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The Man, The Legend: Zed Shaw

So, he made a web server too.
It's called mongrel2.

Oh, and Learning Python the Hard Way [LPTHW].

and... Programming, Motherfuckers...

Need I say more?



  

Why Python?

● My job is to convince you that:
● Python is incredibly easy to program in
● Python “comes with batteries”
● Python enables rapid prototyping
● All your pseudo-code are belong to Python

● Practicality?
● Systems scripting language of choice
● Alongside Perl and Ruby; OK, fine



  

Let's do this.
One at a time.

All your pseudo-code are belong to Python



  

Wikipedia: What is Quicksort?



  

And...Pseudo-what-Python!?

def quicksort(array):
    less = []; greater = []
    if len(array) <= 1:
            return array
    pivot = array.pop()
    for x in array:
            if x <= pivot: less.append(x)
            else: greater.append(x)
    return quicksort(less)+[pivot]+quicksort(greater)



  

Really? Yes!

>>> quicksort([9,8,4,5,32,64,2,1,0,10,19,27])
[0, 1, 2, 4, 5, 8, 9, 10, 19, 27, 32, 64]



  

Python “comes with batteries”



  

There's an app a library for that

● import httplib
● HTTP protocol client

● Test your web servers!

● Also: ftplib, poplib, imaplib, nntplib, smtplib... 

● import os    and    import sys
● misc. OS interfaces, and system-specific parameters and functions

● import random
● Generate pseudo-random numbers

● Sampling, shuffling, etc. – good for testing

● import socket
● First test script used this for PJ1CP1

● also SimpleHTTPServer, BaseHTTPServer...

● import fileinput → fileinput.input() → iterable
● Reads lines from stdin, files listed on command line, etc.



  

Python enables rapid prototyping



  

Give me a dynamic web app NOW

from flask import Flask
app = Flask(__name__)

@app.route("/")
def hello():
    return "Hello World!"

if __name__ == "__main__":
    app.run()



  

Python is incredibly easy to program in



  

Use the Interpreter

● Code and experiment interactively
● Use help()
● Explore functionality and ideas
● Then code in your main editor



  

Just one thing

● Whitespace matters
● Defines blocks → C-world thinks { }
● Use spaces
● 4 spaces per indentation level
● spaces > tab → just be consistent
● Really though, generally aids readablity
● Set your editor preferences ahead of time



  

The Colon

● Required for 
if/for/while/with/def/class statements

● Enhances readability
● Has English meaning
● Helps auto-indenting editors
● From the Python Design FAQ



  

Starting a Script and Comments

● Start with:

#!/usr/bin/env python
● Then you can chmod +x script.py
● The #! is a special character combination
● Tells the OS how to execute a file
● Comments start with a #
● They go to the end of the line



  

Math – Business as Usual
● import math → extra math functions
● Convert between: int() and float()
● Convert to string: str()

>>> 2 * 8
16
>>> 4 / 3
1
>>> 4 / 3.
1.3333333333333333
>>> 2 ** 4
16
>>> 18 % 3
0
>>> 18 % 4
2

>>> float(4) / 3
1.3333333333333333
>>> float(4 / 3)
1.0
>>> int(4 / 3.)
1
>>> str(2**4)
'16'



  

Danger: Division from the Future
● Python 3 is coming...and __future__
● Yes, basic math changes...

>>> from __future__ import division
>>> 6 / 7 # defaults to float
0.8571428571428571
>>> 6 // 7 # “floor” division
0
>>> 6 // 7.
0.0
>>> 6.5 // 7
0.0
>>> 7. // 7
1.0
>>> 7 // 7
1



  

Danger: Division from the Future

● Always read the top of a script first

SyntaxError: from _future_ imports 
must occur at the beginning of the 
file 



  

Booleans
● True/False – actual values
● Logical Operators

● and – not && (although & is set and bit and)
● or – not || (although | is set and bit or)
● not – not ~ (although ~ is bit not)
● As expected... >>> True and True

True
>>> True or False
True
>>> not True
False
>>> not False
True



  

Lists
● Think arrays of arbitrary objects—can mix 

and match type!
● Sorting

sorted(x) – returns a new list

x.sort() – sorts in place

>>> x = [3, 5, 7, 2, 8, 1, 4, 9, 6]
>>> sorted(x)
[1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> x
[3, 5, 7, 2, 8, 1, 4, 9, 6]
>>> x.sort()
>>> x
[1, 2, 3, 4, 5, 6, 7, 8, 9]



  

Lists

● Comprehensions – construct lists 
dynamically; they nest too!

● Functional Programmers: think map()
>>> evens = [x*2 for x in xrange(10)]

>>> evens

[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

>>> evens = [x for x in xrange(10) if x % 2 == 0]

>>> evens

[0, 2, 4, 6, 8]



  

Lists

● Slicing – cutting up lists and other 
iterables (strings etc.)

>>> x = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> x[:] # copy x
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> x[-1] # last position in list
9
>>> x[0:3] # 0th through 2nd positions
[0, 1, 2]
>>> x[1:] # copy starting at 1st position
[1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> x[:4] # copy up to 3rd position
[0, 1, 2, 3]



  

Lists

● Stacks and Queues  – LIFO and FIFO – lists 
are just so versatile

>>> x = []
>>> x.append(0)
>>> x.append(1)
>>> x.pop(0)
0
>>> x.append(2)
>>> x.pop(0)
1

>>> x = []
>>> x.append(0)
>>> x.append(1)
>>> x.pop()
1
>>> x.append(2)
>>> x.pop()
2



  

Dictionaries
● Key-Value Storage – arbitrary keys, 

arbitrary values
● del – remove object from dictionary or list

>>> d = {'a' : 0, 'b' : 1, 2 : 0}
>>> d[2]
0
>>> d['a']
0
>>> d['b']
1
>>> del d['b']
>>> d
{'a': 0, 2: 0}



  

Dictionaries
● len() – get length of dictionary or list
● keys(), values() – get lists of these
● key in d – membership in dictionary or 

list
>>> d = {'a' : 0, 'b' : 1, 2 : 0}
>>> len(d)
3
>>> d.keys() # note, no ordering
['a', 2, 'b']
>>> d.values() # ordering...
[0, 0, 1]
>>> 'a' in d
True
>>> 'x' in d
False



  

Tuples and Strings = Sequences

● Tuples are just values separated by ','
● They are both (strings too) immutable
● Otherwise, they behave like lists

>>> t = ('x', 'y')
>>> t[0] = 2
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment
>>> t[0]
'x'
>>> t[1]
'y'



  

Tuples: Packing and Unpacking

● Quick and easy way to name values

>>> position = 249,576
>>> x,y = position
>>> x
249
>>> y
576



  

Sets: Creating
s1 = set([1, 1, 1, 2, 3, 4, 5])
>>> s1
set([1, 2, 3, 4, 5])
>>> s1.add(4)
>>> s1
set([1, 2, 3, 4, 5])
>>> s1.add(7)
>>> s1
set([1, 2, 3, 4, 5, 7])
>>> sorted(s1)
[1, 2, 3, 4, 5, 7]
>>> 6 in s1
False
>>> 6 not in s1
True

No duplicates

Adding elements

You can sort sets!?
Returns a list

Test element membership too...



  

Sets: Manipulating

>>> s1 = set([1, 1, 1, 2, 3, 4, 5])
>>> s2 = set([7, 4, 64, 62, 5, 1])
>>> s1 & s2
set([1, 4, 5])
>>> s1 | s2
set([64, 1, 2, 3, 4, 5, 7, 62])
>>> s1 ^ s2
set([64, 2, 3, 7, 62])
>>> s1 - s2
set([2, 3])
>>> s2 - s1
set([64, 62, 7])

Regular set operations
just work



  

Strings

● Strip – remove surrounding white space
>>> '     this is a test    '.strip()

'this is a test'

● Length – same as lists: len()
● Slicing – same as lists/other sequences
● Formatted – C printf-style inline
>>> '%d\t%d\t%s\n' % (6, 7, 'hello')

'6\t7\thello\n'



  

Strings: Me, Myself, and Irene

● So there are several types of strings...
● Single- or double-quotes accepted
● Triple and you got something special

● Keeps newlines and whitespace generally

>>> 'string'
'string'
>>> "string"
'string'
>>> '''test
...             yeah
... '''
'test\n\t\tyeah\n'



  

Raw Strings

● Maintain escapes inside them
● That is, the '\' stays put

>>> r'This string\t has escapes\n\n.'
'This string\\t has escapes\\n\\n.'

>>> 'This string\t won\'t have escapes\n\n.'
"This string\t won't have escapes\n\n."



  

Looping: In Theory

● for – always a foreach
● Use enumerate to get more C-stylish with an i

● while – similar to C while
● range, xrange – create ranges to iterate on

● range – actually creates a list in memory
● xrange – does not create a list in memory
● Just use xrange

● break, continue – similar to C



  

Looping: Applied
Tricky: Modifying lists etc. while looping.
Generally work on copies.

>>> for x in xrange(5):
...     print x
... 
0
1
2
3
4

>>> while (x > 0):
...     print x
...     x -= 1
... 
4
3
2
1

>>> for i,x in enumerate(['test', '15-441', 'test']):
...     print i,x
... 
0 test
1 15-441
2 test



  

Branching
● if → as expected
● elif → else if construct
● else → as expected
>>> if '' or None or 0 or [] or set([]) or ():
...     pass
... else:
...     print 'huh, they all appear as false.'
... 
huh, they all appear as false.
>>> if False:
...     pass
... elif True:
...     print 'else if!'
... 
else if!



  

Defining Functions

● The magic keyword: def
● Formal parameters – as normal C args
● *arguments – contains non-formal args
● **keywords – contains a dictionary with 

non-formal keyword parameters
● Be thinking: varargs from C
● Parameters can have defaults
● Parameters can be named



  

One Function to Rule Them All

>>> def example(x, y=None, *args, **keywords):
...     print x, '\t', y, '\t',
...     print args, '\t', keywords
...
>>> example(1, 2, 3, 4, test='test', test2='test2')
1 2 (3, 4) {'test': 'test', 'test2': 'test2'}



  

The Power of Passing

● Rapidly create a skeleton/think abstractly
● pass – a noop statement – it does nothing

def log_error(message):
pass

def open_binary(path):
pass

def close_binary(path):
pass

def new_client(client_socket):
pass

while True:
pass

for x in xrange(10):
pass



  

None

● None is kind of like NULL
● That's pretty much it.
● You can use it as a guard value



  

Classes: The What

● The magic keyword: class
● Another magic keyword: self
● self refers to the current object
● self stores instance variables etc.
● self is always an argument to an 

instance method



  

Classes: The How

>>> class myclass(object):

...     def __init__(self):

...             self.x = 0

...     def increment(self):

...             self.x += 1

...     def get(self):

...             return self.x

... 

>>> instance = myclass()

>>> instance.get()

0

>>> instance.increment()

>>> instance.get()

1



  

Iterators and Generators

● The power to create your own xrange
● Classes with next() and __iter__() 

methods
● Then their instantiated objects may be used 

as iterator objects

● Functions can use the yield keyword
● State is retained for successive yields



  

Iterator Example

>>> class myiter:

...     def __iter__(self):

...             return self

...     def next(self):

...             raise StopIteration

... 

>>> for x in myiter():

...     print x

... 



  

Yield Example

>>> def myiter():
...     for x in [1, 2, 3, 4, 5]:
...             yield x
... 
>>> for x in myiter():
...     print x
... 
1
2
3
4
5



  

Exceptions: Except and Finally

● try...except
● Often enough for most tasks
● Multiple exceptions in one except
● Or one except per exception type

● try...except...finally
● finally executed on the way out, cleanup 

handler
● Also on return, break, continue



  

Exceptions: In Practice

>>> try:

...     open('test.txt', 'r')

... except IOError:

...     print 'error'

... finally:

...     print 'code that is guaranteed to run'

... 

error

code that is guaranteed to run



  

Exceptions: Making Them...

>>> raise ValueError

Traceback (most recent call last):

  File "<stdin>", line 1, in <module>

ValueError

raise special classes you have created
with meaningful names.



  

with: Better IO in Practice

● with keyword uses __enter__ and __exit__
● __exit__ executes no matter what
● Only lives for a block
● Better semantics

● Definitely closing file descriptors etc.
● Replaces standard try/finally blocks
● Uhmmm (Python < 2.5):

● from __future__ import with_statement



  

with: Better IO in Practice

>>> with open('test.txt', 'r') as f:
...     f.read()
... 
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
IOError: [Errno 2] No such file or directory: 
'test.txt'



  

Writing Tests

● import doctest
● Dynamically finds tests in your documentation!
● Check examples in docstrings

● import unittest
● Test whole programs or APIs or other programs



  

Writing Documentation

● PEP 257 -- Docstring Conventions

http://www.python.org/dev/peps/pep-0257/
● Sphinx – Python Documentation Generator

http://sphinx.pocoo.org/

http://www.python.org/dev/peps/pep-0257/
http://sphinx.pocoo.org/


  

Pythonic Style

PEP 8 -- Style Guide for Python Code

http://www.python.org/dev/peps/pep-0008/

http://www.python.org/dev/peps/pep-0008/


  

@zedshaw LPTHW Reference

● We did lessons
● 1-5, 10, 13, 18, 23, 29, 32, 40, 47

● Bonus: Up to 10 points towards HW's/Projects
● What should you do:

● Finish the rest of LPTHW/fill in the gaps
● Type in all the Python code yourself
● Follow instructions!
● Place all code into your Project 1 repo

– /scripts/ subfolder
– Email us your feelings/experience



  

How do I get LPTHW?

● Free online

http://learnpythonthehardway.org/book/

● Zed Shaw provided PDF

CMU IP-only site
http://www.cs.cmu.edu/~srini/15-441/F11/LPTHW/lpthw.pdf

● How long does it take?
● ~1-2 days for an experienced programmer

http://learnpythonthehardway.org/book/
http://www.cs.cmu.edu/~srini/15-441/F11/LPTHW/lpthw.pdf


  

More Python References

Python Tutorial

http://docs.python.org/tutorial/

Super Useful Python Documentation

http://docs.python.org/library/

Python Interpreter

python

>>> help(x)

http://docs.python.org/tutorial/
http://docs.python.org/library/


  

Shameless plug.

www.phototags.org

Help Wolf's research.

http://www.phototags.org/


  

GitHub:

Git it, got it, good.

git clone git://github.com/theonewolf/15-441-Recitation-Sessions.git
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