
Dynamic Mesh Refinement with Quad Trees and Off-Centers∗

Umut A. Acar Benoı̂t Hudson
Toyota Technological Institute at Chicago Carnegie MellonUniversity

umut@tti-c.org bhudson@cs.cmu.edu

Abstract

Many algorithms exist for producing quality meshes when theinput point cloud is knowna priori.
However, modern finite element simulations and graphics applications need to change the input set dur-
ing the simulation dynamically. In this paper, we show a dynamic algorithm for building and maintaining
a quadtree under insertions into and deletions from an inputpoint set in any fixed dimension. This algo-
rithm runs inO(lg L/s) time per update, whereL/s is the spread of the input. The result of the dynamic
quadtree can be combined with a postprocessing step to generate and maintain a simplicial mesh under
dynamic changes in the same asymptotic runtime. The mesh output by the dynamic algorithm is of good
quality (it has no small dihedral angle), and is optimal in size. This gives the first time-optimal dynamic
algorithm that outputs good quality meshes in any dimension. As a second result, we dynamize the
quadtree postprocessing technique of Har-Peled andÜngör for generating meshes in two dimensions.
When composed with the dynamic quadtree algorithm, the resulting algorithm yields quality meshes
that are the smallest known in practice, while guaranteeingthe same asymptotic optimality guarantees.

∗This work was supported in part by the National Science Foundation under grants ACI 0086093, CCR-0085982 and CCR-
0122581 and by a gift from Intel.

1 Introduction

In many applications, we need tomeshor a triangulatea domain consisting of points and features by split-
ting it into triangles such that all elements of the domain are covered by a union of triangles. Meshes
are typically used to interpolate a continuous function forany of various purposes such as finite element
simulations or graphics. A substantial amount of research has been performed on thestatic meshing prob-
lem [Che89, BEG90, MV92, Rup95, She98, . . .] which assumes that the input domain is known a priori.
We are interested in thedynamic meshing problemwhich permits the input to be changed. For the purpose
of this paper, we assume that the input consists of points andthat the input can be changed by inserting new
points and deleting existing points.

To be broadly applicable, a dynamic meshing algorithm must satisfy the properties satisfied by state-
of-the artstatic meshing algorithms and some more required by the dyanmic setting. First the algorithm
must yieldconformingmeshes,i.e., all points in the input must appear as a corner of a triangle in the output.
Second, the output must begood quality, i.e., the internal angles of the triangles in the output must be
bounded away from 180◦. Third, the output must besize competitive, i.e., the number of triangles in the
output must be at most a constant factor larger than is optimal on that input. Fourth, the algorithm must be
(work) efficient, i.e., it should preprocess the input quickly. Fifth, the output mesh should besize-conforming
in the sense of Talmor [Tal97]: output points should be spaced in relation to the local feature size, and no
smaller. Finally, the algorithm must beresponsive, i.e., it should respond to insertions and deletions by
updating its output quickly. The various quality properties are required by applications. For example, in
Finite Element Method (FEM) of scientific computing [Joh87,for example], mesh quality determines the
simulation error [BA76]; the size of the mesh determines thesimulation runtime; the size of the smallest
element defines the length of the timestep.

The first meshing algorithms to guarantee good quality and optimal size emerged in the early 1990s,
with work from Bern, Eppstein, and Gilbert [BEG90]. Their algorithm was later extended to three and
higher dimensions by Mitchell and Vavasis [MV92, MV00]. Both these solutions run in timeO(n lg n+m),
wheren is the number of input points, andm is the number of output elements in the optimal result. The
technique uses a quadtree subdivision and maintains agrading criterion1 between sizes of the cells. This
criterion ensures that the quadtree subdivision can be mapped to produce a mesh with good quality and size
guarantees by applying a postprocess. A number of postprocesses have been proposed, the most recent of
which produces the smallest meshes [HPÜ05]. Quadtree subdivisons have also been used in other geometric
search problems. In particular, Eppstein et al. gave a dynamic data structure, called skip quad trees, for
maintaing quadtree subdivisions under dynamic changes to support point location, compressed quad trees,
and other search problems such as approximate range searching [EGS05]. Skip quad trees, however, do not
maintain the grade criteria between cells. Therefore they cannot directly be used to generate good quality
meshes. For example, in skip quad trees, a single-point insertion will only create one new cell, whereas in
meshing, a single insertion can create logarithmically many new triangles.

Dynamic meshing comes up in adaptive mesh refinement (where the mesh must be further refined ac-
cording to ephemeral features such as eddies cast off an airfoil), in surgical simulations (scalpel cuts create
new features), and in crack or fracture simulations. The closely relatedkineticmeshing problem is increas-
ingly in use for fluid-solid interaction problems in the realm of computational fluid mechanics. There are
two main approaches taken in the literature. The easiest is to remesh from scratch [KFCO06, BWHT07].
Unfortunately, it is of course quite wasteful to entirely throw away an almost good mesh. Worse, the two

1The original paper refers to this as thebalance criterion. We prefer to speak of grading, to avoid confusion with the only
tangentially related usage of the term balance with respectto binary search trees.

1

Figure 1: Illustration of dynamic stability. Top row: 13 points in part of a circle of 25 points. Bottom
row: 14 points. Left: the quad-tree generated by our algorithm. Right: the mesh generated by off-center
refinement. Note how few quadtree cells or mesh triangles change.

meshes may differ in every triangle, causing reinterpolation error when copying values from the old mesh
to the new. Another approach is to locally remesh [CCM+04, MBF04, CGS06]. It is easy to implement
locally improving the quality. However, to be size-conforming (and size-optimal), we must alsocoarsenthe
mesh [MTT99, LT̈U98]. Sadly, it is unclear how to make mesh coarsening a localoperation; coarsening
runs in the sameO(n lg n) time as a full remesh. Our approach can be viewed as a hybrid:we simulate
remeshing from scratch, but we only use local operations, most of the mesh does not change, and for small
changes we run in sublinear time. Thus, we get better than thebest of all prior worlds.

Our results. To state our results, we start with a few definitions for characterizing the input. As usual,n
is the number of points in the current input,m is the the number of vertices in the smallest possible mesh,L
is the size of a bounding box in which alln points fit, ands is the distance between the closest pair, so that
L/s is thespreadof the input. Finally,d is the dimensionality of space, which we consider to be a constant.
Generally,d will be 2 or 3; however, our results apply in any fixed dimension.

We give a mesh refinement algorithm that runs inO(n lg L/s) time to preprocess a static point set with
n points. The preprocessing step yields a quality mesh, as described above. After the preprocessing step,
the input can be changed by inserting new points and deletingexisting points. To each such change, the
algorithm responds inO(lg L/s) time by updating the output mesh. This response time is optimal in two
senses: first, the output mesh may, in the worst case, change by O(lg L/s). Second, under the assumption that
the input has polynomial spread, the response time isO(lg n), matching the lower bound based on sorting. In
addition to optimal response times, the algorithm guarantees that the output conforms to the input, has good
quality, is size-optimal, and size-conforming. To satisfythese properties we give a dynamic algorithm that
is history independentwith respect to the preprocessing step in the sense defined byMicciancio [Mic97]:
it guarantees that the output mesh is identical to a mesh thatwould have been obtained by performing the
preprocessing step with the current input from scratch. As aresult, the algorithm satisfies the same input-

2

output relationship properties as the preprocessing step.We believe that the proposed algorithm is the first
optimal-time dynamic mesh refinement algorithm with outputquality and size guarantees.

Our approach to obtain optimality while guaranteeing various quality properties is to dynamize the well-
gradedquad-treealgorithm [BEG90] and the post-process that produces the mesh from the quad-tree. For
the case two dimensions, we further improve the constant factors involved by dynamizing the algorithm
of Har-Peled and̈Ungör [HPÜ05]. This post-process generates the smallest known meshes. We note that
this size guarantee relies on history independence in two critical ways: 1) without history independence
the output size guarantee of the processing technique wouldnot apply to the dynamized algorithm, and
2) the Har-Peled and̈Ungör requires that the quad-tree be locally determined bythe input, which would
not hold without history independence. To obtain the optimal run-times, we make some small but crucial
modifications to the original quad-tree algorithm of Bern etal. Our algorithm divides the cells into size
classes and processes them in size order (largest first). This allows us to bound the response time to a
dynamic changes by showing that that a small change to the input effects constant number of cells in each
size class. For the algorithm, we show that the followingdynamic stability property: consider two executions
of the algorithm with two inputs that differ by a single point, the operations performed by the executions
differ byO(lg L/s). We show similar results for the post-processing step.

The dynamic stability bound implies that the algorithms canbe dynamized in a history-independent
fashion to yield an efficient dynamic algorithm. We use recent advances on self-adjusting computation to
perform this dynamization [Aca05]. The approach relies on achange-propagation algorithm that keeps
track of dependences in an execution in such a way that the output can be updated by only performing
those operations that differ between two execution. If the static algorithm satisfies certain properties, then
change propagation takes the same time as the dynamic stability bound. We establish our results by showing
that our modified quad-tree algorithm satisfies these properties. Self-adjusting computation helps abstract
away from the details of the dynamization process, which canbe very messy, by offering an abstract way
(based on dynamic stability) to analyze the performance of dynamic algorithms, while guaranteeing his-
tory independence. The technique has been applied to various problems before including both dynamic
and kinetic problems including previously unsolved problems such as three-dimensional kinetic convex
hulls [ABT07, ABTV06, ABBT06, ABH+04].

We note that the algorithms can be dynamized using other techniques. For example, the change-
propagation algorithm employed by self-adjusting computation can be specialized to this problem to obtain
the same bounds. Also, deletions can be handled lazily by delaying the removal of the deleted point until a
sufficiently large (near-linear) number of points are deleted, and then remeshing from scratch. Such an algo-
rithm can be made to be size-optimal and, in an amortized sense, has near-optimal response time. However,
this approach will not properly coarsen and thus the crucialproperty of size-conformality will be lost. In any
case, we will need a way to process insertions. Another classof dynamization techniques include those for
order-decomposable search problems [Ove81]. This approach, however, only applies to divide-and-conquer
algorithms.

2 Well-Graded Quadtrees

We describe an algorithm for generating well-graded quadtrees that, via dynamization, yields an responsive
dynamic algorithm. Well-graded quadtrees yield a hierachical subdivision of the space into cells (i.e., hyper-
cubes in the specified dimension) that can be used to produce agood-quality mesh of the input by applyig a
post-processing step.

We define acell as a hypercube in the specified dimension. We say that a cellc is self-crowdedif it

3

QuadTreeRefine(P: point set, L: real, d: int)

1 Associate P with the cell [0, L]d

2 If [0, L]d is crowded then { addWork([0, L]d) }
3 l ← lg L
4 while (|W| > 0) do
5 while (|Wl | = 0) do { decrement l }
6 splitAll(Wl)

7 increment l

split(c: cell)

8 Split c into 2d new, smaller cells {ci}
9 for (each point p contained by c) do
10 associate p with the ci that contains it

11 return {ci}

addWork(c: cell)

1 Append c to Wlg |c|

splitAll(Wl: cell set)

2 newcells ← ∅
3 while (Wl not empty) do
4 dequeue c from Wl

5 {ci} ← split(c)
6 append each ci to newcells

7 while (newcells not empty) do
8 dequeue ci from newcells

9 if (ci is crowded) then { addWork(ci) }
10 for (each neighbour c′i of ci) do
11 if (|c′i | ≥ 4|ci |) then { addWork(c′i) }

Figure 2: The quadtree refinement algorithm, modified from Bern, Eppstein, and Gilbert [BEG90].

contains two or more input point. A cellc is crowded by a neighbour c′ if c contains exactly one point, and
c′ contains are least one point. We say that a cell iscrowdedif it is self-crowded or is crowded by a neighbor.
We say that a cellc is ill-graded if it has a neighbourc′ such that|c|/|c′| ≥ 4. We say that a quadtree is
well-gradedif every unsplit cell is both well-graded and uncrowded.

Figure 2 shows our algorithm. The algorithm starts with a bounding box (square) of the the point set,
with side lengthL. It maintains a setW of work items, i.e., cells to split, and a mapping from each cell to the
set of input points that it contains. The work-setW is partitioned into lgL buckets such that the bucketWi is
a queue containing the cells of size exactly 2i . The main loop maintains a fingerl in order to quickly find the
largest non-empty bucket. The algorithm proceeds in rounds. In each round, it chooses the set of the largest
cells on the workset and splits all of them using theA function. TheA first splits each cell in
the bucked by calling. The function splits the cell into 2d sub-cells and updates the cell-to-points
mapping. TheA function then enqueues the newly-created crowded or ill-graded cells into the work
set by callingW, which is only a function in order for us to easily refer to it throughout the paper.
At the end of one round of split operations performed byA the algorithm increments the main loop’s
finger, sinceA may have made some cells ill-graded that are larger than the cells previously being
processed. The key difference between this algorithm and the original quadtree algorithm [BEG90] is that it
uses a size-based ordering of cells by dividing them into size classes. This is critical to our dynamic stability
bounds because it allows us to show that a small change to the input affects a constant number of cells in
each size class, by relying on a packing argument.

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

Figure 3: Left : two cells that crowd each other. The upper-left cell is alsoself-crowded. The lower-right
cell, note, is not crowded.Right: unbalanced cells. The shaded cells are four times larger than one of their
neighbours. Note neighbourhood is through vertices.

4

2.1 Structural Results

Lemma 2.1 During the algorithm, unprocessed crowded cells (if any exist) are all of the size of the smallest
cells in the mesh.

Proof. Initially, this is trivially true (there is only one cell in the mesh). Later, consider the cellc+ that
was split to create a crowded cellc. Clearly,c+ was itself crowded, and thus by induction was the smallest
cell in the mesh. Now, we have destroyedc+ and all its equally-sized cells, and replaced them with cells of
half the size. These new cells must be the smallest cells in the mesh. Until we split these crowded cells,
any further splits must all be grading splits. A cell can onlybe ill-graded if it is four times larger than its
neighbour, thus grading splits cannot reduce the size of thesmallest cell.

Lemma 2.2 After a round of splitting crowded cells, until the next round of splitting crowded cells, l in-
creases by exactly one every round.

Proof. When splitting the crowded cells, we know that all cells in the mesh are well-graded: there are no
smaller cells, and any larger cells, if ill-graded, would imply a work setWl′ with l′ > l was non-empty, a
contradiction. The crowded cells may cause ill-graded cells, with size corresponding tol + 1, but not of size
l + 2 because such cells would already be ill-graded, a contradiction.

Lemma 2.3 At all points in the algorithm, every cell c has at most O(1) neighbours c′ of size4|c′| ≤ |c| ≤
0.25|c′ |.

Proof. The proof that the size does not differ much is immediate from the prior lemma. The proof that
this implies a bounded number of neighbours is by a volume packing argument. The constant is precisely
6d − 4d.

2.2 Size and quality guarantees

To obtain the size and quality guarantees, we can use any of the standard postprocesses published in Bernet
al. or Mitchell and Vavasis [BEG90, MV00]. Given that our algorithm is just a specific ordering consistent
with the schema given by the prior results, we inherit the size and quality guarantees. For example, we
can show that all the simplices have aspect ratio at least some constant that depends only on the dimension,
and not on the input point set. Furthermore, we can show that among all Steiner triangulations that respect
that aspect ratio bound and in which all the input points appear, the size of the triangulation output by the
quadtree algorithm and its postprocess is within a constantfactor of optimal. In fact, the bound is stronger: at
any pointp in the domain, we know that the cell that containsp has size within a constant factor of the local
feature size atp (the distance fromp to the second-nearest input point): the quad-tree is size-conforming.

3 Dynamic Stability

To establish the runtime of our dynamic algorithm, we determine thestability of the output relative to
changes in the input. The arguments will be familiar to designers of parallel algorithms – indeed, we draw
on packing arguments from prior parallel meshing results [STÜ02, HMP07]. Our runtime is regulated in
large part by the data dependence structure of our algorithm. We must show that dependency paths are at
mostO(lg L/s) long. Unlike in parallel algorithms, we must also show thatthe dependences cannot fan out:
even constant fanout would give us a runtime ofO(poly(L/s)), which is completely unacceptable.

5

Formalizing the notion of stability, consider a run of our algorithm. It reads in the points, performs
some operations, reads and writes to memory, then returns anoutput. We can define anexecution tracein
the following way: operations and memory locations are nodes; there is an edge from a memory location
a to an operationf if f readsa; and there is an edge from operationf to memory locationb if f writes
b. Thedynamic stabilityof one pointp is the symmetric difference between the sets of nodes in traceT1

wherep was not present, and the nodes in another traceT2 wherep is present. Note that this is a symmetric
difference, so that the stability of adding and removing the samepoint are equal.

Given a trace, we can make an assignment from data locations to other data locations: we assign to a
data locationl all of its descendents in the trace. This is exactly the set ofnodes whose value depends on the
value atl. In particular, consider an input data location that holds the coordinates of a pointp. We say a cell
c blames pif the location that storesc is a trace descendent ofp. Clearly, a cellc that isblamesa point p
if p crowdsc. Inductively,c also blamesp if c is made to be ill-graded because a neighbouring cellc′ was
created by a split, andc′ blamesp. Note that a cell may blame its splitting on many points; indeed, it will
always blame at least two points.

Clearly, if we consider a given cellc, and a pointp that it blames, then the distance in inductive hops
from c to p is at mostO(lg L/s): in every hop, we either directly blamep, or we blamep through a neighbour
of half the size. Thus the trace is a shallow graph; it remainsto be shown that the number of descendents of
an input point (the number of cells that blame it) is bounded.

Lemma 3.1 Assume p is blamed for the split of a cell c. Then||pc|| ∈ O(|c|).

Proof. If c is being split for crowding, thenp is either withinc or is in a neighbourc′ of c, and|c′| = |c|.
Thus ||pc|| ≤ |c|. If insteadc is being split for grading, then we can follow the causal chain that leads to
a cell c′ that was split for crowding byp. Label the chainci with c0 = c andck = c′. Because of the
grading condition, we know that|ci | = 2|ci+1| and thus|c| = 2k|c′|. The distance we can travel along the
chain is maximized if the chain follows the diagonal of the cells, a total distance of 2k

√
2|c′|. Finally, c′

either containsp or neighbours an equal-sized cell that containsp. Thus the distance fromp to c is at most
(2k
√

2+ 1)|c′ |. In other words,||pc|| < (
√

2+ 1)|c|.

Lemma 3.2 Any point p is blamed for at most O(lg L/s) splits.

Proof. Given a size classl, we know that any cell of size 2l that is blamed onp must have distance at
mostO(2l). In dimensiond, each cell thus has volume (2l)d, whereas all cells must fit within a volume of
O((2l)d); therefore, must thus be onlyO(1) splits in size classl that are blamed onp. Because the algorithm
does not overrefine, there areO(lg L/s) size classes.

To account for point location costs, we need to be a bit more careful about blame. If a split relocates
a point, there are two possibilities: the split is due to crowding, or the split is due to grading. Lemma 2.1
implies that splits due to grading only occur on cells with atmost one point inside, so paying for the relo-
cation is only a constant extra cost. Splits due to crowding may be very costly, but the presence or absence
of a point p only changes the decision about whether to split a crowded cell c if p is exactly the second
point in the cell and its neighbours. This allows us to cut thecausal chain and only have a pointq blame its
relocation onp whenp is exactly the second point in the cell.

Lemma 3.3 Only O(lg L/s) point location decisions blame any given input point p.

Proof. Every point is reassigned at mostO(lg L/s) times during the algorithm, since after every split
the cell size falls by half. What is left is to see how many other points are reassigned because of the presence

6

of p that would not otherwise be reassigned (i.e., their containing cell was split becausep was present, but
would not have been split werep absent).

There are two reasons a point can be reassigned: either it is in a crowded cell being split, or it is in an
ill-graded cell being split. A reassignment due to a crowdedcell c can only be affected if the pointp was
either in the cellc or in a neighbourc′ of c. Furthermore, we know that there was exactly one other point
in c or c′ – otherwise the algorithm would split regardless of the presence or absence ofp. On the other
hand, Lemma 2.1 implies that any ill-graded cellc must be uncrowded –c therefore only has one point
inside. In other words, if a split reassigns any points, it reassigns exactly one point. The set of splits is
O(lg L/s)-stable, and thus so is the set of point reassignments.

Putting these observations together, we get the main theorem of the paper:

Theorem 3.4 Our quadtree algorithm is O(lg L/s)-stable under single point insertions and deletions.

4 Dynamization with Self-Adjusting Computation

The prior section established that the static meshing algorithm is stable. This section shows how that stability
can be exploited to produce a fastdynamicalgorithm. Theself-adjusting computation(SAC) model [Aca05]
enables dynamizing static algorithms automatically by relying on achange-propagation algorithmto update
the output when the input changes. The asymptotic complexity of change propagation can be bound by
analyzing thetrace stabilityof the algorithm under an insertion/deletion of a point into/from the input. In
this section, we state some definitions that our analysis (Section 3) relies on. For brevity and to draw on
the reader’s intuition, we paraphrase from the more precisedefinitions in Acar’s presentation [Aca05] and
present the main stability or update theorem that change propagation time can be bound by stability and a
priority-queue overhead for certain programs.

Definition 4.1 (Traces [Aca05, Definition 8]) Thetrace is an ordered, rooted tree that describes the exe-
cution of a program P on an input. Every node corresponds to a function call, and is labeled with the name
of the function; its arguments; the values it read from memory; and the return values of its children. A
parent-child relationship represents a caller-callee relationship.

Definition 4.2 (Cognates and Trace Distance [Aca05, Definition 12]) Given two traces T and T′ of a pro-
gram P, a node u∈ T is a cognate of a node v∈ T′ if u and v have equal labels. Thetrace distance
between T and T′ is equal to the symmetric difference between the node-sets of T and T′, i.e., distance is
|T | + |T′| − 2|C| where C is the set of cognates of T and T′.

Definition 4.3 (Monotone Programs [Aca05, Definition 15])Let T and T′ be the trace of a program with
inputs that differ by a single insertion or deletion. We say P ismonotone if operations in T happen in the
same order as their cognates in T′ during a pre-order traversal of the traces.

The change-propagation algorithm relies on a priority queue to propagate the change in the correct order.
The main theorem of Acar [Aca05] states that for monotone programs, the time for change-propagation is
the same as the trace distance if the priority-queue overhead can be bounded by a constant. For the theorem,
we say that a program isO(f (n))-stable for some input change, if the distance between the tracesT, T′ of
the program with inputsI andI ′, whereI ′ is obtained fromI by applying the change, is bounded byO(f (n)).
For monotone programs, this stability notion corresponds to the dynamic stability notion (Section 3).

7

Theorem 4.4 (Update time [Aca05, Theorem 34])If a program P is monotone under a single insertion/deletion,
and is O(f (n))-stable, and if the priority queue can be maintained in O(1) time per operation, then change-
propagation after an insertion/deletion takes O(f (n)) time.

4.1 Analysis

The main theorem showed that quad-tree refinement wasO(lg L/s)-stable. The remainder of the analysis is
devoted to showing that under single-point insertions and deletions, our version of the algorithm is mono-
tone, and that using a standard priority queue will takeO(1) time per PQ operation under these updates.

Before proceeding to establish monotonicity, we must first detour to noticing that the same ill-graded
cell can be added to the queue repeatedly, by several neighbours; across traces, it may be added by the same
neighbour but in a different round. To sidestep these issues, we tag the theW call with distinguishing
information: the name of the cell that witnessed the bad grading, and the number of the round.

Lemma 4.5 The well-graded quadtree algorithm is monotone.

Proof. Let T0 andT1 be two traces of QTR; u andv are nodes ofT0, with round-pairr andr′

respectively and let ¯u andv̄ be their cognates inT1 (if any). We need to prove that ifu ≺ v thenū ≺ v̄. We
distinguish between two cases.

In the first caseu andv are from different rounds. Given thatu andū are cognates, they share roundr;
similarly v andv̄ share roundr′. Thus ifu precedesv, thenr < r′ and thus ¯u precedes ¯v.

In the second case, we haveu andv from within the same roundr. We show by an inductive argument
that it is also monotone: The order of trace nodes within a round is defined by the order of cells on the
Wl queue being processed. The order of cells in round 0 is clearly monotone: there is only one initial
cell to split. Inductively, assume all cells in all prior rounds were processed monotonically between traces
T0 andT1. Then their correspondings were called in the same order in both traces. Therefore, the
children generated by the splits were processed (inA) in the same order in both traces. Finally, their
correspondingW calls occurred in the same order in both traces. Note that this last statement uses
the fact that we only count as cognatesW calls with the same causer.

Theorem 4.6 (Dynamic Well-Graded Quadtree)TheQTR algorithm, sequentialized and dy-
namized as described, can maintain a well-graded quad-treeover a point set in any fixed dimension under
any sequence of single-point additions and removals. LetP0 andP1 be the point sets before and after an
update; let s= min(s0, s1) and n= max(|P0|, |P1|). Then our dynamic algorithm runs in time O(lg L/s) and
uses a history-independent data structure of size O(n lg L/s).

Proof. The Lemmata of the present Section show that QTR is O(lg L/s)-stable, monotone.
To show that change-propagation takes the same time, we needto show that onlyO(1) trace nodes are in
the priority queue at any time. We know from prior proofs thatduring change propagation, onlyO(1) trace
nodes are processed in any size class. Furthermore, at most 3size classes are in the queue at any one time:
the current size class; ill-graded cells in one size class larger, if any; and crowded cells which may be in a
smaller size class. The priority queue can therefore be maintained in constant time. By Theorem 4.4, we
conclude that the algorithm responds to dynamic changes inO(lg L/s) time.

Since change propagation ensure history independence, ouralgorithm is history independent. Thus, our
algorithm is topologically identical to one that results from inserting then points ofP1 one by one. Give
our time bound, we know that we can don insertions inO(n lg L/s) time. Since self-adjusting computation
never uses more stace than the running time of the from-scratch algorithm, our space bound isO(n lg L/s).

8

Figure 4: Illustration of the HPU algorithm picking a loose pair, and inserting the off-center since there is
no third point nearby. The quadtree is carefully used for point location purposes.

5 Generating small meshes in 2d

The meshes output by the postprocess described in Section 2.2 are within a constant factor of optimal size
and of the best possible quality. In practice however, they are substantially larger than than those output
by Ruppert refinement [Rup95], and unlike in Ruppert refinement, they do not offer the user of the mesh
any control of the desired quality bound.Üngör [Üng04] described a way of choosing what he called an
off-center: given a bad-quality triangle (one with a small angle), we can insert a Steiner point so that the
shortest edge of the triangle forms a triangle with the off-center that exactly achieves the quality threshhold.
In theory, off-centers yield optimal-size meshes. In practice, off-center meshes are the smallest known. Har-
Peled andÜngör [HPÜ05] then showed how to use off-centers to post-process a graded quad-tree in order
to simultaneously achieve the time bounds from quadtree meshing and the small output size from off-center
meshing. We show here how to dynamize the Har-Peled andÜngör postprocess. Due to space constraints,
we leave the full details to the Appendix A.

The algorithm proceeds as follows: iteratively, in order from smallest to largest quadtree cell, the algo-
rithm considers every input pointp in a given cell, then searches neighbouring cells for an input point q.
Having found such a pair of points, it checks whether there isa third pointr such thatpqr is a Delaunay
triangle, andpqr has good quality. If there is no suchr, then pq is a termedloosepair. The algorithm
constructs an appropriater using the off-center, and inserts thisr, which is now treated as an input point.
See Figure 5. During this routine, the quadtree serves the purpose of performing the point location (forp
andq) and range queries (forr, if it exists). As a final post-process, we can again use the technique of start-
ing from the smallest cell to the largest and using the quadtree for point location to compute the Delaunay
triangulation in linear time.

We deviate in one important respect from the original algorithm of Har-Peled and̈Ungör: they left
undefined the order of operations pairs within a size class. To establish the monotonicity condition, we
require that they be done in FIFO order. This should be reminiscent of our modification of the Bernet al.
algorithm.

Given that our algorithm performs the same steps as the original algorithm, the correctness, size optimal-
ity (and in-practice performance), and static runtime of our modified HPU algorithm immediately follow.
Dynamic stability is all that is left to establish. The argument (detailed in the Appendix) is reminiscent of
the dynamic stability argument for the quadtree itself: we define a notion ofblamefor off-centers upon input
points, and prove a packing lemma:

Lemma 5.1 (Off-centers pack) Let r be an off-center that blames an input point p. Then|rp| ∈ Θ(NN(r))
where NN(r) is the nearest neighbour of r when r is inserted.

Theorem 5.2 Given a dynamic point setP ∈ [1/3, 2/3]2 and a radius/edge ratioρ > 1, we can dynamically
maintain a mesh of the desired quality using within a (in practice small) constant factor of the optimal

9

number of Steiner vertices. Each addition to or deletion from the input point set can be performed in
O(lg L/s) time.

Proof. Using self-adjusting computation, run the dynamically-stable quadtree algorithm described
earlier, and use that as input to the dynamically-stable HPUpostprocess described in this section. Upon a
point addition or deletion, we know from Theorem 4.6 that thequadtree updates inO(lg L/s) time. Each cell
is only readO(1) times by the postprocess, so propagating the quadtree changes through the postprocess is
fast. Finally, HPU is itselfO(lg L/s)-stable, by the previous packing lemma. We omit the monotonicity and
priority queue arguments for brevity.

6 Conclusions

The main algorithmic contribution of this paper is a dynamicalgorithm for maintaining a quality mesh in
arbitrary dimension. The Har-PeledÜngör result that we dynamize is almost certainly general-dimensional;
off-centers generalize [Üng04], and few of the static algorithm’s proofs depend on dimension. Our stability
results are independent of dimension (except for a constant, exponential in the dimension, hidden in the
big-O; this is unavoidable in mesh refinement).

The main theoretical advance, on the other hand, is the stability result. At least as often as wanting to
add features to the mesh, practitioners want tomovethe mesh: to put a velocity field upon the vertices of the
mesh, advect them, and then recover a quality mesh. Stability results of the sort we proved here typically
also have implications on the performance of thiskineticproblem.

Compared to the worst case, our algorithm is optimal in memory usage: we useO(n lg L/s) space, and
the mesh has exactly that size. However, the worst case is infrequent: there are broad classes of input
where the mesh sizem is only of sizeO(n). The optimal output-sensitive space usage bound is thusO(m).
The memory usage is dominated by storing the points, for point location. However, to handle single-point
updates, points only need to be stored in cells that have one point in them, as these are the only cells that,
upon a point addition, may split themselves. All other cellsneed only remember counts. This yields the
desired space bound, but at the cost of needing to track data dependencies by hand rather than using a
self-adjusting computation library.

The algorithm that we give here only handles inputs points but not input-features such as segments or
polygons. Even in the static case, handling input features is difficult: the first time-optimal algorithm that
can handle features was discovered very recently [HMP06, HMP07]. As with the quadtree algorithm, this
algorithm has a data dependency depth ofO(lg L/s). We therefore hope to be able to use the techniques in
this paper to dynamize that algorithm and thus handle more complicated geometries.

References

[ABBT06] Umut A. Acar, Guy E. Blelloch, Matthias Blume, and Kanat Tangwongsan. An experimental
analysis of self-adjusting computation. InProceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2006.

[ABH+04] Umut A. Acar, Guy E. Blelloch, Robert Harper, Jorge L. Vittes, and Maverick Woo. Dy-
namizing static algorithms with applications to dynamic trees and history independence. In
ACM-SIAM Symposium on Discrete Algorithms (SODA), 2004.

10

[ABT07] Umut A. Acar, Guy E. Blelloch, and Kanat Tangwongsan. Kinetic 3d convex hulls via self-
adjusting computation (an illustration). InACM Symposium on Computational Geometry
(SCG), 2007.

[ABTV06] Umut A. Acar, Guy E. Blelloch, Kanat Tangwongsan, and Jorge L. Vittes. Kinetic algorithms
via self-adjusting computation. Technical Report CMU-CS-06-115, Department of Computer
Science, Carnegie Mellon University, March 2006.

[Aca05] Umut A. Acar. Self-Adjusting Computation. PhD thesis, Department of Computer Science,
Carnegie Mellon University, May 2005.

[BA76] Ivo Babuška and A. K. Aziz. On the Angle Condition in the Finite Element Method.SIAM
Journal on Numerical Analysis, 13(2):214–226, April 1976.

[BEG90] Marshall Bern, David Eppstein, and John R. Gilbert.Provably Good Mesh Generation. In
31st Annual Symposium on Foundations of Computer Science, pages 231–241. IEEE Computer
Society Press, 1990.

[BWHT07] Adam W. Bargteil, Chris Wojtan, Jessica K. Hodgins, and Greg Turk. A finite element method
for animating large viscoplastic flow.ACM Trans. Graph., 26(3), 2007.

[CCM+04] D. Cardoze, A. Cunha, G. Miller, T. Phillips, and N. Walkington. A bezier-based approach to
unstructured moving meshes. InSymposium on Computational Geometry, pages 71–80, 2004.

[CGS06] Narcis Coll, Marité Guerrieri, and J. Antoni Sellarès. Mesh modification under local domain
changes. In15th International Meshing Roundtable, pages 39–56, 2006.

[Che89] L. Paul Chew. Guaranteed-quality triangular meshes. Technical Report 89–983, Department of
Computer Science, Cornell University, 1989.

[EGS05] David Eppstein, Michael T. Goodrich, and Jonathan Zheng Sun. The skip quadtree: a sim-
ple dynamic data structure for multidimensional data. In21st Symposium on Computational
Geometry, pages 296–305, 2005.

[HMP06] Benoı̂t Hudson, Gary Miller, and Todd Phillips. Sparse Voronoi Refinement. InProceedings
of the 15th International Meshing Roundtable, pages 339–356, Birmingham, Alabama, 2006.

[HMP07] Benoı̂t Hudson, Gary L. Miller, and Todd Phillips. Sparse Parallel Delaunay Refinement. In
19th ACM Symposium on Parallelism in Algorithms and Architectures, 2007.

[HPÜ05] Sariel Har-Peled and Alper̈Ungör. A time-optimal Delaunay refinement algorithm in two
dimensions. In21st Symposium on Computational Geometry, pages 228–236, 2005.

[Joh87] Claes Johnson.Numerical solutions of partial differential equations by the finite element
method. Cambridge University Press, 1987.

[KFCO06] Bryan M. Klingner, Bryan E. Feldman, Nuttapong Chentanez, and James F. O’Brien. Fluid
animation with dynamic meshes. InProceedings of ACM SIGGRAPH 2006, August 2006.

[LTÜ98] X.-Y. Li, S.-H. Teng, and A.̈Ungör. Simultaneous refinement and coarsening: adaptive meshing
with moving boundaries. In7th International Meshing Roundtable, pages 201–210, Dearborn,
Mich., 1998.

11

[MBF04] Neil Molino, Zhaosheng Bao, and Ron Fedkiw. A virtual node algorithm for changing mesh
topology during simulation. InSIGGRAPH, 2004.

[Mic97] Daniele Micciancio. Oblivious data structures: applications to cryptography. InProceedings
of the 29th Annual ACM Symposium on Theory of Computing, pages 456–464, 1997.

[MTT99] Gary L. Miller, Dafna Talmor, and Shang-Hua Teng. Optimal coarsening of unstructured
meshes.J. Algorithms, 31(1):29–65, 1999.

[MV92] Scott A. Mitchell and Stephen A. Vavasis. Quality Mesh Generation in Three Dimensions. In
Proceedings of the Eighth Annual Symposium on Computational Geometry, pages 212–221,
1992.

[MV00] Scott A. Mitchell and Stephen A. Vavasis. Quality mesh generation in higher dimensions.SIAM
Journal on Computing, 29(4):1334–1370, 2000.

[Ove81] Mark H. Overmars. Dynamization of order decomposable set problems. J. Algorithms,
2(3):245–260, 1981.

[Rup95] Jim Ruppert. A Delaunay refinement algorithm for quality 2-dimensional mesh generation.J.
Algorithms, 18(3):548–585, 1995.

[She98] Jonathan Richard Shewchuk. Tetrahedral Mesh Generation by Delaunay Refinement. InPro-
ceedings of the Fourteenth Annual Symposium on Computational Geometry, pages 86–95, Min-
neapolis, Minnesota, June 1998. Association for ComputingMachinery.

[STÜ02] Daniel Spielman, Shang-Hua Teng, and AlperÜngör. Parallel Delaunay refinement: Algo-
rithms and analyses. InProceedings, 11th International Meshing Roundtable, pages 205–218.
Sandia National Laboratories, September 2002. http://www.arxiv.org/abs/cs.CG/0207063.

[Tal97] Dafna Talmor.Well-Spaced Points for Numerical Methods. PhD thesis, Carnegie Mellon Uni-
versity, Pittsburgh, August 1997. CMU CS Tech Report CMU-CS-97-164.

[Üng04] Alper Üngör. Off-centers: A new type of Steiner point for computing size-optimal quality-
guaranteed Delaunay triangulations. InLATIN, pages 152–161, 2004.

12

DynHPU(P ∈ [1/3, 2/3]2, ρ)
1 Construct a graded quadtree QT
2 Rescale so that the size of the smallest cell is 1; let L be the largest cell.
3 for (i = 0 to lg L) do
4 enqueue all cells of size 2i into Qi

5 for (i = 0 to lg L) do
6 while (Qi is non-empty)

7 collect all loose pairs pq where p is an active vertex in a cell on Qi

8 empty Qi

9 for each collected pq
10 if pq is no longer loose then skip pq
11 compute the off-center r of pq
12 add r to the smallest cell c such that (a) c contains r, (b) |c| ≥ 2i, (c) clow|c| ≤ ||pr|| ≤ cup|c|
13 append c to Qlg |c|
14 if pq is still loose, repeat
15

Figure 5: A dynamically-stable version of the Har-Peled andÜngör [HPÜ05] algorithm. The key difference
is that we define more carefully the ordering of items on the work queue. We also require the use of a
dynamically-stable graded quadtree algorithm such as DQT. Note that Line 14 is triggered only ifpq is
loose from both left and right.

A Generating small meshes in 2d

We use the following terms from Har-Peled andÜngör. Most of the following definitions define an orien-
tation; we write the definitions for the counterclockwise (ccw) orientation and leave the reader to perform
appropriate substitutions to define the clockwise (cw) equivalent.

Definition A.1 (Leaf) Given a pair of points p and q, take a point c such that|cp| = |cq| = ρ|pq|, and |pqc|
forms a counterclockwise cycle. Theccw-leaf of pq is the disc D(c, ρ|pq|).

Definition A.2 (Loose pair) A pair pq isccw-loose if the ccw-leaf is empty of any points. A pair pq is
loose if it is either ccw-loose or cw-loose.

Definition A.3 (Crescent) Given a pair pq, let c be the point on the ccw-leaf of pq that is farthest from p
and q. Theccw-crescent of pq is the portion of the disc D(c, |pc|) with the ccw-leaf removed.

Definition A.4 (Off-center) Let pq be a ccw-loose pair pq. If the ccw-crescent of pq is empty, then the
ccw-offcenter of pq is the point c from the definition of the crescent. If the ccw-crescent is non-empty, take
the point p′ such that disc that circumscribes p, p′, and q is empty. Theccw-offcenter is the center of that
disc.

Definition A.5 (Active point) A point p isactive if it may form a loose pair with another active point. See
[HPÜ05, Lemmata 4.8–4.11] for proofs and technical definitions. Only O(1) points are active in any cell of
a graded quadtree.

We present our modification of the Har-Peled andÜngör algorithm in Figure 5. DHPU takes as input
the point set, a radius/edge quality boundρ >

√
2, and a dynamic quadtree. It produces as output a list of

points. We can use a modification of DHPU to produce the Delaunay triangulation in time linear in the

13

output size: to decide that a pairpq is not loose requires finding a pointt in the leaf ofpq such thatpqt is
Delaunay.

The algorithm proceeds as follows: iteratively, roughly inorder from smallest to largest loose pair, the
algorithm identifies a loose pair and inserts its off-center (or both off-centers, if it is loose from both sides).
It uses the quadtree for two purposes: to order the loose pairs (to within a constant factor), and to test
for looseness. We deviate in one respect from the original algorithm of Har-Peled and̈Ungör: they left
undefined the order of loose pairs within a size classi (Lines 7–15), whereas to establish Lemma A.8 we
require that they be done in FIFO order. In essence, we simulate processingQi in parallel.

Given that our algorithm performs the same steps as the original algorithm, the correctness, size op-
timality (and in-practice performance), and static runtime of our DHPU algorithm immediately follow.
Dynamic stability is all that is left to establish. The argument will be reminiscent of the dynamic stability
argument for DQT: we show that any input pointp can only be blamed onO(1) off-center insertions for
any value ofi.

Definition A.6 (Insertion radius) The insertion radius of an off-center r, denotedIR(r), is the distance
from r to its nearest neighbour at the time r was inserted.

Lemma A.7 (The insertion radius is large) Consider a loose pair pq and their off-center r. Then the
insertion radius of r follows2ρ|pq| > IR(r) ≥ ρ|pq|.

Proof. There are two cases: (1) if there is a vertext in the crescent, thenr is the circumcenter ofpqt.
By definition,pqt is Delaunay: its circumdisc is empty of any other points. Therefore, IR(r) = R(pqt). Also,
becausepq is loose,pqt must have bad radius/edge ratio:R(pqt)/|pq| > ρ, or equivalently IR(r) > ρ|pq|.

If instead the crescent is empty, thenr is the farthest point on the flower ofpq, and we know that the
crescent ofpq is empty of points. The crescent ofpq has radius|pr|, which shows that IR(r) = |pr|. From
the Pythagorean theorem, we can compute IR(r) = |pr| > ρ|pq|.

In either case,r, p, andq all lie on a circle of radius at mostρ|pq|, and thus can be separated by no more
than twice that distance.

Lemma A.8 (Loose pairs grow geometrically)After every iteration of theDHPUwhile loop, the size of
the smallest remaining loose pair in iteration i of the for loop grows by a factor at leastρ.

Proof. Let si j be the length of the shortest loose pair at the beginning of the jth iteration of the while
loop in iterationi of the for loop. Consider a loose pair seen at the end of iteration i j , but not seen at the
beginning of the iteration. Such a loose pair must include atleast one new off-centerr; if it is a pair made
of two new off-centers, letr be the newer one. That off-center issued from a loose pair of length at leastsi j .
By Lemma A.7, the nearest neighbour ofr is at distance at leastρsi j ; in particular, its partner in the loose
pair must be at least that far.

Lemma A.9 (Loose pairs don’t grow too fast) All loose pairs processed in iteration i of the for loop have
length inΘ(2i).

Proof. The upper and lower bounds were proven before [HPÜ05, Lemmata 4.3, 4.7].

Definition A.10 (Blame for off-centers) An off-center rdirectly blames a point p if r issues from a loose
pair around p. Transitively, rindirectly blames those that p blames.

14

Lemma A.11 (Off-centers pack) Let r be an off-center that blames a point p. Then|rp| ∈ Θ(IR(r)).

Proof. That IR(r) ≤ |rp| is trivial: the insertion radius ofr is empty of points.
If r directly blamesp, then this is restating Lemma A.7.
If r directly blames a pointq that transitively blamesp, then by the triangle inequality, we have|rp| ≤

|rq|+ |qp|. We know that|rq| = IR(r) by definition. We can inductively assume that there is a constantk such
that |pq| ≤ k IR(q). Thus,|rp| ≤ IR(r) + k IR(q). It remains to bound IR(q) in terms of IR(r); this follows
from Lemma A.7. Thus,|rp| ≤ (1+ k/ρ) IR(r). For anyρ ≥ 1, k is a constant withk = ρ/(ρ − 1).

Finally, we can state the overall result:

Theorem A.12 Under self-adjusting computation,DHPU runs in O(lg L/s) time per addition to or re-
moval from the input point set.

Proof. By Theorem 4.6, maintaining the dynamic quad tree takesO(lg L/s) time per update.
Using Lemma A.11 in an area packing argument, at mostO(1) off-centers in iterationi blame any input

point p. Therefore, at mostO(lg L/s) off-centers of any iteration blamep. Every off-center insertion reads
at mostO(1) input or Steiner points, andO(1) cells of the quadtree.

For brevity, we elide the monotonicity argument, which is essentially identical to that in Section 4.1.
Again using the fact that every while loop iteration isO(1)-stable, and using the fact (derived from

Lemma A.9) that we only affectO(1) iterations of DHPU at a time, the priority queue costs of DHPU
areO(1) per operation.

15

