

Learning the Pythonic Way

Athula Balachandran
Wolf Richter

The Man, The Legend: Zed Shaw

So, he made a web server too.
It's called mongrel2.

Oh, and Learning Python the Hard Way [LPTHW].

and... Programming, Motherfuckers...

Need I say more?

Why Python?

● My job is to convince you that:
● Python is incredibly easy to program in
● Python “comes with batteries”
● Python enables rapid prototyping
● All your pseudo-code are belong to Python

● Practicality?
● Systems scripting language of choice
● Alongside Perl and Ruby; OK, fine

Let's do this.
One at a time.

All your pseudo-code are belong to Python

Wikipedia: What is Quicksort?

And...Pseudo-what-Python!?

def quicksort(array):
 less = []; greater = []
 if len(array) <= 1:
 return array
 pivot = array.pop()
 for x in array:
 if x <= pivot: less.append(x)
 else: greater.append(x)
 return quicksort(less)+[pivot]+quicksort(greater)

Really? Yes!

>>> quicksort([9,8,4,5,32,64,2,1,0,10,19,27])
[0, 1, 2, 4, 5, 8, 9, 10, 19, 27, 32, 64]

Python “comes with batteries”

There's an app a library for that

● import httplib
● HTTP protocol client

● Test your web servers!

● Also: ftplib, poplib, imaplib, nntplib, smtplib...

● import os and import sys
● misc. OS interfaces, and system-specific parameters and functions

● import random
● Generate pseudo-random numbers

● Sampling, shuffling, etc. – good for testing

● import socket
● First test script used this for PJ1CP1

● also SimpleHTTPServer, BaseHTTPServer...

● import fileinput → fileinput.input() → iterable
● Reads lines from stdin, files listed on command line, etc.

Python enables rapid prototyping

Give me a dynamic web app NOW

from flask import Flask
app = Flask(__name__)

@app.route("/")
def hello():
 return "Hello World!"

if __name__ == "__main__":
 app.run()

Python is incredibly easy to program in

Use the Interpreter

● Code and experiment interactively
● Use help()
● Explore functionality and ideas
● Then code in your main editor

Just one thing

● Whitespace matters
● Defines blocks → C-world thinks { }
● Use spaces
● 4 spaces per indentation level
● spaces > tab → just be consistent
● Really though, generally aids readablity
● Set your editor preferences ahead of time

The Colon

● Required for
if/for/while/with/def/class statements

● Enhances readability
● Has English meaning
● Helps auto-indenting editors
● From the Python Design FAQ

Starting a Script and Comments

● Start with:

#!/usr/bin/env python
● Then you can chmod +x script.py
● The #! is a special character combination
● Tells the OS how to execute a file
● Comments start with a #
● They go to the end of the line

Math – Business as Usual
● import math → extra math functions
● Convert between: int() and float()
● Convert to string: str()

>>> 2 * 8
16
>>> 4 / 3
1
>>> 4 / 3.
1.3333333333333333
>>> 2 ** 4
16
>>> 18 % 3
0
>>> 18 % 4
2

>>> float(4) / 3
1.3333333333333333
>>> float(4 / 3)
1.0
>>> int(4 / 3.)
1
>>> str(2**4)
'16'

Danger: Division from the Future
● Python 3 is coming...and __future__
● Yes, basic math changes...

>>> from __future__ import division
>>> 6 / 7 # defaults to float
0.8571428571428571
>>> 6 // 7 # “floor” division
0
>>> 6 // 7.
0.0
>>> 6.5 // 7
0.0
>>> 7. // 7
1.0
>>> 7 // 7
1

Danger: Division from the Future

● Always read the top of a script first

SyntaxError: from _future_ imports
must occur at the beginning of the
file

Booleans
● True/False – actual values
● Logical Operators

● and – not && (although & is set and bit and)
● or – not || (although | is set and bit or)
● not – not ~ (although ~ is bit not)
● As expected... >>> True and True

True
>>> True or False
True
>>> not True
False
>>> not False
True

Lists
● Think arrays of arbitrary objects—can mix

and match type!
● Sorting

sorted(x) – returns a new list

x.sort() – sorts in place

>>> x = [3, 5, 7, 2, 8, 1, 4, 9, 6]
>>> sorted(x)
[1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> x
[3, 5, 7, 2, 8, 1, 4, 9, 6]
>>> x.sort()
>>> x
[1, 2, 3, 4, 5, 6, 7, 8, 9]

Lists

● Comprehensions – construct lists
dynamically; they nest too!

● Functional Programmers: think map()
>>> evens = [x*2 for x in xrange(10)]

>>> evens

[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

>>> evens = [x for x in xrange(10) if x % 2 == 0]

>>> evens

[0, 2, 4, 6, 8]

Lists

● Slicing – cutting up lists and other
iterables (strings etc.)

>>> x = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> x[:] # copy x
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> x[-1] # last position in list
9
>>> x[0:3] # 0th through 2nd positions
[0, 1, 2]
>>> x[1:] # copy starting at 1st position
[1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> x[:4] # copy up to 3rd position
[0, 1, 2, 3]

Lists

● Stacks and Queues – LIFO and FIFO – lists
are just so versatile

>>> x = []
>>> x.append(0)
>>> x.append(1)
>>> x.pop(0)
0
>>> x.append(2)
>>> x.pop(0)
1

>>> x = []
>>> x.append(0)
>>> x.append(1)
>>> x.pop()
1
>>> x.append(2)
>>> x.pop()
2

Dictionaries
● Key-Value Storage – arbitrary keys,

arbitrary values
● del – remove object from dictionary or list

>>> d = {'a' : 0, 'b' : 1, 2 : 0}
>>> d[2]
0
>>> d['a']
0
>>> d['b']
1
>>> del d['b']
>>> d
{'a': 0, 2: 0}

Dictionaries
● len() – get length of dictionary or list
● keys(), values() – get lists of these
● key in d – membership in dictionary or

list
>>> d = {'a' : 0, 'b' : 1, 2 : 0}
>>> len(d)
3
>>> d.keys() # note, no ordering
['a', 2, 'b']
>>> d.values() # ordering...
[0, 0, 1]
>>> 'a' in d
True
>>> 'x' in d
False

Tuples and Strings = Sequences

● Tuples are just values separated by ','
● They are both (strings too) immutable
● Otherwise, they behave like lists

>>> t = ('x', 'y')
>>> t[0] = 2
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment
>>> t[0]
'x'
>>> t[1]
'y'

Tuples: Packing and Unpacking

● Quick and easy way to name values

>>> position = 249,576
>>> x,y = position
>>> x
249
>>> y
576

Sets: Creating
s1 = set([1, 1, 1, 2, 3, 4, 5])
>>> s1
set([1, 2, 3, 4, 5])
>>> s1.add(4)
>>> s1
set([1, 2, 3, 4, 5])
>>> s1.add(7)
>>> s1
set([1, 2, 3, 4, 5, 7])
>>> sorted(s1)
[1, 2, 3, 4, 5, 7]
>>> 6 in s1
False
>>> 6 not in s1
True

No duplicates

Adding elements

You can sort sets!?
Returns a list

Test element membership too...

Sets: Manipulating

>>> s1 = set([1, 1, 1, 2, 3, 4, 5])
>>> s2 = set([7, 4, 64, 62, 5, 1])
>>> s1 & s2
set([1, 4, 5])
>>> s1 | s2
set([64, 1, 2, 3, 4, 5, 7, 62])
>>> s1 ^ s2
set([64, 2, 3, 7, 62])
>>> s1 - s2
set([2, 3])
>>> s2 - s1
set([64, 62, 7])

Regular set operations
just work

Strings

● Strip – remove surrounding white space
>>> ' this is a test '.strip()

'this is a test'

● Length – same as lists: len()
● Slicing – same as lists/other sequences
● Formatted – C printf-style inline
>>> '%d\t%d\t%s\n' % (6, 7, 'hello')

'6\t7\thello\n'

Strings: Me, Myself, and Irene

● So there are several types of strings...
● Single- or double-quotes accepted
● Triple and you got something special

● Keeps newlines and whitespace generally

>>> 'string'
'string'
>>> "string"
'string'
>>> '''test
... yeah
... '''
'test\n\t\tyeah\n'

Raw Strings

● Maintain escapes inside them
● That is, the '\' stays put

>>> r'This string\t has escapes\n\n.'
'This string\\t has escapes\\n\\n.'

>>> 'This string\t won\'t have escapes\n\n.'
"This string\t won't have escapes\n\n."

Looping: In Theory

● for – always a foreach
● Use enumerate to get more C-stylish with an i

● while – similar to C while
● range, xrange – create ranges to iterate on

● range – actually creates a list in memory
● xrange – does not create a list in memory
● Just use xrange

● break, continue – similar to C

Looping: Applied
Tricky: Modifying lists etc. while looping.
Generally work on copies.

>>> for x in xrange(5):
... print x
...
0
1
2
3
4

>>> while (x > 0):
... print x
... x -= 1
...
4
3
2
1

>>> for i,x in enumerate(['test', '15-441', 'test']):
... print i,x
...
0 test
1 15-441
2 test

Branching
● if → as expected
● elif → else if construct
● else → as expected
>>> if '' or None or 0 or [] or set([]) or ():
... pass
... else:
... print 'huh, they all appear as false.'
...
huh, they all appear as false.
>>> if False:
... pass
... elif True:
... print 'else if!'
...
else if!

Defining Functions

● The magic keyword: def
● Formal parameters – as normal C args
● *arguments – contains non-formal args
● **keywords – contains a dictionary with

non-formal keyword parameters
● Be thinking: varargs from C
● Parameters can have defaults
● Parameters can be named

One Function to Rule Them All

>>> def example(x, y=None, *args, **keywords):
... print x, '\t', y, '\t',
... print args, '\t', keywords
...
>>> example(1, 2, 3, 4, test='test', test2='test2')
1 2 (3, 4) {'test': 'test', 'test2': 'test2'}

The Power of Passing

● Rapidly create a skeleton/think abstractly
● pass – a noop statement – it does nothing

def log_error(message):
pass

def open_binary(path):
pass

def close_binary(path):
pass

def new_client(client_socket):
pass

while True:
pass

for x in xrange(10):
pass

None

● None is kind of like NULL
● That's pretty much it.
● You can use it as a guard value

Classes: The What

● The magic keyword: class
● Another magic keyword: self
● self refers to the current object
● self stores instance variables etc.
● self is always an argument to an

instance method

Classes: The How

>>> class myclass(object):

... def __init__(self):

... self.x = 0

... def increment(self):

... self.x += 1

... def get(self):

... return self.x

...

>>> instance = myclass()

>>> instance.get()

0

>>> instance.increment()

>>> instance.get()

1

Iterators and Generators

● The power to create your own xrange
● Classes with next() and __iter__()

methods
● Then their instantiated objects may be used

as iterator objects

● Functions can use the yield keyword
● State is retained for successive yields

Iterator Example

>>> class myiter:

... def __iter__(self):

... return self

... def next(self):

... raise StopIteration

...

>>> for x in myiter():

... print x

...

Yield Example

>>> def myiter():
... for x in [1, 2, 3, 4, 5]:
... yield x
...
>>> for x in myiter():
... print x
...
1
2
3
4
5

Exceptions: Except and Finally

● try...except
● Often enough for most tasks
● Multiple exceptions in one except
● Or one except per exception type

● try...except...finally
● finally executed on the way out, cleanup

handler
● Also on return, break, continue

Exceptions: In Practice

>>> try:

... open('test.txt', 'r')

... except IOError:

... print 'error'

... finally:

... print 'code that is guaranteed to run'

...

error

code that is guaranteed to run

Exceptions: Making Them...

>>> raise ValueError

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

ValueError

raise special classes you have created
with meaningful names.

with: Better IO in Practice

● with keyword uses __enter__ and __exit__
● __exit__ executes no matter what
● Only lives for a block
● Better semantics

● Definitely closing file descriptors etc.
● Replaces standard try/finally blocks
● Uhmmm (Python < 2.5):

● from __future__ import with_statement

with: Better IO in Practice

>>> with open('test.txt', 'r') as f:
... f.read()
...
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IOError: [Errno 2] No such file or directory:
'test.txt'

Writing Tests

● import doctest
● Dynamically finds tests in your documentation!
● Check examples in docstrings

● import unittest
● Test whole programs or APIs or other programs

Writing Documentation

● PEP 257 -- Docstring Conventions

http://www.python.org/dev/peps/pep-0257/
● Sphinx – Python Documentation Generator

http://sphinx.pocoo.org/

http://www.python.org/dev/peps/pep-0257/
http://sphinx.pocoo.org/

Pythonic Style

PEP 8 -- Style Guide for Python Code

http://www.python.org/dev/peps/pep-0008/

http://www.python.org/dev/peps/pep-0008/

@zedshaw LPTHW Reference

● We did lessons
● 1-5, 10, 13, 18, 23, 29, 32, 40, 47

● Bonus: Up to 10 points towards HW's/Projects
● What should you do:

● Finish the rest of LPTHW/fill in the gaps
● Type in all the Python code yourself
● Follow instructions!
● Place all code into your Project 1 repo

– /scripts/ subfolder
– Email us your feelings/experience

How do I get LPTHW?

● Free online

http://learnpythonthehardway.org/book/

● Zed Shaw provided PDF

CMU IP-only site
http://www.cs.cmu.edu/~srini/15-441/F11/LPTHW/lpthw.pdf

● How long does it take?
● ~1-2 days for an experienced programmer

http://learnpythonthehardway.org/book/
http://www.cs.cmu.edu/~srini/15-441/F11/LPTHW/lpthw.pdf

More Python References

Python Tutorial

http://docs.python.org/tutorial/

Super Useful Python Documentation

http://docs.python.org/library/

Python Interpreter

python

>>> help(x)

http://docs.python.org/tutorial/
http://docs.python.org/library/

Shameless plug.

www.phototags.org

Help Wolf's research.

http://www.phototags.org/

GitHub:

Git it, got it, good.

git clone git://github.com/theonewolf/15-441-Recitation-Sessions.git

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	page42

