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Abstract—Applications with internal substructure are common
in the cloud, where many systems are organized as independently
logged and replicated subsystems that interact via flows of objects
or some form of RPC. Restarting such an application is difficult: a
restart algorithm needs to efficiently provision the subsystems by
mapping them to nodes with needed data and compute resources,
while simultaneously guaranteeing that replicas are in distinct
failure domains. Additional failures can occur during recovery,
hence the restart process must itself be a restartable procedure.
In this paper we present an algorithm for efficiently restarting a
service composed of sharded subsystems, each using a replicated
state machine model, into a state that (1) has the same fault-
tolerance guarantees as the running system, (2) satisfies resource
constraints and has all needed data to restart into a consistent
state, (3) makes safe decisions about which updates to preserve
from the logged state, (4) ensures that the restarted state will
be mutually consistent across all subsystems and shards, and (5)
ensures that no committed updates will be lost. If restart is not
currently possible, the algorithm will await additional resources,
then retry.

I. INTRODUCTION

We are seeing a shift from a query-dominated cloud in

which most operations are read-only and use data acquired

out-of-band, to a real-time control cloud, hosting increasingly

complex online applications, in which near-continuous avail-

ability is important. Such needs arise in stream processing for

banking and finance, IoT systems that monitor sensors and

control robots or other devices, smart homes, smart power

grids, smart highways, and cities that dynamically manage

traffic flows, etc. These applications often have multiple sub-

systems that interact, and that bring safety requirements which

include the need for fault-tolerance and consistency in the

underlying data-management infrastructure.

Traditional transactional database methods scale poorly if

applied naively [1]. Our work adopts a state machine replica-
tion model, using key-value sharding for scaling. Such models

are relatively easy to program against and hence increasingly

popular, but pose challenges when crashes occur.

To maintain the basic obligations of the state machine

replication methodology, updates must be applied to replicas

exactly once, in the same order, and should be durable despite

damage a failure may have done. For a given replication factor

the system should also guarantee recoverability if fewer than

that number of crashes occur. Subsystems may being further

constraints: numbers of cores, amounts of memory, etc. A

further consideration is that datacenter hardware can exhibit

correlated failures due to shared resource dependencies. To

ensure high availability, replicas must be placed into distinct

failure correlation sets.
Performance considerations further shape the design of

modern cloud systems, which often migrate artificially intelli-

gent behavior into the edge [2]. This may entail use of machine

learned models for decision-making or event classification, as

well as real-time learning in which new models are trained

from the incoming data stream. For example, a smart highway

might need to learn the behavior of vehicles, and adapt the

acquired models as vehicles change their behavior over time.

The large data sizes (photos, videos, radar, lidar) and intense

time pressure (guidance is of little value if based on stale data)

compel the use of accelerators, such as RDMA (which offloads

data transport to hardware and achieves zero-copy transfers),

NVM (which offers durable memory-mapped storage), GPU

and TPU, and FPGA, without which applications would often

be unable to meet performance demands [3, 4, 5].
The Derecho library [3] was created to support this new

class of demanding edge applications. Derecho models the

application as a collection of subgroups where each subgroup

is partitioned into shards (subgroups can overlap, but shards of

the same subgroup are disjoint). Each shard is a replicated state

machine. The membership of the entire system is managed

in a top-level group, which consists of all the nodes in the

system. Figure 1 shows an example application. Derecho

makes several key design decisions that are necessary to

achieve high performance:

• Consensus off the critical path: Derecho adopts a virtual

synchrony approach [6]. The top-level group membership

moves through epochs (or views) where each epoch is a

failure-free run of the system. Each failure triggers a re-

configuration (or view change) of the group membership.

The view change involves agreement on pending updates

and recomputation of the membership of each shard.

• Update all, read any single replica: An update is only

committed in a shard if it has been logged at every non-

failed member. Every replica has full state, enabling fast

single-replica queries that do not interfere with updates.

In this model, a shard can survive the failure of all but one

member without losing any committed updates. This is in

contrast to quorum-based protocols [7], where it suffices

to update a majority of replicas, but where a query or

a restart involves merging state from multiple replicas.

Moreover, Derecho pipelines updates, such that each log

consists of a prefix of committed updates followed by

a suffix of pending updates. A reconfiguration results in
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Fig. 1: A Derecho service spanning 16 (or more) machines

and containing several subsystems that employ a mix of point-

to-point RPC and multicast. The ovals represent subgroups

and shards within which data is replicated. Independent use

of state machine replication isn’t sufficient: after a shutdown,

components must restart in a mutually-consistent state.

a distributed log cleanup where updates that cannot be

committed are discarded.

• Distributed logs: For safety, each shard member needs to

log updates before they are committed. In this class of

services, the “state of the application” is decentralized.

Services sometimes shut down and must later be restarted,

for example when the application is migrated to different

nodes, software is updated or the datacenter as a whole

is serviced. Clearly we must recover each individual SMR

subgroup or shard, but notice that the recovered states also

need to correspond to a state the service as a whole could

have experienced, while also preserving every committed

update. This obligation is not unique to Derecho: systems like

vCorfu [8] (the multi-log version of Corfu [9]) and Ceph [10]

also have multiple subsystems that use sharding. Nonetheless,

the problem has not previously been studied. For example,

although the Derecho paper is detailed, it focuses on the

efficiency of its protocols, their mapping to RDMA, and the

resulting performance.

There are several factors that make restarting non-trivial:

• Failures during restart complicate the problem. We need

to ensure safety under all circumstances and restore the

system to a consistent, running state, equivalent to the

last committed state before total failure.

• Some nodes that were once part of the system may never

recover. Moreover, some restarting nodes may have failed

in a view preceding the last view before the restart, in

which case they will not be aware of the last member-

ship of the top-level group. We need to determine the

conditions under which a restart is possible and reconcile

incomplete logs stored by shard members.

• We need to satisfy application constraints related to

deployment. For example, shards may require that the

members belong to different failure regions of the data-

center, impose a minimum on the number of members,

and specify hardware configurations (such as number of

cores, amount of memory, GPUs, etc).

The restart process should also be highly efficient to min-

imize application downtime. Thus we need to minimize the

data transferred during restart and optimize data movement.

In this paper, we describe our restart algorithm for such sys-

tems, with configurable parameters as follows. Our algorithm

requires the restarting service to designate a restart leader; it

can be any restarting node. We model the failure characteristics

of the nodes by organizing them into failure correlation sets.

The application specifies the minimum number of failure

correlation sets that the members of a shard should come

from, for each shard of every subgroup. The application pro-

vides mappings from nodes to failure correlation sets through

configuration files, making the process highly flexible; it can

choose to distinguish nodes that belong to different racks or

different regions of the datacenter altogether.

Our paper makes the following contributions:

1) Characterization of the state recovery problem for ser-

vices composed of stateful subsystems, including a def-

inition of correct recovery for replicated state machines

that share a configuration manager.

2) An algorithm for restarting such a system from durable

logs, including reasoning that argues why the algorithm

is safe in the presence of any number of crashes, and

live as long as any quorum of the last live configuration

eventually restarts.

3) An algorithm that provably assigns nodes to shards in a

way that satisfies deployment constraints and minimizes

state transfer.

4) An experimental evaluation showing that a structured

service can be recovered quickly and efficiently using

this algorithm.

An implementation is available in the Derecho system.

In section II, we describe the restart problem at length,

discussing our desirable goals for any algorithm that solves

it. In section III, we discuss our restart algorithm and the

accompanying algorithm for assigning nodes to shards while

satisfying deployment constraints. In section IV, we reason

about the correctness of the restart algorithm and prove the

node assignment algorithm correct. We show the feasibility

of our approach in section V and discuss related work in

section VI. Finally, we summarize our findings and conclude

in section VII.

II. PROBLEM DESCRIPTION

The essence of our problem is that independent recovery

of state-machine replicated components is not sufficient. SMR

guarantees that a service with 2f + 1 members can tolerate

f crash failures. However a complex service with multiple

subsystems and shards has many notions of f . For the service

as a whole, Derecho’s virtually synchronous membership

protocol requires that half the members remain active from

one view to the next; this prevents “split brain” behavior. But

notice that in Figure 1 some shards have as few as 2 members.

A log instance could be lost in a crash, hence such a shard

must not accept updates if even a single member has crashed.
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We can distinguish two cases. One involves continued

activity of a service that experiences some failures, but in

which many nodes remain operational. This form of partial
failure has been treated by prior work, including the Derecho

paper. In summary, if the partial failure creates a state in which

safety cannot be maintained, the service must halt (“wedge”)

and cannot install a new view or accept further updates until

the damage has been repaired.

The second case is our focus here: a full shutdown, which

may not have been graceful (the service may not have

been warned). To restart, we must first determine the final

membership of the entire service, and the mapping of those

nodes to their shard memberships in the restarted service.

Then we must determine whether all the needed durable state

is available, since recovery cannot continue if portions of

the state are lacking, even for a single shard. Furthermore,

intelligent choices must be made about the mapping of nodes

to shard roles in the restarted service. On the one hand, this

must respect constraints. Yet to maximize efficiency it is also

desireable to minimize “role changes” that entail copying

potentially large amounts of data from node to node.

In what follows, we will describe the restart problem and

our algorithm for its solution in terms of a more generic

system, with the hope that our techniques will be useful even

in systems where Derecho is not employed.

A. System Setup

We consider a distributed system of nodes (i.e. processes)

organized into subgroups partitioned into shards, in which

each shard implements a virtually synchronous replicated state

machine. In general, we will refer to a shard without men-

tioning which subgroup it belongs to, unless the distinction

is important for clarity. Each shard maintains a durable log

of totally ordered updates to its partition of the system state,

and an update is considered committed once it is logged at

every replica in the current view. As is standard in the virtual

synchrony approach [6], each update records the view in which

it was delivered. Also, each reconfiguration (view change)

event requires every node to commit to an epoch termination
decision which must contain, at a minimum, the highest update

sequence number that can be committed in each shard, as well

as the ID of the view that it terminates.

We believe this model to be quite general. Obviously, it is

a natural fit for services implemented using Derecho, but it

can also be applied to the materialized stream abstraction in

vCorfu [8]. A vCorfu stream abstracts the action of applying

a sequence of updates to a single replicated object (what we

would call a shard). Moreover, vCorfu has multiple subsys-

tems: it stores the system’s configuration in a separate layout

server, rather than having replicas store their own configura-

tion. Turning to the Ceph file system [10], we find a meta-

data service, a cluster mapping service, and a sharded SMR-

replicated object store (RADOS). Again, the requirements are

analogous to the ones we described for Derecho, with the

cluster map playing the role of the view. To our knowledge,

neither vCorfu nor Ceph currently addresses the issue of

consistency across different shards and subsystems in the event

of a full shutdown; our methods would thus strengthen the

recoverability guarantees offered by these systems.

B. The Restart Problem

Our task is to ensure that the committed state of this system

can be recovered in the event that every node in the system

crashes in a transient way. This could be the result of a power

failure or network disconnection, or an externally-mandated

shutdown caused by datacenter management policies. When

the system begins restarting after such a failure, we can assume

that most of the nodes that crashed will resume functioning

and can participate in the restart process. However, some nodes

may remain failed. The system should be able to restart as

long as enough of its former members participate in the restart

process to guarantee that its state has been correctly restored.

Specifically, we need to restore the system to a consistent,

running state, that is equivalent to its last committed state

before the total failure. The restarted system must also have the

same fault tolerance guarantees as it did before. This means

that the restarted distributed service must (1) include every

update in every shard that had reached a durably-committed

state before the crash, (2) adopt a configuration that is the

result of a valid view-change procedure from the system’s last

installed configuration, and (3) assign nodes to shards such that

each shard meets its constraint of having nodes from different

failure correlation sets.

The service must also be resilient against failures during the

restart process, since the same transient crashes that caused it

to stop can also occur during restart. It must tolerate the failure

of any node in the system, detect it, and revert the system to a

safe state until recovery can continue. Recovery must be able

to continue from any intermediary state.

We assume that some simple external process triggers the

restart procedure, such as a datacenter-management system

that re-runs each interrupted program after a shutdown event.

As a preliminary design choice, we will also assume that the

restart procedure will be leader-based. The restarting system’s

first task, then, is to choose a restart leader. While we could

elect a restart leader using standard techniques, we found it

simpler and just as effective to use a preconfigured list of

restart leaders installed on all nodes in the system (e.g. through

a settings file). We have designed our protocol such that any

node that was a member of the system at any time can serve

as the restart leader, so the choice of restart leader is arbitrary

and does not depend on the state of the system at the time

of the total failure. As we will see in section IV-B, this also

means that it is easy for another node to take over for the

restart leader if it fails during recovery.

In order to restart to a consistent state, several subproblems

must be addressed. First, when the restart leader starts up, it

does not know whether it was a member of the last installed

configuration, or whether it crashed much earlier but was

nonetheless set as the restart leader; thus, its logs of both

system state and the group membership could be arbitrarily out

of date. Second, when the restart leader communicates with
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other restarting nodes, it must determine whether those nodes’

configuration and state data is newer or older than its own,

and whether it represents the last known state of the system,

without knowing in what order the other nodes crashed. Third,

for each node that restarts and has logged state updates, the

restart leader must determine which updates in that log might

have been externally visible and acted upon, and which were

still in-progress and might never have reached a majority

of replicas. Answering this question requires knowing what

configuration was active at the time the update was logged, and

what configuration was active at the time the system crashed.

Finally, during the restart process any node could experience

another transient crash, including the restart leader itself, and

these crashes should not result in the system restarting in an

inconsistent state or prevent the system from restarting when

it has a sufficient number of healthy replicas.
The restarted system must also install a configuration that

meets each shard’s fault-tolerance constraints. To avoid shard

shutdowns due to correlated failures, each shard is statically

configured to require a minimum number of nodes from

different failure correlation sets. Here, a distinction between

shards of different subgroups is important, since only shards

of the same subgroup are disjoint. Given a number of restarted

nodes and their failure correlation sets, the restart leader must

not only partition them between each subgroup’s shards, but it

must also (1) satisfy the minimum number of nodes required

from different failure correlation sets for each shard, (2) assign

as many nodes as possible to their original shards, in order to

minimize the number of state transfers between nodes, and (3)

compute the new assignment in a timely manner. Section II-C

gives a detailed example of what is required.
The log-recovery system we describe here addresses all

of these concerns, and restarts the system as efficiently as

possible by allowing each shard to complete state transfer

operations in parallel.

C. Failure-Domain-Aware Assignment
Suppose that a system has failure correlation sets f1, f2,

f3, such that f1 contains nodes a and b, f2 contains nodes

c, d, and e, and f3 contains nodes f and g. It has just one

subgroup with three shards s1, s2, s3, which require 2, 3, and

1 node(s) from different failure correlation sets respectively.

A valid initial configuration for this system would be s1 =
{a, c}, s2 = {b, e, g}, s3 = {f}, leaving d unassigned to any

shard. This can be represented in the following diagram, in

which colors correspond to failure correlation sets:

a c b e g d f

s1 s2 s3

Now suppose a shutdown occurs and all nodes except g
restart. Shard s2 is no longer in a valid configuration because

it has 1 less node than it requires, but it would not suffice for

the restart leader to simply add the unassigned node d to the

shard because d is from the same failure correlation set as c.

a c b e g d f

s1 s2 s3

An optimal reassignment is to move f from s3 to s2, and

add d to s3, resulting in the post-restart configuration s1 =
{a, c}, s2 = {b, e, f}, s3 = {d}. This reassigns only 2 nodes

to new roles, which is the minimum that can be achieved while

satisfying each shard’s requirements.

a c b e f g d

s1 s2 s3

III. RESTART ALGORITHM

Having established the parameters of the restart problem,

we now present our algorithm for solving it. At a high level,

this algorithm has seven steps:

1) Find the last-known view by inspecting persistent logs

2) Wait for a quorum of this view to restart

3) Find the longest replicated state log for each shard

4) Compute new shard assignments and complete epoch

termination from the last view, if necessary

5) Trim shard logs with conflicting updates

6) Update replicas with shorter logs

7) Install the post-restart view

However, this is not a linear process, because failures at

any step after 2 can force the algorithm to return to step

2 if the quorum is lost. Also, in practice, steps 1-3 are

executed concurrently by the restart leader, because it can

gather information about the longest update log available for

each shard while it is waiting to reach a restart quorum.

In order for log recovery to be possible, we must add a few

requirements to the system described in Section II-A. First,

during a reconfiguration, all nodes which commit to a new

view must log it to nonvolatile storage before installing it.

Furthermore, in order to ensure that no updates are used in

the restarted state of the system that would have been aborted

by the epoch termination process, live nodes must log each

epoch termination decision to persistent storage before acting

upon it. Before committing to a new view, the new members

of each shard must download and save the epoch termination

information for the prior view in addition to the logged updates

that they download during the state-transfer process.

The pseudocode for our algorithm is shown in Algorithms

1, 2, 3, and 4, where Algorithms 1 and 2 show the code

that runs on the restart leader, Algorithm 3 shows the code

that runs on a non-leader node, and Algorithm 4 shows the

STATE TRANSFER function that is common to both nodes.

For brevity, we have factored out the leader’s failure-handling

code into a macro called HANDLE FAILURE, which should be

inserted verbatim wherever it is named.

In our pseudocode’s syntax, the dot-operator accesses mem-

bers of a data structure by name, and the bracket operator

accesses members of a map by key, as in C++ or Java. Note

that there are three kinds of integer identifiers: node IDs

or NIDs, shard IDs or SIDs, and view IDs or VIDs. Each

node has a globally unique node ID, and, as is common in

virtual synchrony, view IDs are unique and monotonically

increasing. Shard IDs are unique identifiers assigned to each
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Algorithm 1 The restart leader’s behavior, part 1

1: Vc ← READ(view log)
2: restarted← {nidme}
3: ue ← READ(update log).end
4: LL← {Vc.my sid→ (nidme, ue.seqno)}
5: ET ← READ(epoch termination log)
6: while ¬ QUORUM(Vc, restarted) do
7: (Vi, nidn, sid, seqno)← RECEIVE from n
8: restarted← restarted ∪ {nidn}
9: if Vi.vid > Vc.vid then

10: Vc ← Vi

11: WRITE(view log, Vc)
12: ET ← {}
13: if LL[sid].seqno < seqno then
14: LL[sid]← (nidn, seqno)

15: et← RECEIVE from n
16: if et �= {} ∧ et.vid = Vc.vid then
17: ET ← et
18: WRITE(epoch termination log, ET )
19: Vr ← CHANGE VIEW(Vc, restarted)
20: if ET = {} then
21: ET.vid← Vc.vid
22: for all s ∈ Vr.subgroups do
23: ET.last[s.sid]← LL[s.sid].seqno

24: sent← {}
25: for all s ∈ Vr.subgroups do
26: for all nidn ∈ s.members do
27: success← SEND(Vr, ET, LL[s.sid].nid) to n
28: if ¬success then
29: HANDLE FAILURE(nidn, sent)
30: sent← sent ∪ {nidn}

shard (globally, across all subgroups) of the system. In the

following sections, we will explain the details of the algorithm,

which should make the pseudocode more clear.

A. Awaiting Quorum

The restart leader’s first operation is to read its logged view,

which becomes the first “current” view, Vc, and its logged

epoch termination information, which becomes the currently-

proposed epoch termination, ET . It then begins waiting for

other nodes to restart and contact it; non-leader nodes will

contact the preconfigured restart leader as soon as they restart

and discover that they have logged system state on disk.

When a non-leader node contacts the leader, it sends a copy

of its logged view, Vi, its node ID, the ID of the shard it was

a member of during Vi, and the sequence number of the latest

update it has on disk. The joining node may optionally then

send a logged epoch termination structure, if it has one that is

as new as its logged view. The leader updates Vc and possibly

ET if the client’s view and epoch termination are newer, and

uses data structure LL (a map from shard IDs to pairs of

node IDs and update sequence numbers) to keep track of the

location of the longest log for each shard. Note that sequence

numbers from later views are always ordered after sequence

numbers from earlier views.

After each node restarts, the leader checks to see if it has a

restart quorum. A restart quorum consists of a majority of the

members of the system in the last known view that includes at

Algorithm 2 The restart leader’s behavior, part 2

31: if ET.vid = ue.vid then
32: success← SEND(∅) to LL[Vr.my sid].nid
33: trim seqno← ET.last[Vr.my sid]
34: else
35: success← SEND(ue.vid) to LL[Vr.my sid].nid
36: trim seqno← RECEIVE from LL[Vr.my sid].nid

37: if ¬success then
38: HANDLE FAILURE(LL[Vr.my sid].nid, restarted)
39: TRUNCATE(update log, trim seqno)
40: success← STATE TRANSFER(

LL[Vr.my sid].nid, nidme, Vr)
41: if ¬success then
42: HANDLE FAILURE(LL[Vr.my sid].nid, restarted)
43: sent← {}
44: for all nidn ∈ Vr.members do
45: success← SEND(“Prepare”) to n
46: if ¬success then
47: HANDLE FAILURE(nidn, sent)
48: for all nidn ∈ Vr.members do
49: SEND(“Commit”) to n

50: WRITE(view log, Vc)
51:
52: procedure HANDLE FAILURE(nid, notify set)
53: restarted← restarted− {nid}
54: for all nidm ∈ notify set do
55: SEND(“Abort”) to m

56: if ¬ QUORUM(Vc, restarted) then
57: goto 6
58: else
59: goto 19

least one member of every shard from that view. In addition,

the restart leader must be able to install a new post-restart view

in which the entire group has at least f+1 replicas to meet the

overall fault-tolerance threshold, and each shard is populated

by nodes that meet its failure-correlation requirements. Note

that the post-restart view can add new members that were

not part of the last known view, since nodes that failed in an

earlier view but restarted after the system-wide failure can still

participate in the recovery process.

Once the leader has reached a restart quorum, if the newest

epoch termination structure it has discovered is from an older

view than Vc, it makes its own decision about how to terminate

Vc’s epoch. Specifically, it synthesizes an epoch termination

structure by taking the sequence number of the latest update

for each shard, and marking it with the same VID as Vc. It

then computes Vr, the next view to install after restarting.

In practice, the leader waits for a short “grace period” after a

quorum is achieved to allow nodes that restarted at a slightly

slower rate to be included in Vr. This makes it less likely

that Vr will require many node reassignments (and hence state

transfers), and has only a minor effect on restart time.

B. Assigning Nodes to Shards

When testing for a restart quorum and computing Vr, the

leader must determine an optimal assignment from nodes to

shards. Since the shards of a subgroup must be disjoint, it can

consider each subgroup individually. For each subgroup, the
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Algorithm 3 A non-leader node’s behavior

1: Vc ← READ(view log)
2: et← READ(epoch termination log)
3: ue ← READ(update log).end
4: SEND(Vc, nidme, Vc.my sid, ue.seqno) to leader
5: if et �= {} ∧ et.vid = Vc.vid then
6: SEND(et) to leader
7: commit← ⊥
8: while ¬commit do
9: (Vr, ET, nid�)← RECEIVE from leader

10: et← ET
11: if et.vid = ue.vid then
12: success← SEND(∅) to �
13: trim seqno← et.last[Vc.my sid]
14: else
15: success← SEND(ue.vid) to �
16: trim seqno← RECEIVE from �

17: if ¬success then
18: continue
19: TRUNCATE(update log, trim seqno)
20: success← STATE TRANSFER(nid�, nidme, Vr)
21: if ¬success then
22: continue
23: p← RECEIVE from leader
24: if p = “Prepare” then
25: d← RECEIVE from leader
26: commit← (d = “Commit”)

27: Vc ← Vr

28: WRITE(view log, Vc)

leader computes the assignment of nodes to shards in Vr by

solving an instance of the min-cost flow problem [11].

It first creates a bipartite graph from shards to failure

correlation sets as follows: For each shard there is a vertex

si, and for each failure correlation set (FCS) there is a vertex

fcsj . There is one “shard” vertex u representing unassigned

nodes, one source vertex, and one sink vertex. If mi is the

required number of nodes from different failure correlation sets

for shard i, then there is an edge from the source vertex to si
with cost 0 and capacity mi. An edge with cost 0 and capacity

0 extends from the source vertex to u. An edge extends from

each shard vertex si to each FCS vertex fcsj , with cost 0 if

shard i contained a node from FCS j in Vc, cost 1 otherwise,

and capacity 1. For vertex u, these edges always have cost 0

and capacity 1. Finally, there is an edge from each FCS vertex

fcsj to the sink vertex with cost 0 and capacity equal to the

number of nodes in FCS j in Vr.

The leader solves min-cost flow on the generated bipartite

graph, increasing flow along augmenting paths until all shard

vertices si have at least mi flow and a solution is generated,

or no augmenting path can be generated for the graph. If a

solution is generated, then the leader translates that solution

into a node assignment, where shard i is assigned one node

from failure correlation set j if an edge contains flow between

vertices si and fcsj . If min-cost flow halts without a solution,

then there is no solution that satisfies mi for all shards, and

there is not yet a restart quorum.

Algorithm 4 The state-transfer function

1: function STATE TRANSFER(nid�, nidme, Vr)
2: if nid� = nidme then
3: UL← READ(update log)
4: for all n ∈ Vr.shards[Vr.my sid] do
5: vidn ← RECEIVE from n
6: if vidn �= ∅ then
7: seqnon ← FIND MAX(UL, vidn).seqno
8: succ1 ← SEND(seqnon) to n

9: seqnoe ← RECEIVE from n
10: succ2 ← SEND({UL[seqnoe], . . . UL.end}) to n
11: if ¬succ1 ∨ ¬succ2 then
12: return ⊥
13: else
14: ue ← READ(update log).end
15: success← SEND(ue.seqno) to �
16: if ¬success then
17: return ⊥
18: {ue+1, ue+2, . . . , u�} ← RECEIVE from �
19: APPEND(update log, {ue+1, ue+2, . . . , u�})
20: return 


C. Completing Epoch Termination

For each shard, the restart leader sends to each node that

will be a member in Vr the identity of the node on which the

latest update for that shard resides (denoted node �), as well

as Vr itself and the epoch termination information.

When sending this information to node n, the restart leader

might discover that n has crashed because it does not re-

spond to the leader’s connection attempts (we assume TCP-

like semantics for our network operations). In this case, the

leader removes n from the set of restarted nodes, sends an

“Abort” message to all the nodes that have already received

its message, and recomputes whether it has a restart quorum.

If there is still a restart quorum, the leader recomputes Vr and

starts over at sending ET and Vr to each live node. If not, it

returns to step 2 and waits for additional nodes to restart.

Meanwhile, when a non-leader node receives Vr, ET , and

nid�, it compares ET ’s view ID to the view ID associated with

its last logged update. If these IDs match, the node completes

epoch termination by deleting from its update log any updates

with a sequence number higher than the last commit point for

its shard. If the epoch termination structure is from a later

view, though, all the updates in the node’s log are from an

earlier view that might have had its own epoch termination.

In order to ensure that it also trims any updates that were

aborted by the earlier epoch termination, the node contacts

node � and sends it the VID of its last logged update. Node

�, upon receiving this message, inspects its update log and

finds the last update with that VID, then replies with that

update’s sequence number. The sending node then deletes

from its log any updates with a higher sequence number.

(Node �’s behavior in this exchange is implemented in the

STATE TRANSFER function).

D. Transferring State

Once each node, including the leader, has truncated from

its log any updates that would have aborted, it must download
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any committed updates that are not in its log. Each node that

has been designated as the location of the longest log must,

conversely, listen for connections from the other nodes that

will be members of its shard in Vr and send them the updates

they are missing. This is shown in the STATE TRANSFER
function in Algorithm 4. In this phase, a non-leader node may

discover that the node with the longest log has failed when it

attempts to contact it. In that case, the node can conclude that

the Vr it has received from the leader will not commit, and

return to waiting to receive a new Vr and longest-log location

from the leader.

E. Committing to a Restart View

When a non-leader node finishes its state transfer operations,

it awaits a “prepare” message from the leader. Meanwhile,

when the leader has finished its own state transfer operations,

it begins sending “prepare” messages to each node. If it

discovers while sending these that a node has crashed (because

the connection is broken), it sends an “abort” message to

all nodes that it has already sent “prepare” messages to, and

recomputes the post-restart view to exclude the crashed node.

The leader might then discover that it no longer has a sufficient

quorum for restart without the crashed node, in which case it

returns to step 2 and waits for additional nodes to restart. If

it still has a quorum, however, the leader can return to step 3,

calculating the new shard membership and sending the new

Vr and longest log location to all nodes. Once the leader has

successfully sent “prepare” messages to all nodes in Vr, it

can send a “commit” message to all of them confirming that

this view can be installed. Once a non-leader node receives the

leader’s commit message, it can install Vr and begin accepting

new messages and committing new updates. At this point,

the restart leader no longer has a leader role, and all future

failures and reconfigurations can be handled by the normal

view-change protocol for a running system.

IV. ANALYSIS

We will now prove that this protocol satisfies the goals

we set out in section II-B. We first show that the protocol

is correct in the case where there are no failures during the

restart process, and then show that failures of any node do not

affect its correctness.

Regardless of which view the restart leader has logged on

disk when it first starts up, it is guaranteed to discover the last

view that was installed in the pre-crash system before it exits

the await-quorum loop, because a restart quorum requires a

majority of nodes from the current view Vc to contact it. The

view-change protocol in virtual synchrony requires a majority

of the members of the current view to be members of the next

view, which means that if the restart leader starts with some

obsolete view Vk, a majority of members of Vk were also

members of Vk+1, and the restart leader will discover at least

one member of Vk+1 by waiting for a majority of members of

Vk. When a member of Vk+1 restarts, it will send Vk+1 to the

leader, which will then use Vk+1 as Vc and begin waiting for

a majority of Vk+1’s members. If Vk+1 is not the latest view,

then by the same logic, the leader is guaranteed to discover

Vk+2 on at least one of the members of this majority. Thus,

the leader must have discovered and installed the last known

view V� by the time it has satisfied the quorum condition of

contacting a majority of Vc.

Furthermore, by the time the leader exits the await-quorum

loop, it is guaranteed to discover at least one log containing

all committed updates for each shard in the system. This is

because an additional condition of a restart quorum is that

the leader must contact at least one member of each shard

according to Vc. As we have just shown, Vc must equal V�

before the majority condition of the quorum can be satisfied,

so the leader will contact at least one member of each shard

in V�. Since updates that commit in a view are by definition

logged on every member of a shard in that view, any node

that was a member of a shard in V� will have a log containing

all committed updates for that shard up to the point of the

total crash. Thus, every shard will have a designated longest-

log location that contains all of its committed updates by the

time the leader exits the await-quorum loop. Recovery into a

mutually consistent state follows because membership epochs

are totally ordered with respect to SMR events in shards or

subgroups: the end of each epoch is a consistent cut [12].

The epoch termination decision ET that the leader sends out

after achieving quorum is guaranteed to preserve any decision

made by the group prior to the crash, and to include only

updates that were safe to commit. Since the system’s epoch

termination process (as augmented in section III) requires all

members of a view to log the epoch termination decision

before acting on it, by the time the leader reaches a majority

of V�, it must find at least one copy of the epoch termination

information that was computed for V� if any node acted upon

it. Using this epoch termination structure as ET preserves

the decision made by V�’s reconfiguration leader about which

updates to include. Conversely, if the leader does not find any

epoch termination information for V�, then no node had yet

delivered or aborted any updates that were in-progress at the

time of the crash. This means it is safe for the restart leader

to construct ET using the longest sequence of updates that is

available on at least one node in each shard, and unilaterally

decide to commit any pending updates at the tail of that log.

Before any node installs a view in which those updates are

committed (Vr), the state transfer process ensures that any

pending updates are fully replicated to all members of their

shard. Thus, for each shard, every update up to the last commit

point in ET will be present on all members of that shard in

the new view, which is the same guarantee provided by the

epoch termination process during a normal run of the system.

Finally, the post-restart view Vr that the leader installs is

guaranteed to have the same stability and durability guarantees

as any other view in the running system. As we just showed,

all nodes that will be members of a shard in Vr will have the

exact same update log for that shard before Vr is installed,

which means that the updates committed in Vr are just as fault-

tolerant as updates in any prior view. Vr itself is also durable,

and guaranteed to be recovered by a future restart leader during
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the recovery process, because a majority of members of V� are

also members of Vr.

A. Tolerance of Failures of Non-Leaders

Our approach to failed non-leader nodes is to treat them as

nodes that have not yet restarted. Upon detecting a failure at

any point after reaching a restart quorum, the leader removes

the failed node from its restarted set, and recomputes both Vr

and whether it has a restart quorum. By sending an “abort”

message to all other nodes that may already have received

Vr, the leader ensures that they will return to waiting for

Vr and the epoch termination information. Regardless of how

many times nodes fail and restart during the restart process,

the leader still cannot proceed past the await-quorum loop

until it has reached a restart quorum, which means it must

reach at least one node from each shard that has all the

committed updates for that shard. Since nodes never truncate

updates from their logs that had actually committed in V� (due

to the correctness of the epoch termination procedure), and

committed updates were present on every member of their

shard in V�, this will always be possible as long as enough

members of V� eventually restart.

It is safe for the nodes that received ET and Vr from

the leader before it detected a failure to begin the epoch

termination and state transfer process, because at the point

the leader started sending Vr it had reached a restart quorum.

This means that ET only included updates that were safe to

commit, and only excluded updates that had definitely aborted.

Although Vr will change whenever there is a failure, the

only way that ET could change after a failure is to include

or exclude a different number of pending-but-uncommitted

updates at the tail of a shard’s log, and that will only happen

if the node that failed was the location of the longest log for

a shard. In that case, the new ET may include fewer of the

uncommitted updates at the tail of the shard’s log, but it is

equally safe to abort these updates, since they had not yet

committed at the end of V�. Nodes that had downloaded some

of these updates at the time of the failure will simply truncate

them when they re-run the epoch termination process.

The two-phase commit at the end of the state-transfer

process ensures that all of the nodes in Vr are still live and

have finished state transfer before any of them can commit to

Vr. This ensures that no node can begin acting on Vr until all

of the updates committed by ET are fully replicated.

B. Tolerance of Failure of the Leader

Much of our restart protocol seems to depend on correct

operation of the restart leader, but in fact it can tolerate the

failure of the restart leader: a subsequent restart leader would

always select a state that is a safe extension of the state of

the original leader (in fact it will be the identical state if the

original leader’s proposal might have been acted upon, and

otherwise will be a safe choice with respect to the state the

system was in when it crashed). One caveat is that our solution

is correct only with a single leader running at a time. Since no

fault-tolerant configuration management system is yet in place

while the system is restarting, choosing a restart leader with

an election protocol would be quite difficult. However, a small

amount of manual configuration can to be used both to choose

the initial leader and to select one to take over if the initial one

fails. This can be accomplished by, for example, specifying

both a default restart leader and an ordered list of fallback

restart leaders in a configuration file. Handling the failure

of the leader in an efficient manner may also require some

manual intervention, specifically in the case where the leader

fails during the await-quorum loop, because non-leader nodes

can expect to wait a rather long time for the leader to reach a

quorum (depending on how long it takes nodes in the system

to restart after a total crash). They can eventually conclude that

the leader has failed if it does not send ET after a suitably long

timeout, but the restart process can complete faster if a system

administrator or other outside process forcibly restarts them if

the leader fails while awaiting a quorum. Failures of the leader

during the 2-phase commit are easier to detect, because the

leader should send the prepare and commit messages shortly

after sending the ragged trim information, so the non-leader

nodes can safely use much shorter timeouts on these messages.

When non-leader nodes detect that the leader has failed, they

restart the recovery process using the new restart leader. This

means that the new restart leader receives all of the same view,

epoch-termination, and update-log information as the previous

restart leader, and will reach the same conclusions. It will still

wait for majority of members of each view it discovers to

restart, meaning it must discover the last known view before

it concludes that it has a restart quorum. If the previous restart

leader was in fact required to achieve a quorum (because, for

example, it was the only member of some shard in V�), then

the new restart leader must wait for it to restart and rejoin the

system as a non-leader.

C. Correctness of Node Assignment to Shards

Next, we prove that our min-cost flow algorithm finds a

node assignment that satisfies each shard’s required number of

nodes from different failure correlation sets, given that a node

assignment exists that obeys this constraint. We also show that

our algorithm is optimal, generating an assignment where a

minimal number of nodes are moved to shards they were not

previously a part of. Thus, we minimize time spent on state

transfer between old and new members of each shard.

We prove correctness by reduction to min-cost flow. Our

solution is correct if it finds a feasible node assignment given

that one exists. Given capacities of edges from the source

vertex to shard vertices, shard vertices to failure correlation

set vertices, and failure correlation set vertices to the sink

vertex, any feasible flow in the graph can be translated into

a feasible assignment of nodes to shards. Each shard receives

exactly the number of nodes from different failure correlation

sets it requires, because that is the capacity of the edge from

the source to the shard vertex. No node from any failure

correlation set is assigned to more than one shard, because

the capacity of the edge from the failure correlation set vertex

to the sink is number of nodes in that failure correlation set.
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Fig. 2: Total time to start or restart a service. Error bars

represent 1 standard deviation.

All nodes assigned to any one shard are from different failure

correlation sets, because the capacity of the edges from shard

vertices to failure correlation set vertices is always 1. Thus a

solution to min-cost flow is a solution to the node assignment

problem. In fact, any solution to the node assignment problem

can also be translated into a flow.

Furthermore, the solution to min-cost flow represents an

optimal node assignment. We defined optimality above; a

solution is optimal if it minimizes the number of nodes whose

shard membership changes. By definition, the solution to min-

cost flow is a flow that minimizes the cost along all its edges.

Costs along edges are 0 except for edges from shard vertices

to failure correlation set vertices, where no member from the

failure correlation set belonged in the shard in the previous

view. That is the definition of optimality. Thus any solution to

min-cost flow is optimal.

Note that we opted to reduce to min-cost flow, which

can be solved in polynomial time, instead of integer linear

programming, which can be used to satisfy more generic

constraints but might not find a solution efficiently.

D. Efficiency and Generality

Our restart protocol is designed for a particular form of state

machine replication (the one implemented by Derecho), which

allows us to take advantage of some efficiencies built into this

SMR protocol. Specifically, Derecho’s SMR enforces a read

quorum of 1 within each shard, which means that reading the

log of one up-to-date replica is sufficient to learn the entire

committed state of that shard. Thus, the restart quorum only

requires a single member of each shard from the last known

view, and when new or out-of-date replicas are added to a

shard during restart, they only need to contact and transfer state

from a single up-to-date member. Furthermore, uncommitted

updates only occur at the tail of a log, and there are no “holes”

in the committed prefix of the log because updates are only

aborted during a reconfiguration (which also trims them from

the log). This allows us to easily make the correct decision

about whether to accept these updates during recovery: they

can safely be committed unless a logged epoch termination

decision is found that proves they will be aborted.

2 3 4 5 6 7 8 9 10 11 12

0

2500

5000

7500

10000

12500

15000

Total nodes

S
iz
e
(i
n
B
y
te
s)

leader sent shard size 2
non-leader received shard size 3

Fig. 3: Total metadata sent/received during the restart process.

Nevertheless, our protocol could be applied to other forms

of SMR with a few relaxations of these optimizations. For

example, a read quorum > 1 would merely increase the size

of the restart quorum, as long as reconfiguration was still

handled via virtual synchrony. In a system with a per-shard

read quorum of ri, the restart leader would need to contact

at least ri members of shard i in the current view in order

to ensure it found both the next view (if one exists) and the

longest sequence of committed updates in shard i; the restart

quorum would include a read quorum of every shard in the last

known view. Any nodes added to a shard in the restart view

would also need to contact all the members of the most-recent

read quorum in order to complete state transfer.

Some SMR systems, such as vCorfu [8], separate config-

uration information from the replicated state itself, using a

separate “layout” service and “data” service. In this case, our

protocol would need to explicitly separate step 1 (finding the

last configuration) from step 3 (finding the longest log), rather

than executing them concurrently. The restart leader would

first need to contact a quorum of the layout service in order to

find the last active configuration, then use that configuration

to compute and wait for a restart quorum of the data service.

V. EXPERIMENTS

We have implemented our restart algorithm as part of the

Derecho library, and in this section we measure its per-

formance when restarting sample Derecho applications. All

experiments were carried out on our local cluster, which

contains 12 servers running Ubuntu 16.04, using SSD disks for

storage. In summary, we found that our recovery logic scales

well, and adds only a small delay compared to the costs of

process launches and initial Derecho platform setup.

Our first experiment was a straightforward end-to-end

benchmark. We used our algorithm to restart a simple Derecho

service with a single subgroup and shards of 2 or 3 nodes

each, after an abrupt crash in which all nodes failed near

the same time, and measured the time from when the restart

leader launched to when the first update could be sent in the

recovered service. For comparison, we also measured the time

required to start a fresh instance of the same service, with no

logged state to recover. Figure 2 shows the results.
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Fig. 4: Breakdown of time spent in each phase of starting or restarting a service, when 1 node per shard is out of date upon

restart. Upper bars show fresh start, lower bars show restart.

We find that the restart algorithm adds only minimal over-

head compared to the fresh-start case, and that the assignment

of nodes into more or fewer shards does not have a noticeable

effect on restart time, owing to the polynomial run time of

min-cost flow. In both cases, the time to launch the service

increases as the system scales up due to the fixed costs of

initializing more distributed processes. For example, there is

an increasingly variable delay in the time it takes each server to

actually start the Derecho process after being given a command

to do so.
Next, we measured the amount of metadata that was ex-

changed between the restart leader and the non-leader nodes

in order to complete the restart algorithm, using the same setup

as the experiment in Figure 2. (Metadata includes everything

sent during the restart process except for the missing updates

sent during state transfer). In Figure 3, we see that the restart

leader sends and receives more metadata as the size of the

overall group increases, increasing at an approximately linear

rate. This is because the restart leader must contact every

restarting node, both to receive its logged information and to

send out the proposed restart view. However, the non-leader

nodes exchange a nearly-constant amount of data regardless

of the size of the group, since they only need to contact the

leader and wait for its response. Note, also, that even at the

largest group sizes, the leader only needs to receive a few

kilobytes of data, aggregated over all of the restarting nodes.
In our next series of experiments, we evaluated the costs of

restarting a system with one or more significantly out-of-date

replicas (i.e. nodes whose logs are missing many committed

updates). To do this, we created a Derecho service organized

into shards of 3 nodes each, and allowed two out of three

replicas in each shard to continue committing updates for some

time after one replica had crashed. We then crashed the rest

of the replicas, and restarted all of the nodes at once. Each

update in this service contained 1KB of data.
Figure 4 shows a detailed breakdown of the amount of time

spent in the four major phases of the restart algorithm in this

situation: (1) awaiting quorum, (2) truncating logs to complete

epoch termination, (3) transferring state to out-of-date nodes,

and (4) waiting for the leader to commit a restart view. It

also shows a fifth phase, which is the time spent in the setup

process of the Derecho library before the first update can be

sent; this includes operations such as pre-allocating buffers

for RDMA multicasts. For comparison, we also measured the

breakdown of time spent in a fresh start of the same service,

which has only two phases: Awaiting quorum (i.e. waiting for

all the processes to launch) and setting up the Derecho library.
This experiment shows even more clearly that our restart

process is quite efficient compared to the normal costs of

starting a distributed service. Even when one replica in each

shard is missing 10000 committed updates, state transfer

accounts for at most 120 ms, a small fraction of the overall

time. It also shows the benefits of allowing each shard to

complete state transfer in parallel: The 3-shard service spent

no more time on state transfer than the 2-shard service, even

though there were an additional 1000 or 10000 updates to send

to an out-of-date node.
We also measured the number of bytes of data received by

each out-of-date replica during the state-transfer process, and

varied the amount of data contained in each update as well

as the number of missing updates. The results are shown in

Figure 5, and are fairly straightforward: the amount of data

transferred to each out-of-date replica increases linearly with

the size of an update, and with the number of updates that

the out-of-date replica has missing from its log. Moreover,

it is almost exactly equal to the number of missing updates

multiplied by the size of each update, because the node did not

need to download and merge logs from multiple other replicas.

It is also important to note that this data is sent in parallel for

each shard, so unlike the metadata in Figure 3, there is no

difference in how much data any one node must send as the

number of shards increases.
Finally, we measured the amount of time required to restart

a service with out-of-date replicas as the size of each update

scales up, shown in Figure 6. We found that for updates of

sizes below 1 MB, neither the size of the update nor the
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Fig. 5: Data downloaded by each out-of-date node, in a system

with 3 shards of 3 members each.

number of missing updates on the out-of-date replicas had

much of an effect on the restart time. For update sizes of

1MB and larger, the increasing amount of data that needed

to be transferred to the out-of-date replicas had the expected

effect of slowing down the restart process.

VI. RELATED WORK

The algorithms implemented by Derecho combine ideas

first explored in the Isis Toolkit [13, 6] with the Vertical

Paxos model [14]. Other modern Paxos protocols include

NOPaxos [4] and APUS [5]. Recent systems that offer a

more durable form of Paxos, such as Spinnaker [15] and

Gaios [16], include mechanisms for restarting failed nodes

using their persistent logs. However, these papers generally

do not consider the case in which every replica must be

restarted at once. “Paxos Made Live” [17] explores a number

of practical challenges (including durability) seen in larger

SMR systems, a motivation shared by our work.

Bessani et al. looked at the efficiency of adding durability

to SMR in [18], including the problem of minimizing state

transfer during replica recovery. They provided a solution for

recovering a non-sharded service in a Byzantine setting, and

also showed how to lower the runtime overhead of logging

and checkpointing. Their work did not look at services with

complex substructure, which was a primary consideration here.

Corfu [9] is a recent implementation of SMR that uses a

different approach from classic Paxos, distributing the com-

mand log across shards of storage-only nodes. Clients use

Paxos to reserve a slot, then replicate data using a form of

chain replication [19]. vCorfu [8] extends this by offering

virtual sublogs on a per-application basis. However, if multiple

subsystems use Corfu separately, recovery of the Corfu log

might not recover the application as a whole into a consistent

state. As we mentioned in sections II-A and IV-D, our protocol

could be adapted to vCorfu to ensure that a quorum of replicas

from each sublog of the last known layout is contacted before

the system is restarted. Other replicated cloud services, such

as Hadoop [20], Zookeeper [21], and Spark [22], employ an

alternative approach to durability by ensuring that any state

lost due to an unexpected failure can always be recomputed

from its last checkpoint, but this is not an option in our setting.
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Fig. 6: Time to restart a service with 3 shards of 3 members

each, with 1 out-of-date node per shard. Error bars represent

1 standard deviation.

Our work is inspired by a long history of distributed check-

pointing and rollback-recovery protocols, many of which are

summarized in [23], but updates these principles to the modern

setting of replicated services and SMR. Rather than rely on an

explicitly coordinated global checkpoint, as in [24] and [25],

or attempt to record a dependency graph between locally-

recorded checkpoints, as in [26], our system incorporates the

dependency information already recorded in SMR updates to

derive a globally consistent system snapshot from local logs.

Recovery of the final state of a single process group was

first treated in Skeen’s article “Determining the Last Process

to Fail” [27]. Our scenario, with potentially overlapping sub-

groups, is more complex and introduces an issue of joint

consistency they did not explore.

VII. CONCLUSION

Modern datacenter services are frequently complex, and

may employ SMR mechanisms for self-managed configura-

tion, membership management, and sharded data replication.

In these services, application data will be spread over large

numbers of logs, and recovery requires reconstruction of a

valid and consistent state that preserves all committed updates.

We showed how this problem can be solved even if fur-

ther crashes occur during recovery, implemented our solution

within Derecho, and evaluated the mechanism to show that it

is highly efficient.
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