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The Basic Idea

« Areally simple idea:

— Suppose the goal is a point ge R2 o}
— Suppose the robot is a point r € R? ot 7
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the goal and away from obstacles: P NG e e s
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— Can also think of like and opposite charges - ‘9
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Another Idea

« Think of the goal as the bottom of a bowl
e The robot is at the rim of the bowl

 What will happen?
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The General Idea

Both the bowl and the spring analogies are ways of storing potential
energy

The robot moves to a lower energy configuration

A potential function is a function U : R™ — ‘R

Energy is minimized by following the negative gradient of the potential
energy function:

VU(q) = DU()T = [&(q)...., 2L(q)]”
We can now think of a vector field over the space of all g's ...

— at every point in time, the robot looks at the vector at the point and goes in
that direction
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Attractive/Repulsive Potential Field

U(q) = Uats(q) 4+ Urep(q)

— U, Is the “attractive” potential --- move to the goal

— U, Is the “repulsive” potential --- avoid obstacles
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Artificial Potential Field Methods:
Attractive Potential

Conical Potential

L‘T(Qj = Cd{t’}, qgﬂiﬂj'

v{?(Q) = m{q — le}aL1}~

Quadratic Potential >

* 1
E"Iu,tt{(ir) — Eqd’z(q’qg'wl}’

|
Fatt(q): VUa(q) = V(Eﬁdz (f}.?(}gc.ul)),
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Artificial Potential Field Methods:
Attractive Potential

Combined Potential

( 1 . . N
3grlei_rj.qggal )5 _rfi_rj.gg.:,a,l ) = ':féoal‘
E'ratti‘f:' = 3
jl':l: - J;r.' 11 1 - J;r:l: '.2 J;r.' L ES
Agoa1Cd(q, ggoal) — 5C(dgoa)”s  dlg, ggoal) > tfgod'

%,

C(q — goal): (G Ggoal) = dggy)-

VUati(q) =
att\ Y, Jmalug e ijgoal]

d(q, ggoal)

d(q, ‘Igoa.l) = -I‘F;o:u,l'

In some cases, it may be desirable to have distance
functions that grow more slowly to avoid huge velocities
far from the goal

one idea is to use the quadratic potential near the
goal (< d*) and the conic farther away
One minor issue: what?
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The Repulsive Potential

U (q) = %?F(D%Q:] B (;:JI'- )2-'-' D(Q) E (92*-.
rep 0? D(q) ~ (02:4:‘

whose gradient is

VUrep(q) = { ' (J - D%q)) Dgl(q}VD(q)’ Diq) < @7,

- 0, D(q)> Q*,
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Repulsive Potential
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Total Potential Function
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Potential Fields
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Gradient Descent

(t) = —VU(c(t)).

A simple way to get to the bottom of a potential

(") = 0.

-
[}
i

A critical point is a point X s.t. ¢* where VU

— Equation is stationary at a critical point

— Max, min, saddle

_ Stability?

(Saddle) {Minimmm)

(Maximum )

16-735, Howie Choset, with slides from Ji Yeong Lee, G.D. Hager and Z. Dodds



The Hessian

For a 1-d function, how do we know we are at a uniqgue minimum
(or maximum)?

The Hessian is the mx m matrix of second derivatives

If the Hessian is nonsingular (Det(H) = 0), the critical point is a
unique point

— if H is positive definite (x* H x > 0), a minimum

— if H is negative definite, a maximum

— If H is indefinite, a saddle point
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Gradient Descent

Gradient Descent:
- q O):qstart
—1=0
— while V U(q(i)) # 0 do

* q(i+1) = q() - o) V U(q(D))
o =i+l
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Gradient Descent

Gradient Descent:
- q O):qstart
—1=0
— while || V U(q(i)) || > € do

* q(i+1) = q() - o) V U(q(D))
o =i+l
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Numerically “Smoother” Path
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Single Object Distance

Urep(q) = 2 i1 Urep, (a)
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Compute Distance: Sensor Information

00, )
\‘\‘ 'ﬁ‘ _‘__f--—Sensm'MeasurementAxis \\\‘ ///
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Obstacle  /  \b - X /
st‘?c . ,_7; : 9 ] \\ l!- | .-'":///'
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Q01 /
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Computing Distance: Use a Grid

e use a discrete version of space and work from there

— The Brushfire algorithm is one way to do this
* need to define a grid on space
* need to define connectivity (4/8)
» obstacles start with a 1 in grid; free space is zero

nl n2 n3 nl n2 n3

n4 ns né n4 ns né
n7 n8 n9 n7 ns n9
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Brushfire Algorithm

Initially: create a queue L of pixels on the boundary of all
obstacles

While L # &
— pop the top element t of L
— ifd(t) =0,
* setd(t) to 1+min, . nyey.a » 0 A(T)
o Add all t'e N(t) with d(t)=0 to L (at the end)

The result is a distance map d where each cell holds the
minimum distance to an obstacle.

The gradient of distance is easily found by taking differences with
all neighboring cells.
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Brushfire example
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Potential Functions Question

 How do we know that we have only a single (global) minimum

.
Jgeal

\

: | .
e We have two choices:

— not guaranteed to be a global minimum: do something other than gradient
descent (what?)

— make sure only one global minimum (a navigation function, which we’ll see
later).
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The Wave-front Planner

* Apply the brushfire algorithm starting from the goal

e Label the goal pixel 2 and add all zero neighbors to L

— WhileL# Y

e pop the top element of L, t
 setd(t) to 1+min, _ ey a1 A(t)
o Add all t'e N(t) with d(t)=0 to L (at the end)

 The result is now a distance for every cell

— gradient descent is again a matter of moving to the neighbor with the
lowest distance value
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The Wavefront Planner: Setup
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The Wavefront in Action (Part 1)

e Starting with the goal, set all adjacent cells with “0” to the current cell + 1

— 4-Point Connectivity or 8-Point Connectivity?
— Your Choice. We'll use 8-Point Connectivity in our example
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The Wavefront in Action (Part 2)

Now repeat with the modified cells

— This will be repeated until no 0’s are adjacent to cells with values >= 2
» 0’s will only remain when regions are unreachable
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The Wavefront in Action (Part 3)

Repeat again...
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The Wavefront in Action (Part 4)

And again...
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The Wavefront in Action (Part 5)

And again until...
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The Wavefront in Action (Done)

« You're done
— Remember, 0’s should only remain if unreachable regions exist
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The Wavefront, Now What?

 To find the shortest path, according to your metric, simply always move toward a cell with a
lower number
—  The numbers generated by the Wavefront planner are roughly proportional to their distance from the goal

Two T
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possible |. 1.
shortest |4 (17 [1e
paths 3 1716
Shown 2 |17 |16
1|17 |16
o |17 |16
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Another Exam
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Wavefront (Overview)

Divide the space into a grid.

Number the squares starting at the start in either 4 or 8 point
connectivity starting at the goal, increasing till you reach the start.

Your path is defined by any uninterrupted sequence of
decreasing numbers that lead to the goal.
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Navigation Functions

A function ¢: Q.. — [0,1] is called a navigation function if it
— is smooth (or at least C?)
— has a unique minimum at q,,
— Is uniformly maximal on the boundary of free space
— Is Morse

A function is Morse if every critical point (a point where the
gradient is zero) is isolated.

The question: when can we construct such a function?
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Sphere World

Suppose that the world is a sphere of radius r, centered at q,
containing n obstacles of radius r;centered at g;, I=1 .. n

- Bo(a) =-d%(q,q,) + ry?
— Bi(a) = d*(q,q;) - r? QO; = {q| Ailq) < 0}

Define $(q) = I1 B(q) (Repulsive)

— note this is zero on any obstacle boundary, positive in free space and
negative inside an obstacle

Define Telg) = (dig. Ygoal ) :'Em (A'['[I’aC'[Ive)

— note this will be zero at the goal, and increasing as we move away
— «x controls the rate of growth
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Sphere World

« Consider now (q)
— 2={g)is only zero at the goal

3
LI

— Ix(q) goes to infinity at the boundary of any obstacle
— By increasing k, we can make the gradient at any direction point
toward the goal

— Itis possible to show that the only stationary point is the goal, with
positive definite Hessian because @./dq dominates 3/ dq,
 therefore no local minima

* In short, following the gradient of (4} is guaranteed to get to the
goal (for a large enough value of «)
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An Example: Sphere World
» One problem: the value % (¢)(q) may be very large

o =
(T:,‘ |_‘,I' ._| = =—

« A solution: introduce a “switi iz 0 X)

* Now, define slaA) = (w—) () = ( - i+ W) ()

— this bounds the value of the function
— however, s(g. A} may turn out not to be Morse

» A solution: introduce a “sharpening function” ¢ (x) = z**

B

A I'\ _ - ) | o
“i""l'.':_' .II - =K o "T]. = '_II Il.[.l!l.ll — [

13 i 1!
@71 q. Ggaal )

o . 1 l/s
I:.':*'r 9, Tzaal ) ,:'Hh + Flg |:|

For large enough «, this is a navigation function on the sphere world!
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Navigation Function for Sphere
World

. - B (7. Ggoal) . For sufﬂmently_ Iarge K,
wlg) = | Ekcoyo 5 (q) = - T (g is a navigation
[‘f(;.qg 1))+ ’:?’;‘] function
%)
Q.
O ‘
9§ ;‘4{ ‘ ‘ |— 2
%2 = ] ©
®) 0 "‘ o | 0 l;- (@)
o |\ | o
Y i '3
(Q - -4
-4 O -4 3
D
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Navigation Function : (g1,
varying k
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From Spheres to Stars and Beyond

 While it may not seem like it, we have solved a very general problem

e Suppose we have a diffeomorphism & from some world W to a sphere
world S

— if O”_is a navigation function on S then

— 0O (q) = 0" (5(q)) is a navigation function on W!
* note we also need to take the diffeomorphism into account for distances
* Because § is a diffeomorphism, the Jacobian is full rank

« Because the Jacobian is full rank, the gradient map cannot have new zeros
introduced (which could only happen if the gradient was in the null space of the
Jacobian)

« A star world is one example where a diffeomorphism is known to exist

— astar-shaped set is one in which all boundary points can be “seen” from
some single point in the space.

Jdr such that ¥y € 5, tr+ (1 -ty 5§ ¥t e [0, 1]
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Which of the following are the same?

/

Jdr such that ¥y € 5, tr+ (1l -ty § vt [0, 1]
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lections

surjection injection bijection
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Diffeomorphism vs. Homeomorphism

HOMEOMORPHISM If ¢: § — T is a bijection, and both ¢ and ¢~' are con-
tinuous, then ¢ 18 a homeomorphism. When such a o erists, S and T' are
said to be homeomorphic.

A mapping ¢: 7 — V' 15 =2aid to be smooth 1t all partial derivatives of
¢, of all orders, are well defined (i.e., ¢ 15 of class C™). With the notion of
smoothness, we define a second type of bijection.

DIFFEOMORPHISM A smooth map o: 7 — V s o diffeomorphism éf o 2s
bijective and ¢~ is smooth. When such a ¢ exists, U and V are said to be

diffecmorphic.

e .H‘.
|f H'I 'fﬂ- - ™
“ __j},-" '\H___ L &
m‘xh_,ﬁ"
circle ellipse racetrack
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Which of the following are the same?

/

Jdr such that ¥y € 5, tr+ (1l -ty § vt [0, 1]
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From Spheres to Stars and Beyond

 While it may not seem like it, we have solved a very general problem

e Suppose we have a diffeomorphism & from some world W to a sphere
world S

— if O”_is a navigation function on S then

— 0O (q) = 0" (5(q)) is a navigation function on W!
* note we also need to take the diffeomorphism into account for distances
* Because § is a diffeomorphism, the Jacobian is full rank

« Because the Jacobian is full rank, the gradient map cannot have new zeros
introduced (which could only happen if the gradient was in the null space of the
Jacobian)

« A star world is one example where a diffeomorphism is known to exist

— astar-shaped set is one in which all boundary points can be “seen” from
some single point in the space.

Jdr such that ¥y € 5, tr+ (1 -ty 5§ ¥t e [0, 1]
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Construct the Mapping

/\

i i k1 Il AT 'II IJI:
Ti(q) = vi(a)(a — @) + p: vig) = (1+ Gila)'*——
1 // lg — all
Center of Center of Star shaped set
Star shaped set  Circle shaped set
— Maps stars to spheres
For points on boundary of star shaped set {1 + ;(g ) = 1
For the star-shaped obstacle Q0;,
= = !
Y3 Y3 —
SCRVE (cn @ ={—=17) A= 11 &
g Tl + A i 4=0, 774
M (@)
: Y — _ silg.A)
s . | = — = * 4
"crgoalm ‘}‘s 1 z t Zero on the goal
=1

c

Radius of
ircle shaped set

h

Zero on boundary of obstacles
except the “current” one

One on the boundary of €(?; and

and other obstacle boundaries

halg) 1s exactly T;(g) on the houndary of the @0

J.I.ir
(@) = S (0 Ny (@) + Y sila, M Ti(g)

for a suitable A, hia(g) is smooth, bijective. and has a smooth inverse

To wla) =a
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Potential Fields on Non-Euclidean
Spaces

 Thus far, we’'ve dealt with points in R" --- what about real
manipulators

Recall we can think of the gradient vectors as forces -- the basic
idea is to define forces in the workspace (which is R? or R3)

force f acting at a point =z = ¢(q)

Power is conserved!

force u acting in the robot’s configuration

& = Jq, where J = 0¢/0q

ul'¢  Power in configuration space fff

f‘T T Power in work space
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Force on an Object

q = [z,y,6]"
[*% ﬂy]T

robot’s local coordinate frame.

torque

v

r + a; cost — a, sin 0 }

o(q) = { Y+ a,sind + a,cosd

E){IJ( _[1 0 —axsinﬁ—aycosﬁ}

J(‘?):Eq) 0 1 a,cosf —a,sind

JT Ta }
(q) { 7
1 0 :
0 1 { Iz
—a,8inf — a, cosfl a,cosd —a,sinf Ty

fe
Jy

| —fx(aysinf +a, cosb) + f,(a, cos@ — a,sinf)

16-735, Howie Choset, with slides from Ji Yeong Lee, G.D. Hager and Z. Dodds



Potential Function on Rigid Body

pick control points {r;} on the robot

Pick enough points to “pin down” robot (2 in plane)

%Qéarz('}:}'(QJ1?‘j (ngalj)a d('}‘j((}')e'rj(‘z_}'gcual)) < dD
{"Tutt. _}(Q) - 1 .
did(r; (), 7i(dgoal)) — §Cid2‘ d(ri(q),7i(ggoal)) > do.
1 1 ;2 S,
, 2'li (dﬁt.r.;t.q:l.n B @_) o dilril9) = @
["Ir-:*.pé.j(Q) =

0, d;(r;(q)) > Q*

L:«;('f'j (QJ - ?“}'(QgC|a~1j)? d('ré(Q)e'f‘i(qu:nul)j < dp,

vL'Tat 2J -
t,g ((Q) { dC‘J‘ (r](q) —_ 'T’j(q'gu:luljj

diri(a),ri(qeoal )

s d('rj(Q)rTj(le}ul)j > dO-

' i (QL N a‘u\e-it\q),:) o0y V4 (@), dilri(a) < @
VI’:rcpé.j(Q) —

Riq)
" E -
Z H‘u,tti(q} + Z urcpj(@j H
i j I‘.‘" |
> T (@) fari (@) + D T (@) freps (@)
t 1 More points please
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Potential Fields for Multiple Bodies

« Recall we can think of the gradient vectors as forces -- the basic
idea is to define forces in the workspace (which is R? or R3)

— We have Jtf=u wherefisinWanduisinQ
— Thus, we can define forces in W and then map them to Q

— Example: our two-link manipulator

|
+

X | Ly, L,Colp
y Llsa LZSoch
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Potential Fields on Non-Euclidean
Spaces

— Example: our two-link manipulator

- J:-Lls(l-LZSOH‘B -LZSa+B
Ly €y + Ly Coup Ly Coup

Suppose g, = (0,0)% then f,, = (x,y)

fo=X (LS, -LySeup)+ Y (LiCy+LyChip)
X(-LySep) +tYyL,cC

a+p

|
+

X | Ly, L,Colp
y Llsa LZSaJr
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In General

e Pick several points on the manipulator
« Compute attractive and repulsive potentials for each
« Transform these into the configuration space and add

e Use the resulting force to move the robot (in its configuration
space)

AF,

Be careful to use the
correct Jacobian!
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A Simulation Example

Problem: simulate a planar n-link (revolute) manipulator.
Kinematics: Let v(0) = [C,,S,]
Points of revolution: p, = [0,0]" oy = 2, 6,

Pi = Pia + L v(oy)

Jacobian: w(0) = [-S,,Cy]!

‘Jn = I—n W(an)
‘]n-l = ‘]n + Ln-l W(an-l)

Now, use the revolute points as the control points to generate
force vectors (note this could lead to problems in some cases).

16-735, Howie Choset, with slides from Ji Yeong Lee, G.D. Hager and Z. Dodds



Summary

Basic potential fields
— attractive/repulsive forces

Gradient following and Hessian
Navigation functions

Extensions to more complex manipulators
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