Adaptive Learning Rates,
Inference, and Algorithms other

than SGD

CS6787 Lecture 8 — Fall 2019



Adaptive learning rates

* So far, we’ve looked at update steps that look like
w1 = wy — oV fr(we)

* Here, the learning rate/step size is fixed a priori for each iteration.
* What if we use a step size that varies depending on the model?

* This is the idea of an adaptive learning rate.



Example: Polyak’s step length

* This 1s an simple step size scheme for gradient descent that works
when the optimal value 1s known.

flwg) — f(w”)
IV f(wy)]|?

* Can also use this with an estimated optimal value.

X —



Intuition: Polyak’s step length

* Approximate the objective with a linear approximation at the current
iterate.

fw) = flwg) + (w —wg) TV f(wy)

* Choose the step size that makes the approximation equal to the known
optimal value.

f* = flwep) = flwx —aViwe) _ flww) - f
f(wr) = al|V f(wr)|1? [V f (wi)|?



Example: Line search

* Idea: just choose the step size that minimizes the objective.

. = arg lgl>1% flwg —aV f(wy))

* Only works well for gradient descent, not SGD.

* Why?
* SGD moves in random directions that don’t always improve the objective.

* Doing line search on full objective is expensive relative to SGD update.



Adaptive methods for SGD

* Several methods exist
* AdaGrad
* AdaDelta
* RMSProp
* Adam

* You’ll see Adam in one of this Wednesday’s papers



AdaGrad

Adaptive gradient descent



Per-parameter adaptive learning rate schemes

* Main idea: set the learning rate per-parameter dynamically at each
iteration based on observed statistics of the past gradients.

(wer1); = (we); — e (Vf(we; xt)),

* Where the step size now depends on the parameter index j

* Corresponds to a multiplication of the gradient by a diagonal scaling matrix.

* There are many different schemes in this class



AdaGrad: One of the first adaptive methods

* AdaGrad: Adaptive subgradient methods for online learning and
stochastic optimization

* | Duchi, E Hazan, Y Singer
* Journal of Machine Learning Research, 2011

* High level approach: can use history of sampled gradients to choose
the step size for the next SGD step to be inversely proportional to the
usual magnitude of gradient steps in that direction

* On a per-parameter basis.



AdaGrad

Can think of this as like

Algorithm 1 AdaGrad the norm of the
input: learning rate factor n, initial parameters wol Gl C R R
initialize ¢t <+ 0 parameter.
loop

sample a stochastic gradient g; < V f(wy; x¢)
update model: for all j € {1,...,d}

(wt-l-l)j — (wt)j - \/Zt

t<—t+1
end loop




Memory-etticient implementation of AdaGrad

Algorithm 1 AdaGrad

input: learning rate factor 7, initial parameters wy € R%, small number
initialize t < 0
initialize r + 0 € R¢
loop
sample a stochastic gradient g; < V f(wy; x¢)
accumulate second moment estimate r; < r; + (gt)§ for all j € {1,...,d}
update model: for all j € {1,...,d}

Ui

(weg1); < (we); — NaET: " 95 Important thing to
notice: step size is
t—t+1 monotonically

end loop decreasing!




Demo



AdaGrad for Non-convex Optimization

* What problems might arise when using AdaGrad for non-convex
optimization?

* Think about the step size always decreasing. Could this cause a problem?

* If you do think of a problem that might arise, how could you
change AdaGrad to fix it?



RMSPr Op Just replaces the

gradient accumulation

Algorithm 1 RMSProp of AdaGrad with an
input: learning rate factor n, initial parameters wy € R?, exponential moving
initialize ¢ <0 average.
initialize r < 0 € R¢

loop
sample a stochastic gradient g; + V f(wy; )

accumulate second moment estimate r; < p-r; + (1 — p) (gt)? for all

jedl,...,d}
update model: for all j € {1,...,d}

U
VTt

(wt—l-l)j — (wt)j - " 9j

t+—t+4+1
end loop




A systems perspective

* What is the computational cost of AdaGrad and RMSProp?
* How much additional memory is required compared to baseline SGD?
* How much additional compute is used?



Adaptive methods, summed up

* Generally useful when we can expect there to be different scales for
different parameters

* But can even work well when that doesn’t happen, as we saw in the demo.
* Very commonly used class of methods for training MIL. models.

* We'll see more of this when we study Adam on Wednesday
* Adam is basically RMSProp + Momentum.



Algorithms other than SGD



Machine learning 1s not just SGD

* Once a model is trained, we need to use it to classify new examples
* This inference task is not computed with SGD

* There are other algorithms for optimizing objectives besides SGD
* Stochastic coordinate descent
* Derivative-free optimization

* There are other common tasks, such as sampling from a distribution
* Gibbs sampling and other Markov chain Monte Carlo methods
* And we sometimes use this together with SGD =2 called contrastive divergence



Why understand these algorithms?

* They represent a significant fraction ot machine learning computations
* Inference in particular is huge

* You may want to use them instead of SGD

* But you don’t want to suddenly pay a computational penalty for doing so because
you don’t know how to make them fast

* Intuition from SGD can be used to make these algorithms faster too

* And vice-versa



Inference Algorithms



Inference

* Suppose that our training loss function looks like

Zl (w; ), yi)

* Inference 1s the problem of computing the prediction

y(w; ;)



How important is inferencer

* Train once, infer many times

* Many production machine learning systems just do inference

* Image recognition, voice recognition, translation

e All are just applications ot inference once they’re trained

* Need to get responses to users quickly

* On the web, users won’t wait motre than a second



Inference on linear models

* Computational cost: relatively low

* Just a matrix-vector multiply

* But still can be more costly in some settings

* For example, if we need to compute a random kernel feature map
* What is the cost of this?

* Which methods can we use to speed up inference in this setting?



Inference on neural networks

* Just need to run the forward pass of the network.

* A bunch of matrix multiplies and non-linear units.

* Unlike backpropagation for learning, here we do not need to keep the
activations around for later processing.

* This makes inference a much simpler task than learning.
* Although it can still be costly — it’s a lot of linear algebra to do.



Inference on neural networks (continued)

* Computational cost: relatively high

* Several matrix-vector multiplies and non-linear elements

* Which methods can we use to speed up inference in this setting?

* Compression
* Find an easier-to-compute network with similar accuracy by fine-tuning

e We’ll see this in more detail later in the course.



Metrics for Inference

* Important metric: throughput
* How many examples can we classify in some amount of time

* Important metric: latency
* How long does it take to get a prediction for a single example

* Important metric: model size
* How much memory do we need to store/transmit the model for prediction

* Important metric: energy use
* How much energy do we use to produce each prediction

What are examples where we might care about each metric?



Improving the performance ot
inference



Altering the batch size

* Just like with learning, we can make predictions in batches

* Increasing the batch size helps improve parallelism
* Provides more work to parallelize and an additional dimension for parallelization

* This improves throughput

* But increasing the batch size can make us do more work before we can
return an answer for any individual example
* Can negatively atfect latency



Demo



Compression

* Find an easier-to-compute network with similar accuracy

* Or find a network with smaller model size, depending on the goal

* Many techniques for doing this

e \WWe’ll talk about this later in the semester when we come back to it

e Usually involve some sort of fine-tunin
y g

* Apply a lossy compression operation, then retrain the model to improve accuracy



Eftticient architectures

* Some neural network architectures are designed to be efficient at
inference time

* Examples: MobileNet, ShuffleNet, CirCNN

* These networks are often based on sparsely connected neurons

* This limits the number of weights which makes models smaller and easier to run
inference on

* To be efficient, we can just train one of these networks in the first
place for our application.



Re-use of computation

* For video and time-series data, there 1s a lot of redundant information
from one frame to the next.

* We can try to re-use some of the computation from previous frames.

* This 1s less popular than some of the other approaches here, because it is
not really general.



The last resort tor speeding up DNN inference

* Train another, faster type of model that 1s not a deep neural network

e For some real-time applications, vou can’t alwavs use a DNN
PP > Y y

* If you can get away with a linear model, that’s almost always much
faster.

* Also, decision trees tend to be quite fast for inference.



Where do we run inference?

The hardware that underlies the systems side of inference



Inference in the cloud

* Most inference today is run on cloud platforms

* The cloud supports large amounts of compute

* And makes it easy to access it and make it reliable

* This 1s a good place to put Al that needs to think about data

* For interactive models, latency is critical



Inference on edge devices

* Inference can run on your laptop or smartphone
* Here, the size of the model becomes mote of an issue
* Limited smartphone memory

* This 1s good for user privacy and security

* But not as good for companies that want to keep their models private

* Also can be used to deploy personalized models



Inference on sensors

* Sometimes we want inference right at the source

e On the sensor where data is collected

* Example: a surveillance camera taking video

* Don’t want to stream the video to the cloud, especially if most of it is
not interesting.

* Energy use 1s very important here.



Other Techniques for Training,
Besides SGD



Coordinate Descent

* Start with objective

minimize: f(x1, £2,...,Ty,)
* Choose a random index i, and update

r; = argmin f(x1,22,...,Zi, ..., Tp)
2

* And repeat in a loop



Variants

* Coordinate descent with derivative and step size

* Sometimes called “stochastic coordinate descent”

of

L1, — Lt — O - a—(ﬂft,l, Lt 2y 73775,77,)

Ly

* The same thing, but with a gradient estimate rather than the full gradient.

* How do these compare to SGD?



Derivative Free Optimization (DFO)

* Optimization methods that don’t require differentiation
* Basic coordinate descent 1s actually an example of this

* Another example: for normally distributed ¢

flze +o€) — flae —o€)
20

L+l — Lt — &

* Applications?



Another Task: Sampling



Focus problem for this setting:
Statistical Inference

* Major class of machine learning applications
* Goal: draw conclusions from data using a statistical model

* Formally: find marginal distribution of unobserved variables given observations

* Example: decide whether a coin is biased from a series of flips

* Applications: LDA, recommender systems, text extraction, data cleaning,
data integration etc.



Popular algorithms used for
statistical inference at scale

* Markov-chain Monte Carlo methods (MCMC)

* Infer by simulating a Markov chain — a random process — that we can prove
will converge to the distribution we want to sample from over time

* Asymptotically exact, but approximate for any finite execution time

e Variational inference

* Infer by solving an optimization problem that models the target distribution as a
member of a tractable family of distributions.

* Can use many of the same techniques for speedup we have discussed in class.

* Approximate method, since the class may not contain the real distribution.



Examples of Markov Chain Monte Carlo
Methods

e Gradient-based methods
* Stochastic gradient Langevin dynamics
* Hamiltonian Monte Carlo

* Stochastic gradient Hamiltonian Monte Carlo

* Non-gradient-based methods
* Gibbs sampling
* Metropolis-Hastings



Graphical models

* A graphical way to describe a probability distribution

* Common in machine learning applications
* Especially for applications that deal with uncertainty

* Useful for doing statistical inference at scale

* Because we can leverage techniques for computing on large graphs



What types ot inference exist herer?

* Maximum-a-posteriort (MAP) inference
* Find the state with the highest probability
* Often reduces to an optimization problem
* What is the most likely state of the world?

* Marginal inference
* Compute the marginal distributions of some variables
* What does our model of the world tell us about this object or event?



What 1s Gibbs Sampling?

Algorithm 1 Gibbs sampling™ /~ ~

B = =

( Compute its conditional

Require: Variables z; for 1 < distribution given the

A
1 Output the current — other variables.
state as a sample.  »ling uniformiy-._ iad,...,Np
T, ] s umiformly from P, (x Px{lw,n}\{s})
FaSit e \\fr’ ~

e Update the variable by

— sampling from its

conditional distribution.

N /




Learning on graphical models

* Contrastive divergence
* SGD on top of Gibbs sampling

* The de facto way of training
* Restricted boltzmann machines (RBM)

* Deep belief networks (DBN)
* Knowledge-base construction (KBC) applications



What do all these algorithms look like?
Stochastic Iterative Algorithms

Given an immutable input dataset and a model we want to output.

—_——

Repeat:
same structure

1. Pick a data point at random
same systems
— :
2. Update the model properties
3. Iterate same techniques



Questions?

* Upcoming things
* Project proposals due today
* Paper Presentation #6a and #6b on Wednesday

* On adaptive learning rate methods



