
Inverted Files Versus Signature Files for
Text Indexing

JUSTIN ZOBEL
RMIT
ALISTAIR MOFFAT and KOTAGIRI RAMAMOHANARAO
The University of Melbourne

Two well-known indexing methods are inverted files and signature files. We have undertaken
a detailed comparison of these two approaches in the context of text indexing, paying
particular attention to query evaluation speed and space requirements. We have examined
their relative performance using both experimentation and a refined approach to modeling of
signature files, and demonstrate that inverted files are distinctly superior to signature files.
Not only can inverted files be used to evaluate typical queries in less time than can signature
files, but inverted files require less space and provide greater functionality. Our results also
show that a synthetic text database can provide a realistic indication of the behavior of an
actual text database. The tools used to generate the synthetic database have been made
publicly available.

Categories and Subject Descriptors: E.5 [Files]; H.2.2 [Database Management]: Physical
Design; H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval;
I.7.3 [Document and Text Processing]: Index Generation

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Indexing, inverted files, performance, signature files, text
databases, text indexing

1. INTRODUCTION

There are two principal indexing methods—inverted files and signature
files—that have been proposed for large text databases. Both remain the
subject of active research. However, although many researchers have
evaluated the performance of one method or the other, there has been no

This work has been supported by the Australian Research Council, the Centre for Intelligent
Decision Systems, and the Collaborative Information Technology Research Institute.

Authors’ addresses: J. Zobel, Department of Computer Science, RMIT, GPO Box 2476V,
Melbourne 3001, Australia; email: jz@cs.rmit.edu.au; A. Moffat, K. Ramamohanarao, Depart-
ment of Computer Science, The University of Melbourne, Parkville, Victoria 3052, Australia;
email: {alistair, rao}@cs.mu.oz.au.

Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1999 ACM 0362-5915/99/1200–0453 $5.00

ACM Transactions on Database Systems, Vol. 23, No. 4, December 1998, Pages 453–490.

detailed side-by-side comparison. Indeed, the absence of a comparison has
meant that the question as to which is better has been a popular topic of
debate in our research institute, in which, in the context of text indexing,
several of us have proposed variations on both of these indexing schemes
[Sacks-Davis et al. 1987; Kent et al. 1990; Bell et al. 1993; Moffat and Zobel
1996]. The debate has been further added to by the steady flow of papers
we have been asked to review in which the authors espouse or improve
upon one of these forms of indexing without regard for the existence of the
other.

To resolve the question of which method is superior we have undertaken
a detailed examination of inverted files and signature files, using both
experimentation on realistic data and a refined approach to modeling of
signature files. Our conclusion is that, for current architectures and typical
applications of full-text indexing, inverted files are superior to signature
files in almost every respect, including speed, space, and functionality. To
allow others to reproduce our results, and to establish a benchmark against
which they may in turn compare their methods, we have made available on
the Internet our inverted file text database system and one of the data-
bases used in our tests, a synthetic database developed expressly for
experimentation.

We also used an actual test database in the comparison, consisting of
over 250 megabytes of English-language articles from The Wall Street
Journal; data which, for copyright reasons, cannot be distributed. The
results on the two test databases were, however, remarkably similar, and a
useful byproduct of our investigation is the observation that performance
on a synthetic database can be a fairly accurate predictor of performance on
an actual collection.

Text databases, the query classes we consider, and the test data we use
for comparison are described in Section 2. Application of inverted files and
signature files to text indexing is explained in Section 3, and in Section 4
we compare these schemes with respect to query evaluation speed, using
direct argument, mathematical modeling, and experiment. Some other
points of comparison are considered in Section 5, and in Section 6 we
consider the likely performance of the two indexing methods for other
applications. Conclusions are presented in Section 7.

2. TEXT DATABASES

We assume that a text database is a collection of documents. Each docu-
ment is uninterpreted prose—that is, is not divided into fields—and is of
arbitrary length. Thus a database is a large number of records, each of
which is simply a list of words. Such a database might be used for
abstracts, legal transcripts, or, as in our main test data, newspaper
articles. Practical text databases will often include other fields in each
record, such as date of creation; our definition of text database can be
regarded as being records in which such auxiliary information has been
removed, leaving only the part to be indexed by content.

454 • J. Zobel et al.

ACM Transactions on Database Systems, Vol. 23, No. 4, December 1998.

2.1 Boolean Queries

There are two main forms of query for text databases, Boolean and ranked.
In this investigation we have chosen to focus on Boolean queries, that is,
the class of queries that can be constructed from query terms, disjunction
(~), and conjunction (`). A document d is an answer to a conjunctive query
t1 ` t2 ` . . . ` tq if it contains every ti for 1 # i # q; and d is an answer
to a disjunctive query t1 ~ t2 ~ . . . ~ tm if it contains any ti for 1 # i #
m. Conjunction and disjunction can be nested to arbitrary depth. A typical
form of a query to a text database is a conjunction of q disjunctions each of
mi terms, that is, of the form

~t11 ~ . . . ~ t1m1! ` . . . ` ~tq1 ~ . . . ~ tqmq!.

This form is useful because queries are commonly used to identify docu-
ments referring to every one of a set of concepts; the conjunction expresses
that each of the concepts must be present. In turn a concept is represented
by several terms (often thesaural equivalents or variant forms of the same
word) any one of which may be present; each disjunction expresses that any
of the terms by itself represents the concept.

In English text, the use of variant word endings such as “ing” and “ed”
mean that two words can be superficially distinct even though it is
desirable that they be regarded as a match. This problem is addressed by
stemming each word during index creation, that is, removing variant
endings. Query terms should then also be stemmed. A widely used algo-
rithm is that of Lovins [1968].

2.2 Other Query Types

The other main category of query for text databases is the ranked query, in
which a similarity score is calculated between the query, which is a list of
terms or even some sample text, and each document. Similarity is defined
by a mathematical formula that approximates the likelihood that the
record is an answer, and can involve a large number of parameters. The
top-ranked documents according to this score are presented to the user as
answers. Ranked queries are discussed further in Section 5.7.

A further class of query that might be considered in the context of text
indexing is proximity queries, in which answers must contain the specified
terms within a specified distance of each other. The special case of a
proximity of 1 is known as adjacency, which is valuable because a term may
only be of interest if it is part of a phrase. We do not use these query classes
as a basis for quantitative comparison of the indexing techniques, but do
discuss how well they can be supported by the different methods.

2.3 Experimental Collections

There are several large text collections to which we have access, in
particular the TREC collection of 3 Gb of data [Harman 1992a]. TREC

consists of several subcollections, including newspaper articles, patent

Inverted Files • 455

ACM Transactions on Database Systems, Vol. 23, No. 4, December 1998.

applications, journal articles, and abstracts. For our experiments we have
used the WSJ collection, which consists of two and a half years of articles
from The Wall Street Journal. Some statistics of this collection, and of the
synthetic database FIN described in the following, are shown in Table I. As
a collection of one kind of document from a single source, we believe WSJ to
be a fair test of a text-indexing technique.

One aim of this work is to produce results that others can readily
reproduce. Our inverted file text database system, described later, is
available via ftp, but we cannot distribute the TREC data. Nor would it be
feasible to fetch such large quantities of data over the Internet. We
therefore implemented a database generator, FINNEGAN, that can create
databases of any size with similar statistical properties to real text. The
inputs to FINNEGAN are the file LEX, which is the combined vocabularies of a
large number of books available on the Internet, together with the occur-
rence count of each word, and a distribution of record lengths measured in
number of term occurrences per record. Record lengths were generated by
the gamma distribution, which has parameters a and b; for integral a . 0
and t . 0, the distribution is specified by

F~t! 5
ta21e2t/b

ba~a 2 1!!
,

where F(t) is the probability that a record will have exactly t terms. We
used a 5 3 and b 5 144, so that the mean number of term occurrences per
record is ab 5 432, approximately the number observed in WSJ.1

1FINNEGAN, LEX, and the query generator QUANGLE described in the following, are available via
Internet from ftp://munnari.oz.au/pub/finnegan . This directory also contains the que-
ries as described in the following, and the scripts used to create databases and run experi-
ments.

Table I. Statistics of Document Collections Used for Experiments

456 • J. Zobel et al.

ACM Transactions on Database Systems, Vol. 23, No. 4, December 1998.

A sample of FIN is shown in Figure 1. The difference in size between WSJ

and FIN is due to the lack of markup and punctuation in the latter. It
should be noted that FIN is by no means a substitute for a real database. It
cannot be used to examine the effectiveness of ranking algorithms, for
example, nor would it be a good subject for semantic analysis. But it is a
useful basis for performance comparison, and, as our results show, provides
a good indication of actual performance; and it is free of any copyright.

2.4 Query Generation

The TREC data has an associated set of queries, but these are primarily
designed for ranked query evaluation. Queries 51 to 75 have been approxi-
mated into a Boolean form, originally for use by a “soft Boolean” query
evaluator; these are the QUEENS queries [Kwok et al. 1992]. But we have no
further source of actual queries, nor would actual queries be likely to have
answers on FIN. Thus we chose to generate synthetic queries. In the
absence of either a distribution for query terms (which is unlikely to
resemble the distribution of terms in text—textually common words such
as “the” are improbable query terms) or a distribution of query lengths we
have developed a somewhat simplistic query generator. However, as shown
later, the performance trends for the artificial queries are like those of the
QUEENS queries.

Input to the query generator QUANGLE is the vocabulary of the database
(except for 601 stopwords: frequently occurring words such as “the” and
infrequently occurring closed-class words such as “furthermore”) and the
number of records ft containing each term t. Also input are the number N
of records in the database, the number A of answers desired per query, the
number q of conjuncts to be generated, and the number m of disjuncts per
conjunct. Queries are generated by QUANGLE as follows. First, q frequencies
F1, . . . , Fq are chosen so that) i51

q (Fi/N) ' A/N. Then m further
frequencies Fi1, . . . , Fim are chosen for each Fi so that (j51

m Fij ' Fi.
Finally, for each Fij a term tij with ftij

' Fij is chosen from the vocabulary.
The output query is

~t11 ~ . . . ~ t1m! ` . . . ` ~tq1 ~ . . . ~ tqm!.

The frequencies Fi and Fi, j were chosen according to a uniform distribu-
tion. It may be that the frequencies of real query terms are not distributed
in this way, but we believe this method of query construction does not favor
either inverted file or signature file indexing, and thus provides a fair test.

Fig. 1. A sample of the synthetic document database FIN.

Inverted Files • 457

ACM Transactions on Database Systems, Vol. 23, No. 4, December 1998.

For each collection we used six sets of queries. The first three query sets
were constructed using QUANGLE. In the first set, FIRST, each of the 25
queries was designed to have one conjunct and approximately 10 answers;
each term in this query set is relatively rare in the database. In the second
set, SECOND, each of the 25 queries was designed to have three conjuncts
and approximately 10 answers; each term in this query set is thus fairly
common in the database. In the third set, THIRD, each of the 25 queries was
designed to have three conjuncts of four disjuncts each and approximately
10 answers; the query terms in this set range from rare to common. Note
that in these first three query sets QUANGLE was restricted in its choice to
only select terms that occurred in fewer than 1 record in 20 of the database,
for reasons given in the following. Given this threshold, the average
number of distinct query-eligible terms remaining in each document is
shown in the final section of Table I.

The last three query sets were constructed differently. In the set FOURTH

each of the 25 queries is a list of five distinct words randomly selected from
a single database record, with 25 documents scattered uniformly in the
collection used as the seed records. This generation method guarantees
that each query has at least one answer. In the fifth set, FIFTH, there is one
query, a conjunct of the most common indexed terms; the conjunct is the
longest list, starting from the most common indexed term, that had an
answer. The last query set is QUEENS, from which we removed common
words to ensure that queries could be evaluated via the index.

A query from each set is shown in Figure 2. Statistics for the query sets
are shown in Table II. Of these sets, SECOND and THIRD and of course
QUEENS are most typical of real queries.

3. INVERTED FILE INDEXES AND SIGNATURE FILE INDEXES

There are two principal indexing methods, and a wide range of variations
thereof, that are suitable for large text databases: inverted files and
signature files. In this section we describe the two methods, particularly

Fig. 2. Sample queries for WSJ.

458 • J. Zobel et al.

ACM Transactions on Database Systems, Vol. 23, No. 4, December 1998.

with respect to their application to text, and consider some of their
drawbacks.

3.1 Inverted Files

An inverted file index [Fox et al. 1992] has two main parts: a search
structure or vocabulary, containing all of the distinct values being indexed;
and for each distinct value an inverted list, storing the identifiers of the
records containing the value. Queries are evaluated by fetching the in-
verted lists for the query terms, and then intersecting them for conjunctive
queries and merging them for disjunctive queries. To minimize buffer space
requirements, inverted lists should be fetched in order of increasing length;
thus, in a conjunctive query, the initial set of candidate answers are the
records in the shortest inverted list, and processing of subsequent lists only
reduces the size of this set. Once the inverted lists have been processed, the
record identifiers must be mapped to physical record addresses. This is
achieved with an address table, which can be stored in memory or on disk.

An effective structure for storing vocabularies is a B1-tree. The high
branching factor typical of these trees means that the internal nodes are
only a small percentage of the total vocabulary size. For example, suppose
that in a B1-tree leaves contain pointers to inverted lists, that the vocabu-
lary of some database contains 1,000,000 distinct 12-byte terms, and that
the disk being used operates with 8-kilobyte blocks and 4-byte pointers.
Then at most 64 kilobytes are required for the internal nodes. Given this
much memory, at most one disk access is required to fetch a vocabulary
entry. Since the exact address of the inverted list is then known, a second
access suffices to retrieve the corresponding inverted list. Other structures
that are suitable for storing vocabularies include arrays and hash tables,
with comparable performance.

3.2 Compressed Inverted Files

The inverted lists themselves are sequences of record identifiers, sorted to
allow fast query evaluation. Sorting of identifiers within inverted lists has
another important benefit: the identifiers can be represented using vari-
able-length codes that, for large text databases, compress the index by a
factor of about six [Bell et al. 1993], to around 5 to 10% of the data size.
This approach has the disadvantage that inverted lists must be decoded as
they are retrieved, but such decompression can be fast. Moreover, by

Table II. Statistics of Query Sets and Numbers of Answers per Query

Inverted Files • 459

ACM Transactions on Database Systems, Vol. 23, No. 4, December 1998.

inserting a small amount of additional indexing information in each list a
large part of the decompression can be avoided, so that on current hard-
ware the limiting factor is transfer time, not decompression time [Moffat
and Zobel 1996]. Indeed, the performance achieved by our implementation
of inverted lists was one of the factors that spurred this investigation, and
we assume inverted lists to be compressed throughout this article.

An interesting feature of compressed inverted lists is that the best
compression is achieved for the longest lists, that is, the most frequent
terms. In the limit (which, in the case of text indexing, is a term such as
“the” that occurs in almost every record) at most one bit per record is
required. There is thus no particular need to eliminate common terms from
the index: the decision as to whether to use the inverted lists for these
terms to evaluate a query can be made, as it should be, at query evaluation
time.

There are several widely held beliefs about inverted files that are either
fallacious, or incorrect once compression of index entries is taken into
account:

—the assumption that sorting of inverted lists during query evaluation is
an unacceptable cost (illusory, because inverted lists should be main-
tained in sorted order);

—the assumption that a random disk access will be required for each
record identifier for each term, as if inverted lists were stored as a linked
list on disk (They should be stored contiguously or at the very least in a
linked list of blocks.);

—the assumption that, if the vocabulary is stored on disk, log N accesses
are required to fetch an inverted list, where N is variously the number of
documents in the collection or the number of distinct terms in the
collection (only true if none of the nodes in the tree storing the vocabu-
lary can be buffered in memory; moreover the base of the log is usually
large, perhaps 1,000, so the true cost is one or at most two disk accesses);

—the assertion that inverted files are expensive to create (Previous work in
our research group has shown this to be fallacious [Moffat 1992; Moffat
and Bell 1995], and the experiments reported in the following confirm
that they are cheaper to build than signature file indexes.);

—the assertion that inverted files are large, an oft-repeated claim being
that they occupy between 50 and 300% of the space of the text they index
[Haskin 1981] (With current techniques inverted files are stored in
around 10% of the space of the text they index [Witten et al. 1994].).

3.3 Bitstring Signature Files

In signature file indexes [Faloutsos 1992], each record is allocated a
fixed-width signature, or bitstring, of w bits. Each word that appears in the
record is hashed a number of times to determine the bits in the signature
that should be set, with no remedial action taken if two or more distinct
words should happen (as is inevitable) to set the same bit. Conjunctive

460 • J. Zobel et al.

ACM Transactions on Database Systems, Vol. 23, No. 4, December 1998.

queries are similarly hashed, then evaluated by comparing the query
signature to each record signature; disjunctive queries are turned into a
series of signatures, one per disjunct. Any record whose signature has a
1-bit corresponding to every 1-bit in the query signature is a potential
answer. Each such record must be fetched and checked directly against the
query to determine whether it is a false match (a record that the signature
indicates may be an answer, but in fact is not) or a true match. Again, an
address table is used to convert record numbers to addresses.

3.4 Bitslice Signature Files

To reduce query-time access costs, the set of signatures can be transposed
into a set of bitslices, so that a signature file contains one fixed-length slice
for each bit position in the original string; the length of each slice is the
number of records being indexed, that is, N bits for a database of N records.

For bitsliced signature files, then, conjunctive query evaluation consists
of: hashing the query into a signature; for some or all of the 1-bits in the
query signature, fetching the corresponding bitslice; ANDing the fetched
slices together to form a bitmap of potential answers; and, for each 1-bit in
the bitmap, retrieving the corresponding record and checking whether it is
a true match. If each bitslice is sufficiently sparse, and the hash function
used to set the bits sufficiently randomly, only a few false matches will
remain after a subset of the bitslices has been processed. At this point it
may be cheaper to cease processing of bitslices and start retrieving and
checking records. That is, the number of bit slices actually fetched in a
multi-term query might be only a little larger than the number of slices
processed for a single-term query.

For a given bitsliced signature file index, the minimum number of
bitslices that should be processed for a conjunctive query is fixed at s,
typically in the range 6 to 8 [Sacks-Davis et al. 1987; Kent et al. 1990]. The
index will have been created with parameters chosen to ensure that
processing s bitslices will, in a probabilistic sense, reduce the number of
false matches to a specified level. If the number q of query terms in a
conjunctive query exceeds s, then at least q slices should be fetched, since
otherwise one or more of the query terms play no part in the selection of
answers. For a query of m disjuncts, at least sm slices are required, since
these queries are processed as m independent queries and the answer sets
merged. As for inverted files, either one or two disk accesses are then
required to fetch each answer, depending on whether the address table is in
memory.

For text indexing, an application in which queries might have as few as
one term, signatures are formed by letting each word in the record set s
bits. To keep the number of false matches to a manageable level, signature
width is such that each bitslice is fairly sparse. For example, Kent et al.
[1990] suggest that, to achieve good overall performance, approximately
one bit in eight should be set. Note that false-match checking can be
expensive in document databases, as it involves fetching a record (and thus

Inverted Files • 461

ACM Transactions on Database Systems, Vol. 23, No. 4, December 1998.

either one or two disk accesses), parsing the record into words (often
including stemming each word), and then evaluating the query directly
against the list of terms. Fast query processing is thus only possible if the
number of false matches is kept low.

Combining these recommendations for signature density and s means
that each distinct word in each record requires a notional space in the
signature of about 50 bits, roughly the length of an average-length word
represented in ASCII. This allows an initial estimate of signature file
size—if each distinct term appears on average twice per record, then about
25 bits per word occurrence are required by the index, corresponding to
approximately 50% of the space occupied by the input text. Note that
standard bitstring signature files are claimed to be substantially more
compact than this [Faloutsos 1992], since there is no disk access penalty for
having a higher bit density. In fact, as shown in the following, the
difference is negligible; for a given false-match rate bitstring signature files
are only slightly smaller than bitsliced signature files. Moreover, query
processing costs are much greater, since the entire index must be scanned
to determine candidate answers.

As for inverted file indexes, one processing heuristic is to select slices in
increasing density, so that sparse slices are preferred to dense. Implemen-
tation of this technique requires that each slice be tagged with a density
indication, which must be stored separately from the slice itself if the
number of disk accesses is to be kept small. The selection process must also
use knowledge of which query term corresponds to each bit in the query
signature, since nothing is gained if all of the sparse slices correspond to
the same query term.

3.5 Blocked Signature Files

A particular problem with bitsliced signature files is of scale: databases
with large numbers of records have long slices, several of which must be
retrieved in full regardless of the properties of the query. That is, despite
that fact that the index is stored, transposed, and only a few bit positions in
each signature must be inspected, index processing costs are guaranteed to
rise linearly in the size of the database. For example, a database of one
million records would have bitslices of one megabit each, and processing of
even the simplest of queries would require transfer of approximately one
megabyte of index data. This problem can be addressed by grouping records
into blocks, so that each bit in each slice corresponds to B records, where B
is the blocking factor. Slice length is reduced by a factor of B; to keep slice
densities low, signature width must be increased by a similar factor. To
reduce the potential for block-level false matches (in which a block contains
all the query terms, but no record in the block is a match) a different
mapping from record number to block number can be used in each slice.
Thus a record may be in block 6 in the first slice, block 11 in the second
slice, block 9 in the third slice, and so on. The number of different
mappings is K, the number of slices (i.e., signature width) is a multiple of

462 • J. Zobel et al.

ACM Transactions on Database Systems, Vol. 23, No. 4, December 1998.

K, and each mapping is applied to w/K slices. This multi-organizational
scheme [Kent et al. 1990] reduces but does not eliminate the potential for
block-level false matches.

Queries are evaluated as for conventional bitsliced signature files, except
that the bitslices must be decoded into record numbers as they are
retrieved. It is possible to intersect bitslices by having a list of record
numbers that are potential matches, and to use each subsequent bitslice to
eliminate records that are not matches, by analogy with the query evalua-
tion mechanism for inverted files; but the large number of records (about
one in eight) that each slice implies is a match, and the disorder in each
slice due to the complexities of the mappings, make this approach undesir-
able. It is also possible to decode each blocked bitslice into a full bitslice,
then directly AND the decoded slices, but the cost of decoding is high and
dominates query evaluation time.

These problems are addressed in the ATLAS [Sacks-Davis et al. 1995] text
database system as follows. The number of mappings K is set equal to s,
the number of bits set per term, and the index is divided into K partitions,
each of w/K slices. Then each term is allocated one slice in each partition,
thus guaranteeing that each term uses all of the available mappings. The
first few mappings (typically three) are identical, so that the same blocking
scheme is used in the first few partitions. Then, when queries are evalu-
ated, the first slices fetched are from these partitions because such slices
can be ANDed without further processing. Assuming that the selected slices
are sufficiently sparse, the result of this operation is a slice of length N/B
with a relatively small number of 1-bits. For each of these 1-bits, the
corresponding record numbers are computed and the remaining slices
probed to determine whether they have 1-bits for these records. The main
disadvantage of this approach is that there is less flexibility in slice
selection: it decreases the likelihood of being able to use a sparse slice to
reduce the number of candidates. During the development of ATLAS, this
K-block approach was experimentally found to increase the number of
block-level false matches, but greatly improved query response time. It is
the implementation we assume in this article.

The larger the blocking factor, the more slices must be fetched to
eliminate block-level false matches. Thus increasing the blocking factor
increases the number of disk accesses, but reduces the amount of data to be
transferred. It follows that choice of parameters needs to take actual disk
characteristics into account.

3.6 Compression of Signature Files

Compression brings considerable benefit to inverted file indexes, and it is
natural to ask if the same improvements can be achieved with signature
files. The answer is no.

By inverted file standards each slice in a bitslice of blocked signature file
is very dense, with approximately one bit in eight set. The entropy of a
binary probability distribution [1/8, 7/8] is 0.55 bits per symbol, and so

Inverted Files • 463

ACM Transactions on Database Systems, Vol. 23, No. 4, December 1998.

compression of such an index roughly halves the space. However the need
to decompress a set of slices means that query processing becomes much
slower. For example, in the WSJ database the average compressed inverted
list is 105 bytes long; but the average compressed bitslice is over 6,000
bytes long. Even in a blocked signature file significantly more decompres-
sion time will be required than by the corresponding inverted file index.
And the use of compression erodes one of the advantages of a signature file,
namely, that no “slice address table” is required when all of the slices are of
the same length. Instead, the address of each variable length slice must be
maintained in an address table, a small extra use of main memory.

Moreover, although we have noted previously that decompression time
for compressed inverted lists can be fully offset by reduced seek and
transfer times, a similar tradeoff is not observed for compressed bitslices
because of the poor compression ratio. That is, the reduction in the volume
of data transferred provides a window of time for decompression; only if the
volume is greatly reduced will this window be large enough for decompres-
sion to take place. The required size of the window is, however, dependent
on architecture: as the gap in speed between disk and processor grows, the
necessary window size increases.

3.7 Records of Varying Lengths

In an inverted file index records of widely differing lengths pose no special
problems, since long problems merely result in index entries in a relatively
large number of the inverted lists.

The same is not true for signature files. To maintain even density and
thus good performance for signature file indexes it is important that the
records being indexed be of similar length. If signature width is set to cater
to the longest record, index size will be unacceptable. On the other hand, if
signature width is suited to average records (or even to all but 10% of the
longest records), then the signatures for the longest records will have
almost all of their bits set. In WSJ, for example, average record length is
about 2.8 kilobytes but the longest is 79 kilobytes, and the chance of having
more than a handful of 0-bits in the signature for this record is small. It
follows that the longest records will be identified as potential answers to a
high proportion of queries and will be retrieved and checked; and it is quite
possible that the time taken to retrieve and false-match check the longest
candidates will exceed all other query processing costs combined. In es-
sence, long records remove the independence assumption of 1-bits in
bitslices—a 1-bit in some position of a bitslice is indicative of a long record,
and hence the conditional probability that bits in the same position of other
slices will also be set is higher than might otherwise be expected.

The difficulties presented by databases of records of widely varying
length is a well-known drawback of signature files [Faloutsos 1985; Kent et
al. 1990], but the gravity of the problem has not, to our knowledge,
previously been recognized. We analyze the impact of variable-length
records on false-match rates in Section 4.

464 • J. Zobel et al.

ACM Transactions on Database Systems, Vol. 23, No. 4, December 1998.

Methods for coping with databases of widely differing record length have
been outlined but not, to our knowledge, developed or implemented. One
suggested solution is to partition the database into subdatabases of records
of roughly similar length, each subdatabase having its own index [Kent et
al. 1990]. Since the signature width would vary from subdatabase to
subdatabase, each index must be processed separately, multiplying the
number of slices to be fetched and making query processing time unaccept-
ably high. Another proposed solution is to have very wide signatures but
apply compression so that similar overall space is used [Faloutsos 1985];
but this solution is only suitable for bitstring signature files, which have
the immediate disadvantage that the entire index must be retrieved and
decompressed to answer a query. A third possible solution is to break the
longer records into shorter fragments, but this requires the use of a
mapping that converts signature number to record number; not only must
this mapping must be applied to every bit when ANDing slices together, but
also it has no beneficial effect when only one slice is fetched for each query
term.

The problem of long records is less acute for blocked signature files, since
each record is blocked in several different ways, signature width is much
greater, and the blocking means that length variation is more constrained.
Nonetheless a long record can still cause difficulties. This effect is quanti-
fied in Section 4. In TREC, the longest record is 2.52 megabytes, a thousand
times larger than the average record. If this record is retrieved, the cost of
fetching and checking it completely dominates query processing time.
Unfortunately its length implies that it is the record most likely to be
retrieved as a false match.

In summary, false matches and long records are a serious problem for
signature files applied to text databases, and cannot be neglected.

3.8 Handling of Common Terms

Common terms (those that occur in a high proportion of records) pose a
similar problem for signature file indexes, as all of the bitslices to which
common terms hash will have a high proportion of 1-bits. That is, if a
common term and a rare term share a bitslice, queries on the rare term will
have an increased number of false matches because of the reduced filtering
effect of the shared slice. Moreover, 100 (say) common terms generate 600
or 800 unusually dense slices, so it is clear that a large fraction of the slices
in the index (which is typically a few thousand slices wide) are shared
between rare terms and common terms. Common terms are a particular
problem for the multi-organizational scheme. Consider a signature file in
which 8 bits are set for each term, and a conjunctive query of four
independent and equally likely terms, each with probability of 0.1; such a
query would be expected to have 10 answers on WSJ or FIN. Then the
probability of one term not appearing in any record is 1 2 0.1 5 0.90. In a
block of 8 documents, the probability of the term not appearing is (0.90)8 5
0.430, and so the probability of the term appearing somewhere in the block

Inverted Files • 465

ACM Transactions on Database Systems, Vol. 23, No. 4, December 1998.

is 1 2 0.430 5 0.570. To process a query, 8 slices are fetched, and each bit
in each slice is set with probability at least 0.570. Hence, the probability
that any particular record is accessed as a match is at least (0.570)8 5
0.011. That is, 1.1% of the database—over 1000 records in our test
databases—might be accessed as false matches.

One solution to this problem is to not index common terms by applying
an extended stoplist. This makes queries on other terms faster, but also
requires that queries involving common terms be answered by scanning the
database. In WSJ, for example, there are many terms that occur in a high
proportion of the records (e.g., “Washington”) that are certainly not stop-
words in the usual sense and, despite their frequency, provide useful
discrimination. Another solution is to have a separate vocabulary of com-
mon terms, each of which has a dedicated bitslice or inverted list [Kent et
al. 1990; Sacks-Davis et al. 1987]. That is, a “signature file method” should
incorporate an inverted file to handle common terms.

From the point of view of comparing inverted files and signature files,
this suggestion is awkward, since there is no straightforward basis for
partitioning the distinct terms of the database into “common” and “not
common” and hence no clear boundary between the two indexing schemes.
It might be proposed, for example, that the common terms be as many as
will fit in a vocabulary of some predetermined size, so that, with sufficient
memory for the vocabulary, no bitslices are required at all.

In the face of this ambiguity we make our position clear: we compare
inverted files to the component of a signature file index that consists of
slices in which bits are set by hashing. That is, we assume that all terms
but those explicitly defined to be common are so indexed, and that common
terms are simply not indexed at all. Then to avoid any suggestion that our
experiments were biased in favor of inverted file indexes, we arbitrarily
declared “common” all words that appeared in more than 5% of the
documents of the test collections. These words were also excluded from the
inverted file indexes and from all of the queries, including the QUEENS

queries, in which some of the common words appeared.
As noted, common terms are handled particularly economically by com-

pressed inverted files, and there is no need to stop them at all, since, even
with every word and number indexed, index sizes are still typically about
10 to 15% of the source text size [Bell et al. 1993].

3.9 Choice of Parameters

In a compressed inverted file the main choices that must be made are of the
structure of the vocabulary and of the mechanism used to compress the
inverted lists. Experience has shown that a B1-tree style index is appropri-
ate for a very wide range of vocabulary sizes, and that several different
compression methods all give excellent behavior on inverted lists [Bell et
al. 1993]. That is, there is little need for parameter or process selection on
the part of the database manager.

The situation is in contrast to that for a signature file index. It is
necessary to choose the number of bits s per term, a signature width w,

466 • J. Zobel et al.

ACM Transactions on Database Systems, Vol. 23, No. 4, December 1998.

and, in the case of the multi-organizational scheme, a blocking factor K.
Moreover, an incorrect choice of parameters can lead to unnecessarily poor
performance in speed, space, or both. Indeed, tuning signature files for best
results was an ongoing difficulty with the experiments described in the
following, since parameters that worked well for one query set and signa-
ture file scheme tended not to work well for other combinations. A lesson
we learned very quickly is that it is difficult to choose good signature file
parameters without detailed knowledge of the type of queries to be han-
dled.

3.10 Other Signature File Methods

One of the difficulties in the comparison of inverted files and signature files
is that many variants of signature file techniques have been proposed, and
it is possible that some combination of parameters and variants will result
in a better method. But we believe that the methods considered here are at
least as good as the best signature file techniques, and are fair representa-
tives.

The principal alternatives to bitsliced signature files are partitioned
signature files and hybrid organizations. The partitioned signature file
[Zezula et al. 1991; Ciaccia and Zezula 1993; Ciaccia et al. 1996] is a
modification of the bitstring method in which each signature is allocated to
a bucket. This method should be most effective when the query signature
has a large number of bits set. The results of Zezula et al. suggest that
bitslice signature files are faster than partitioned signature files when the
number of bits set in the query signature is less than 70 or so (the exact
crossover point depends on factors such as the number of buckets), so for
our test queries we would expect bitslice signature files to be superior. We
are, however, not aware of any experimental comparison of partitioned
signature file techniques to other indexing techniques on a large data set.

There are several hybrid schemes that aim to combine the benefits of
signature files and inverted files. One approach, in which common terms
are indexed by bitmaps and rare terms by a signature file [Kent et al. 1990;
Sacks-Davis et al. 1987], was discussed previously; the motivation for this
scheme is that, as we indicated, indexing of common words in a signature
file organization increases the false-match rate. Another hybrid approach
that has been advocated is a blend of bitmaps for common terms and
variable-length posting lists for more discriminating terms [Faloutsos and
Jagadish 1992]. A related approach is to blend signature files with posting
lists [Chang et al. 1989]. The motivation for these schemes is that, for rare
terms, inverted files have better performance than signature files because
signature file costs are always linear in the size of the database, whereas
for common terms a signature file or bitmap is more efficient than using a
fixed number of bits per record pointer. However, although the cost of
storing and retrieving posting lists for common terms is one of the major
drawbacks of traditional inverted list implementations, compression elimi-
nates this problem as a compressed posting list is never longer than the

Inverted Files • 467

ACM Transactions on Database Systems, Vol. 23, No. 4, December 1998.

equivalent bitmap. That is, compression automatically provides a smooth
transition from posting lists for rare terms to bitmaps for common terms,
with no administrative intervention or controlling parameters.

3.11 Experimental Text Database Systems

We used two text database systems for the experiments in this article. The
MG system [Witten et al. 1994; Moffat and Zobel 1996] uses compressed
inverted files for indexing.2 The vocabulary is maintained on disk and is
accessed through a small main-memory index, and the address table is also
held on disk. Hence query processing requires two disk accesses per query
term, and two disk accesses per answer.

The system used for the signature file experiments supports several
signature file indexing schemes, including bitstring, bitslice, and blocked
bitslice. It also incorporates a data analysis tool that chooses suitable
parameters for signature width and so on, according to the criteria dis-
cussed by Kent et al. [1990]. It maintains its address table on disk.3 Both of
these systems were developed jointly at RMIT and the University of
Melbourne.

Both of our database systems support storage and querying of com-
pressed text, but, since the compression schemes are not compatible, in this
article we use both in uncompressed mode, to ensure that the same amount
of data is being fetched and to allow direct comparison of retrieval times.
Note that for many typical classes of query the use of compression can
actually decrease retrieval time through reduced seek and transfer costs
[Zobel and Moffat 1995]. Similarly, both systems use Lovin’s stemming
algorithm [Lovins 1968], but there were small differences in the implemen-
tations that led to different documents, and different numbers of docu-
ments, being retrieved on some of the queries. To avoid this inconsistency
we turned off stemming in both systems. This change is to the benefit of
signature files, since with a stemmed index each record selected by the
signature file must be completely restemmed during false-match checking,
a nontrivial requirement.

We note the existence of other public retrieval systems based upon
inverted files: the SMART system developed at Cornell University by Salton
and others [Salton and McGill 1983], and the GLIMPSE system developed at
the University of Arizona by Manber and others [Manber and Wu 1994].
Also, most commercial text retrieval systems and Internet search engines

2MG is available from ftp://munnari.oz.au/pub/mg . A tutorial introduction to MG appears
as an appendix in Witten et al. [1994].
3The system actually used was ATLAS [Sacks-Davis et al. 1987, 1995; Kent et al. 1990], a
nested relational system with text support. To avoid the problems caused by common terms,
ATLAS makes use of dedicated bitslices (a form of compressed inverted list) for terms that
appear in sufficiently many of the documents that they should not be indexed through
signatures. To allow the comparison, we disabled this feature, thereby achieving a “pure”
signature file implementation, and, as noted, terms that appeared in more than 5% of the
records were declared to be “common,” and neither indexed nor queried in either database
system. ATLAS is not publicly available.

468 • J. Zobel et al.

ACM Transactions on Database Systems, Vol. 23, No. 4, December 1998.

employ inverted files. We are unaware of any public domain text retrieval
systems that use signature files.

4. COMPARISON OF INVERTED FILES AND SIGNATURE FILES

In this section and the next we compare inverted files and signature files.
This section focuses on query evaluation speed, using direct argument,
modeling, and experiment; in Section 5 we compare other aspects of the two
methods, such as disk space and extensibility. We assume that processing
is carried out on a uniprocessor workstation; the issue of parallelism is
explicitly addressed in Section 5.4. We also assume that disk transfers have
a fixed nontrivial startup cost to fetch the first byte of accessed data, but
that subsequent bytes fetched in the same read operation can be trans-
ferred quickly, and that these costs are independent of file size. This latter
assumption is an approximation as all our experiments have been run on a
UNIX system, in which large files are organized as a tree of index and data
blocks, and random access to a byte of a large file can be several times
slower than random access to a byte of a small file.

Note that our description of the relative merits of inverted files and
signature files has been entirely based on application of these techniques to
document indexing. Some of the following arguments and results may have
broader implications for the relative performance of these techniques, but
we make no claims with respect to other applications.

4.1 Direct Argument

Inverted file indexes with in-memory search structures require no more
disk accesses to answer a conjunctive query than do bitsliced signature
files. This can be seen from the following inductive argument, an elabora-
tion of a claim presented by Zobel et al. [1992].

Initially, all of the records of the collection are candidate answers to the
query. The query is resolved by fetching bitslices, in the signature file case,
or inverted lists, in the inverted file case. Now an inverted list can be
regarded as a representation of a bitslice—a list of the ordinal positions of
documents with a 1-bit. So we can refer to “bits set in an inverted list”,
meaning bits set in the bitslice represented by an inverted list; and we can
“AND together inverted lists”, meaning that we form their intersection. We
can also refer to “a word’s bitslices”, meaning the slices corresponding to a
bit set by that word.

For each word in a query, there can be bits set in the word’s signature file
bitslices that are not set in the word’s inverted lists, but the converse does
not hold; the word’s inverted list is never denser than any of its signature
file bitslices. Thus, for any bitslice that can be selected to AND with the list
of candidate records in a signature file index, an inverted list that is at
least as sparse can be selected in the corresponding inverted file index (and
if the signature file bitslice is for a word that has already been processed in
the inverted file case, then no action is required). For a query involving q
words, the selection of q inverted file entries is sufficient to guarantee that

Inverted Files • 469

ACM Transactions on Database Systems, Vol. 23, No. 4, December 1998.

no false matches remain in the inverted file case; but after q bitslices have
been processed in the signature file case there can still be candidate
records that are false matches (and possibly a large number if q is small,
less than six, say). These false matches can be resolved only after further
disk accesses, either to retrieve more bitslices or to retrieve text.

From the statistics of our text collections it can be seen just how much
more dense are bitslices than inverted lists. For standard bitslices and WSJ,
signature width is around 10,000 bits, and each word sets bits in eight
slices; but each word sets bits in only one of over 100,000 inverted lists. It
is thus virtually impossible for all of the bits in any bitslice to correspond to
a single term.

If, in the signature file case, only p , q slices are retrieved before
false-match checking begins (on the assumption that it will be cheaper to
retrieve and check false matches than to continue processing with the
index), then in the inverted file case the same “short-circuit” evaluation
strategy can be adopted, and a false-match checking phase can likewise be
commenced after p inverted file entries have been merged.

Provided that inverted file entries have been selected for merging in
order of increasing length, the number of records to be retrieved and
false-match checked in the inverted file case cannot exceed the number of
records accessed in the signature file case. Hence, the only situation when
the number of disk accesses in the inverted file index can exceed the
number of disk accesses with a signature file index is when the inverted file
vocabulary cannot be held in memory. Such an arrangement gives rise to q
“unaccounted for” disk accesses, one for each of the query terms. In this
situation the signature file can perform fewer disk accesses than the
inverted file if q is larger than the number of false matches (or, if the
document address table is held on disk, the number of false matches
divided by two). This is most likely to happen when q is large, since
fetching a large number of bitslices also reduces the false-match probabil-
ity. For typical small values of q (less than three or four) the inverted file
index performs fewer accesses, even if the vocabulary is held on disk.

In practice, the relative performance of signature files and inverted files
is affected by other factors, in particular, the lengths of bitslices and
inverted lists. An unblocked bitslice is always at least as long as the longest
compressed inverted list, so performance cannot be better. Blocked bitslices
typically have 1 bit per 4 to 32 records, and with the latter ratio blocked
WSJ bitslices are just a few hundred bytes long. The inverted lists for WSJ

vary in length, from a few bytes to about 3 kilobytes (recall that common
terms have been removed), with an average of 105 bytes. A typical query
might be expected to favor inverted lists—one imagines that users try to
specify highly selective terms—but it is also conceivable that blocked
signature files transfer less data and are therefore faster.

However, even for the complete TREC collection, which is an order of
magnitude larger, the average compressed inverted list occupies just a few
hundred bytes. To reduce the false-match rate to a manageable level
signature file methods must examine some minimum number of slices, even

470 • J. Zobel et al.

ACM Transactions on Database Systems, Vol. 23, No. 4, December 1998.

for single term queries. For nonconjunctive queries this effect further
favors inverted files. A disjunction of m terms is processed by a signature
file index as m single-term queries, and then the answer lists merged; this
means that on the order of sm slices must be fetched if the false-match rate
is to be reasonable.

For conjunctive queries, it is questionable whether queries can have
large numbers of terms. Our experience is that it is unlikely that, for text,
a conjunctive query of even 10 terms will have an answer in the first 2 Gb
of the TREC collection, unless the terms are words such as “the” and “of”. For
example, if query terms appear randomly in 5% of the records, the
threshold previously assumed, then 5 words provide a selection rate of
about 1 in (20)5 5 3,200,000. In real queries, terms may be semantically
related and thus the queries may have more matches, but even so the
supposition that conjunctive queries can have large numbers of terms is at
best dubious. Ranked queries, discussed in more detail in the following, can
have large numbers of terms, but are not conjunctive.

Once matches have been identified, retrieval of those matches is strictly
cheaper in the inverted file case than in the signature file case because of
the need for false-match checking of the records returned by the signature
file index. Thus, even if there are no false matches for a given query, fewer
disk accesses in the signature file case, and less data transferred (an
unlikely combination of circumstances in view of the preceding arguments),
query evaluation can nonetheless be slower for signature files because the
absence of false matches cannot be known until every true match has been
checked.

4.2 Mathematical Modeling—Signature Files

In this section we describe a mathematical model for bitsliced and multi-
organization signature files, and show in particular that violation of one
constraint on the use of signature files (that records should be of near-equal
length) can be catastrophic. This model can be used to derive signature file
size from expected false-match rates and a distribution of record lengths.

Suppose a record in a database has t distinct terms to be indexed, that s
signature bits are set for each term, and that the signature is w bits wide.
That is, the signature for the document is formed by setting st randomly
chosen bits (with replacement) out of w. After this, the probability of a
randomly chosen bit in the signature being set to one is given by

1 2 S1 2
1

wD st

.

A single-term query will cause s bits in the signature of each document to
be inspected, and if all s bits are one, the record must be processed as a
false match. Hence, the probability p(w, s, t) that a nonanswer record of t
terms is inspected as a false match is given by

Inverted Files • 471

ACM Transactions on Database Systems, Vol. 23, No. 4, December 1998.

p~w, s, t! 5 S1 2 S1 2
1

wD stD s

.

Using this expression, we can calculate, for example, that with s 5 8 bits
set per term and exactly t 5 150 distinct noncommon terms per record (the
average for WSJ), a false-match rate of 1 in 100,000 is achieved when w 5
4,443.

Figure 3 shows the variation in p(w, s, t) as a function of t for four
different pairs of parameters w and s. Note the steep increase in false-
match probability as t increases; note also that s 5 16 allows slightly more
terms per record than s 5 8 for some given false-match probability, but
with a much greater penalty when records have more than the expected
number of terms. The horizontal dashed line corresponds to a false-match
rate of 1 in 105.

Suppose further that the distribution of record lengths (where length
means the number of distinct indexed terms) is governed by probability
density function F(t). For example, one assumption that might be made
during the analysis of signature file methods is that all records in the
collection are of some length l, corresponding to the function

FE~t! 5 H1 if t 5 l
0 otherwise

Given a density function F(t), the probability M(F, w, s) that a random
nonanswer document is accessed as a false match is given by

M~F, w, s! 5 O
t51

`

p~w, s, t! z F~t!.

If L(t) is the ratio of total term occurrences to distinct terms in a record of
t distinct terms (e.g., taking an average over WSJ we might suppose that

Fig. 3. False-match probability for w 5 5,000 and w 5 50,000, and s 5 8 and s 5 16;
single-term queries.

472 • J. Zobel et al.

ACM Transactions on Database Systems, Vol. 23, No. 4, December 1998.

LE(t) 5 432/150 5 2.87), then the expected volume V(F, w, s) of
false-match checking is given by

V~F, w, s! 5 O
t51

`

p~w, s, t! z F~t! z L~t!.

These are both “per random nonanswer record” expected values. The
expected number of false matches per single-term query in a collection of N
documents is given by

~N 2 a! z M~F, w, s! < N z M~F, w, s!,

where a is the number of true matches, and the approximation is appropri-
ate when a ,, N. Likewise, the expected volume of text (measured in
terms) that must be checked in a single-term query is approximated by

N z V~F, w, s!.

As a more realistic example, suppose that FW(t) is the fraction of records
in WSJ containing exactly t distinct terms (after the removal of common
terms), and that LW(t) is the average term multiplicity over t-term docu-
ments in WSJ. Table III shows some values of M(F, w, 8) for FE and FW. As
can be seen, the difference between the “equal” length distribution FE and
the “actual” length distribution FW increases the false-match rate more
than a hundredfold.

Moreover, if a signature file index is used for variable length records, the
false-match records are highly likely to be long. Figure 4 plots predicted
false-match volume V as a function of w, the signature width, for the WSJ

collection. The two outermost lines (labeled “Equal-length” and “BS”) show
false-match text volume V(F, w, s), calculated using FE and FW, respec-
tively. Over a large range of w the actual expected volume of false-match
records is more than a thousand times greater than the amount predicted
by the “equal-length” assumption embodied in FE. For example, a bitsliced
WSJ index that checks 432 false-match terms per query (the length of an
average WSJ record) requires a signature of w 5 19,600 bits, very much
larger than the index of 4,443-bit signatures indicated by the original
FE-based analysis summarized in Table III.

Table III. False-Match Rates M(F, w, s) for Density Functions FE and FW and s 5 8;
Single-Term Queries

Inverted Files • 473

ACM Transactions on Database Systems, Vol. 23, No. 4, December 1998.

Note that this model can also be applied to single-term queries on
bitstring signature file indexes. Evaluation of the model indicates that the
minimum signature width for a bitstring index on WSJ with a false-match
rate of 1 in 1025 is at least 12,200 bits (this minimum occurs when s 5 9,
and is only a few bits less than the value of w required for s 5 8 for the
same false-match rate), giving an index that is around 50% of the size of
the indexed data, a marked contrast to the 10% that has been claimed
elsewhere [Faloutsos 1985]. This somewhat surprising result is caused by
the conflict between the need for large values of s if w is to be reduced, and
the steepness of the false-match penalty for long records when s is large
(Figure 3).

The situation with multi-organization indexes is more complex. By block-
ing records together and widening the signature accordingly, variations in
record lengths are, to a certain extent, smoothed out. Indeed, the ability of
multi-organization signature files to cope with routine vagaries of record
length is a strong point in their favor. Nevertheless, false-match rates and
false-match volumes can still be high. If we assume that each term is
indexed by a single bit in each of K 5 s different organizations, that the
signature width for a block of B records is w bits, that each organization is
allocated a total of w/s bits, and, as before, that F is a density function on
record lengths, then the nonanswer false-match rate for a single-term
query is bounded above by

MMO~F, w, s, B!

5 O
t151

` O
t251

` O
t351

`

· · · O
tB51

` FP
i51

B

F~ti!G z FP
i51

s S1 2 S1 2
s

wDDO i51
B tiG

5 O
t51

` FFB~t! z SpSw

s
, 1, tD D sG ,

Fig. 4. Predicted false-match volume as a function of w for WSJ and s 5 8; single-term
queries.

474 • J. Zobel et al.

ACM Transactions on Database Systems, Vol. 23, No. 4, December 1998.

where FB(t) is the probability density function that arises when B random
variables are selected according to F(t) and summed, the length of a block
of B records, if it can be assumed that the terms in records are disjoint. In
practice there will be overlap of terms in blocks, and so this estimate is
pessimistic. A more precise calculation would use an actual density func-
tion for the number of distinct terms in blocks of B records.

Figure 4 plots the corresponding false-match volume function VMO(FW,
w, s, B) for B 5 2, B 5 4, and B 5 8, all with s 5 8. Large values of B
clearly reduce the false-match volume for single-term queries toward the
level expected under an “equal length” assumption, but by no means
eliminate the discrepancy.

On the other hand, blocked signature files handle multi-term queries
relatively poorly, especially when B is large. The larger the block, the more
likely it is that two query terms appear together in the block but not in any
single record of the block. These block-level false matches add to the
record-level false matches estimated by the preceding model.

In summary, the need for false-match checking, and the need to minimize
false matches, is a serious problem for signature files, a problem for which
inverted files have no equivalent.

4.3 Mathematical Modeling—Inverted Files

A mathematical model can also be applied to inverted file indexes, in this
case to calculate an upper bound on index size. For inverted files, there are
no considerations such as false matches and no parameters to vary, so
estimation of size is straightforward.

One compression method that we have used for representing inverted
files is Golomb coding [Golomb 1966; Bell et al. 1993]. Golomb codes have
the interesting property that a set of p positive integers summing to at
most N are represented in at most

G~N, p! < p z S1.5 1 log2

N

p D
bits. Moreover, the concavity of the log function means that the worst case
is when the p values are all roughly equal, and on nonuniform distributions
the number of bits required decreases. This bound can be immediately
applied to the statistics reported in Table I to calculate an upper bound on
index size for inverted lists stored as gaps: for WSJ, the index need not be
larger than

G~98732 3 204587, 98732 3 150!,

which is 21.0 megabytes, or 11.9 bits per pointer. This compares very
favorably with the signature file sizes calculated previously. For example,
the minimum width calculated (using the equal length assumption) was
w 5 4,443, which corresponds to an index of 52.3 megabytes, more than
twice the size. More realistic signature widths produce even larger indexes.

Inverted Files • 475

ACM Transactions on Database Systems, Vol. 23, No. 4, December 1998.

If the WSJ false-match rate is to be 1 in 100,000, then w 5 12,204 is
required and the index grows to 143.6 megabytes, the equivalent of 80 bits
per index pointer.

Moreover, the Golomb codes can be applied independently to the individ-
ual inverted lists, thus improving compression. Over a large range of
databases we have found that Golomb codes consistently require about six
bits per pointer.

It should also be noted that it is not necessary to decompress the whole of
each index list to process conjunctive queries [Moffat and Zobel 1996]. If
each compressed inverted list is partially indexed by the insertion of skips
it is only necessary for a small fraction of each inverted list to be decoded,
and for typical queries the dominant cost when processing each inverted
list is the cost of transferring the list from disk to memory. The insertion of
the skips does increase the length of each inverted list by as much as 10%
of their compressed size, but in the context of an already small inverted
index the actual cost is negligible.

4.4 Experiment

Our experimental framework is as follows. We have the two text database
systems implemented within our research group over a period of several
years, which we use to compare the performance of inverted files and
signature files. In both cases we are confident that the implementation is of
good quality, and both systems have inbuilt instrumentation allowing
reliable measurement of query evaluation time. We also have our two test
document collections WSJ and FIN and for each collection six sets of test
queries. We built inverted file and signature file indexes for both collections
on the same physical disk drive on the same machine. The hardware is a
four-processor Sun SPARC 10 model 514 with 256 megabyte of memory.
The operating environment was Solaris; both programs were written in C,
and are uniprocessing, executing on a single processor and making no
attempt to exploit parallelism. The experiments were carried out in an
alternating manner, to minimize the likelihood of external factors disrupt-
ing the timings; and, as far as possible, the machine and disk drives were
otherwise idle throughout the process. Each query was executed five times,
with individual executions of each query separated by a flush of the
operating system cache to ensure a cold start to the query process.

The inverted file indexes, denoted by IF in the results, were, as discussed
previously, compressed. They were not, however, skipped, since we pre-
ferred to base our results upon a straightforward implementation of com-
pressed inverted files.

Two sets of signature file indexes were created, in each case using s 5 8,
that is, 8 bits per term. In the first indexes, denoted by BS, the signature
width was chosen to probabilistically yield one false match per query
assuming the actual distribution of record lengths in that database. In the
second set, denoted by MO, the multi-organizational scheme was used, with
K 5 8 and B 5 8, and, as for BS, the actual record lengths were used; but

476 • J. Zobel et al.

ACM Transactions on Database Systems, Vol. 23, No. 4, December 1998.

to make the analysis tractable we pessimistically assumed that no terms
were duplicated between records, so the signature widths in this case are
greater than an exact analysis would imply. In each case—IF, BS, and
MO—words appearing in more than 5% of the documents were not indexed,
nor were they used in queries. Statistics of these indexes are shown in
Table IV.

In addition to the experiments described here we explored the perfor-
mance of signature files, by varying parameters, to try to achieve the best
possible performance and to test our models. In one set of experiments we
chose signature width to probabilistically yield one false match per query
assuming records of equal length; performance was as poor as our analysis
had predicted. We also varied s, trying 6, 12, and 16, as well as the
experiments with s 5 8 reported here. Increasing s consistently led to
slower query evaluation and only slightly smaller indexes; the value s 5 8
was chosen as the best representative value for the full set of results.
Another parameter we varied was the number of common words. This had
surprisingly little effect on performance for bitslices (although index size
grew rapidly as more words were indexed), but the presence of common
words was disastrous for the multi-organizational scheme, with query
response time deteriorating by a factor of hundreds when the number of
common words was halved.

Based on the preceding analyses, we would expect the relative perfor-
mance of signature files to be best on the query sets SECOND and FOURTH,
since no disjuncts are involved and for signature files the query can be
resolved (to a given level of false-match probability) in the same number of
disk accesses as the query set FIRST.

Performance is shown in Tables V and VI. Table V shows the time spent
retrieving and processing index information, that is, the time spent fetch-
ing and resolving inverted lists or bitslices in order to generate a list of
possible or actual (for IF) answer documents. Table VI shows the total time
(including the index processing times listed in Table V) spent retrieving
answers, and, in the case of signature files, time spent retrieving, process-
ing, and eliminating false matches. In this latter table the number of
matches is shown in square brackets against each entry, and so the number
of false matches can be inferred by subtracting the number of (true)
matches recorded for the inverted file index.

Perhaps the most notable result is that, although signatures are in
several cases slightly faster with respect to index processing time, for all
but a few of the several hundred queries we tested inverted files completed

Table IV. Index Parameters (Signature Width, Size in Megabytes, Size as Percentage of
Size of Original Data)

Inverted Files • 477

ACM Transactions on Database Systems, Vol. 23, No. 4, December 1998.

processing faster, and often 10 times as fast, as did signature files,
particularly on the more realistic query sets SECOND, THIRD, and QUEENS.
Another general trend is the retrieval cost per document for each indexing
method. In the inverted file case, between 30 and 60 documents are
retrieved per second once the index processing is complete. In the signature
file case, around 10 to 15 documents are retrieved per second, the slower
rate being due to false-match checking. This discrepancy was accentuated
when stemming was used: the number of documents processed per second
fell to around 8.

As expected, query set FIRST is handled relatively well by each of the
indexing methods. The inverted file index is extremely fast at processing

Table V. Index Processing Time (Elapsed Time; Seconds)

Table VI. Query Evaluation Speed (Average Elapsed Time in Seconds) and Number of
Documents Retrieved (i.e., Average False and True Matches; Shown in Square Brackets)

478 • J. Zobel et al.

ACM Transactions on Database Systems, Vol. 23, No. 4, December 1998.

queries involving a single rare term, but the signature file indexes are also
acceptable.

For query set SECOND, the relative performance of BS and IF is like that of
query set FIRST, but MO performs poorly, most probably because of the
manner in which QUANGLE was driven to make use of relatively common
words (most with probability of occurrence between 0.025 and 0.05) to
achieve the desired number of answers, so that block-level false matches
dominate. We have nonetheless reported the results we observed, having
been told by advocates of signature files that inverted files are poor on
queries involving a relatively large number of common terms. For query set
SECOND the bitsliced signature file implementations do have reasonable
index processing times compared to inverted files (Table V), but even so,
the cost of false-match checking—almost regardless of the width of the
index—makes overall query processing costs substantially higher (Table
VI).

Query set FOURTH, with five terms per query, was designed to allow the
signature file implementations to show their best relative performance, and
this is evident in Table V. For both databases the MO index was faster than
the IF index at determining answers, and on FIN was faster overall as well.
Surprisingly this was not true for the BS index; the MO index clearly
benefits from manipulating shorter slices.

Query FIFTH, containing the most common indexed terms, puts paid to
the fallacy that inverted files are inefficient for queries containing common
terms. They are slower than for rare terms, and the index processing cost is
higher than for signature files. But common terms also bring out the worst
in signature file indexes, and the inverted file indexes completed the
processing of the query as fast as signature files.

Finally, we had expected that the two complex query sets, THIRD and
QUEENS, would be handled poorly by the signature file system. The inclu-
sion of disjunction increases false-match rates, since the probabilities are
additive rather than multiplicative. But overall these query sets are not
markedly worse than SECOND, although again the multi-organizational
scheme performed particularly badly. Note that the signature file system
always converts queries to disjunctive normal form. To be fair in our
comparison, we forced MG to also convert queries to this form, which meant
in effect that the queries in THIRD were evaluated as if they had 3 z 43 5 192
terms. This is why index processing costs were high. For unconverted THIRD

queries to WSJ, the MG index-time component was 0.62 seconds per query,
and for the QUEENS queries the corresponding time was 0.47 seconds.

One important conclusion to be drawn from our experiments is that
signature file performance is much less predictable than inverted file
performance. Given two terms occurring in the same number of documents
of the same total length, with an inverted file the time to identify and fetch
the matching documents containing either of these terms will be roughly
the same; with a signature file the time can differ by a factor of hundreds,
particularly if the terms are relatively rare.

Inverted Files • 479

ACM Transactions on Database Systems, Vol. 23, No. 4, December 1998.

Another important observation is that in the search for improved perfor-
mance, proponents of signature files have widened signatures, to reduce
“on-paper” false-match probabilities; shortened the length of the bitslices,
to reduce transfer times; used noncompressed representations, to avoid
decompression costs; and shortcircuited index processing, to avoid disk
seeks. But a single crucial fact has been neglected: false-match checking is
by itself sufficiently expensive to make signature-based schemes uncom-
petitive. From our experiments it is clear that the cost of a signature file
should be measured primarily in terms of the volume of match processing
(for true and false matches) required. The number of disk seeks, the
number of slices transferred, and the length of the slices, are all relatively
unimportant when it takes as long as 0.1 seconds to fetch and check each
retrieved record.

5. FURTHER POINTS OF COMPARISON

In this section we compare inverted files and signature files on several
other criteria, including disk space, memory requirements, ease of index
construction, ease of update, scalability, and extensibility. The reader is
referred to Zobel et al. [1996] for a justification of the various areas
examined.

5.1 Disk Space

For inverted files, reported index sizes are from 6 to 10% of the indexed
data [Bell et al. 1993]. These figures include storage of in-document
frequencies (used in processing of ranked queries) and indexing of all
terms, including stop-words and numbers. They do not allow for the space
wastage that a B1-tree implementation would imply, and such an imple-
mentation is necessary for a dynamic collection (rather than the packed
representation that can be used for a static database). For a dynamic
collection perhaps 14% of the indexed data size is an upper limit on index
size. The cost of storing the vocabulary must be added to this, but for large
databases the vocabulary comprises a small fraction of the stored system.
The vocabulary of the 3 Gb TREC collection has just over one million distinct
terms, and occupies less than 30 Mb even assuming 12 characters and a
pointer per word and substantial space wastage—that is, less than 1% of
the indexed data. A similar ratio applies to the 132-Mb Commonwealth
Acts of Australia, whose vocabulary occupies around 1 Mb [Bell et al. 1993].
Hence, we can regard 15% of the indexed text as being a reasonable upper
bound on the amount of space required by the index, even for a dynamic
collection.

The space required by bitsliced signature files depends on the signature
width, and on whether blocking is used. Quoted sizes are 25 to 40% of the
indexed data [Kent et al. 1990; Sacks-Davis et al. 1987], a figure that is
broadly borne out by our experiments (Table IV). Signature files do not
require the storage of a vocabulary, and for a static collection the slices can
again be densely packed. Dynamic indexes are, however, subject to the

480 • J. Zobel et al.

ACM Transactions on Database Systems, Vol. 23, No. 4, December 1998.

same problems as dynamic inverted file indexes, and slices must be
overallocated to allow for growth. Unless slices are stored as linked lists of
blocks on disk or there is extensive copying of the index, a similar 30 to
40% average space overhead must be accepted, taking the index size to
around 30 to 55% of the text.

Note that the sizes reported in Table IV do not include the additional
inverted lists that would (for both signature files and inverted files) be
required for common terms; for WSJ, these additional lists would occupy
about 2% of the space of the indexed data.

Inverted files have often been judged through reference to two papers
published over a decade ago: Haskin [1981], which estimated that inverted
files require 50 to 300% of the space required for the data; and Cárdenas
[1975], which estimated that each term occurrence requires up to 80 to 110
bits of index. These papers no longer reflect the capabilities of inverted
files, and should not be used as a basis of comparison, just as signature
files should not be condemned on the basis of the performance of bitstring
techniques.

5.2 Memory Requirements

In the context of text indexing, memory can be used for vocabulary or a part
thereof, the address table, buffers for retrieved inverted lists or bitslices,
working space for recording the current set of candidates (as a slice or as a
set of document identifiers), and buffers for answer records.

We believe that today it would be rare for a machine to have insufficient
memory to store the vocabulary of a database indexed by that machine.
That is, for example, we would be surprised if a machine with a 1-Gb
database were unable to hold 10 Mb in memory. However, there is no great
disadvantage to holding some of the vocabulary on disk; as indicated
previously, 1 Mb would in this case still be sufficient to allow an inverted
list to be fetched with a single disk access. Nor, as the experiments
indicate, do two disk accesses per inverted list appear to be an important
cost. Furthermore, even for a database of several gigabytes the other
buffers amount to less than 1 Mb. The one exception to this is the need to
hold answers in memory: there must be room to hold the whole of the
longest document if any postretrieval processing is to be carried out or if
answers are to be presented in an order different from that in which they
are fetched. For TREC, this buffer must be 2.52 Mb; for WSJ 80 Kb suffice.
Signature files have the advantage of not requiring space for a vocabulary,
but all other costs are comparable, and for both systems the performance in
the preceding experiments could have been achieved in around 100 Kb in
addition to buffers for answers.

5.3 Index Construction

Inverted file indexes and signature file indexes have similar requirements
during index construction. The text must be processed in document number
order, and a “transposed” matrix of information written to disk in bitslice

Inverted Files • 481

ACM Transactions on Database Systems, Vol. 23, No. 4, December 1998.

or term order. The requirement that reasonable amounts of memory be
available is the only constraint. For example, if enough main memory is
available that the entire index can be held, then direct techniques (in which
the skeleton of the index is sketched in memory and then filled in as
documents are processed) can be used. Such an approach is obvious for
signature files, where all of the slices are the same length, provided the
number of documents is known in advance; and similar methods can also be
used to generate compressed inverted files [Moffat 1992]. Direct techniques
yield fast indexing performance. If there is insufficient main memory for
the direct approach to be used, the text must be partitioned, and a sequence
of partial indexes built. This is logically easier for signature files, since
each bitslice is readily partitioned into segments of the same length, but is
also possible for compressed inverted files [Witten et al. 1994]. Moreover,
the generally smaller size of a compressed inverted index compared to a
bitsliced or blocked signature file index means that it is more likely that
the direct approach can be exploited. Sort-based methods for inverted index
construction are also possible, and need not be expensive regarding time,
memory space, or temporary storage space [Moffat and Bell 1995].

Index construction times for the two retrieval systems we tested are
approximately 40 minutes for inverted files and 86 minutes for signature
files. This does not include the cost of the data analysis phase for the
signature file indexes, required since the data must be inspected to allow
appropriate choice of parameters. A complete inspection of a 500-Mb
database takes about 20 minutes. The signature file construction times are
greater because first, each term in each record must be hashed eight times,
or equivalently eight random numbers must be generated from a hash seed.
In contrast, for inverted files the main operation per term is a table lookup.
The second reason that signature files take longer to construct is simply
that there is more data to be created and written, since the resultant index
is larger. Hence, we would expect a compressed signature file to be
somewhat faster to build than an uncompressed one, since fewer flushes to
disk would be required for a given amount of memory.

5.4 Parallelism

Most current architectures provide some form of parallelism. Our experi-
ments have considered queries running sequentially on a single-user ma-
chine but it is reasonable to consider whether in a parallel processing
environment the relative performance of inverted files and signature files
would change.

Consider how the respective index processing algorithms could be paral-
lelized. One approach is through user parallelism, in which each query is
processed sequentially but many queries are processed at once. Our exper-
iments apply to such parallelism, since they measure resources in each
case, and the use of resources would not be affected by parallel execution of
other queries; recall that, aside from clearing the system cache prior to
each full run of queries, we made no attempt to eliminate system caching

482 • J. Zobel et al.

ACM Transactions on Database Systems, Vol. 23, No. 4, December 1998.

during each full run of queries. This is the usual model for parallelism in a
database: what is measured is not per-query elapsed time, but throughput.

The other approach is to take advantage of any parallelism in the query
evaluation mechanism. However, in this respect neither mechanism has a
particular advantage. Query evaluation involves three corresponding
stages in each case: multiple fetches are required to retrieve and process
lists or slices, these lists or slices must be intersected to identify candidate
documents, and the documents must be retrieved and, if necessary, checked
for false matches. The single relative advantage of signature files is that
more distinct entities must be fetched and processed in the first and third
stages. In an environment in which there are more processors than in-
verted lists or true matches (so that some processors would be idle during
query processing on an inverted file) there may be a relative speed-up for
signature files. Such a relative speed-up would be obviated by any user
parallelism, and is only available because in the inverted file case there is
less index information to be processed.

The remaining consideration is whether architectural changes resulting
from parallelism might affect performance. There are several forms of
parallelism that might apply. One is disk parallelism: use of a disk array,
for example, to provide faster access to index information. The main effect
of disk parallelism is to improve seek times and transfer rates (a well-
configured disk array can, say, double data throughput) thus relatively
increasing the cost of index decompression. Another form of parallelism is
processor parallelism, which provides the opposite effect of relatively
decreasing the cost of index decompression. Thus the question of the impact
of parallelism depends on the choice of architecture.

However, the question of parallelism is to some extent not relevant: in
the context of a multi-user system with user parallelism, the principal
issue is the resources used to resolve each query. As our experiments
unequivocally show, inverted files use less resources than do signature
files.

5.5 Update

Inverted lists are of varying length, and in a dynamic system change in
length as they are updated. This effect is exacerbated by the use of
compression, since as little as one bit might be added to a given list during
record insertion. Thus some care must be taken to manage the lists on disk.
As was noted previously, when stored as the leaves of a B1-tree-like
structure, average space overheads are around 45% of the space required
for the lists themselves (because B-trees have 69% average space utiliza-
tion), which is unfortunate but certainly not a disaster in the context of the
small initial space. Alternatively, direct space management can reduce the
space overhead to just a few percent [Zobel et al. 1992, 1993]. However, in
the interests of having an uncontroversial basis of comparison, we regard
45% as a fair indication of space overhead.

Update is also a problem in signature files. Bitstring signature files are
easily extended as records are appended to the collection. However, in the

Inverted Files • 483

ACM Transactions on Database Systems, Vol. 23, No. 4, December 1998.

absence of any buffering or batch update strategy, adding one record to a
database indexed with a bitsliced signature file requires a disk access to
each slice where the signature has a 1-bit. Moreover, although all of the
slices are exactly the same length, there is still the need for careful disk
management: either each slice must be stored as a chained list of disk
blocks, or the entire index must be periodically copied onto a larger extent
of disk. In the former case query processing will be slowed, as each slice
may require multiple seeks; and in the latter case the index space needs to
be overallocated at each expansion, again with an average overhead through
each full expansion of around 45%. That each slice is of exactly the same
length in bits is of no advantage, and the problems caused by dynamic
databases are essentially the same for inverted indexes and for signature files.

Insertion of new records into the multi-organizational signature file
index is particularly problematic, as the bits that must be changed are
scattered throughout the index, meaning that there is little advantage in
batching update. Moreover, if the expansion is persistent, the blocking
factor must also be periodically revised and the index completely rebuilt.
Modification of records presents even greater difficulties: to check whether
a given bit in a slice should be 0 or 1, it is necessary to check every record
that can set that bit.

For both signature files and inverted files update costs can be dramati-
cally reduced by batching. A simple scheme that makes updates available
immediately is to maintain a small in-memory index for new documents.
This index can be periodically merged with the main index in a single pass
through the structures on disk, so that the costs of the update are
amortized into one bulk update operation. If it is not acceptable for the
main index to be unavailable during the update pass, it can be imple-
mented as a rolling merge in which the index is updated one chunk at a
time; that is, the update is still single-pass but the pass is spread out to
allow query processing to continue simultaneously.

Being more compact, inverted files are more efficient with regard to such
update. An in-memory inverted file can index more documents than can an
in-memory signature file, so that the update passes can be less frequent;
and the whole of the on-disk signature file must be moved to accommodate
change in slice length, whereas only the lists that are modified must be
moved in the case of the inverted file. However, it is also true that fewer
read and write operations are required to update the signature file because
there are fewer slices than there are inverted lists.

5.6 Scalability

For a given query, the number of disk accesses to an inverted file or signature
file index is independent of scale, so the asymptotic index processing cost is the
amount of data to be transferred from the index. For signature files, therefore,
index processing cost is linear in the size of the database regardless of the
query, even unique-key retrieval requires that several complete slices be
fetched from disk. In contrast, with inverted files average inverted list length

484 • J. Zobel et al.

ACM Transactions on Database Systems, Vol. 23, No. 4, December 1998.

may be sublinear in database size, because new records introduce new terms
as well as additional occurrences of existing terms.

For signature files, accesses to the data are for both answers and false
matches; for inverted files, the accesses are for answers only. Since the
percentage of false matches is independent of the number of records, for
signature files the cost of query evaluation is in all cases linear in database
size. For inverted files, the worst case is linear in database size, but in the
best case, key retrieval, the cost is almost constant. Thus inverted files
should scale better than signature files.

5.7 Ranking

For a ranked query, typically a list of terms, a similarity heuristic is used
to assign to each document in the collection a score relative to the query
[Salton and McGill 1983; Salton et al. 1983; Croft and Savino 1988;
Harman 1992b]. The top r documents according to this score are then
presented as the answers to the query, where r is a parameter set by the
user. Most of the successful similarity heuristics combine several different
statistics in order to estimate how closely a given document matches the
list of terms in the query, and are based upon a formulation often referred
to as the TF*IDF method. These statistics include the probability that a
random document will contain the given term (the IDF, or inverse docu-
ment frequency component), and the number of times the term appears in
this document (the TF, or term frequency component). The final statistic is
a normalizing factor based upon some measurement of document “length,”
so as to enable the score of long documents to be discounted.

To evaluate a ranked query with an inverted file is straightforward. Each
document pointer in each inverted list is augmented by the inclusion of the
corresponding TF value. Since the TF values are usually small, compres-
sion is effective, and the typical average cost is one to two bits per pointer
[Bell et al. 1993]. That is, an inverted index that includes TF values is still
just 10% or so of the text that it indexes [Witten et al. 1994]. The
vocabulary of the collection is similarly augmented by the addition of an
IDF value for each term.

Processing a ranked query then consists of the following steps [Harman
and Candela 1990]. First, an array of accumulators, one per document, is
initialized to zero. Then, for each query term, the corresponding inverted
list is fetched and processed. Processing a list consists of stepping through
it, and, for each document pointer, multiplying the embedded TF value by
the global IDF value applicable to this list, and adding this similarity
contribution to the appropriate accumulator. Finally, when all of the terms
have been processed, the accumulator values are normalized by the corre-
sponding document lengths, and the top r accumulator values determined
by a partial sort [Witten et al. 1994]. For typical ranked queries of 30 to 50
terms (the query is often a piece of text, essentially a request to “find the
documents that are like this text”) and a database of one or two gigabytes,
ranked queries returning perhaps 20 to 50 documents can be evaluated using

Inverted Files • 485

ACM Transactions on Database Systems, Vol. 23, No. 4, December 1998.

an inverted file in approximately 5 to 10 seconds [Moffat and Zobel 1996],
roughly the same time as for a disjunctive Boolean query of the same terms.

Consider now how the same calculation might be undertaken with a
signature file. First, a vocabulary structure must be added, in order for the
IDF values for terms to be known. This is straightforward. Much more
problematic, however, is the TF component, since the presence or otherwise
of a term in a document is “smeared” over several bits in a signature file
index. One solution to this difficulty proposed recently is to index terms for
which TF 5 i in the ith of a set of several distinct signature files [Lee and
Ren 1996]. Then, when querying, the matching of a term’s signature with a
record’s entry in the ith signature file is strong evidence that the term does
appear in that document, with TF 5 i. Query processing is, however,
extremely expensive, since slices in every one of the signature files must be
checked for every one of the query terms; that is, for a query of q terms and
indexes with s bits per term, up to sq slices must be accessed from every
one of a large number of signature files, which in practice means that the
entire index will be scanned for most queries. Furthermore, several of the
problems already noted with regard to signature files are exacerbated by
this structure, including the problems caused by variable record lengths,
and the need to set a large number of parameters. In particular, a
signature width must now be selected for as many signature files as there
are distinct TF values in the document collection.

The only advantage of the arrangement proposed by Lee and Ren
(compared to the application of signature files to Boolean queries) is that
one can dispense with false-match checking. In a ranked query the list of
answers presented to a user often contains surprising documents because
of the complexity of the similarity calculation, and the return of extraneous
documents because of false matches will, provided there are sufficiently few
of them, have little effect upon a user’s qualitative perception as to the
usefulness of the system, and only limited impact upon the system’s
quantitative retrieval performance [Lee and Ren 1996]. False-match check-
ing is, of course, not an issue for inverted files.

For these reasons it is clear that the ease and simplicity with which
inverted file indexes can simultaneously support both Boolean and ranked
queries make them the method of choice for such mixed query applications,
and for this reason we have not included ranked queries in our experiments.

5.8 Extensibility

Signature files are not as easily extensible as inverted files. One of the
main drawbacks of signature files is that they are essentially binary: they
can identify which records have a given property, but nothing further. The
standard use of signature files is to identify which records contain a
conjunction of given terms, and we have already noted their relatively poor
performance on disjunctive queries and for ranking. It is fairly straightfor-
ward to extend signature files to support term adjacency, that is, to record
which documents contain which terms as adjacent pairs; this functionality

486 • J. Zobel et al.

ACM Transactions on Database Systems, Vol. 23, No. 4, December 1998.

can be provided by hashing each pair of terms to set one or two additional
bits, and in the ATLAS database system this extension increases signature
file size by only around 4% of the size of the indexed data [Sacks-Davis et
al. 1987, 1995]. But extensions beyond this functionality are difficult.

There are also problems with signature files that limit their applicability.
As previously discussed, long records present serious difficulties, so that
signature files are best suited to databases of records of similar length,
such as abstracts. Signature files cannot easily identify how many answers
there are to a query without actually fetching them, since all candidates
must be retrieved to eliminate false matches. Signature files cannot be
used to resolve negations, queries to find records not containing a given
term. For nontext applications, signature files have other limitations; in
particular, the cost of key retrieval is linear in the database size, and range
queries are not supported.

In contrast, extension of inverted files is straightforward. Within-record
frequencies can be inserted between record identifiers in the inverted lists
at a typical cost of around 2 to 5% of the size of the indexed data [Bell et al.
1993; Moffat and Zobel 1996]. Positional information (recording the word
positions at which each term occurs in each record) can also be inserted, at
a further cost of around 15 to 20% of original data size, allowing not just
adjacency queries but general proximity queries. A word-level index allows
query terms to be highlighted in answers without the need for a postre-
trieval scan to locate them again. Even when augmented with positional
information, total inverted index size is still no more than that of a
bitsliced signature file. Inverted files can be further extended to support
queries on document structure [Linoff and Stanfill 1993].

Moreover, inverted files support a broader range of text query types.
Inverted files are substantially faster for disjunctive queries, as they only
require a fraction of the number of disk accesses, and are better able to
support ranking. Because there is a vocabulary it is possible to support
queries on stems, patterns, and substrings [Hall and Dowling 1980].
Finally, since inverted files do not have false matches, the number of
answers can be determined without accessing the data.

6. OTHER APPLICATIONS

Given the weight of evidence against signature files for text indexing, it is
interesting to ask if there is any application at all in which they would be
the method of choice. As a result of our investigations we can offer only a
guarded “maybe” to this question.

It is clear that uniform-length records are necessary if a signature file
index is to be acceptably compact for a given false-match rate; and equally
clear that the vocabulary must be rich if an inverted file index is to be large
relative to the text size. Similarly, queries should be conjunctive, to avoid
the problems of disjunction; and should have only a few answers, so that
false-match checking costs cannot dominate. Query terms should be com-
mon, so that an inverted file index would have relatively poor performance.

Inverted Files • 487

ACM Transactions on Database Systems, Vol. 23, No. 4, December 1998.

Finally, all of these conditions should be guaranteed for all data and
queries the system might be applied to, since signature files must be
preparameterized and so are especially vulnerable to mismatch between
the data that are anticipated and those that are actually stored.

One application that perhaps meets these constraints is a library cata-
logue. In a catalogue records tend to be short and of similar length, and the
vocabulary of author names is likely to be large; in such an application
inverted file size is increased by the large vocabulary, but inverted file
evaluation times are fast because indexed terms are not common. In this
case, therefore, signature files may become more nearly competitive in size,
but less competitive in speed.

Another application that may suit signature files is multimedia data,
that is, data such as images in which it is possible for each stored item to
have many attributes and for many of the attributes to have only a few
distinct values. Queries to such databases could involve large numbers of
attributes, thus giving query signatures in which many bits are set,
potentially providing an opportunity for alternative signature methods
such as partitioned signature files to work well [Zezula et al. 1991].
However, it seems unlikely that the majority of queries will only involve
common terms, and the linearity of query performance as the database
grows remains a drawback. Signature files may be competitive to inverted
files for such applications, but in the absence of well-defined query mecha-
nisms for such data (currently an active area of research), index perfor-
mance must remain a matter of speculation.

Moreover, note that the belief that signature files can index some kinds
of data that cannot be indexed with inverted files is false. Both inverted
files and signature files map index terms to records—if a term can be
hashed to set a bit in a signature then it can be used to access a vocabulary.
The problem of extracting index terms from multimedia data such as
images and video is the same for both mechanisms.

7. CONCLUSIONS

Having participated in many informal discussions as to the relative merits
of inverted files and signature files for text indexing, we felt it timely to use
our collective experience to undertake a careful and thorough investigation.
Our evaluation has two major components: detailed experimental compari-
son of implementations of both indexing schemes; and a refined model of
false-match probability—the source of the worst inefficiencies of the signa-
ture file scheme—that shows that for document indexing the cost of false
matches can be orders of magnitude greater than would be estimated by
analysis undertaken in the absence of detailed information about the
distribution of record lengths.

Our conclusions are unequivocal. For typical document indexing applica-
tions, current signature file techniques do not perform well compared to
current implementations of inverted file indexes. Signature files are much
larger; they are more expensive to build and update; they require that a

488 • J. Zobel et al.

ACM Transactions on Database Systems, Vol. 23, No. 4, December 1998.

variety of parameters be fixed in advance, involving analysis of the data
and tuning for expected queries; they do not support proximity queries
other than adjacency; they support ranked queries only with difficulty; they
are expensive for disjunctive queries; they are highly intolerant of range in
document length; their response time is unpredictable; they do not allow
easy addition of functionality; they do not scale well; and, most important
of all, they are slow. Even on queries expressly designed to favor them,
signature files are slower than inverted files. The current trends in
computer technology, in which the ratio of processor speed to disk access
time is increasing, further favor inverted files.

As a byproduct of our investigation, we have demonstrated that a
synthetic database can be a valuable tool in experimental research. The
results obtained for FIN closely mirrored those of the real database WSJ, and
in making FINNEGAN and QUANGLE publicly available we hope that we have
provided a resource that others will find of use in their work.

ACKNOWLEDGMENTS

We are grateful to Alan Kent for help with the signature file system, Tim
Shimmin for help with MG, and Despina Psaradellis for programming
assistance. We are also grateful to Ron Sacks-Davis, and to the anonymous
referees for their valuable feedback.

REFERENCES

BELL, T., MOFFAT, A., NEVILL-MANNING, C., WITTEN, I., AND ZOBEL, J. 1993. Data compres-
sion in full-text retrieval systems. J. Am. Soc. Inf. Sci. 44, 9 (Oct.), 508–531.

CÁRDENAS, A. 1975. Analysis and performance of inverted data base structures. Commun.
ACM 18, 5 (May), 253–263.

CHANG, J., LEE, J., AND LEE, Y. 1989. Multikey access methods based on term discrimina-
tion and signature clustering. In Proceedings of the ACM-SIGIR International Conference on
Research and Development in Information Retrieval (Cambridge, Mass., June). ACM Press,
New York, 176–185.

CIACCIA, P. AND ZEZULA, P. 1993. Estimating accesses in partitioned signature file organisa-
tions. ACM Trans. Inf. Syst. 11, 2 (April), 133–142.

CIACCIA, P., TIBERIO, P., AND ZEZULA, P. 1996. Declustering of key-based partitioned signa-
ture files. ACM Trans. Database Syst. 21, 3 (Sept.), 295–338.

CROFT, W. AND SAVINO, P. 1988. Implementing ranking strategies using text signatures.
ACM Trans. Office Inf. Syst. 6, 1, 42–62.

FALOUTSOS, C. 1985. Access methods for text. ACM Comput. Surv. 17, 1, 49–74.
FALOUTSOS, C. 1992. Signature files. In Information Retrieval: Data Structures and Algorithms,

W. Frakes and R. Baeza-Yates, Eds., Prentice-Hall, Englewood Cliffs, NJ, Chapter 4, 44–65.
FALOUTSOS, C. AND JAGADISH, H. 1992. Hybrid index organizations for text databases. In

Proceedings of the Third International Conference on Extending Database Technologies
(Vienna, Austria, March). A. Pirotte, C. Delobel, and G. Gottlob, Eds., LNCS 580, Springer-
Verlag, Berlin, 310–327.

FOX, E., HARMAN, D., BAEZA-YATES, R., AND LEE, W. 1992. Inverted files. In Information
Retrieval: Data Structures and Algorithms, W. Frakes and R. Baeza-Yates, Eds., Prentice-
Hall, Englewood Cliffs, NJ, Chapter 3, 28–43.

GOLOMB, S. 1966. Run-length encodings. IEEE Trans. Inf. Theor. IT-12, 3 (July), 399–401.
HALL, P. AND DOWLING, G. 1980. Approximate string matching. ACM Comput. Surv. 12, 4,

381–402.

Inverted Files • 489

ACM Transactions on Database Systems, Vol. 23, No. 4, December 1998.

HARMAN, D., ED. 1992a. Proceedings of the TREC Text Retrieval Conference (Washington,
D.C., November). National Institute of Standards Special Publication 500-207.

HARMAN, D. 1992b. Ranking algorithms. In Information Retrieval: Data Structures and
Algorithms, W. Frakes and R. Baeza-Yates, Eds., Prentice-Hall, Englewood Cliffs, NJ,
Chapter 14, 363–392.

HARMAN, D. AND CANDELA, G. 1990. Retrieving records from a gigabyte of text on a
minicomputer using statistical ranking. J. Am. Soc. Inf. Sci. 41, 8, 581–589.

HASKIN, R. 1981. Special purpose processors for text retrieval. Database Eng. 4, 1, 16–29.
KENT, A. J., SACKS-DAVIS, R., AND RAMAMOHANARAO, K. 1990. A signature file scheme based

on multiple organisations for indexing very large text databases. J. Am. Soc. Inf. Sci. 41, 7,
508–534.

KWOK, K., PAPADOPOULOS, L., AND KWAN, K. 1992. Retrieval experiments with a large
collection using PIRCS. In Proceedings of the TREC Text Retrieval Conference (Washington,
D.C., November). D. Harman, Ed., National Institute of Standards Special Publication
500-207, 153–172.

LEE, D. AND REN, L. 1996. Document ranking on weight-partitioned signature files. ACM
Trans. Inf. Syst. 14, 2 (April), 109–137.

LINOFF, G. AND STANFILL, C. 1993. Compression of indexes with full positional information
in very large text databases. In Proceedings of the ACM-SIGIR International Conference on
Research and Development in Information Retrieval (Pittsburgh, Pa., July). R. Korfhage, E.
Rasmussen, and P. Willett, Eds., ACM Press, New York, 88–97.

LOVINS, J. 1968. Development of a stemming algorithm. Mech. Transl. Comput. 11, 1–2, 22–31.
MANBER, U. AND WU, S. 1994. GLIMPSE: A tool to search through entire file systems. In

Proceedings of the USENIX Winter 1994 Technical Conference (San Francisco, Calif.,
January). 23–32.

MOFFAT, A. 1992. Economical inversion of large text files. Comput. Syst. 5, 2 (Spring), 125–139.
MOFFAT, A. AND BELL, T. 1995. In-situ generation of compressed inverted files. J. Am. Soc.

Inf. Sci. 46, 7 (Aug.), 537–550.
MOFFAT, A. AND ZOBEL, J. 1996. Self-indexing inverted files for fast text retrieval. ACM

Trans. Inf. Syst. 14, 4 (Oct.), 349–379.
SACKS-DAVIS, R., KENT, A. J., AND RAMAMOHANARAO, K. 1987. Multikey access methods based on

superimposed coding techniques. ACM Trans. Database Syst. 12, 4 (Dec.), 655–696.
SACKS-DAVIS, R., KENT, A., RAMAMOHANARAO, K., THOM, J., AND ZOBEL, J. 1995. Atlas: A

nested relational database system for text applications. IEEE Trans. Knowl. Data Eng. 7, 3
(June), 454–470.

SALTON, G. AND MCGILL, M. 1983. Introduction to Modern Information Retrieval. McGraw-
Hill, New York.

SALTON, G., FOX, E., AND WU, H. 1983. Extended Boolean information retrieval. Commun.
ACM 26, 11, 1022–1036.

WITTEN, I., MOFFAT, A., AND BELL, T. 1994. Managing Gigabytes: Compressing and Indexing
Documents and Images. Van Nostrand Reinhold, New York.

ZEZULA, P., RABITTI, R., AND TIBERIO, P. 1991. Dynamic partitioning of signature files. ACM
Trans. Inf. Syst. 9, 4, 336–369.

ZOBEL, J. AND MOFFAT, A. 1995. Adding compression to a full-text retrieval system. Softw.
Pract. Exper. 25, 8 (Aug.), 891–903.

ZOBEL, J., MOFFAT, A., AND RAMAMOHANARAO, K. 1996. Guidelines for presentation and
comparison of indexing techniques. ACM SIGMOD Rec. 25, 3 (Oct.), 10–15.

ZOBEL, J., MOFFAT, A., AND SACKS-DAVIS, R. 1992. An efficient indexing technique for
full-text database systems. In Proceedings of the International Conference on Very Large
Databases (Vancouver, B.C., Canada, September). L.-Y. Yuan, Ed., 352–362.

ZOBEL, J., MOFFAT, A., AND SACKS-DAVIS, R. 1993. Storage management for files of dynamic
records. In Proceedings of the Australian Database Conference (Brisbane, Australia, Febru-
ary). M. Orlowska and M. Papazoglou, Eds., World Scientific, Singapore, 26–38.

Received July 1995; revised December 1996; accepted December 1997

490 • J. Zobel et al.

ACM Transactions on Database Systems, Vol. 23, No. 4, December 1998.

