
Caches (Writing)

Hakim Weatherspoon

CS 3410, Spring 2013

Computer Science

Cornell University

P & H Chapter 5.2-3, 5.5

Goals for Today: caches

Writing to the Cache

• Write-through vs Write-back

Cache Parameter Tradeoffs

Cache Conscious Programming

Writing with Caches

Eviction

Which cache line should be evicted from the cache
to make room for a new line?

• Direct-mapped
– no choice, must evict line selected by index

• Associative caches
– random: select one of the lines at random

– round-robin: similar to random

– FIFO: replace oldest line

– LRU: replace line that has not been used in the longest
time

Next Goal

What about writes?

What happens when the CPU writes to a register
and calls a store instruction?!

Cached Write Policies
Q: How to write data?

CPU

Cache

SRAM

Memory

DRAM

addr

data

If data is already in the cache…

No-Write
• writes invalidate the cache and go directly to memory

Write-Through
• writes go to main memory and cache

Write-Back
• CPU writes only to cache

• cache writes to main memory later (when block is evicted)

What about Stores?

Where should you write the result of a store?

• If that memory location is in the cache?

– Send it to the cache

– Should we also send it to memory right away?

 (write-through policy)

– Wait until we kick the block out (write-back policy)

• If it is not in the cache?

– Allocate the line (put it in the cache)?

 (write allocate policy)

– Write it directly to memory without allocation?

 (no write allocate policy)

Write Allocation Policies
Q: How to write data?

CPU

Cache

SRAM

Memory

DRAM

addr

data

If data is not in the cache…

Write-Allocate
• allocate a cache line for new data (and maybe write-through)

No-Write-Allocate
• ignore cache, just go to main memory

Next Goal

Example: How does a write-through cache work?

Assume write-allocate.

Handling Stores (Write-Through)

29

123

150

162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

LB $1  M[1]
LB $2  M[7]
SB $2  M[0]
SB $1  M[5]
LB $2  M[10]
SB $1  M[5]
SB $1  M[10]

Cache Processor

V tag data

$0
$1
$2
$3

Memory

78

120

71

173

21

28

200

225

Misses: 0

Hits: 0

0

0

Assume write-allocate
policy

Using byte addresses in this example! Addr Bus = 5 bits

Fully Associative Cache
2 cache lines
2 word block

4 bit tag field
1 bit block offset field

Write-Through (REF 1)

29

123

150

162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

LB $1  M[1]
LB $2  M[7]
SB $2  M[0]
SB $1  M[5]
LB $2  M[10]
SB $1  M[5]
SB $1  M[10]

Cache Processor

V tag data

$0
$1
$2
$3

Memory

78

120

71

173

21

28

200

225

Misses: 0

Hits: 0

0

0

How Many Memory References?

Write-through performance

Each miss (read or write) reads a block from mem

Each store writes an item to mem

Evictions don’t need to write to mem

Takeaway

A cache with a write-through policy (and write-
allocate) reads an entire block (cacheline) from
memory on a cache miss and writes only the
updated item to memory for a store. Evictions do
not need to write to memory.

Next Goal

Can we also design the cache NOT write all
stores immediately to memory?

• Keep the most current copy in cache, and update
memory when that data is evicted (write-back
policy)

Write-Back Meta-Data

V = 1 means the line has valid data

D = 1 means the bytes are newer than main memory

When allocating line:

• Set V = 1, D = 0, fill in Tag and Data

When writing line:

• Set D = 1

When evicting line:

• If D = 0: just set V = 0

• If D = 1: write-back Data, then set D = 0, V = 0

V D Tag Byte 1 Byte 2 … Byte N

Write-back Example

Example: How does a write-back cache work?

Assume write-allocate.

Handling Stores (Write-Back)

29

123

150

162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

LB $1  M[1]
LB $2  M[7]
SB $2  M[0]
SB $1  M[5]
LB $2  M[10]

Cache Processor

V d tag data

$0
$1
$2
$3

Memory

78

120

71

173

21

28

200

225

Misses: 0

Hits: 0

0

0

LB $1  M[1]
LB $2  M[7]
SB $2  M[0]
SB $1  M[5]
LB $2  M[10]
SB $1  M[5]
SB $1  M[10]

Using byte addresses in this example! Addr Bus = 5 bits

Assume write-allocate
policy

Fully Associative Cache
2 cache lines
2 word block

3 bit tag field
1 bit block offset field

Write-Back (REF 1)

29

123

150

162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

LB $1  M[1]
LB $2  M[7]
SB $2  M[0]
SB $1  M[5]
LB $2  M[10]

Cache Processor

V d tag data

$0
$1
$2
$3

Memory

78

120

71

173

21

28

200

225

Misses: 0

Hits: 0

0

0

LB $1  M[1]
LB $2  M[7]
SB $2  M[0]
SB $1  M[5]
LB $2  M[10]
SB $1  M[5]
SB $1  M[10]

How Many Memory References?

Write-back performance

Each miss (read or write) reads a block from mem

Some evictions write a block to mem

How Many Memory references?

Each miss reads a block

Two words in this cache

Each evicted dirty cache line writes a block

Write-through vs. Write-back

Write-through is slower

• But cleaner (memory always consistent)

Write-back is faster

• But complicated when multi cores sharing memory

Takeaway

A cache with a write-through policy (and write-
allocate) reads an entire block (cacheline) from
memory on a cache miss and writes only the updated
item to memory for a store. Evictions do not need to
write to memory.

A cache with a write-back policy (and write-allocate)
reads an entire block (cacheline) from memory on a
cache miss, may need to write dirty cacheline first.
Any writes to memory need to be the entire cacheline
since no way to distinguish which word was dirty with
only a single dirty bit. Evictions of a dirty cacheline
cause a write to memory.

Next Goal

What are other performance tradeoffs between
write-through and write-back?

How can we further reduce penalty for cost of
writes to memory?

Performance: An Example

Performance: Write-back versus Write-through

Assume: large associative cache, 16-byte lines
for (i=1; i<n; i++)

 A[0] += A[i];

for (i=0; i<n; i++)

 B[i] = A[i]

Performance Tradeoffs

Q: Hit time: write-through vs. write-back?

Q: Miss penalty: write-through vs. write-back?

Write Buffering

Q: Writes to main memory are slow!

A: Use a write-back buffer

• A small queue holding dirty lines

• Add to end upon eviction

• Remove from front upon completion

Q: What does it help?

A: short bursts of writes (but not sustained writes)

A: fast eviction reduces miss penalty

Write-through vs. Write-back

Write-through is slower
• But simpler (memory always consistent)

Write-back is almost always faster
• write-back buffer hides large eviction cost

• But what about multiple cores with separate caches
but sharing memory?

Write-back requires a cache coherency protocol
• Inconsistent views of memory

• Need to “snoop” in each other’s caches

• Extremely complex protocols, very hard to get right

Cache-coherency
Q: Multiple readers and writers?

A: Potentially inconsistent views of memory

Mem

L2

L1 L1

Cache coherency protocol
• May need to snoop on other CPU’s cache activity
• Invalidate cache line when other CPU writes
• Flush write-back caches before other CPU reads
• Or the reverse: Before writing/reading…
• Extremely complex protocols, very hard to get right

CPU

L1 L1

CPU

L2

L1 L1

CPU

L1 L1

CPU

disk net A

A

A

A A’

A

Takeaway
A cache with a write-through policy (and write-allocate) reads an
entire block (cacheline) from memory on a cache miss and writes
only the updated item to memory for a store. Evictions do not
need to write to memory.

A cache with a write-back policy (and write-allocate) reads an
entire block (cacheline) from memory on a cache miss, may need
to write dirty cacheline first. Any writes to memory need to be
the entire cacheline since no way to distinguish which word was
dirty with only a single dirty bit. Evictions of a dirty cacheline
cause a write to memory.

Write-through is slower, but simpler (memory always consistent)/
Write-back is almost always faster (a write-back buffer can hidee
large eviction cost), but will need a coherency protocol to
maintain consistency will all levels of cache and memory.

Cache Design Tradeoffs

Cache Design

Need to determine parameters:

• Cache size

• Block size (aka line size)

• Number of ways of set-associativity (1, N, )

• Eviction policy

• Number of levels of caching, parameters for each

• Separate I-cache from D-cache, or Unified cache

• Prefetching policies / instructions

• Write policy

A Real Example > dmidecode -t cache
Cache Information
 Configuration: Enabled, Not Socketed, Level 1
 Operational Mode: Write Back
 Installed Size: 128 KB
 Error Correction Type: None
Cache Information
 Configuration: Enabled, Not Socketed, Level 2
 Operational Mode: Varies With Memory Address
 Installed Size: 6144 KB
 Error Correction Type: Single-bit ECC
> cd /sys/devices/system/cpu/cpu0; grep cache/*/*
cache/index0/level:1
cache/index0/type:Data
cache/index0/ways_of_associativity:8
cache/index0/number_of_sets:64
cache/index0/coherency_line_size:64
cache/index0/size:32K
cache/index1/level:1
cache/index1/type:Instruction
cache/index1/ways_of_associativity:8
cache/index1/number_of_sets:64
cache/index1/coherency_line_size:64
cache/index1/size:32K
cache/index2/level:2
cache/index2/type:Unified
cache/index2/shared_cpu_list:0-1
cache/index2/ways_of_associativity:24
cache/index2/number_of_sets:4096
cache/index2/coherency_line_size:64
cache/index2/size:6144K

Dual-core 3.16GHz Intel
(purchased in 2011)

A Real Example

Dual 32K L1 Instruction caches
• 8-way set associative

• 64 sets

• 64 byte line size

Dual 32K L1 Data caches
• Same as above

Single 6M L2 Unified cache
• 24-way set associative (!!!)

• 4096 sets

• 64 byte line size

4GB Main memory

1TB Disk

Dual-core 3.16GHz Intel
(purchased in 2009)

Basic Cache Organization

Q: How to decide block size?

Experimental Results

Tradeoffs

For a given total cache size,

larger block sizes mean….

• fewer lines

• so fewer tags (and smaller tags for associative caches)

• so less overhead

• and fewer cold misses (within-block “prefetching”)

But also…

• fewer blocks available (for scattered accesses!)

• so more conflicts

• and larger miss penalty (time to fetch block)

Cache Conscious Programming

Cache Conscious Programming
// H = 12, W = 10

int A[H][W];

for(x=0; x < W; x++)

 for(y=0; y < H; y++)

 sum += A[y][x];

Cache Conscious Programming
// H = 12, W = 10

int A[H][W];

for(y=0; y < H; y++)

 for(x=0; x < W; x++)

 sum += A[y][x];

Summary

Caching assumptions

• small working set: 90/10 rule

• can predict future: spatial & temporal locality

Benefits

• (big & fast) built from (big & slow) + (small & fast)

Tradeoffs:
associativity, line size, hit cost, miss penalty, hit rate

Summary
Memory performance matters!

• often more than CPU performance

• … because it is the bottleneck, and not improving much

• … because most programs move a LOT of data

Design space is huge

• Gambling against program behavior

• Cuts across all layers:
users  programs  os  hardware

Multi-core / Multi-Processor is complicated

• Inconsistent views of memory

• Extremely complex protocols, very hard to get right

Administrivia
Prelim1: TODAY, Thursday, March 28th in evening
• Time: We will start at 7:30pm sharp, so come early

• Two Location: PHL101 and UPSB17
• If NetID ends with even number, then go to PHL101 (Phillips Hall rm 101)

• If NetID ends with odd number, then go to UPSB17 (Upson Hall rm B17)

• Closed Book: NO NOTES, BOOK, ELECTRONICS, CALCULATOR, CELL PHONE

• Practice prelims are online in CMS

• Material covered everything up to end of week before spring break
• Lecture: Lectures 9 to 16 (new since last prelim)

• Chapter 4: Chapters 4.7 (Data Hazards) and 4.8 (Control Hazards)

• Chapter 2: Chapter 2.8 and 2.12 (Calling Convention and Linkers), 2.16 and 2.17
(RISC and CISC)

• Appendix B: B.1 and B.2 (Assemblers), B.3 and B.4 (linkers and loaders), and B.5
and B.6 (Calling Convention and process memory layout)

• Chapter 5: 5.1 and 5.2 (Caches)

• HW3, Project1 and Project2

Administrivia
Next six weeks

• Week 9 (Mar 25): Prelim2

• Week 10 (Apr 1): Project2 due and Lab3 handout

• Week 11 (Apr 8): Lab3 due and Project3/HW4 handout

• Week 12 (Apr 15): Project3 design doc due and HW4 due

• Week 13 (Apr 22): Project3 due and Prelim3

• Week 14 (Apr 29): Project4 handout

Final Project for class

• Week 15 (May 6): Project4 design doc due

• Week 16 (May 13): Project4 due

