functiographdefined in the following has two
arguments: a node and a label term. The resujraphis a computation graph.

graphin,e) = {(n,e)} whereeis an atom or a node

{(n,MoN)} if M andN are nodes

{(n,Mona)}ugraph(na,N) ifonly M is anode

{(n,nfoN)}Ugraph(nf,M) ifonly N is a node

{(n,nfona)}uUgraph(nf,M) otherwise
ugraph(na,N)

graph(n,MN) =

Building an ART

e For a start ternM, the start ART igraph(r,M). Note that the start term has
no nodes inside.

e (ART rule) If an ART G at m matches the left-hand side of a rewriting rule
fp1...pn = Rwith [my /X1, ...,mk/x], then we can build a new ART

GUgraph(mr, Rimy /X1, ... Me/%d)

e An ART is generated from a start ART and by applying &RT rulerepeat-
edly. Note that the order in which nodes are chosen has neimfliin the
final graph.

Example 5.1f the start term igy (Just True (id (not Falsg) as in Example 4, then
the start graph is

{(r,rfora), (rf,rfforfa), (rff,9), (rfa, rfaf o rfaa), (rfaf, Just), (rfaa, True),
(ra,raforaa), (raf,id), (raa,raaforaaa), (raaf, not), (raaa, False) }

The new parts built from andra are

graph(rr, (y && x)[rfaa/x,ra/y])
= graph(rr, (ra && rfaa))

{(rr,rrforfaa), (rrf, rrffora), (rrff, &&)}

graph(rar,x[raa/x|) = {(rar,raa)}

Note that the order of computation is irrelevant becausedsigt of pattern match-
ing at the nodea is always[raa/x|, no matter which node is computed first. The
definition of pattern matching simplifies the representatbART. Otherwise we
would have several structurally different graphs représgrthe same reduction
step. Multiple representations just cause confusion andldiater lead us to give
a complex definition of an equivalence class of graphs.

The following simple properties of an ART will be used later.

Lemma 6. Let G be an ART.

e If me domG) then there is at least one lettein m.
e If mr € domG) then me dom(G) or m= € wheree is the empty sequence.
e If mr e domG) then(m,n) ¢ G for any node n.

Proof. The first and second are trivial. The third is proved by cadtittion. If
(m,n) € G thenhead G, m) is undefined. There cannot be a computatiomgte.
mr ¢ G.

4 GENERATING AN EVALUATION DEPENDENCY TREE

In this section we generate tl&valuation Dependency Tré&DT) from a given
ART.

The real Hat ART also includes so-callpdrent edgesEach node has a parent
edge that points to the top of the redex that caused its oreaRarent edges are
key ingredient for the redex trail view of locating prograaults [10]. One may
notice that there are no parent edges in the ART here. Theay meebe given
explicitly because the way that the nodes are labelled gigethe parents of all
nodes implicitly.

Definition 7. (Parent edges)

parentnf) = parent(n)
parentna) = parentn)
parentfnr) = n

Note thatparent(r) = € whereg is the empty sequence.

Definition 8. (childrenandtree) Let G be an ART, andma node in G i.e. nr €

domG)).

children and tree are defined as follows.
e children
children'm) = {n | parentin) = mand m € dom(G) }

The condition ne domG) is to make sure that only evaluated nodes become
children.

e tree
tree(m) = {(m,ny),...,(M,ng) } Utree(ny) U.... Utree(ny)

where{ny,...,nx} = children(m)

Example 9.1f Gis the graph in Example 4 then

tree(e) = {(g,r), (g,ra), (g,raa), (g,rf), (r,rr) }

Notation: In the above definitions such akildren, the ART G should be one
of the arguments but it is omitted. For example, we weitddren(m) for
children(G,m). We shall use this notation later when no confusion may
occur.

Usually, a single node of a computation graph representy different terms. We
are particularly interested in two kinds of terms of nodhe,most evaluated form
and the redex.

Definition 10. (Most Evaluated Form) Let G be an ART. The most evaluated form
of anode mis a term and is defined as follows.

mef(mr) if mr € domG)
mef{m) otherwise

mef(m) = {

where

mef(n) (m,n) € G and nis a node
mef(i) mef(j) (mjioj)eG

a (m,a) € G and a is an atom
mef{m) =
One may also use the definitionlaist(G, m) to define the most evaluated form.
Example 11.If Gis the graph in Example 4, then
mef(r) = mef(rr) = mef(rrr) = True

mef(ra) = mef(rar) = mefirar) = mef(raa) = True

Definition 12. (redex) Let G be an ART, and ma node in G (.e. mr € domG)).
redex is defined as follows.

e redexe) = main

mef(i) mef(j) if (mioj)eG
a if (m,a) € G and a is an atom

e redexm) = {

Note that the casém,n) € G is not defined in this definition becausa,n) ¢ G
for any noden by Lemma 6.

Example 13.If Gis the graph in Example 4, then
redexr) = mef(rf) mef(ra) = h True True
Now, we define the evaluation dependency tree of a graph.

Definition 14. (Evaluation Dependency Tree) Let G be an ART. The evaluation
dependency tree (EDT) of G consists of the following twospart

1. The settreg);

2. The set of equations; for any node in tfeethere is a corresponding equa-
tion redexm) = mef(m).

Note that we writemef(e) for mef(r).

Notation: For an EDTT, dom(T) denotes the set of all the nodestire(e). We
also say(m,n) € T if (m,n) € tree(e).

redeXm) = mef(m) represents an evaluation at nogiefrom the left-hand side
to the right-hand side. A paifm,n) in an EDT represents that the evaluation
redeXm) = mef(m) depends on the evaluatioedexn) = mef(n).

Example 15.The EDT for the graph in Example 4 is the following.

r 4%/ ra&\\ rf

’ g True True = TruH id True = True‘ ’ not False = TrMef (Just True) =g True‘

| "

’ True && True = True ‘

5 PROPERTIES OF AN EDT

In this section, we present the properties of the EDT andetbg correctness of
algorithmic debugging.

The following theorems suggest that the EDT of an ART covits@compu-
tation in the ART. Although two evaluations may rely on thenseevaluation in an
ART, every evaluation for algorithmic debugging only netalbe examined once.

Lemma 16. Let G be an ART, and T its EDT. If there is a sequence of nodes
My, M, ..., M, such that

m e children(my), m € children(ny), ...,
mx_1 € children(my), m, € children(g)

then me dom(T).
Proof. By the definition oftree(e).

Lemma 17. Let G be an ART. If me domG), then m= € or there is a sequence
of nodes m, mp, ..., m such that

m € children(my),m € children(ny), ...,
my_1 € children(my), m € children(g)

10

Proof. By induction on the size ah, and by Lemma 6.
Sincenmr € dom(G), by Lemma 6, we only need to consider the following two
cases.

e If m= ¢, the statement is obviously true.

e If me domG), by Lemma 6, there is at least one lettém m. We consider
the following two sub-cases.

- m=rn, where there is noin n. Sincemr € dom(G) and parent(rn) =
€, we havern € children(g).

- m=myrn, where there is noin n. Sincemr € dom(G) andparentm) =
my, we havem € children(my). Now, becausen; is a sub-sequence
of m, by induction hypothesis, there is a sequence of index ntsnbe
M, ..., Mg such that

my € children(my), ..., me_1 € children(my), m¢ € children(e)
So, there is a sequence of index numberam,, ..., m such that
m e children(my), my € children(mp), ..., my € children(e)

Theorem 18. Let G be an ART, and T its EDT.
If mr € dom(G), then me dom(T). In other word, T covers all the computa-
tions in G.

Proof. By Lemma 17 and 16.

Lemma 19. Let G be an ART, and T its EDT.
If (m,n) € T, then ne children(m) and parentn) = m.

Proof. By the definition ottree

Theorem 20. Let G be an ART, and T its EDT.
If (m,n) € T and m£ kK, then(k,n) € T.

Proof. By Lemma 19.

The above theorem suggests that every evaluation for #gigaid debugging
only needs to be examined once although two evaluations eigyon the same
evaluation. For example, is defined ag) x= (not x not x not x). When we com-
puteg (not True, the equatiomot True= Falseonly appears once in the EDT.

In the algorithmic debugging scheme, one needs to answeradayuestions
according to the EDT and intended semantics in order todozdaulty node.

Notations: M ~; N means thaM is equal toN with respect to the semantics of
the programmer’s intention. If the evaluativh= N of a node in an EDT is
in the programmer’s intended semantics, tikn-; N. OtherwiseM 2, N
i.e. the node is erroneous.

11

General semantical equality rules:

M2|N M2|N M/2|N, M2|N N2|R
M:|M N2|M MM/:|NN/ M2|R

Figure 1. Semantical equality rules

Semantical equality rules are given in Figure 1, which willused in Lemma 27
later.

As mentioned in Section 2, if a node in an EDT is erroneous batrio erro-
neous children, then this node is calkedaulty node.The following figure shows
what a faulty node looks like, wherg, n,, ..., ng are the children of m.

m

redex(m), mef(m)

—] T

redex(y) ~ mef(ny) redexfy) ~ mef(ny) |~ redex(y) ~ mef(ny)

Ny n2 Nk

Figure 2. mis a faulty node

Definition 21. Suppose the equation fpp, = R is in a program P. If there
exists a substitution such that(f p;...pn)o = fbs...b, and R0 = N, then we say
that fby...bn, —p N.

If fb1...bn —p N but fh...b, %1 N, then we say that the definition of the func-
tion f in the program is faulty.

fbi...bp —p N means that it is a single step computation frén...b, to N ac-
cording to one of the rewriting rules in the progr&nand there is no computation
inby,...,bn.

CORRECTNESS OF ALGORITHMIC DEBUGGING

Definition 22. If the following statement is true, then we say that algamiih de-
bugging is correct.

¢ If the equation of a faulty node is fh.b, = M, then the definition of the
function f in the program is faulty.

12

For a faulty nodem, we haveredexXm) %, mef(m). We shall find a ternN and
proveredeXm) —p N ~ mef(m). In order to definé\, we need other definitions.

Definition 23. Let G be an ART and m a node in G. redum} is defined as
follows.

a if (m,a) € G and a is an atom
mef(n) if (mn) € G and nis a node

) reduct(mf) reductma) if (mmfoma) € G

reductm) = reduct(mf) mefi(j) if (mmfoj)e Gand j#ma

mef(i) reductma) if (mioma) e G and i# mf

mef(i) mef(j) if (mioj)eGandi#mfand j# ma

reduct represents the result of a single-step computation. And vedl prove
redeXm) —p reduct(mr) ~; mef(m) for a faulty nodem. Note thatmef(m) =
mef(mr) and so we want to proveductmr) ~; mef(mr). In order to prove this,
we prove a more general resuéiductm) ~; mef(m) for all m e domG) (see
Lemma 27 for the conditions).

We defineébranchand the reduction principlée pthin order to prove this gen-
eral result.

Definition 24. (branchand brancH) We say that n is a branch node of m, denoted
as branchin,m), if one of the following holds.

e branchm,m);

e branchnf,m) if branch(n, m);

e branch'na,m) if branch(n,m).
Let G be an ART.

brancH(m) = {n| nr € domG) and branclin,m)}

Note thatbrancH(m) is the set of all evaluated branch nodesrof
Lemma 25. Let G be an ART.

e If n € brancH(mf) or n € brancH(ma) then ne brancH(m).

e If mr € domG) then childrerim) = brancH(nr).
Proof. By the definitions othildrenandbrancH.

Definition 26. (depth) Let m be a node in an ART G.

1+ maxdeptimf), if (mmfoma)ec G
depti{ma)}
_J 1+depth(mf) if (mmfoj)e Gand j#ma
depthim =14 1 | gepttima) if (m,ioma) € G and i# mf
1 if (mioj)eGandi#mfand j# ma
0 otherwise

13

Lemma 27. Let G be an ART and m a node in G. If red@x~ mef(n) for all
n € branch(m), then reductm) ~ mef(m).

Proof. By induction ondepth(m).
Whendepti{m) = 0, we havgm,e) € G whereeis a node or an atom.

e If eis a node, themr € G by Lemma 6. Then by the definitions tdduct
andmef, we havereductm) = mef(e) andmef(m) = mef{m) = mef(e).

e If eis an atom, we haveeductm) = e. Now, we consider the following
two cases. lim € brancH(m), then we havenr € dom(G) andmef(m) ~
redexXm) = e. If m¢ brancH(m), then we havenr ¢ domG) andmef(m) =
mef{m) =e.

For the step cases, we proceed as follows.

e If me brancH(m), then we havenr € dom(G) andredeXm) ~; mef(m).
And we need to proveedeXm) ~ reductm).
Let us consider only one case here. The other cases arersil@ilppose
(m,mfo j) € G andj # ma, then by the definitions we have

redexm) = mef(mf) mef(j)

reductm) = reductmf) mef(j)
Since for anyn € brancH(mf), by Lemma 25, we have € brancH(m)
and henceedexn) ~ mef(n). By the definition ofdepth we also have
depth{mf) < deptim). Now, by induction hypothesis, we haregductmf) ~

mef(mf). And hence we haveedeXm) ~ reductm) by the semantical
equality rules in Figure 1.

e If m¢ brancH(m), thennr ¢ dom(G).
Let us also consider only one case. The other cases are rsirSilppose
(mmfo j) € Gandj # ma, then by the definitions we have

mef(m) = mef(mf) mef(j)
reduc{m) = reductmf) mef(j)

The same arguments as above suffice.

Corollary 28. Let G be an ART and ma node in G {(e. mr € domG)). If
redexn) ~ mef(n) for all n € children(m), then reductmr) ~; mef(m).

Proof. By Lemma 25 and 27.

The conditionredexn) ~ mef(n) for all n € children(m), basically means tha
does not have any erroneous child nodes as in Figure 2.

14

Lemma 29. Let G be an ART and ma node in G {ie. mr € dom(G)). Then
redexXm) —p reduct(n).

Proof. Since there is a computation at the nogeve suppos& at nodenmatches
the left-hand side of the rewriting rulep;...pn = R with [my/xq,...,me/X]. We
need to prove that there exists a substitutiosuch thatedexm) = (f p;...pn)0
andreduct'mt) = Ro. In facto = [mef(my) /1, ..., mef(my) /x].

Now, we need to prove thaedexXm) = (fp;...pn)o andreductmt) = Ro.
For the first, we proceed by the definitionreidexand pattern matching. For the
second, we proceed by the definitionrefluctandgraph

A similar result as in the above lemma is proved in [2].
Now, we come to the most important theorem, the correctriealgorithmic
debugging.

Theorem 30. (Correctness of Algorithmic Debugging) Let G be an ART, T its
EDT and m a faulty node in T. If the equation for the faulty nodis fhy...b, =M,
then the definition of f in the program is faulty.

Proof. By Lemma 29 and Corollary 28, we havedexXm) —p reductmr) and
reductmr) ~; mef(m). Sincefb;...by = redexXm) %, mef(m) = M, we have
fbs...bn —preductmr) andfb;...b, % reductmr). The computation fronib;...by,
to reductmr) is a single step computation, biib;...b, is not semantically equal
to reductmr). So the definition off in the program must be faulty.

6 CONCLUSION AND FUTURE WORK

In this paper, we have formally presented the ART and EDT. ARg is an effi-
cient and practical trace, and it is a model of a real impletateon (i.e. Hat). The
EDT is directly generated from the ART. We proved the mostdntgmt property
of Hat, the correctness of algorithmic debugging. What te®tem proves is the
consistency between the answers given be the user and #idetof the faulty
node made by the debugging algorithm. Many other relatepepties of the ART
and EDT are also proved.

However, there is still more work that needs to be done. Qtigreve are
studying three extensions of the ART model, and the reguEDT.

1. Replace the unevaluated parts in an ART by underscoredagnite.).
An unevaluated part in an ART intuitively means the valuelo$ part is
irrelevant to any reduction in the graph.

2. Add error messages to an ART when there is a pattern magtéiiare.
3. Add local rewriting rules (or definitions) to the program.

How these three extensions will affect the EDT and algorithdebugging needs
further study.

15

ACKNOWLEDGEMENTS

The work reported in this paper was supported by the Engimgend Physical
Sciences Research Council of the United Kingdom under thiet @P/C516605/1.

References

[1]

[7]

[8]

Rafael Caballero, Francisco J. Lépez-Fraguas, anddvRodriguez-Artalejo. The-
oretical foundations for the declarative debugging of tamctional logic programs.
In Herbert Kuchen and Kazunori Ueda, editdfanctional and Logic Programming,
5th International Symposium, FLOPS 2001, Tokyo, JapancMar9, 2001, Pro-
ceedingsLNCS 2024, pages 170-184. Springer, 2001.

Olaf Chitil and Yong Luo. Structure and properties oftea for functional programs.
To appear in ENTCS 2006.

Lee Naish. A declarative debugging schendeurnal of Functional and Logic Pro-
gramming 1997(3), 1997.

Henrik Nilsson.Declarative Debugging for Lazy Functional LanguagPD thesis,
Linkdping, Sweden, May 1998.

Henrik Nilsson and Peter Fritzson. Algorithmic debuggifor lazy functional lan-
guagesJournal of Functional Programmingl(3):337-370, July 1994.

Henrik Nilsson and Jan Sparud. The evaluation deperelgee as a basis for lazy
functional debugging Automated Software Engineering: An International Jouynal
4(2):121-150, April 1997.

B. Pope and Lee Naish. Practical aspects of declaratmigging in Haskell-98.
In Fifth ACM SIGPLAN Conference on Principles and Practice etrative Pro-
gramming pages 230-240, 2003.

E. Y. Shapiro.Algorithmic Program DebuggingMIT Press, 1983.

[9] Jan Sparud and Hendrik Nilsson. The architecture of aidgér for lazy functional

[10]

[11]

languages. In Mireille Ducassé, edit®roceedings of AADEBUG’955aint-Malo,
France, May, 1995.

Jan Sparud and Colin Runciman. Tracing lazy functi@mahputations using redex
trails. In H. Glaser, P. Hartel, and H. Kuchen, editd?mc. 9th Intl. Symposium on
Programming Languages, Implementations, Logics and Rmogr(PLILP’97) pages
291-308. Springer LNCS Vol. 1292, September 1997.

Malcolm Wallace, Olaf Chitil, Thorsten Brehm, and GoRunciman. Multiple-view
tracing for Haskell: a new Hat. IRreliminary Proceedings of the 2001 ACM SIG-
PLAN Haskell WorkshqpUU-CS-2001-23. Universiteit Utrecht, 2001. Final pro-
ceedings to appear in ENTCS 59(2).

16

