Dynamic Mesh Refinement with Quad Trees arttCenters

Umut A. Acar Benoit Hudson
Toyota Technological Institute at Chicago Carnegie Mellmiversity
umut@tti-c.org bhudson@cs.cmu. edu
Abstract

Many algorithms exist for producing quality meshes whenitipait point cloud is knowra priori.
However, modern finite element simulations and graphictieaipns need to change the input set dur-
ing the simulation dynamically. In this paper, we show a dgitaalgorithm for building and maintaining
a quadtree under insertions into and deletions from an ippiat set in any fixed dimension. This algo-
rithm runs inO(Ig L/ s) time per update, whetle/s is the spread of the input. The result of the dynamic
quadtree can be combined with a postprocessing step toajerard maintain a simplicial mesh under
dynamic changes in the same asymptotic runtime. The meghidu the dynamic algorithm is of good
quality (it has no small dihedral angle), and is optimal esiThis gives the first time-optimal dynamic
algorithm that outputs good quality meshes in any dimensiés a second result, we dynamize the
quadtree postprocessing technique of Har-PeledUmmgbr for generating meshes in two dimensions.
When composed with the dynamic quadtree algorithm, theltiregualgorithm yields quality meshes
that are the smallest known in practice, while guarantetiaggame asymptotic optimality guarantees.

*This work was supported in part by the National Science Fatiod under grants ACI 0086093, CCR-0085982 and CCR-
0122581 and by a gift from Intel.

1 Introduction

In many applications, we need teeshor atriangulatea domain consisting of points and features by split-
ting it into triangles such that all elements of the domaie epvered by a union of triangles. Meshes
are typically used to interpolate a continuous functiongay of various purposes such as finite element
simulations or graphics. A substantial amount of reseaeshideen performed on tls¢atic meshing prob-
lem [Che89, BEG90, MV92, Rup95, She98, ...] which assumes twatriput domain is known a priori.
We are interested in thgynamic meshing problemhich permits the input to be changed. For the purpose
of this paper, we assume that the input consists of pointshatdhe input can be changed by inserting new
points and deleting existing points.

To be broadly applicable, a dynamic meshing algorithm matisfy the properties satisfied by state-
of-the artstatic meshing algorithms and some more required by the dyanmiagetFirst the algorithm
must yieldconformingmeshesi.e., all points in the input must appear as a corner of a triangtee output.
Second, the output must lgwod quality i.e., the internal angles of the triangles in the output must be
bounded away from 180 Third, the output must bsize competitivei.e., the number of triangles in the
output must be at most a constant factor larger than is optiméhat input. Fourth, the algorithm must be
(work) gficient i.e., it should preprocess the input quickly. Fifth, the outpeismshould bsize-conforming
in the sense of Talmor [Tal97]: output points should be spakceaelation to the local feature size, and no
smaller. Finally, the algorithm must lresponsivei.e,, it should respond to insertions and deletions by
updating its output quickly. The various quality propestere required by applications. For example, in
Finite Element Method (FEM) of scientific computing [Joh>, example], mesh quality determines the
simulation error [BA76]; the size of the mesh determinesdineulation runtime; the size of the smallest
element defines the length of the timestep.

The first meshing algorithms to guarantee good quality ariotnap size emerged in the early 1990s,
with work from Bern, Eppstein, and Gilbert [BEG90]. Theigatithm was later extended to three and
higher dimensions by Mitchell and Vavasis [MV92, MV0OQ]. Bdhese solutions run in tim@(nlg n + m),
wheren is the number of input points, armd is the number of output elements in the optimal result. The
technique uses a quadtree subdivision and maintagrading criterion® between sizes of the cells. This
criterion ensures that the quadtree subdivision can be etbjgpproduce a mesh with good quality and size
guarantees by applying a postprocess. A number of posgsesdave been proposed, the most recent of
which produces the smallest meshes [HB]. Quadtree subdivisons have also been used in otherajgom
search problems. In particular, Eppstein et al. gave a dimdata structure, called skip quad trees, for
maintaing quadtree subdivisions under dynamic changespoost point location, compressed quad trees,
and other search problems such as approximate range sepfEBS05]. Skip quad trees, however, do not
maintain the grade criteria between cells. Therefore tlaeynot directly be used to generate good quality
meshes. For example, in skip quad trees, a single-pointtioisevill only create one new cell, whereas in
meshing, a single insertion can create logarithmically yrreaw triangles.

Dynamic meshing comes up in adaptive mesh refinement (whermésh must be further refined ac-
cording to ephemeral features such as eddies ¢aanhairfoil), in surgical simulations (scalpel cuts create
new features), and in crack or fracture simulations. Theeatiorelatecinetic meshing problem is increas-
ingly in use for fluid-solid interaction problems in the neabf computational fluid mechanics. There are
two main approaches taken in the literature. The easiestrismesh from scratch [KFCO06, BWHTO7].
Unfortunately, it is of course quite wasteful to entirelydw away an almost good mesh. Worse, the two

1The original paper refers to this as thalance criterion We prefer to speak of grading, to avoid confusion with th/on
tangentially related usage of the term balance with redpduinary search trees.

o

o

hANEEEEI
I

o

o

[AANEEEE
[T

e
mwiin

He]
]
e

Figure 1: lllustration of dynamic stability. Top row: 13 pds in part of a circle of 25 points. Bottom
row: 14 points. Left: the quad-tree generated by our algorit Right: the mesh generated bff-oenter
refinement. Note how few quadtree cells or mesh trianglesgea

meshes may flier in every triangle, causing reinterpolation error whepyag values from the old mesh
to the new. Another approach is to locally remesh [COMI, MBF04, CGSO06]. It is easy to implement
locally improving the quality. However, to be size-confamgn (and size-optimal), we must alsoarserthe
mesh [MTT99, LTU98]. Sadly, it is unclear how to make mesh coarsening a lopatation; coarsening
runs in the sam@®(nlgn) time as a full remesh. Our approach can be viewed as a hyédsimulate
remeshing from scratch, but we only use local operationst wicthe mesh does not change, and for small
changes we run in sublinear time. Thus, we get better thabetieof all prior worlds.

Our results. To state our results, we start with a few definitions for cbiazing the input. As usuah
is the number of points in the current inpatjs the the number of vertices in the smallest possible mesh,
is the size of a bounding box in which allpoints fit, ands is the distance between the closest pair, so that
L/sis thespreadof the input. Finallyd is the dimensionality of space, which we consider to be atanihs
Generallyd will be 2 or 3; however, our results apply in any fixed dimensio

We give a mesh refinement algorithm that run©imIg L/s) time to preprocess a static point set with
n points. The preprocessing step yields a quality mesh, asided above. After the preprocessing step,
the input can be changed by inserting new points and deletiigling points. To each such change, the
algorithm responds i®(Ig L/s) time by updating the output mesh. This response time isngbtin two
senses: first, the output mesh may, in the worst case, char@g@doL/s). Second, under the assumption that
the input has polynomial spread, the response tintlgn), matching the lower bound based on sorting. In
addition to optimal response times, the algorithm guasmntkeat the output conforms to the input, has good
guality, is size-optimal, and size-conforming. To satiffgse properties we give a dynamic algorithm that
is history independentvith respect to the preprocessing step in the sense defindtidejancio [Mic97]:
it guarantees that the output mesh is identical to a meshnbialid have been obtained by performing the
preprocessing step with the current input from scratch. Aesalt, the algorithm satisfies the same input-

output relationship properties as the preprocessing $tepbelieve that the proposed algorithm is the first
optimal-time dynamic mesh refinement algorithm with outguility and size guarantees.

Our approach to obtain optimality while guaranteeing wasiquality properties is to dynamize the well-
gradedquad-treealgorithm [BEG90] and the post-process that produces thehrfrem the quad-tree. For
the case two dimensions, we further improve the constambriminvolved by dynamizing the algorithm
of Har-Peled andUngér [HRUO5]. This post-process generates the smallest known rmestie note that
this size guarantee relies on history independence in twicatrways: 1) without history independence
the output size guarantee of the processing technique watlépply to the dynamized algorithm, and
2) the Har-Peled antingor requires that the quad-tree be locally determinethbyinput, which would
not hold without history independence. To obtain the optima-times, we make some small but crucial
modifications to the original quad-tree algorithm of Berrakt Our algorithm divides the cells into size
classes and processes them in size order (largest firsts allbivs us to bound the response time to a
dynamic changes by showing that that a small change to tha éffiects constant number of cells in each
size class. For the algorithm, we show that the followdgigamic stability propertyconsider two executions
of the algorithm with two inputs that fier by a single point, the operations performed by the execsiti
differ byO(lg L/s). We show similar results for the post-processing step.

The dynamic stability bound implies that the algorithms &&ndynamized in a history-independent
fashion to yield an ficient dynamic algorithm. We use recent advances on saladg computation to
perform this dynamization [Aca05]. The approach relies acthange-propagation algorithm that keeps
track of dependences in an execution in such a way that thmuboan be updated by only performing
those operations thatftier between two execution. If the static algorithm satisfisain properties, then
change propagation takes the same time as the dynamidtgtabilnd. We establish our results by showing
that our modified quad-tree algorithm satisfies these ptiggerSelf-adjusting computation helps abstract
away from the details of the dynamization process, whichlmmery messy, byfering an abstract way
(based on dynamic stability) to analyze the performanceyagnhic algorithms, while guaranteeing his-
tory independence. The technique has been applied to gapmblems before including both dynamic
and kinetic problems including previously unsolved profdesuch as three-dimensional kinetic convex
hulls [ABTO7, ABTV06, ABBT06, ABH04].

We note that the algorithms can be dynamized using othenigebs. For example, the change-
propagation algorithm employed by self-adjusting comiperiacan be specialized to this problem to obtain
the same bounds. Also, deletions can be handled lazily layihg) the removal of the deleted point until a
suficiently large (near-linear) number of points are deleted,then remeshing from scratch. Such an algo-
rithm can be made to be size-optimal and, in an amortizedestias near-optimal response time. However,
this approach will not properly coarsen and thus the crygberty of size-conformality will be lost. In any
case, we will need a way to process insertions. Another dfadgnamization techniques include those for
order-decomposable search problems [Ove81]. This apprbaavever, only applies to divide-and-conquer
algorithms.

2 Well-Graded Quadtrees

We describe an algorithm for generating well-graded gesdtthat, via dynamization, yields an responsive
dynamic algorithm. Well-graded quadtrees yield a hiereadrsubdivision of the space into cells (i.e., hyper-
cubes in the specified dimension) that can be used to prodgeedaquality mesh of the input by applyig a
post-processing step.

We define acell as a hypercube in the specified dimension. We say that & celelf-crowdedif it

QUADTREEREFINE(P: point set, L: real, d: int) | appWork(C: cell)
1 Associate P with the cell [O,L]¢ 1 Append ¢ to Wygyq
d ; d
i ||f<_[o|gL|_] is crowded then { appWork([O,L]%) } spLITALLOM: cell set)
4 while (W >0) do 2 mewcells —0
. 3 while (W not empty) do
5 while ((W|=0) do { decrement | }
4 dequeue ¢ from W,
6 spLITALL(W)
7 increment | > (G} « spL1T(C)
6 append each ¢ to newcells
spLiT(C: cell) 7 while (newcells not empty) do
8 Split ¢ into 29 new, smaller cells {c} 8 dequeue ¢, from newcells
9 for (each point p contained by c) do 9 if (¢ is crowded) then { appWork(() }
10 associate p with the ¢ that contains it 10 for (each neighbour ¢ of ¢) do
11 return {c} 11 if (Ic/| = 4lc) then { appWork(C) }

Figure 2: The quadtree refinement algorithm, modified frormBEppstein, and Gilbert [BEG90].

contains two or more input point. A caidlis crowded by a neighbour & ¢ contains exactly one point, and
¢’ contains are least one point. We say that a celtogvdedif it is self-crowded or is crowded by a neighbor.
We say that a celt is ill-graded if it has a neighbourc’ such thaticl/|c’| > 4. We say that a quadtree is
well-gradedif every unsplit cell is both well-graded and uncrowded.

Figure 2 shows our algorithm. The algorithm starts with artatig box (square) of the the point set,
with side lengthL. It maintains a seéV of work items, i.e., cells to split, and a mapping from eadhtoghe
set of input points that it contains. The work-¥#is partitioned into Id- buckets such that the buckéf is
a queue containing the cells of size exactlyThe main loop maintains a fingkin order to quickly find the
largest non-empty bucket. The algorithm proceeds in rouimdsach round, it chooses the set of the largest
cells on the workset and splits all of them using thetALL function. ThespLiTALL first splits each cell in
the bucked by callingeLit. ThespLr function splits the cell into 2sub-cells and updates the cell-to-points
mapping. ThepLitALL function then enqueues the newly-created crowded oradltlgd cells into the work
set by callingabpWork, which is only a function in order for us to easily refer tohtaughout the paper.
At the end of one round of split operations performedsiayrALL the algorithm increments the main loop’s
finger, sincespLiTALL may have made some cells ill-graded that are larger thanetiee greviously being
processed. The keyftitrence between this algorithm and the original quadtregritign [BEG9I0] is that it
uses a size-based ordering of cells by dividing them inte sliasses. This is critical to our dynamic stability
bounds because it allows us to show that a small change topli¢ &fects a constant number of cells in
each size class, by relying on a packing argument.

Figure 3:Left: two cells that crowd each other. The upper-left cell is asti-crowded. The lower-right
cell, note, is not crowdedRight: unbalanced cells. The shaded cells are four times largerdhe of their
neighbours. Note neighbourhood is through vertices.

2.1 Structural Results

Lemma 2.1 During the algorithm, unprocessed crowded cells (if ang®xre all of the size of the smallest
cells in the mesh.

Proof. Initially, this is trivially true (there is only one cell irhe mesh). Later, consider the cetl that
was split to create a crowded cell Clearly,c* was itself crowded, and thus by induction was the smallest
cell in the mesh. Now, we have destroyefdand all its equally-sized cells, and replaced them withsagl
half the size. These new cells must be the smallest cellssimmigsh. Until we split these crowded cells,
any further splits must all be grading splits. A cell can obdyill-graded if it is four times larger than its
neighbour, thus grading splits cannot reduce the size dritedlest cell. =

Lemma 2.2 After a round of splitting crowded cells, until the next rouaf splitting crowded cells, | in-
creases by exactly one every round.

Proof. When splitting the crowded cells, we know that all cells ie thesh are well-graded: there are no
smaller cells, and any larger cells, if ill-graded, wouldoigna work setW. with I’ > | was non-empty, a
contradiction. The crowded cells may cause ill-gradedscelith size corresponding to- 1, but not of size

| + 2 because such cells would already be ill-graded, a coctiadi =

Lemma 2.3 At all points in the algorithm, every cell ¢ has at mogtl{Pneighbours tof sized|c’| < |c| <
0.25c|.

Proof. The proof that the size does noffér much is immediate from the prior lemma. The proof that
this implies a bounded number of neighbours is by a volumé&ipgargument. The constant is precisely
69-49 m

2.2 Size and quality guarantees

To obtain the size and quality guarantees, we can use ang stahdard postprocesses published in Bérn
al. or Mitchell and Vavasis [BEG90, MV00]. Given that our alghm is just a specific ordering consistent
with the schema given by the prior results, we inherit the sind quality guarantees. For example, we
can show that all the simplices have aspect ratio at least somstant that depends only on the dimension,
and not on the input point set. Furthermore, we can show thahg all Steiner triangulations that respect
that aspect ratio bound and in which all the input points app@e size of the triangulation output by the
guadtree algorithm and its postprocess is within a confaatdr of optimal. In fact, the bound is stronger: at
any pointp in the domain, we know that the cell that contapkas size within a constant factor of the local
feature size ap (the distance fronp to the second-nearest input point): the quad-tree is sinésoming.

3 Dynamic Stability

To establish the runtime of our dynamic algorithm, we detaenthe stability of the output relative to
changes in the input. The arguments will be familiar to desig of parallel algorithms — indeed, we draw
on packing arguments from prior parallel meshing resul®J&2, HMP07]. Our runtime is regulated in
large part by the data dependence structure of our algaritve must show that dependency paths are at
mostO(lg L/s) long. Unlike in parallel algorithms, we must also show tieg dependences cannot fan out:
even constant fanout would give us a runtime&dgpoly(L/s)), which is completely unacceptable.

5

Formalizing the notion of stability, consider a run of oug@ithm. It reads in the points, performs
some operations, reads and writes to memory, then returositpot. We can define agxecution tracén
the following way: operations and memory locations are spdlieere is an edge from a memory location
a to an operationf if f readsa; and there is an edge from operatibrio memory locatiorb if f writes
b. Thedynamic stabilityof one pointp is the symmetric dierence between the sets of nodes in trace
wherep was not present, and the nodes in another tfacgherep is present. Note that this is a symmetric
difference, so that the stability of adding and removing the qaoire are equal.

Given a trace, we can make an assignment from data locatiooihér data locations: we assign to a
data locatiori all of its descendents in the trace. This is exactly the sebdés whose value depends on the
value atl. In particular, consider an input data location that hol@sdoordinates of a poiqit. We say a cell
¢ blames gf the location that stores is a trace descendent pf Clearly, a cellc that isblamesa point p
if p crowdsc. Inductively,c also blameg if c is made to be ill-graded because a neighbouringcellas
created by a split, and blamesp. Note that a cell may blame its splitting on many points; edidt will
always blame at least two points.

Clearly, if we consider a given cet] and a pointp that it blames, then the distance in inductive hops
fromcto pis atmosO(Ig L/s): in every hop, we either directly blang or we blamep through a neighbour
of half the size. Thus the trace is a shallow graph; it remiiriee shown that the number of descendents of
an input point (the number of cells that blame it) is bounded.

Lemma 3.1 Assume p is blamed for the split of a cell c. Thied|| € O(|c]).

Proof. If cis being split for crowding, thep is either withinc or is in a neighbouc’ of ¢, and|c’| = |c|.
Thus||pd| < |c. If insteadc is being split for grading, then we can follow the causal chhat leads to
a cell ¢’ that was split for crowding by. Label the chairt; with ¢g = ¢ andcy = ¢’. Because of the
grading condition, we know thdt;| = 2|ci,1| and thusic] = 2X|c’|. The distance we can travel along the
chain is maximized if the chain follows the diagonal of théis;ea total distance of'2v2|c’|. Finally, ¢
either containg or neighbours an equal-sized cell that contging hus the distance from to c is at most
(2V2 + 1)/c/|. In other words||pd| < (V2+ 1)lc.. =

Lemma 3.2 Any point p is blamed for at most(fg L/s) splits.

Proof. Given a size clask we know that any cell of siz€' 2hat is blamed orp must have distance at
mostO(2). In dimensiond, each cell thus has volume']2, whereas all cells must fit within a volume of
O((2)%); therefore, must thus be on®(1) splits in size claskthat are blamed op. Because the algorithm
does not overrefine, there abélg L/s) size classes. =

To account for point location costs, we need to be a bit morefegbabout blame. If a split relocates
a point, there are two possibilities: the split is due to atmw, or the split is due to grading. Lemma 2.1
implies that splits due to grading only occur on cells withraist one point inside, so paying for the relo-
cation is only a constant extra cost. Splits due to crowdilay fve very costly, but the presence or absence
of a point p only changes the decision about whether to split a crowd8dcae p is exactly the second
point in the cell and its neighbours. This allows us to cutdhesal chain and only have a poinblame its
relocation onp when p is exactly the second point in the cell.

Lemma 3.3 Only O(lg L/s) point location decisions blame any given input point p.

Proof. Every point is reassigned at md3{lg L/s) times during the algorithm, since after every split
the cell size falls by half. What is left is to see how many of@ints are reassigned because of the presence

6

of p that would not otherwise be reassigneeé.(their containing cell was split becaupavas present, but
would not have been split wepgabsent).

There are two reasons a point can be reassigned: eithenigigtiowded cell being split, or it is in an
ill-graded cell being split. A reassignment due to a crowdellic can only be ffected if the poinfp was
either in the cellc or in a neighbourc’ of c. Furthermore, we know that there was exactly one other point
in c or ¢’ — otherwise the algorithm would split regardless of the @nes or absence gf. On the other
hand, Lemma 2.1 implies that any ill-graded celnust be uncrowded € therefore only has one point
inside. In other words, if a split reassigns any points, @ssgns exactly one point. The set of splits is
O(lg L/s)-stable, and thus so is the set of point reassignmenta.

Putting these observations together, we get the main tireof¢he paper:

Theorem 3.4 Our quadtree algorithm is (g L/s)-stable under single point insertions and deletions.

4 Dynamization with Self-Adjusting Computation

The prior section established that the static meshing i#thgoiis stable. This section shows how that stability
can be exploited to produce a fagtnamicalgorithm. Theself-adjusting computatiofBAC) model [Aca05]
enables dynamizing static algorithms automatically byingl on achange-propagation algorithrto update
the output when the input changes. The asymptotic completithange propagation can be bound by
analyzing thdrace stabilityof the algorithm under an inserti@eletion of a point intdrom the input. In
this section, we state some definitions that our analysisti@®e3) relies on. For brevity and to draw on
the reader’s intuition, we paraphrase from the more praté$imitions in Acar’s presentation [Aca05] and
present the main stability or update theorem that changeagaiion time can be bound by stability and a
priority-queue overhead for certain programs.

Definition 4.1 (Traces [Aca05, Definition 8]) Thetrace is an ordered, rooted tree that describes the exe-
cution of a program P on an input. Every node corresponds tmatfon call, and is labeled with the name
of the function; its arguments; the values it read from mgmand the return values of its children. A
parent-child relationship represents a caller-calleeat@nship.

Definition 4.2 (Cognates and Trace Distance [Aca05, Defindn 12]) Giventwo traces T and’Tof a pro-
gram P, a node ue T is acognate of a node ve T’ if u and v have equal labels. Theace distance
between T and Tis equal to the symmetric ffitrence between the node-sets of T andi.€., distance is
[T| +|T’| — 2/C| where C is the set of cognates of T and T

Definition 4.3 (Monotone Programs [Aca05, Definition 15])Let T and T be the trace of a program with
inputs that difer by a single insertion or deletion. We say HAmsnotone if operations in T happen in the
same order as their cognates iri @uring a pre-order traversal of the traces.

The change-propagation algorithm relies on a priority gueypropagate the change in the correct order.
The main theorem of Acar [Aca05] states that for monotonganms, the time for change-propagation is
the same as the trace distance if the priority-queue ovdrte@abe bounded by a constant. For the theorem,
we say that a program 3(f(n))-stable for some input change, if the distance between the tracds of
the program with inputs andl’, wherel’ is obtained from by applying the change, is bounded®yf (n)).

For monotone programs, this stability notion correspondiéd dynamic stability notion (Section 3).

Theorem 4.4 (Update time [Aca05, Theorem 34])f a program P is monotone under a single inserfa@etion,
and is 0 f(n))-stable, and if the priority queue can be maintained ifidime per operation, then change-
propagation after an insertigdeletion takes Qf (n)) time.

4.1 Analysis

The main theorem showed that quad-tree refinemenQlgd_/ s)-stable. The remainder of the analysis is
devoted to showing that under single-point insertions aldtibns, our version of the algorithm is mono-
tone, and that using a standard priority queue will tak#&) time per PQ operation under these updates.

Before proceeding to establish monotonicity, we must fiegbdr to noticing that the same ill-graded
cell can be added to the queue repeatedly, by several neighlaxross traces, it may be added by the same
neighbour but in a dierent round. To sidestep these issues, we tag thettWork call with distinguishing
information: the name of the cell that witnessed the badigga@dnd the number of the round.

Lemma 4.5 The well-graded quadtree algorithm is monotone.

Proof. Let Ty andT; be two traces of @upTreeREFINE; U andv are nodes of g, with round-pairr andr’
respectively and lel andv be their cognates iii; (if any). We need to prove that if < vthenu < v. We
distinguish between two cases.

In the first cases andv are from diferent rounds. Given thatandu are cognates, they share round
similarly v andv share round’. Thus ifu precedey, thenr < r’ and thusu precedey.

In the second case, we hawr@ndv from within the same round. We show by an inductive argument
that it is also monotone: The order of trace nodes within andois defined by the order of cells on the
W queue being processed. The order of cells in round O is gleaoinotone: there is only one initial
cell to split. Inductively, assume all cells in all prior mmls were processed monotonically between traces
To and T;. Then their correspondingpLits were called in the same order in both traces. Therefore, the
children generated by the splits were processedr(inALL) in the same order in both traces. Finally, their
correspondingioopWork calls occurred in the same order in both traces. Note thatldlt statement uses
the fact that we only count as cognat@s\Work calls with the same causer. m

Theorem 4.6 (Dynamic Well-Graded Quadtree) TheQuapTreeRerINE algorithm, sequentialized and dy-
namized as described, can maintain a well-graded quaddwes a point set in any fixed dimension under
any sequence of single-point additions and removals.Hgednd 1 be the point sets before and after an
update; let s= min(sy, s1) and n= max(Pol, |1]). Then our dynamic algorithm runs in timgl@L/s) and
uses a history-independent data structure of sigel@L/s).

Proof. The Lemmata of the present Section show thad)reeREerINE is O(Ig L/ s)-stable, monotone.
To show that change-propagation takes the same time, wetaedguw that onlyO(1) trace nodes are in
the priority queue at any time. We know from prior proofs ttating change propagation, on@(1) trace
nodes are processed in any size class. Furthermore, at mizgt @asses are in the queue at any one time:
the current size class; ill-graded cells in one size claggetaif any; and crowded cells which may be in a
smaller size class. The priority queue can therefore betaiagd in constant time. By Theorem 4.4, we
conclude that the algorithm responds to dynamic chang€slgL/s) time.

Since change propagation ensure history independencalgmrithm is history independent. Thus, our
algorithm is topologically identical to one that resulterfr inserting then points of; one by one. Give
our time bound, we know that we can dansertions inO(nlg L/s) time. Since self-adjusting computation
never uses more stace than the running time of the fromescedgorithm, our space bound@nligL/s).
|

T

Figure 4: lllustration of the HPU algorithm picking a loosaip and inserting thefé-center since there is
no third point nearby. The quadtree is carefully used fonploication purposes.

5 Generating small meshes in 2d

The meshes output by the postprocess described in SecB@rewithin a constant factor of optimal size
and of the best possible quality. In practice however, theysabstantially larger than than those output
by Ruppert refinement [Rup95], and unlike in Ruppert refingtnihey do not fier the user of the mesh
any control of the desired quality bountlingér [Ung04] described a way of choosing what he called an
off-center given a bad-quality triangle (one with a small angle), we oesert a Steiner point so that the
shortest edge of the triangle forms a triangle with tifecenter that exactly achieves the quality threshhold.
In theory, df-centers yield optimal-size meshes. In practid¢er meshes are the smallest known. Har-
Peled andJngér [HRUO05] then showed how to uséfecenters to post-process a graded quad-tree in order
to simultaneously achieve the time bounds from quadtredimgsnd the small output size fronftecenter
meshing. We show here how to dynamize the Har-Peled amgbr postprocess. Due to space constraints,
we leave the full details to the Appendix A.

The algorithm proceeds as follows: iteratively, in ordemfrsmallest to largest quadtree cell, the algo-
rithm considers every input poirg in a given cell, then searches neighbouring cells for antippint g.
Having found such a pair of points, it checks whether thes tisird pointr such thatpqr is a Delaunay
triangle, andpqgr has good quality. If there is no suchthen pqis a termedoosepair. The algorithm
constructs an appropriateusing the €f-center, and inserts this which is now treated as an input point.
See Figure 5. During this routine, the quadtree serves thmopea of performing the point location (far
andq) and range queries (for if it exists). As a final post-process, we can again use ttienigue of start-
ing from the smallest cell to the largest and using the geadior point location to compute the Delaunay
triangulation in linear time.

We deviate in one important respect from the original athami of Har-Peled andingor: they left
undefined the order of operations pairs within a size classeslablish the monotonicity condition, we
require that they be done in FIFO order. This should be resoanit of our modification of the Bewt al.
algorithm.

Given that our algorithm performs the same steps as thenatiglgorithm, the correctness, size optimal-
ity (and in-practice performance), and static runtime af modified HPU algorithm immediately follow.
Dynamic stability is all that is left to establish. The argemh (detailed in the Appendix) is reminiscent of
the dynamic stability argument for the quadtree itself. wiree a notion oblamefor off-centers upon input
points, and prove a packing lemma:

Lemma 5.1 (Off-centers pack) Let r be an g-center that blames an input point p. Thiep| € @(NN(r))
where NNFr) is the nearest neighbour of r when r is inserted.

Theorem 5.2 Given a dynamic point sét € [1/3,2/3]? and a radiugedge ratiop > 1, we can dynamically
maintain a mesh of the desired quality using within a (in picc small) constant factor of the optimal

9

number of Steiner vertices. Each addition to or deletiomfrthe input point set can be performed in
O(lg L/s) time.

Proof. Using self-adjusting computation, run the dynamicallgbé quadtree algorithm described
earlier, and use that as input to the dynamically-stable lgB&iprocess described in this section. Upon a
point addition or deletion, we know from Theorem 4.6 thatdbadtree updates @(lg L/s) time. Each cell
is only readO(1) times by the postprocess, so propagating the quadtereeb through the postprocess is
fast. Finally, HPU is itselfO(Ig L/s)-stable, by the previous packing lemma. We omit the morioityrand
priority queue arguments for brevity. m

6 Conclusions

The main algorithmic contribution of this paper is a dynamligorithm for maintaining a quality mesh in
arbitrary dimension. The Har-Peléthgor result that we dynamize is almost certainly gendimlensional;
off-centers generalizdJhg04], and few of the static algorithm’s proofs depend anatision. Our stability
results are independent of dimension (except for a constapbnential in the dimension, hidden in the
big-O; this is unavoidable in mesh refinement).

The main theoretical advance, on the other hand, is thelistaigisult. At least as often as wanting to
add features to the mesh, practitioners wamhtwethe mesh: to put a velocity field upon the vertices of the
mesh, advect them, and then recover a quality mesh. Syataitilts of the sort we proved here typically
also have implications on the performance of t#tirsetic problem.

Compared to the worst case, our algorithm is optimal in mgmsage: we us®(nlg L/s) space, and
the mesh has exactly that size. However, the worst caseriqunt: there are broad classes of input
where the mesh sizm is only of sizeO(n). The optimal output-sensitive space usage bound is@{os.
The memory usage is dominated by storing the points, fortpogation. However, to handle single-point
updates, points only need to be stored in cells that have oim¢ ip them, as these are the only cells that,
upon a point addition, may split themselves. All other cakkged only remember counts. This yields the
desired space bound, but at the cost of needing to track d@giendencies by hand rather than using a
self-adjusting computation library.

The algorithm that we give here only handles inputs pointsnot input-features such as segments or
polygons. Even in the static case, handling input featwesfiicult: the first time-optimal algorithm that
can handle features was discovered very recently [HMPOG6PBIFL As with the quadtree algorithm, this
algorithm has a data dependency deptlo@f L/s). We therefore hope to be able to use the techniques in
this paper to dynamize that algorithm and thus handle mareticated geometries.

References

[ABBT06] Umut A. Acar, Guy E. Blelloch, Matthias Blume, andaldat Tangwongsan. An experimental
analysis of self-adjusting computation. Rroceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementgt2e06.

[ABH*04] Umut A. Acar, Guy E. Blelloch, Robert Harper, Jorge L.t8&, and Maverick Woo. Dy-
namizing static algorithms with applications to dynamiees and history independence. In
ACM-SIAM Symposium on Discrete Algorithms (SO2Ap4.

10

[ABTO7]

Umut A. Acar, Guy E. Blelloch, and Kanat TangwongsaRinetic 3d convex hulls via self-
adjusting computation (an illustration). WKCM Symposium on Computational Geometry
(SCG) 2007.

[ABTV06] Umut A. Acar, Guy E. Blelloch, Kanat TangwongsamadaJorge L. Vittes. Kinetic algorithms

[Aca05]
[BA76]

[BEG90]

[BWHTO7]
[CCM*04]
[CGS06]
[Che89]

[EGSO05]

[HMPOE6]
[HMPO7]
[HPUO5]
[Joh87]
[KFCOO06]

[LT U98]

via self-adjusting computation. Technical Report CMU-@&4115, Department of Computer
Science, Carnegie Mellon University, March 2006.

Umut A. Acar. Self-Adjusting ComputationPhD thesis, Department of Computer Science,
Carnegie Mellon University, May 2005.

Ivo BabuSka and A. K. Aziz. On the Angle Condition ihet Finite Element MethodSIAM
Journal on Numerical Analysid3(2):214-226, April 1976.

Marshall Bern, David Eppstein, and John R. GilbeProvably Good Mesh Generation. In
31st Annual Symposium on Foundations of Computer Scipages 231-241. IEEE Computer
Society Press, 1990.

Adam W. Bargteil, Chris Wojtan, Jessica K. Hodgiaad Greg Turk. A finite element method
for animating large viscoplastic flovACM Trans. Graph.26(3), 2007.

D. Cardoze, A. Cunha, G. Miller, T. Phillips, and N. Walgton. A bezier-based approach to
unstructured moving meshes. Symposium on Computational Geomepgges 71-80, 2004.

Narcis Coll, Marité Guerrieri, and J. Antoni Sedla. Mesh modification under local domain
changes. Ii5th International Meshing Roundtableages 39-56, 2006.

L. Paul Chew. Guaranteed-quality triangular meshechnical Report 89-983, Department of
Computer Science, Cornell University, 1989.

David Eppstein, Michael T. Goodrich, and Jonathéergy Sun. The skip quadtree: a sim-
ple dynamic data structure for multidimensional data.21ist Symposium on Computational
Geometrypages 296—-305, 2005.

Benoit Hudson, Gary Miller, and Todd Phillips. gaVoronoi Refinement. IRroceedings
of the 15th International Meshing Roundtapgages 339-356, Birmingham, Alabama, 2006.

Benoit Hudson, Gary L. Miller, and Todd Phillips p&se Parallel Delaunay Refinement. In
19th ACM Symposium on Parallelism in Algorithms and Araltitees 2007.

Sariel Har-Peled and Alpdingdr. A time-optimal Delaunay refinement algorithm in two
dimensions. Ii21st Symposium on Computational Geomegiages 228-236, 2005.

Claes JohnsonNumerical solutions of partial gierential equations by the finite element
method Cambridge University Press, 1987.

Bryan M. Klingner, Bryan E. Feldman, Nuttapong @Gtanez, and James F. O’'Brien. Fluid
animation with dynamic meshes. Rroceedings of ACM SIGGRAPH 2Q@&ugust 2006.

X.-Y. Li, S.-H. Teng, and AUngor. Simultaneous refinement and coarsening: adaptshimg
with moving boundaries. liith International Meshing Roundtablpages 201-210, Dearborn,
Mich., 1998.

11

[MBF04]
[Mic97]
[MTT99]

[MV92]

[MVOO]

[Ove81]

[Rup95]

[Sheos]

[STUO02]

[Talo7]

[Ung04]

Neil Molino, Zhaosheng Bao, and Ron Fedkiw. A vittude algorithm for changing mesh
topology during simulation. ISIGGRAPH2004.

Daniele Micciancio. Oblivious data structures:ptipations to cryptography. IRroceedings
of the 29th Annual ACM Symposium on Theory of Compugiages 456-464, 1997.

Gary L. Miller, Dafna Talmor, and Shang-Hua Teng. tdpal coarsening of unstructured
meshesJ. Algorithms 31(1):29—-65, 1999.

Scott A. Mitchell and Stephen A. Vavasis. Quality Me&eneration in Three Dimensions. In
Proceedings of the Eighth Annual Symposium on Computdti@eametry pages 212-221,
1992.

Scott A. Mitchell and Stephen A. Vavasis. Quality rhegeneration in higher dimensiorSlAM
Journal on Computing29(4):1334-1370, 2000.

Mark H. Overmars. Dynamization of order decompésaet problems. J. Algorithms
2(3):245-260, 1981.

Jim Ruppert. A Delaunay refinement algorithm forlgu&-dimensional mesh generatiod.
Algorithms 18(3):548-585, 1995.

Jonathan Richard Shewchuk. Tetrahedral Mesh @&melby Delaunay Refinement. RFro-
ceedings of the Fourteenth Annual Symposium on ComputhtBeometrypages 86—-95, Min-
neapolis, Minnesota, June 1998. Assaociation for Compudaghinery.

Daniel Spielman, Shang-Hua Teng, and Alpergor. Parallel Delaunay refinement: Algo-
rithms and analyses. Rroceedings, 11th International Meshing Roundtableges 205-218.
Sandia National Laboratories, September 2002. /httpw.arxiv.orgabgcs.CG0207063.

Dafna Talmor.Well-Spaced Points for Numerical Method&hD thesis, Carnegie Mellon Uni-
versity, Pittsburgh, August 1997. CMU CS Tech Report CMU-475164.

AlperUngér. Qf-centers: A new type of Steiner point for computing sizeiropt quality-
guaranteed Delaunay triangulations.LIWTIN, pages 152-161, 2004.

12

DYNHPU(P € [1/3,2/3]%, p)

1 Construct a graded quadtree Q7

2 Rescale so that the size of the smallest cell is 1; let L be the largest cell.
3 for (i=0 to IgL) do

4 enqueue all cells of size 2' into Q

5 for (i=0 to IgL) do

6 while (Q; is non-empty)

7 collect all loose pairs pg where p is an active vertex in a cell on Q
8

empty Q;
9 for each collected pq
10 if pq is no longer loose then skip pq
11 compute the off-center r of pq
12 add r to the smallest cell c such that (a) ¢ contains r, (b) |c|>2, (c) Gowlcl < prll < Cyplcl
13 append C to Qqq
14 if pgq is still loose, repeat
15

Figure 5: A dynamically-stable version of the Har-Peled Engor [HRU05] algorithm. The key dierence

is that we define more carefully the ordering of items on thekwqpueue. We also require the use of a
dynamically-stable graded quadtree algorithm sucha<?. Note that Line 14 is triggered only gqis
loose from both left and right.

A Generating small meshes in 2d

We use the following terms from Har-Peled addgor. Most of the following definitions define an orien-
tation; we write the definitions for the counterclockwisew® orientation and leave the reader to perform
appropriate substitutions to define the clockwise (cw)\ejant.

Definition A.1 (Leaf) Given a pair of points p and g, take a point ¢ such tleqt = |cq = p|pq|, and|pqgd
forms a counterclockwise cycle. Tbaw-leaf of pq is the disc [, p|pq).

Definition A.2 (Loose pair) A pair pq isccw-loose if the ccw-leaf is empty of any points. A pair pq is
looseif it is either ccw-loose or cw-loose.

Definition A.3 (Crescent) Given a pair pq, let ¢ be the point on the ccw-leaf of pq thaaithiest from p
and g. Theccw-crescent of pq is the portion of the disc @, |pd) with the ccw-leaf removed.

Definition A.4 (Off-center) Let pq be a ccw-loose pair pg. If the ccw-crescent of pq is gntpén the
ccw-gffcenter of pq is the point ¢ from the definition of the crescent. If tbe&-crescent is non-empty, take
the point p such that disc that circumscribes p, pnd g is empty. Thecw-gffcenter is the center of that
disc.

Defir_1_ition A.5 (Active point) A point p isactive if it may form a loose pair with another active point. See
[HPUO5, Lemmata 4.8—-4.11] for proofs and technical definiticd@aly (1) points are active in any cell of
a graded quadtree.

We present our modification of the Har-Peled &iayor algorithm in Figure 5. &xHPU takes as input
the point set, a radiyisdge quality boung@ > /2, and a dynamic quadtree. It produces as output a list of
points. We can use a modification oixEHPU to produce the Delaunay triangulation in time linearhie t

13

output size: to decide that a paigis not loose requires finding a poihin the leaf ofpg such thatpqtis
Delaunay.

The algorithm proceeds as follows: iteratively, roughlyonder from smallest to largest loose pair, the
algorithm identifies a loose pair and inserts if6a@enter (or both fi-centers, if it is loose from both sides).
It uses the quadtree for two purposes: to order the loose @airwithin a constant factor), and to test
for looseness. We deviate in one respect from the origirgrithm of Har-Peled andingér: they left
undefined the order of loose pairs within a size ciadsnes 7-15), whereas to establish Lemma A.8 we
require that they be done in FIFO order. In essence, we simptacessing; in parallel.

Given that our algorithm performs the same steps as thenatigigorithm, the correctness, size op-
timality (and in-practice performance), and static rumtiof our DrxHPU algorithm immediately follow.
Dynamic stability is all that is left to establish. The argemhwill be reminiscent of the dynamic stability
argument for EnQT: we show that any input poirg can only be blamed 0®(1) off-center insertions for
any value of.

Definition A.6 (Insertion radius) Theinsertion radius of an gf-center r, denotedR(r), is the distance
from r to its nearest neighbour at the time r was inserted.

Lemma A.7 (The insertion radius is large) Consider a loose pair pg and theirffecenter r. Then the
insertion radius of r follow2p|pq > IR(r) > p|pg.

Proof. There are two cases: (1) if there is a verté the crescent, thenis the circumcenter opqt
By definition, pqtis Delaunay: its circumdisc is empty of any other points. réfare, IR¢) = R(pqf). Also,
becauseqis loose,pgt must have bad radifedge ratioR(pqt)/|pg > p, or equivalently IR() > p|pq.

If instead the crescent is empty, theis the farthest point on the flower @fg, and we know that the
crescent ofpqis empty of points. The crescent pf has radiugpr|, which shows that IR} = |pr|. From
the Pythagorean theorem, we can compute)IR(pr| > o|pg.

In either caser, p, andgall lie on a circle of radius at mogtpq, and thus can be separated by no more
than twice that distance. =

Lemma A.8 (Loose pairs grow geometrically) After every iteration of th®ynHPUwhile loop, the size of
the smallest remaining loose pair in iteration i of the foofogrows by a factor at leagt

Proof. Lets; be the length of the shortest loose pair at the beginningeoftthiteration of the while
loop in iterationi of the for loop. Consider a loose pair seen at the end of iteraj, but not seen at the
beginning of the iteration. Such a loose pair must includeast one newfé-centerr; if it is a pair made
of two new dt-centers, let be the newer one. Thatfecenter issued from a loose pair of length at lesyst
By Lemma A.7, the nearest neighbourrak at distance at leaglsj; in particular, its partner in the loose
pair must be at least that far. m

Lemma A.9 (Loose pairs don’t grow too fast) All loose pairs processed in iteration i of the for loop have
length in®(2").

Proof. The upper and lower bounds were proven beforel)8®, Lemmata 4.3, 4.7]. =
Definition A.10 (Blame for off-centers) An gf-center rdirectly blames a point p if r issues from a loose

pair around p. Transitively, indirectly blames those that p blames.

14

Lemma A.11 (Off-centers pack) Let r be an g-center that blames a point p. Thep| € O(IR(r)).

Proof. That IR({) < |rp| is trivial: the insertion radius af is empty of points.

If r directly blamesp, then this is restating Lemma A.7.

If r directly blames a poing that transitively blameg, then by the triangle inequality, we hajr@| <
Irgl+|gpl. We know thatrg| = IR(r) by definition. We can inductively assume that there is a @& such
that|pg < kIR(Q). Thus,|rp| < IR(r) + kIR(q). It remains to bound IRY) in terms of IR¢); this follows
from Lemma A.7. Thusyp| < (1 + k/p) IR(r). For anyp > 1,k is a constant wittk = p/(p —1). =

Finally, we can state the overall result:

Theorem A.12 Under self-adjusting computatio@ynHPU runs in (g L/s) time per addition to or re-
moval from the input point set.

Proof. By Theorem 4.6, maintaining the dynamic quad tree t&b@g L /s) time per update.

Using Lemma A.11 in an area packing argument, at g4) off-centers in iteratiom blame any input
point p. Therefore, at mogD(Ig L/s) off-centers of any iteration blamg Every df-center insertion reads
at mostO(1) input or Steiner points, ard(1) cells of the quadtree.

For brevity, we elide the monotonicity argument, which iseegially identical to that in Section 4.1.

Again using the fact that every while loop iteration@1)-stable, and using the fact (derived from
Lemma A.9) that we onlyfectO(1) iterations of NHPU at a time, the priority queue costs ofHPU
areO(1) per operation. m

15

