Distributed Hash Tables

DHTs

e Like It sounds — a distributed hash table
« Put(Key, Value)
« Get(Key) -> Value

Interface vs. Implementation

« Put/Get is an abstract interface

- Very convenient to program to

- Doesn't require a “DHT” in today's sense of the
world.

- e.g., Amazon's S”*3 storage service
 /bucket-name/object-id -> data

« We'll mostly focus on the back-end log(n) lookup
systems like Chord

- But researchers have proposed alternate
architectures that may work better, depending on
assumbptions!

Last time: Unstructured Lookup

* Pure flooding (Gnutella), TTL-limited
- Send message to all nodes
e Supernodes (Kazaa)
- Flood to supernodes only
« Adaptive “super’-nodes and other tricks (GIA)

* None of these scales well for searching for
needles

Alternate Lookups

« Keep in mind contrasts to...
* Flooding (Unstructured) from last time

 Hierarchical lookups

- DNS

- Properties? Root is critical. Today's DNS root is
widely replicated, run in serious secure datacenters,
etc. Load is asymmetric.

* Not always bad — DNS works pretty well
 But not fully decentralized, if that's your goal

P2P Goal (general)

* Harness storage & computation across
(hundreds, thousands, millions) of nodes across
Internet

 |n particular:

- Can we use them to create a gigantic, hugely
scalable DHT?

P2P Requirements

e Scale to those sizes...
 Be robust to faults and malice
» Specific challenges:

- Node arrival and departure — system stability
- Freeloading participants
- Malicious participants

- Understanding bounds of what systems can and
cannot be built on top of p2p frameworks

DHTs

« Two options:

- lookup(key) -> node ID
- lookup(key) -> data

 When you know the nodelD, you can ask it
directly for the data, but specifying interface as
-> data provides more opportunties for caching
and computation at intermediaries

 Different systems do either. We'll focus on the
problem of locating the node responsible for the
data. The solutions are basically the same.

Algorithmic Requirements

Every node can find the answer

Keys are load-balanced among nodes

- Note: We're not talking about popularity of keys,
which may be wildly different. Addressing this is a
further challenge...

Routing tables must adapt to node failures and
arrivals

How many hops must lookups take?

- Trade-off possible between state/maint. traffic and
num lookups...

Consistent Hashing

 How can we map a key to a node?

« Consider ordinary hashing

- func(key) % N -> node |ID

- What happens if you add/remove a node?
« Consistent hashing:

- Map node IDs to a (large) circular space

- Map keys to same circular space

- Key “belongs” to nearest node

DHT: Consistent Hashing

K 5\>
Node 105\ = KS
N105| /\%

Circular ID space B N32

N90 2
AN
K80

A key is stored at its successor: node with next higher ID

15-441 Spring 2004, Jeff Pang

11

Consistent Hashing

* Very useful algorithmic trick outside of DHTs,
etc.

- Any time you want to not greatly change object
distribution upon bucket arrival/departure

e Detall:

- To have good load balance

- Must represent each bucket by log(N) “virtual”
buckets

15-441 Spring 2004, Jeff Pang

12

DHT: Chord Basic Lookup

N120
gr%@

%here Is key 807"

15-441 Spring 2004, Jeff Pang

DHT: Chord “Finger Table”

1/4 1/2

1/8

1/16
1/32
1/64\

NSO

* Entry /in the finger table of node n s the first node that succeeds or
equals n+ 2’

* In other words, the ith finger points 1/2" way around the ring

15-441 Spring 2004, Jeff Pang

14

DHT: Chord Join

* Assume an identifier space [0..8]

Succ. Table

* Node n1 joins

i lid+2'[succ

0
11 3 | 1
2

15-441 Spring 2004, Jeff Pang

DHT: Chord Join

Succ. Table

* Node n2 joins

id+2'|succ

i

0 2
11 3 | 1
2 1

Succ. Table

id+2'|succ

i

o 3| 1
11 4 | 1
2l 6| 1

15-441 Spring 2004, Jeff Pang

DHT: Chord Join

Succ. Table
i lid+2'|succ
o 1 1
11 2| 2
L. P 2| 4 0
° NOdeS nO, n6 J0|n ‘\ P Succ. Table
0 ’ i lid+2'[succ
N 1 o 2| 2
11 3| 6
Succ. Table 2516
i lid+2'|succ
of 7] 0 2‘
11 0] O \
ol 2| 2 \
Succ. Table
i lid+2'|succ
O 3| 6
11 4| 6
2l 6| 6

15-441 Spring 2004, Jeff Pang

DHT: Chord Join

Succ. Table ltems
i lid+2'{succ | |7
* Nodes: o 1] 1
1l 2| 2
n1, n2, n0, n6 ST A
° Items \ 0 \a/ Succ. Table ltems
£7 0 7 17X ™~ | ilid+2|succ| |1
y o 2 2
11 3| 6
2l 5| 6
Succ. Table
i lid+2'|succ \
o0 7] 0
11 ol o Succ. Table
20 2| 2 i lid+2'|succ
of 3| 6
11 4| 6
2l 6| 6

15-441 Spring 2004, Jeff Pang

18

DHT: Chord Routing

* Upon receiving a query for

item id, a node:

Checks whether stores the

item locally

If not, forwards the query to
the largest node in its

successor table that does

not exceed id

Succ. Table

id+2

SuccC

I

o 7
11 O
2 2

Succ. Table ltems
i lid+2|succ | |7
o 1 1
11 2| 2
I P 2] 4 0
0 \a/ Succ. Table |1ems
N7 ~ | ilid+2succ| |1
of 2| 2
11 3| 6
2l 5| 6
Succ. Table
i lid+2'|succ
of 3| 6
11 4| 6
2 6| 6

15-441 Spring 2004, Jeff Pang

19

DHT: Chord Summary

* Routing table size?
—Log N fingers
* Routing time?

—Each hop expects to 1/2 the distance to the
desired id => expect O(log N) hops.

15-441 Spring 2004, Jeff Pang

20

Alternate structures

e Chord is like a skiplist: each time you go 2 way
towards the destination. Other topologies do this
too...

15-441 Spring 2004, Jeff Pang 21

Tree-like structures

« Pastry, Tapestry, Kademlia
e Pastry:

- Nodes maintain a “Leaf Set” size |L|

* |L|/2 nodes above & below node's ID
* (Like Chord's successors, but bi-directional)

- Pointers to log_2(N) nodes at each level i of bit
prefix sharing with node, with i+1 different

* e.g., hode id 01100101
« stores to neighbor at 1, 00, 010, 0111, ...

15-441 Spring 2004, Jeff Pang

22

Hypercubes

» the CAN DHT

Each has ID

Maintains pointers to a neighbor who differs in
one bit position

Only one possible neighbor in each direction
But can route to receiver by changing any bit

15-441 Spring 2004, Jeff Pang

23

So many DHTs...

« Compare along two axes:

- How many neighbors can you choose from when
forwarding? (Forwarding Selection)

- How many nodes can you choose from when
selecting neighbors? (Neighbor Selection)

 Failure resilience: Forwarding choices
 Picking low-latency neighbors: Both help

15-441 Spring 2004, Jeff Pang

24

Proximity

* Ring:

- Forwarding: log(N) choices for next-hop when
going around ring

- Neighbor selection: Pick from 2”i nodes at “level” |
(great flexibility)

e Jree:

- Forwarding: 1 choice
- Neighbor: 2%i-1 choices for ith neighbor

15-441 Spring 2004, Jeff Pang

25

Hypercube

* Neighbors: 1 choice
- (neighbors who differ in one bit)
* Forwarding:
- Can fix any bit you want.
- N/2 (expected) ways to forward
* S0:
- Neighbors: Hypercube 1, Others: 2%
- Forwarding: tree 1, hypercube logN/2, ring logN

15-441 Spring 2004, Jeff Pang

26

How much does it matter?

 Failure resilience without re-running routing
protocol

- Tree Is much worse; ring appears best

- But all protocols can use multiple neighbors at
various levels to improve these #s

o Proximity

- Neighbor selection more important than route
selection for proximity, and draws from large space
with everything but hypercube

15-441 Spring 2004, Jeff Pang

27

Other approaches

* Instead of log(N), can do:

- Direct routing (everyone knows full routing table)

e Can scale to tens of thousands of nodes

« May fail lookups and re-try to recover from
failures/additions

— One-hop routing with sqgrt(N) state instead of log(N)
state

« What's best for real applications? Still up in the
air.

15-441 Spring 2004, Jeff Pang 28

DHT: Discussion

* Pros:
- Guaranteed Lookup

- O(log N) per node state and search scope
* (Or otherwise)

e Cons;

- Hammer in search of nail? Now becoming
popular in p2p — Bittorrent “Distributed
Tracker”. But still waiting for massive
uptake. Or not.

- Many services (like Google) are scaling to
huge #s withoutDMTAtké& Tog(N)

technialiac

29

Further Information

 We didn't talk about Kademlia's XOR structure
(like a generalized hypercube)

« See “The Impact of DHT Routing Geometry on
Resilience and Proximity” for more detail about

DHT comparison

 No silver bullet: DI

Ts very nice for exact match,

but not for everything (next few slides)

15-441 Spring 2004, Jeff Pang 30

Writable, persistent p2p

* Do you trust your data to 100,000 monkeys?
* Node availability hurts

Ex: Store 5 copies of data on different nodes

When someone goes away, you must replicate
the data they held

Hard drives are *huge”, but cable modem upload
bandwidth is tiny - perhaps 10 Gbytes/day

Takes many days to upload contents of 200GB
hard drive. Very expensive leave/replication
situation!

15-441 Spring 2004, Jeff Pang

31

When are p2p / DHTs useful?

* Caching and “soft-state” data

- Works well! BitTorrent, KaZaA, etc., all
use peers as caches for hot data

* Finding read-only data
- Limited flooding finds hay
- DHTs find needles

* BUT

15-441 Spring 2004, Jeff Pang

32

A Peer-to-peer Google?

« Complex intersection queries (“the” + “who”)
- Billions of hits for each term alone

* Sophisticated ranking

- Must compare many results before returning a
subset to user

* Very, very hard for a DHT / p2p system
— Need high inter-node bandwidth

- (This is exactly what Google does - massive
clusters)

15-441 Spring 2004, Jeff Pang

33

