Adaptive Learning Rates, Inference, and Algorithms other than SGD

CS6787 Lecture 8 — Fall 2019

Adaptive learning rates

• So far, we've looked at update steps that look like

$$w_{t+1} = w_t - \alpha_t \nabla f_t(w_t)$$

• Here, the learning rate/step size is fixed a priori for each iteration.

• What if we use a step size that varies depending on the model?

• This is the idea of an adaptive learning rate.

Example: Polyak's step length

• This is an simple step size scheme for **gradient descent** that works when the optimal value is known.

$$\alpha_k = \frac{f(w_k) - f(w^*)}{\|\nabla f(w_k)\|^2}$$

• Can also use this with an estimated optimal value.

Intuition: Polyak's step length

• Approximate the objective with a linear approximation at the current iterate.

$$\hat{f}(w) = f(w_k) + (w - w_k)^T \nabla f(w_k)$$

• Choose the step size that makes the approximation equal to the known optimal value.

$$f^* = \hat{f}(w_{k+1}) = \hat{f}(w_k - \alpha \nabla f(w_k)) = f(w_k) - \alpha ||\nabla f(w_k)||^2 \Rightarrow \alpha = \frac{f(w_k) - f^*}{||\nabla f(w_k)||^2}$$

Example: Line search

• Idea: just choose the step size that minimizes the objective.

$$\alpha_k = \arg\min_{\alpha > 0} f(w_k - \alpha \nabla f(w_k))$$

• Only works well for gradient descent, not SGD.

- Why?
 - SGD moves in random directions that don't always improve the objective.
 - Doing line search on full objective is expensive relative to SGD update.

Adaptive methods for SGD

- Several methods exist
 - AdaGrad
 - AdaDelta
 - RMSProp
 - Adam
- You'll see Adam in one of this Wednesday's papers

AdaGrad

Adaptive gradient descent

Per-parameter adaptive learning rate schemes

• Main idea: set the **learning rate per-parameter** dynamically at each iteration based on observed statistics of the past gradients.

$$(w_{t+1})_j = (w_t)_j - \alpha_{j,t} (\nabla f(w_t; x_t))_j$$

- Where the step size now depends on the parameter index j
- Corresponds to a multiplication of the gradient by a diagonal scaling matrix.

• There are many different schemes in this class

AdaGrad: One of the first adaptive methods

- AdaGrad: Adaptive subgradient methods for online learning and stochastic optimization
 - J Duchi, E Hazan, Y Singer
 - Journal of Machine Learning Research, 2011
- High level approach: can use **history of sampled gradients** to choose the step size for the next SGD step to be inversely proportional to the usual magnitude of gradient steps in that direction
 - On a per-parameter basis.

AdaGrad

Algorithm 1 AdaGrad

input: learning rate factor η , initial parameters w_0 initialize $t \leftarrow 0$ loop

sample a stochastic gradient $g_t \leftarrow \nabla f(w_t; x_t)$ update model: for all $j \in \{1, \dots, d\}$

$$(w_{t+1})_j \leftarrow (w_t)_j - \frac{\eta}{\sqrt{\sum_{k=0}^t (g_t)_j^2 + \epsilon}} \cdot g_j$$

$$t \leftarrow t + 1$$

end loop

Can think of this as like the norm of the gradients in the jth parameter.

Memory-efficient implementation of AdaGrad

Algorithm 1 AdaGrad

```
input: learning rate factor \eta, initial parameters w_0 \in \mathbb{R}^d, small number \epsilon initialize t \leftarrow 0 initialize r \leftarrow 0 \in \mathbb{R}^d loop
```

sample a stochastic gradient $g_t \leftarrow \nabla f(w_t; x_t)$ accumulate second moment estimate $r_j \leftarrow r_j + (g_t)_j^2$ for all $j \in \{1, \ldots, d\}$ update model: for all $j \in \{1, \ldots, d\}$

$$(w_{t+1})_j \leftarrow (w_t)_j - \frac{\eta}{\sqrt{r_j} + \epsilon} \cdot g_j$$

 $t \leftarrow t + 1$ end loop

Important thing to notice: step size is monotonically decreasing!

Demo

AdaGrad for Non-convex Optimization

- What problems might arise when using AdaGrad for non-convex optimization?
 - Think about the step size always decreasing. Could this cause a problem?

• If you do think of a problem that might arise, how could you change AdaGrad to fix it?

RMSProp

Algorithm 1 RMSProp

input: learning rate factor η , initial parameters $w_0 \in \mathbb{R}^d$,

initialize $t \leftarrow 0$

initialize $r \leftarrow 0 \in \mathbb{R}^d$

loop

sample a stochastic gradient $g_t \leftarrow \nabla f(w_t; x_t)$

accumulate second moment estimate $r_j \leftarrow \rho \cdot r_j + (1 - \rho) (g_t)_j^2$ for all

 $j \in \{1, \dots, d\}$

update model: for all $j \in \{1, \ldots, d\}$

$$(w_{t+1})_j \leftarrow (w_t)_j - \frac{\eta}{\sqrt{r_j} + \epsilon} \cdot g_j$$

$$t \leftarrow t + 1$$

end loop

Just replaces the gradient accumulation of AdaGrad with an exponential moving average.

A systems perspective

- What is the computational cost of AdaGrad and RMSProp?
 - How much additional memory is required compared to baseline SGD?
 - How much additional compute is used?

Adaptive methods, summed up

- Generally useful when we can expect there to be different scales for different parameters
 - But can even work well when that doesn't happen, as we saw in the demo.
- Very commonly used class of methods for training ML models.
- We'll see more of this when we study **Adam** on Wednesday
 - Adam is basically RMSProp + Momentum.

Algorithms other than SGD

Machine learning is not just SGD

- Once a model is trained, we need to use it to classify new examples
 - This inference task is not computed with SGD
- There are other algorithms for optimizing objectives besides SGD
 - Stochastic coordinate descent
 - Derivative-free optimization
- There are other common tasks, such as sampling from a distribution
 - Gibbs sampling and other Markov chain Monte Carlo methods
 - And we sometimes use this together with SGD \rightarrow called **contrastive divergence**

Why understand these algorithms?

- They represent a significant fraction of machine learning computations
 - Inference in particular is huge
- You may want to use them instead of SGD
 - But you don't want to suddenly pay a computational penalty for doing so because you don't know how to make them fast
- Intuition from SGD can be used to make these algorithms faster too
 - And vice-versa

Inference Algorithms

Inference

• Suppose that our training loss function looks like

$$f(w) = \frac{1}{N} \sum_{i=1}^{n} l(\hat{y}(w; x_i), y_i)$$

• Inference is the problem of computing the prediction

$$\hat{y}(w;x_i)$$

How important is inference?

- Train once, infer many times
 - Many production machine learning systems just do inference
- Image recognition, voice recognition, translation
 - All are just applications of inference once they're trained
- Need to get responses to users quickly
 - On the web, users won't wait more than a second

Inference on linear models

- Computational cost: relatively low
 - Just a matrix-vector multiply
- But still can be more costly in some settings
 - For example, if we need to compute a random kernel feature map
 - What is the cost of this?
- Which methods can we use to speed up inference in this setting?

Inference on neural networks

- Just need to run the forward pass of the network.
 - A bunch of matrix multiplies and non-linear units.

• Unlike backpropagation for learning, here we do not need to keep the activations around for later processing.

- This makes inference a much simpler task than learning.
 - Although it can still be costly it's a lot of linear algebra to do.

Inference on neural networks (continued)

- Computational cost: relatively high
 - Several matrix-vector multiplies and non-linear elements
- Which methods can we use to speed up inference in this setting?
- Compression
 - Find an easier-to-compute network with similar accuracy by fine-tuning
 - We'll see this in more detail later in the course.

Metrics for Inference

- Important metric: throughput
 - How many examples can we classify in some amount of time
- Important metric: latency
 - How long does it take to get a prediction for a single example
- Important metric: model size
 - How much memory do we need to store/transmit the model for prediction
- Important metric: energy use
 - How much energy do we use to produce each prediction
- What are examples where we might care about each metric?

Improving the performance of inference

We can use many of the methods we've already discussed!

Altering the batch size

- Just like with learning, we can make predictions in batches
- Increasing the batch size helps improve parallelism
 - Provides more work to parallelize and an additional dimension for parallelization
 - This improves throughput
- But increasing the batch size can make us do more work before we can return an answer for any individual example
 - Can negatively affect latency

Demo

Compression

- Find an easier-to-compute network with similar accuracy
 - Or find a network with smaller model size, depending on the goal
- Many techniques for doing this
 - We'll talk about this later in the semester when we come back to it

- Usually involve some sort of **fine-tuning**
 - Apply a lossy compression operation, then retrain the model to improve accuracy

Efficient architectures

- Some neural network architectures are designed to be efficient at inference time
 - Examples: MobileNet, ShuffleNet, CirCNN
- These networks are often based on sparsely connected neurons
 - This limits the number of weights which makes models smaller and easier to run inference on
- To be efficient, we can just train one of these networks in the first place for our application.

Re-use of computation

• For video and time-series data, there is a lot of **redundant information** from one frame to the next.

• We can try to re-use some of the computation from previous frames.

• This is less popular than some of the other approaches here, because it is not really general.

The last resort for speeding up DNN inference

- Train another, faster type of model that is not a deep neural network
 - For some real-time applications, you can't always use a DNN
- If you can get away with a linear model, that's almost always much faster.

• Also, decision trees tend to be quite fast for inference.

Where do we run inference?

The hardware that underlies the systems side of inference

Inference in the cloud

• Most inference today is run on cloud platforms

- The cloud supports large amounts of compute
 - And makes it easy to access it and make it reliable
- This is a good place to put AI that needs to think about data

• For interactive models, latency is critical

Inference on edge devices

- Inference can run on your laptop or smartphone
 - Here, the size of the model becomes more of an issue
 - Limited smartphone memory
- This is good for user privacy and security
 - But not as good for companies that want to keep their models private
- Also can be used to deploy personalized models

Inference on sensors

- Sometimes we want inference right at the source
 - On the sensor where data is collected

- Example: a surveillance camera taking video
 - Don't want to stream the video to the cloud, especially if most of it is not interesting.
- Energy use is very important here.

Other Techniques for Training, Besides SGD

Coordinate Descent

• Start with objective

minimize:
$$f(x_1, x_2, \ldots, x_n)$$

• Choose a random index i, and update

$$x_i = \arg\min_{\hat{x}_i} f(x_1, x_2, \dots, \hat{x}_i, \dots, x_n)$$

• And repeat in a loop

Variants

- Coordinate descent with derivative and step size
 - Sometimes called "stochastic coordinate descent"

$$x_{t+1,i} = x_{t,i} - \alpha_t \cdot \frac{\partial f}{\partial x_i}(x_{t,1}, x_{t,2}, \dots, x_{t,n})$$

• The same thing, but with a gradient estimate rather than the full gradient.

How do these compare to SGD?

Derivative Free Optimization (DFO)

- Optimization methods that don't require differentiation
- Basic coordinate descent is actually an example of this

• Another example: for normally distributed ε

$$x_{t+1} = x_t - \alpha \frac{f(x_t + \sigma \epsilon) - f(x_t - \sigma \epsilon)}{2\sigma} \epsilon$$

Applications?

Another Task: Sampling

Focus problem for this setting: Statistical Inference

- Major class of machine learning applications
 - Goal: draw conclusions from data using a statistical model
 - Formally: find marginal distribution of unobserved variables given observations
- Example: decide whether a coin is biased from a series of flips
- Applications: LDA, recommender systems, text extraction, data cleaning, data integration etc.

Popular algorithms used for statistical inference at scale

- Markov-chain Monte Carlo methods (MCMC)
 - Infer by simulating a Markov chain a random process that we can prove will converge to the distribution we want to sample from over time
 - Asymptotically exact, but approximate for any finite execution time

Variational inference

- Infer by solving an optimization problem that models the target distribution as a member of a tractable family of distributions.
- Can use many of the same techniques for speedup we have discussed in class.
- Approximate method, since the class may not contain the real distribution.

Examples of Markov Chain Monte Carlo Methods

- Gradient-based methods
 - Stochastic gradient Langevin dynamics
 - Hamiltonian Monte Carlo
 - Stochastic gradient Hamiltonian Monte Carlo
- Non-gradient-based methods
 - Gibbs sampling
 - Metropolis-Hastings

Graphical models

- A graphical way to describe a probability distribution
- Common in machine learning applications
 - Especially for applications that deal with uncertainty
- Useful for doing statistical inference at scale
 - Because we can leverage techniques for computing on large graphs

What types of inference exist here?

- Maximum-a-posteriori (MAP) inference
 - Find the state with the highest probability
 - Often reduces to an optimization problem
 - What is the most likely state of the world?
- Marginal inference
 - Compute the marginal distributions of some variables
 - What does our model of the world tell us about this object or event?

What is Gibbs Sampling?

Learning on graphical models

- Contrastive divergence
 - SGD on top of Gibbs sampling
- The de facto way of training
 - Restricted boltzmann machines (RBM)
 - Deep belief networks (DBN)
 - Knowledge-base construction (KBC) applications

What do all these algorithms look like? Stochastic Iterative Algorithms

Given an immutable input dataset and a model we want to output.

1. Pick a data point at random

2. Update the model

3. Iterate

same structure

same systems properties

same techniques

Questions?

- Upcoming things
 - Project proposals due today
 - Paper Presentation #6a and #6b on Wednesday
 - On adaptive learning rate methods