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The Basic Idea

• A really simple idea:

– Suppose the goal is a point g∈ ℜ2

– Suppose the robot is a point r ∈ ℜ2

– Think of a “spring” drawing the robot toward 
the goal and away from obstacles:

– Can also think of like and opposite charges
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Another Idea

• Think of the goal as the bottom of a bowl

• The robot is at the rim of the bowl

• What will happen?
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The General Idea

• Both the bowl and the spring analogies are ways of storing potential 
energy

• The robot moves to a lower energy configuration

• A potential function is a function U : ℜm → ℜ

• Energy is minimized by following the negative gradient of the potential 
energy function:

• We can now think of a vector field over the space of all q’s ...
– at every point in time, the robot looks at the vector at the point and goes in 

that direction
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Attractive/Repulsive Potential Field

– Uatt is the “attractive” potential --- move to the goal

– Urep is the “repulsive” potential --- avoid obstacles
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Artificial Potential Field Methods:
Attractive Potential
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Artificial Potential Field Methods:
Attractive Potential

Combined Potential

In some cases, it may be desirable to have distance 
functions that grow more slowly to avoid huge velocities 
far from the goal

one idea is to use the quadratic potential near the 
goal (< d*) and the conic farther away
One minor issue:  what?
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The Repulsive Potential
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Repulsive Potential
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Total Potential Function
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Potential Fields
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Gradient Descent

• A simple way to get to the bottom of a potential

• A critical point is a point x s.t. ∇U(x) = 0
– Equation is stationary at a critical point
– Max, min, saddle
– Stability?
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The Hessian

• For a 1-d function, how do we know we are at a unique minimum 
(or maximum)?

• The Hessian is the m× m matrix of second derivatives

• If the Hessian is nonsingular (Det(H) ≠ 0), the critical point is a 
unique point
– if H is positive definite (x^t H x > 0), a minimum
– if H is negative definite, a maximum
– if H is indefinite, a saddle point
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Gradient Descent

Gradient Descent:
– q(0)=qstart
– i = 0
– while ∇ U(q(i)) ≠ 0 do

• q(i+1) = q(i) - α(i) ∇ U(q(i))
• i=i+1



16-735, Howie Choset, with slides from Ji Yeong Lee,  G.D. Hager and  Z. Dodds

Gradient Descent

Gradient Descent:
– q(0)=qstart
– i = 0
– while || ∇ U(q(i)) || > ε do

• q(i+1) = q(i) - α(i) ∇ U(q(i))
• i=i+1
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Numerically “Smoother” Path
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Single Object Distance
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Compute Distance: Sensor Information
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Computing Distance: Use a Grid

• use a discrete version of space and work from there

– The Brushfire algorithm is one way to do this
• need to define a grid on space 
• need to define connectivity (4/8)
• obstacles start with a 1 in grid; free space is zero

4 8
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Brushfire Algorithm

• Initially: create a queue L of pixels on the boundary of all 
obstacles

• While L ≠ ∅
– pop the top element t of L
– if d(t) = 0, 

• set d(t) to 1+mint’ ∈ N(t),d(t) ≠ 0 d(t’)
• Add all t’∈ N(t) with d(t)=0 to L (at the end)

• The result is a distance map d where each cell holds the 
minimum distance to an obstacle.

• The gradient of distance is easily found by taking differences with 
all neighboring cells.
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Brushfire example
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Potential Functions Question

• How do we know that we have only a single (global) minimum

• We have two choices:
– not guaranteed to be a global minimum: do something other than gradient 

descent (what?)

– make sure only one global minimum (a navigation function, which we’ll see 
later).
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The Wave-front Planner

• Apply the brushfire algorithm starting from the goal

• Label the goal pixel 2 and add all zero neighbors to L
– While L ≠ ∅

• pop the top element of L, t
• set d(t) to 1+mint’ ∈ N(t),d(t) > 1 d(t’)
• Add all t’∈ N(t) with d(t)=0 to L (at the end)

• The result is now a distance for every cell
– gradient descent is again a matter of moving to the neighbor with the 

lowest distance value
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The Wavefront Planner: Setup
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The Wavefront in Action (Part 1)

• Starting with the goal, set all adjacent cells with “0” to the current cell + 1
– 4-Point Connectivity or 8-Point Connectivity?
– Your Choice.  We’ll use 8-Point Connectivity in our example
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The Wavefront in Action (Part 2)

• Now repeat with the modified cells
– This will be repeated until no 0’s are adjacent to cells with values >= 2

• 0’s will only remain when regions are unreachable
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The Wavefront in Action (Part 3)

• Repeat again...
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The Wavefront in Action (Part 4)

• And again...
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The Wavefront in Action (Part 5)

• And again until...
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The Wavefront in Action (Done)

• You’re done
– Remember, 0’s should only remain if unreachable regions exist
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The Wavefront, Now What?

• To find the shortest path, according to your metric, simply always move toward a cell with a 
lower number

– The numbers generated by the Wavefront planner are roughly proportional to their distance from the goal

Two
possible
shortest
paths
shown
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Another Example
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Wavefront (Overview)

• Divide the space into a grid.
• Number the squares starting at the start in either 4 or 8 point 

connectivity starting at the goal, increasing till you reach the start.
• Your path is defined by any uninterrupted sequence of 

decreasing numbers that lead to the goal.
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Navigation Functions

• A function φ: Qfree → [0,1] is called a navigation function if it
– is smooth (or at least C2)
– has a unique minimum at qgoal

– is uniformly maximal on the boundary of free space
– is Morse

• A function is Morse if every critical point (a point where the 
gradient is zero) is isolated.

• The question: when can we construct such a function?
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Sphere World

• Suppose that the world is a sphere of radius r0 centered at q0
containing n obstacles of radius ri centered at qi, i=1 .. n
– β0(q) = -d2(q,q0) + r0

2

– βi(q) = d2(q,qi) - ri
2

• Define β(q) = ∏ βi(q) (Repulsive)
– note this is zero on any obstacle boundary, positive in free space and 

negative inside an obstacle

• Define                                     (Attractive)
– note this will be zero at the goal, and increasing as we move away
– κ controls the rate of growth



16-735, Howie Choset, with slides from Ji Yeong Lee,  G.D. Hager and  Z. Dodds

Sphere World

• Consider now 
– O(q) is only zero at the goal
– O(q) goes to infinity at the boundary of any obstacle
– By increasing κ, we can make the gradient at any direction point 

toward the goal
– It is possible to show that the only stationary point is the goal, with 

positive definite Hessian because
• therefore no local minima

• In short, following the gradient of O(q) is guaranteed to get to the 
goal (for a large enough value of κ)
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An Example: Sphere World
• One problem: the value of O(q) may be very large

• A solution: introduce a “switch” σλ(x) = x/(λ + x)

• Now, define O’λ(q) = σλ(O(q))
– this bounds the value of the function
– however, O’ may turn out not to be Morse

• A solution: introduce a “sharpening function” ηκ(x) = x1/κ

For large enough κ, this is a navigation function on the sphere world!

0,)( >
+

= λ
λ

σ λ x
xx
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Navigation Function for Sphere 
World

• For sufficiently large k, 
k(q) is a navigation 

function
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Navigation Function : k(q), 
varying k
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From Spheres to Stars and Beyond

• While it may not seem like it, we have solved a very general problem

• Suppose we have a diffeomorphism δ from some world W to a sphere 
world S

– if O’’κ is a navigation function on S then
– O’’’κ(q) = O’’κ(δ(q)) is a navigation function on W!

• note we also need to take the diffeomorphism into account for distances
• Because δ is a diffeomorphism, the Jacobian is full rank
• Because the Jacobian is full rank, the gradient map cannot have new zeros 

introduced (which could only happen if the gradient was in the null space of the 
Jacobian)

• A star world is one example where a diffeomorphism is known to exist
– a star-shaped set is one in which all boundary points can be “seen” from 

some single point in the space.
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Which of the following are the same?
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______jections
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Diffeomorphism vs. Homeomorphism

HOMEOMORPHISM

DIFFEOMORPHISM
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Which of the following are the same?
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From Spheres to Stars and Beyond

• While it may not seem like it, we have solved a very general problem

• Suppose we have a diffeomorphism δ from some world W to a sphere 
world S

– if O’’κ is a navigation function on S then
– O’’’κ(q) = O’’κ(δ(q)) is a navigation function on W!

• note we also need to take the diffeomorphism into account for distances
• Because δ is a diffeomorphism, the Jacobian is full rank
• Because the Jacobian is full rank, the gradient map cannot have new zeros 

introduced (which could only happen if the gradient was in the null space of the 
Jacobian)

• A star world is one example where a diffeomorphism is known to exist
– a star-shaped set is one in which all boundary points can be “seen” from 

some single point in the space.
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Construct the Mapping

Star shaped setCenter of
Star shaped set

Center of
Circle shaped set

Radius  of
Circle shaped set

Maps stars to spheres

For points on boundary of star shaped set

Zero on boundary of obstacles
except the “current” one

One on the boundary of          and
Zero on the goal and other obstacle boundaries
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Potential Fields on Non-Euclidean 
Spaces

• Thus far, we’ve dealt with points in Rn --- what about real 
manipulators

• Recall we can think of the gradient vectors as forces -- the basic 
idea is to define forces in the workspace (which is ℜ2 or ℜ3)

Power in configuration space

Power in work space

Power is conserved!



16-735, Howie Choset, with slides from Ji Yeong Lee,  G.D. Hager and  Z. Dodds

Force on an Object

torque
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Potential Function on Rigid Body

Pick enough points to “pin down” robot (2 in plane)

More points please
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Potential Fields for Multiple Bodies

• Recall we can think of the gradient vectors as forces -- the basic 
idea is to define forces in the workspace (which is ℜ2 or ℜ3)

– We have Jt f = u   where f is in W and u is in Q
– Thus, we can define forces in W and then map them to Q

– Example:  our two-link manipulator

α

β

L1

L2

(x,y)

y

x

x L1cα L2cα+β

y L1sα L2sα+β

= +
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Potential Fields on Non-Euclidean 
Spaces

– Example:  our two-link manipulator

– J = - L1 sα - L2 sα+β - L2 sα+β
L1 cα + L2 cα+β L2 cα+β

Suppose qgoal = (0,0)t, then fW = (x,y)

fq = x (- L1 sα - L2 sα+β) +  y ( L1 cα + L2 cα+β)
x (- L2 sα+β) + y L2 cα+β

α

β

L1

L2

(x,y)

y

x

x L1cα L2cα+β

y L1sα L2sα+β

= +
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In General

• Pick several points on the manipulator

• Compute attractive and repulsive potentials for each

• Transform these into the configuration space and add

• Use the resulting force to move the robot (in its configuration 
space)

α

β

L1

L2

(x,y)

y

x

RF4

RF3

RF2

RF1

AF1

Be careful to use the 
correct Jacobian!



16-735, Howie Choset, with slides from Ji Yeong Lee,  G.D. Hager and  Z. Dodds

A Simulation Example

• Problem: simulate a planar n-link (revolute) manipulator.

• Kinematics: Let v(θ) = [cθ,sθ]t

• Points of revolution: p0 = [0,0]t αi = ∑ι
j=1 θi

pi = pi-1 + Li v(αi)
• Jacobian: w(θ) = [-sθ,cθ]t

Jn = Ln w(αn)
Jn-1 = Jn + Ln-1 w(αn-1)

• Now, use the revolute points as the control points to generate 
force vectors (note this could lead to problems in some cases).
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Summary

• Basic potential fields
– attractive/repulsive forces

• Gradient following and Hessian

• Navigation functions

• Extensions to more complex manipulators


