
Department of

Computer Science

Serial and Parallel Genetic

Algorithms as Function

Optimizers

V. Scott Gordon and Darrell Whitley

Technical Report CS-93-114

September 16, 1993

Colorado State University

Published in ICGA-93: The 5th International Conference on Genetic Algorithms, Urbana-

Champaign 1993, pp 177-183. Morgan-Kaufmann (ed. Stephanie Forrest)



Serial and Parallel Genetic Algorithms as Function Optimizers

V. Scott Gordon
Department of Computer Science

Colorado State University
Fort Collins, Colorado 80523

Darrell Whitley
Department of Computer Science

Colorado State University
Fort Collins, Colorado 80523

Abstract

Parallel genetic algorithms are often very dif-
ferent from the \traditional" genetic algo-
rithm proposed by Holland, especially with
regards to population structure and selection
mechanisms. In this paper we compare sev-
eral parallel genetic algorithms across a wide
range of optimization functions in an attempt
to determine whether these changes have pos-
itive or negative impact on their problem-
solving capabilities. The �ndings indicate
that the parallel structures perform as well as
or better than standard versions, even with-
out taking parallel hardware into account.

1 INTRODUCTION

A variety of schemes for parallelizing genetic algo-
rithms have appeared in the literature. Some of the
parallel implementations are very di�erent from the
\traditional" genetic algorithm proposed by Holland
(1975), especially with regards to population structure
and selection mechanisms. It is reasonable to assume
that structural changes in a genetic algorithm will af-
fect it's ability to solve problems. If the changes result
in slower problem-solving, then it might be necessary
to determine how much parallelism would have to be
achieved in order to compensate. Conversely, if the
changes result in faster problem-solving, then the par-
allel models might be preferable even in the absence
of parallel hardware.

We have coded nine di�erent genetic algorithms rep-
resenting simple versions of existing parallel models.
Each algorithm is run on a variety of optimization
problems, and the results are normalized by the total
number of function evaluations. The goal is to deter-
mine the e�ectiveness of various population structures
and selection mechanisms, regardless of parallel exe-
cution. Thus we do not attempt to optimize the al-
gorithms, and we do not examine hybrid versions that
include local optimization. All algorithms are coded

in a functional language (Sisal) to facilitate a concur-
rent study of the data
ow parallelism in the algorithms
(Gordon, Whitley, and B�ohm 1992).

2 PARALLEL GENETIC

ALGORITHM MODELS

Current literature on parallel genetic algorithm im-
plementations can be separated into three categories:
global , island , and cellular genetic algorithms. Cel-
lular genetic algorithms have sometimes been called
massively parallel genetic algorithms or �ne grain ge-
netic algorithms, but it can be shown that these al-
gorithms are in fact a subclass of cellular automata
(Whitley 1993). We have encoded four global models,
four island models, and one cellular model:

Global Models: SGA, Elitist-SGA,
pCHC, Genitor

Island Models: I-SGA, I-Elitist-SGA,
I-pCHC, I-Genitor

Massively Parallel: Cellular-GA

SGA and Elitist SGA. Our implementation of Gold-
berg's Simple Genetic Algorithm (SGA) (Goldberg
1989) uses tournament selection (Goldberg and Deb
1991) to facilitate parallelism. Every two slots of each
new generation are �lled by the o�spring of two se-
lected parents from the previous generation. Thus n=2
processes are utilized (where n is the population size),
each of which generates two members of the next gen-
eration. In SGA the very best individual in a popula-
tion may not survive. In the Elitist SGA a copy of the
best individual is always placed in the next generation.

pCHC is a parallelized version of the CHC algorithm
developed by Eshelman (1991). CHC is similar to SGA
except that the best n strings are extracted from both
the generation t and generation t+ 1 to form the new
generation. Parents are paired through incest preven-
tion. Thus, in our implementation, tournament se-



lection is used not to select the �ttest strings, but to
select pairs of individuals which are relatively dissim-
ilar (in Hamming distance). After recombination, the
o�spring in generation t+1 are compared against two
particular elements from generation t, and the best two
of the four are retained. This parallelization results in
an algorithm very similar to CHC, but with a weaker
selective pressure. Note that this algorithm does not
guarantee that the best n out of the 2n individuals
will survive, but it does guarantee that at least the
best two individuals will survive. In its original form
CHC also utilizes restarts, which we do not consider.

Genitor. Normally in the Genitor algorithm rank-
based selection is applied to a sorted population. Two
parents are selected and a single o�spring is produced
that displaces the worst member of the population.
Tournament selection and replacement eliminates the
need to keep the population in sorted order. The win-
ners of a small tournament recombine and the o�spring
replaces the loser of the tournament if the o�spring has
a higher �tness. In other implementations of Genitor,
one of the two possible o�springs is chosen randomly
before evaluation. In the implementation used here
both o�spring are evaluated and the best of the two
o�spring is retained. Otherwise, Genitor (Whitley and
Starkweather 1990) is coded in its original form.

Island SGA and Elitist Island-SGA. The Island
model involves running several single population ge-
netic algorithms in parallel. Each \island" is an SGA
with its own subpopulation. Migration between is-
lands uses a ring topology, and a single individual is
chosen for migration by tournament selection, where
the losing individual is replaced by the winning indi-
vidual from the adjacent subpopulation. The Elitist
Island-SGA involves a straightforward insertion of the
Elitist-SGA model into the Island model (in place of
SGA). Unlike Island-SGA, the best string in each sub-
population is the only one that migrates, since elitism
guarantees that the best string is already known.

Island-pCHC and Island-Genitor. These are
straightforward insertions of pCHC and Genitor into
the Island model (in place of SGA). Migration is the
same as in I-SGA. The Island-Genitor model is analo-
gous to Genitor-II (Whitley and Starkweather 1990).

Cellular Genetic Algorithms. Cellular Genetic Al-
gorithms assign one individual per processor, and mat-
ing is limited to a deme (neighborhood) near the in-
dividual. Each individual is processed in parallel at
each generation. In our implementation, strings re-
side on a two-dimensional grid, and demes consist of
the four individuals directly above, below, left, and
right of each individual. The best of these four is se-
lected and crossover is performed with the individual.
The o�spring replaces the original individual if it has
a higher �tness. Edge elements wrap around, form-
ing a torus. It can be shown that this type of cellular
genetic algorithm is a �nite cellular automaton with

probabilistic rewrite rules, where the alphabet of the
cellular automaton is equal to the number of strings
in the search space (Whitley 1993).

Other details of these implementationswere previously
reported (Gordon, Whitley, and B�ohm 1992).

3 PERFORMANCE

MEASUREMENT

In order for performance comparisons to be meaning-
ful across the nine genetic algorithm implementations,
normalization is done so that the amount of work ex-
pressed per time unit is comparable. We use num-
ber of function evaluations as the base work unit, and
express all computation times in terms of SGA gen-
erations. Performance measures for Genitor and the
cellular genetic algorithm are adjusted as follows.

In the current implementation, Genitor performs two
function evaluations per generation, but only one
string is retained. Thus it requires n=2 (where n is
the population size) generations in Genitor to perform
the same number of function evaluations as one SGA
generation. Therefore we divide the number of Genitor
generations by n=2 when comparing results. Similarly,
for Island-Genitor we divide the number of generations
by s=2 (where s is the subpopulation size).

Our implementation of the cellular genetic algorithm
performs two function evaluations for each location in
the 2-D grid every generation. Thus in one generation
it performs twice the number of function evaluations as
SGA. Therefore we multiply the number of generations
performed by the cellular genetic algorithm by two.

4 TEST SUITE

The following optimization problems have been
coded: DeJong's original test suite F1-F5 (DeJong
1975); Rastrigin, Schwefel, and Griewangk functions
(M�uhlenbein, Schomisch, and Born 1991); Ugly 3 and
4-bit deceptive functions; and zero-one knapsack prob-
lems of various sizes. We perform no local optimiza-
tions, as we only wish to compare the e�ectiveness of
the genetic algorithms.

We run all nine genetic algorithms across the test suite
of functions for 30 runs. Some of the test problems are
easy for the genetic algorithms and we execute until
the global optimum is found in all 30 runs. In this case
we report the average number of generations that it
takes for each genetic algorithm to solve the function,
and the standard deviation. For harder problems, we
run the algorithms for a set number of generations
and report the number of runs (out of 30) in which the
global optimumis found, along with the average �tness
of the best strings found at the end of each of the 30
runs. Convergence graphs for the Rastrigin, Schwefel,



Generations to solve (gen) and standard deviation (std)
on DeJong's Test Suite for various genetic algorithms

function F1 F2 F3 F4 F5
algorithm gen std gen std gen std gen std gen std
SGA 30.7 7.4 284 198 16.7 4.2 161 40 14.6 4.4
ESGA 28.9 6.8 83 55 15.3 4.1 153 49 14.3 4.4
pCHC 28.4 6.5 153 139 16.9 3.7 223 104 16.0 3.9
Genitor 17.0 4.1 190 160 8.2 2.1 135 67 7.9 2.5
I-SGA 41.3 11.2 417 253 22.0 5.3 405 192 20.3 6.9
I-ESGA 32.3 7.6 81 40 18.3 5.0 375 197 13.8 4.7
I-pCHC 33.2 7.4 78 57 18.8 4.4 495 239 16.3 5.3
I-Genitor 23.2 5.3 112 94 12.3 3.6 208 162 11.2 3.7
Cellular 32.5 8.0 105 94 17.9 4.6 397 204 15.3 4.3

Table 1: Performance of nine GAs on DeJong's test suite

and Griewangk functions are given in appendix A.

Population size is �xed at 400 for all algorithms and
all problems. Other parameters are adjusted to try
to maximize speed. In all of our implementations
we employ two-point reduced surrogate crossover and
next-point mutation (determining the next bit to be
mutated rather than calculating mutation for every
bit). Swap intervals for the island models are set to 5
generations for easy problems and 50 generations for
hard ones. All functions are converted to minimization
problems.

4.1 DeJONG TEST SUITE

DeJong's suite contains �ve test functions (DeJong
1975). F1 is a unimodal function known to be easy for
genetic algorithms. F2 is a harder multimodal func-
tion. F3 is a discontinuous \step ladder". F4 involves
a large solution space (2240) plus gaussian noise. Be-
cause of the presence of noise, we consider F4 solved
when the best string in the population reaches �2:5.
F5 is characterized by the presence of several local min-
ima. We found it useful to use Gray coding on F1, F2,
and F5.

Performance results on the DeJong test suite are
shown in Table 1. For the island models the swap
interval is 5, except F4 where the swap interval is 50.

4.2 RASTRIGIN, SCHWEFEL, AND
GRIEWANGK FUNCTIONS

Rastrigin's function (F6) is a fairly di�cult problem
for genetic algorithms due to the large search space
and large number of local minima. Schwefel's function
(F7) is somewhat easier than Rastrigin's function, and
is characterized by a second-best minimumwhich is far
away from the global optimum. In F7, V is the neg-
ative of the global minimum, which is added to the
function so as to move the global minimum to zero,
for convenience. The exact value of V depends on sys-

tem precision; for our experiments V = 4189:829101.
Griewangk's function (F8) is di�cult for genetic algo-
rithms because the product term causes the 10 sub-
strings to be strongly interdependent.

F6: f(xiji=1;20) = 200+

20X

i=1

x
2

i�10cos(2�xi), xi 2 [�5:12;5:12]

F7: f(xiji=1;10) = V +

10X

i=1

�xisin(

p
jxij), xi 2 [�512;512]

F8:f(xiji=1;10) =

10X

i=1

x2i

4000
�

10Y

i=1

cos(
xi
p
i
) + 1, xi 2 [�512;512]

Table 2 shows performance data on F6, F7, and F8
after 1000 generations. We used Gray coding for F6
and F8, and a swap interval of 50 for the island models.
F7 can also be solved faster using Gray coding, but the
results below are without Gray coding.

Number of runs solved (ns) and average best
of 30 runs (avg) after 1000 generations.

for Rastrigin (F6), Schwefel (F7),
and Griewangk (F8) functions.

function F6 F7 F8
algorithm ns avg ns avg ns avg
SGA 0 6.8 0 17.4 0 .161
ESGA 2 1.5 16 17.3 1 .107
pCHC 23 0.3 15 5.9 0 .072
Genitor 0 7.9 20 13.2 3 .053
I-SGA 0 3.8 9 6.5 7 .050
I-ESGA 13 0.6 13 2.6 3 .066
I-pCHC 10 0.9 28 0.2 3 .047
I-Genitor 23 0.2 24 0.9 6 .035
Cellular 24 0.2 26 0.7 1 .106

Table 2: Performance of GAs on F6, F7, and F8



4.3 UGLY 3 AND 4-BIT DECEPTIVE
FUNCTIONS

The ugly 3-bit problem (D3) is a 30-bit arti�cially-
constructed problem introduced by Goldberg, Korb,
and Deb (1989) in which ten fully-deceptive 3-bit sub-
problems are interleaved. In general, the three bits of
each subproblem X appear in positions X, 10+X, and
20+X. The ugly 4-bit problem (D4) is a similarly con-
structed 40-bit problem in which ten fully-deceptive
4-bit subproblems are interleaved (Whitley 1991).

Ugly deceptive problems have very often been misun-
derstood. These problems isolate interactions in the
hyperplane sampling abilities of a genetic algorithm
as well as the linkage between bits. This linkage is re-
lated to the disruptive e�ects of crossover. As such,
ugly deceptive problems should perhaps be viewed
more as analytical tools rather than \hard test prob-
lems." M�uhlenbein (1992) has presented results which
indicate such problems can often be solved by hill-
climbing; this does not contradict the goals behind the
design of fully deceptive problems, since they were not
designed to mislead hill-climbing algorithms.

The original ugly deceptive problems (Goldberg, Korb,
and Deb 1989) were used to test genetic algorithm im-
plementations that use no mutation and a 100% prob-
ability of crossover. Whitley, Das, and Crabb (1992)
have shown analytically that using low crossover rates
also makes ugly deceptive problems easier to solve
(since it reduces the e�ects of the linkage problem).
Also, ugly deceptive problems are particularly de-
signed to mislead traditional simple genetic algorithms
of the kind developed by Holland and DeJong and de-
scribed by Goldberg (1989). It does not automatically
follow that ugly fully deceptive problems are generally
hard for other algorithms, or even for other forms of
genetic algorithms.

In the current set of experiments, all of the algorithms
tested solve the ugly order-3 deceptive problem. SGA,
for example, reliably solves the ugly order-3 deceptive
problem using a crossover rate of 0.7 and a mutation
rate of 1.5%. Further, parallel genetic algorithms ap-
pear to be particularly well suited to solving ugly de-
ceptive functions. This is because di�erent subprob-
lems are solved in various subpopulations (or virtual
neighborhoods). The various subproblems can then be
exploited to build up full solutions.

Table 3 shows performance data on the 3-bit and 4-bit
deceptive functions. The 3-bit problem is easy enough
that we can execute all runs until the global optimum
is found. We report the average number of generations
in which the optimum is found, and the standard devi-
ation. The 4-bit problem, on the other hand, is harder.
We execute each run for 5000 generations and report
the number of runs in which the global optimum was
found, along with the average of the best strings found
at the end of each run. It is important to note that

performance data is reported di�erently for the two
problems. We used a swap interval of 5 for the 3-bit
problem and 50 for the 4-bit problem on the island
models.

Generations to solve (gen) and standard
deviation (std) for Ugly 3-bit;

Runs solved (ns) and avg best of 30
runs (avg) for Ugly 4-bit (5000 gens)

D3 D4
gen std ns avg

SGA 1547 675 0 23.5
ESGA 1564 1549 0 10.1
pCHC 455 192 14 1.3
Genitor 399 133 10 1.5
I-SGA 944 273 0 24.1
I-ESGA 172 49 29 0.07
I-pCHC 345 139 12 1.7
I-Genitor 439 158 6 2.3
Cellular 572 240 7 2.4

Table 3: Performance of nine GAs on D3 and D4

4.4 ZERO-ONE KNAPSACK PROBLEMS

The zero-one knapsack problem is de�ned as follows.
Given n objects with positive weights Wi and positive
pro�ts Pi, and a knapsack capacity M , determine a
subset of the objects represented by a bit vector X

such that:

Pn

i=1XiWi �M and
Pn

i=1XiPi maximal.

A simple genetic encoding scheme for zero-one knap-
sack problems is as follows. Let each bit represent the
inclusion or exclusion of one of the n objects from the
knapsack. This way, a bit string of length n can be
used to represent candidate solutions. The di�culty
with this representation is that it is possible to repre-
sent infeasible solutions. In other words, setting too
many bits might over
ow the capacity of the knapsack.

We consider two methods of handling over
ow. The
�rst penalty method assigns a penalty equal to the
amount of over
ow. The second method, partial scan,
adds items to the knapsack one at a time, scanning
the bitstring left to right, stopping at the end of the
string or when the knapsack over
ows, in which case
the last item added is removed.

A greedy approximation to the global optimum can be
found by selecting objects by pro�t/weight ratio until
the knapsack cannot be �lled any further. If the ob-
jects are sorted by pro�t weight ratio, then the greedy
approximation appears as a series of \1" bits followed
by a series of \0" bits. The partial scan method now
has the interesting property that a string of all \1"
bits always evaluates to the greedy approximation.



Algorithm F1 F2 F3 F4 F5 F6 F7 F8 D3 D4 K20 K80 Avg rnk
SGA 5 8 4 3 5 8 9 9 8 8 8 3 6.5 8
ESGA 4 3 3 2 4 6 8 8 9 7 7 9 5.8 7
pCHC 3 6 5 5 7 3 5 6 5 2 3 4 4.5 4
Genitor 1 7 1 1 1 9 7 4 3 3 1 1 3.3 2
I-SGA 9 9 9 8 9 7 6 3 7 9 6 8 7.5 9
I-ESGA 6 2 7 6 3 4 4 5 1 1 9 5 4.4 3
I-pCHC 8 1 8 9 8 5 1 2 2 4 5 7 5.0 5
I-Genitor 2 5 2 4 2 2 3 1 4 5 2 2 2.8 1
Cellular 7 4 6 7 6 1 2 7 6 6 4 6 5.2 6

Table 4: Ranking of performance of nine GAs on test suite

For this study we generated a 20-object problem and
an 80-object problem. (Branch-and-bound methods
are known to solve much larger knapsack problems, so
our results are useful only for comparing the various
genetic algorithms.) Our 20-object problem (K20) has
a global optimum of 445 and a greedy approximation
of 275. The 80-object problem (K80) has a global op-
timum of 25729 and a closer greedy approximation of
25713. Using our set of nine genetic algorithms, the
20-object knapsack problem is harder to solve than
the 80-object knapsack problem. Further, the penalty
evaluation method works better on the 20-object prob-
lem, and the partial scan method works better on the
80-object problem. Performance results are shown in
Table 5. The swap interval for island models is 5.

gen and std for 20 and 40 object
zero-one knapsack problems.

K20 K80
gen std gen std

SGA 88.7 302.1 32.5 7.9
ESGA 62.2 64.5 41.9 11.8
pCHC 31.3 12.6 32.7 8.2
Genitor 24.7 9.9 17.8 4.8
I-SGA 43.0 31.2 41.0 10.6
I-ESGA 100.3 253.8 33.0 7.7
I-pCHC 34.7 12.9 37.2 8.9
I-Genitor 25.8 17.6 22.0 5.8
Cellular 32.3 12.5 34.7 7.9

Table 5: Performance of GAs on knapsack problems

4.5 SUMMARY OF RESULTS

Table 4 shows the relative ranking of the genetic al-
gorithms on each of the functions. Table 8 shows the
relative performance of the algorithms on each prob-
lem, normalized on a scale of 0 to 1 (where 1 is the
worst). This is done by dividing each performance
value by the worst performance score on that prob-
lem. Since some of the algorithms perform similarly
on some problems, this gives a better picture of how
the algorithms compare with each other. Aggregate

values for Tables 4 and 8 are given in the rightmost
columns. Table 6 gives the same aggregate informa-
tion for only the hardest problems (F2, F4, Rastrigin,
Schwefel, Griewangk, the deceptive functions, and the
20-object knapsack). Table 7 gives the same aggregate
information for only the problems with long bitstrings
(F4, Rastrigin, Schwefel, Griewangk, and the 80-object
knapsack).

Algorithm Avg rnk Nrm rnk
SGA 7.6 9 .84 9
ESGA 6.3 7 .55 7
pCHC 4.4 4-5 .29 3
Genitor 4.4 4-5 .42 6
I-SGA 6.9 8 .63 8
I-ESGA 4.0 3 .34 5
I-pCHC 3.5 2 .28 2
I-Genitor 3.3 1 .21 1
Cellular 4.6 6 .32 4

Table 6: Performance of nine GAs on hard problems

Algorithm Avg rnk Nrm rnk
SGA 6.4 7-8 .79 9
ESGA 6.6 9 .63 8
pCHC 4.6 3-4 .41 2
Genitor 4.4 2 .56 6
I-SGA 6.4 7-8 .59 7
I-ESGA 4.8 5-6 .44 3
I-pCHC 4.8 5-6 .46 4
I-Genitor 2.4 1 .26 1
Cellular 4.6 3-4 .47 5

Table 7: Performance on long bitstring problems

The non-elitist algorithms (SGA and IslandSGA)
clearly perform the worst overall, ranking 8th and 9th
in every category. The parallel algorithms seem to per-
form better on harder functions. Island-Genitor gets
the best marks, and the pCHC and cellular genetic al-
gorithms also are consistently good. Interestingly, the
cellular genetic algorithm and pCHC perform fairly
well in spite of simplistic implementations.



Algorithm F1 F2 F3 F4 F5 F6 F7 F8 D3 D4 K20 K80 Avg rnk
SGA .74 .68 .76 .33 .72 .86 1.00 1.00 .99 .98 .88 .78 .81 9
ESGA .69 .19 .69 .31 .70 .19 .99 .66 1.00 .42 .62 1.00 .62 7
pCHC .68 .37 .77 .45 .79 .04 .34 .45 .29 .05 .31 .78 .44 3
Genitor .41 .46 .37 .27 .39 1.00 .76 .33 .26 .06 .25 .42 .42 2
I-SGA 1.00 1.00 1.00 .81 1.00 .48 .37 .31 .60 1.00 .43 .98 .75 8
I-ESGA .78 .19 .83 .76 .68 .08 .15 .41 .11 .003 1.00 .79 .48 6
I-pCHC .80 .18 .85 1.00 .80 .11 .01 .29 .22 .07 .35 .89 .46 4
I-Genitor .56 .27 .56 .49 .55 .03 .05 .22 .28 .10 .26 .53 .33 1
Cellular .79 .25 .81 .80 .75 .03 .04 .65 .37 .10 .32 .83 .48 5

Table 8: Normalized performance of nine GAs on test suite

5 CONCLUSIONS

In this paper we have compared several parallel genetic
algorithms across a wide range of optimization func-
tions. We note that, overall, elitist strategies perform
better than non-elitist ones. More signi�cantly, alter-
native population structures such as cellular, steady-
state (i.e., Genitor), and CHC approaches are at least
as e�ective as elitist versions of the standard \Holland-
style" genetic algorithm, even without taking actual
parallel execution into account. Since our versions of
CHC and cellular genetic algorithms are greatly sim-
pli�ed, it is reasonable to expect the full implemen-
tations of these algorithms to perhaps perform even
better. Results for island models are good, especially
for harder problems.

The performance of SGA is relatively poor compared
to the other alternative algorithms examined in this
study. However, this paper has largely been concerned
with optimization as measured by the best solution
found during a single run. Much of Holland's origi-
nal work was concerned with the online performance
metric which considers the average value of all points
sampled by the genetic algorithm. When considering
online performance, consistently sampling good points
takes on more importance than simply �nding the best
point in the space which may be isolated in an other-
wise \poor" region of the search space.

The �ndings reported in this study are encouraging
for parallel genetic algorithm research because they
indicate that performance bene�ts due to parallelism
are not o�set by declines in problem-solving capabil-
ities. In fact, parallel genetic algorithm using some
form of restricted selection and mating based on lo-
cality that are executed serially often yield better per-
formance than single population implementationswith
global \panmictic" mating. We would point out, how-
ever, that to refer to these results as an example of
\superlinear speedup" is technically incorrect: we are
not achieving superlinear speedup due to the paral-
lelization of a single algorithm, but rather have exam-
ined di�erent parallel algorithms that display superior
problem solving capabilities.

References

A. B�ohm and G. Egan (1992). Five Ways to Fill Your
Knapsack. Colorado State Univ tech report CS-92-127.

K. DeJong (1975). An Analysis of the Behavior of a Class
of Genetic Adaptive Systems. PhD thesis, U. of Michigan.

L. Eshelman (1991). The CHC Adaptive Search Algo-
rithm. Foundations of Genetic Algorithms and Classi�er
Systems, Morgan-Kaufmann.

D. Goldberg (1989). Genetic Algorithms in Search, Opti-
mization and Machine Learning Addison-Wesley.

D. Goldberg, B. Korb, and K. Deb (1989). Messy Ge-
netic Algorithms: Motivation, Analysis, and First Results.
Complex Systems 3 .

D. Goldberg and K. Deb (1991). A Comparative Analysis
of Selection Schemes used in Genetic Algorithms. Foun-
dations of Genetic Algorithms, ed. G. Rawlins, Morgan
Kaufmann.

V. Gordon, D. Whitley, and A. B�ohm (1992). Data
ow
Parallelism in Genetic Algorithms. Parallel Problem Solv-
ing from Nature 2, North Holland.

J. Holland (1975). Adaption in Natural and Arti�cial Sys-
tems. Univ of Michigan Press.

H. M�uhlenbein, M. Schomisch, and J. Born (1991). The
Parallel Genetic Algorithm as Function Optimizer. Paral-
lel Computing 7 . North-Holland.

H. M�uhlenbein (1992). How Genetic Algorithms Really
Work I: Mutation and Hillclimbing. Parallel Problem Solv-
ing from Nature 2, North Holland.

D. Whitley and T. Starkweather (1990). GENITOR II:
a Distributed Genetic Algorithm. J. Expt. Theor. Artif.
Intell 2 pp 189-214.

D. Whitley (1991). Fundamental Principles of Deception
in Genetic Search. Foundations of Genetic Algorithms, ed.
G. Rawlins, Morgan Kaufmann.

D. Whitley, R. Das, and C. Crabb (1992). Tracking Pri-
mary Hyperplane Competitors During Genetic Search. to
appear in Annals of Mathematics and Arti�cial Intell..

D. Whitley (1993). Cellular Genetic Algorithms. Genetic
Algorithms: Proceedings of the Fifth International Confer-
ence (GA93), Morgan Kaufmann.



Appendix A { Convergence Graphs

0

10

20

30

40

50

0 200 400 600 800 1000

B
E
S
T
 
S
T
R
I
N
G

RASTRIGIN FUNCTION
SGA

CHC/i
E-SGA

GENITOR

0

10

20

30

40

50

0 200 400 600 800 1000

RASTRIGIN FUNCTION
I-SGA
I-CHC

I-E-SGA
IGENITOR
MASPAR

0

10

20

30

40

50

0 200 400 600 800 1000

B
E
S
T
 
S
T
R
I
N
G

SCHWEFEL FUNCTION
SGA

CHC/i
E-SGA

GENITOR

0

10

20

30

40

50

0 200 400 600 800 1000

SCHWEFEL FUNCTION
I-SGA
I-CHC

I-E-SGA
IGENITOR
MASPAR

0

0.1

0.2

0.3

0.4

0.5

0 200 400 600 800 1000

B
E
S
T
 
S
T
R
I
N
G

GENERATIONS (NORMALIZED SGA)

GRIEWANGK FUNCTION
SGA

CHC/i
E-SGA

GENITOR

0

0.1

0.2

0.3

0.4

0.5

0 200 400 600 800 1000
GENERATIONS (NORMALIZED SGA)

GRIEWANGK FUNCTION
I-SGA
I-CHC

I-E-SGA
IGENITOR
MASPAR


