
Brief Announcement: Writeback-Aware Caching∗

Nathan Beckmann, Phillip B. Gibbons, Bernhard Haeupler, Charles McGuffey

{beckmann,gibbons,haeupler,cmcguffe}@cs.cmu.edu

Carnegie Mellon University

ABSTRACT
Motivated by emerging memory technologies and the increasing

importance of energy and bandwidth, we study theWriteback-Aware
Caching Problem. This problem modifies the caching problem by

explicitly accounting for the cost of writing data to memory. In the

offline setting with maximum writeback cost ω > 0, we show that

the writeback-oblivious optimal policy is only (ω + 1)-competitive

for writeback-aware caching, and that writeback-aware caching is

NP-complete and Max-SNP hard. In the online setting, we present

a deterministic online replacement policy, called Writeback-Aware
Landlord and show that it obtains the optimal competitive ratio.

Finally, we perform an experimental study on real-world traces

which shows that Writeback-Aware Landlord outperforms state-of-

the-art cache replacement policies when writebacks are costly.

ACM Reference Format:
Nathan Beckmann, Phillip B. Gibbons, Bernhard Haeupler, Charles McGuf-

fey. 2019. Brief Announcement: Writeback-Aware Caching. In 31st ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA ’19), June
22–24, 2019, Phoenix, AZ, USA. ACM, New York, NY, USA, 3 pages. https:

//doi.org/10.1145/3323165.3323169

1 INTRODUCTION
The long history of papers on caching problems [1, 3, 5–7, 18, 19,

23, 24, 26, 31–33, 37, 42, 43, 49, 50] has overlooked an increasingly

important cost in real caches: the cost of writebacks. Whenever

data that has been modified since being fetched into the cache is

evicted, it must be written back to memory. In contrast, data that

has not been updated since being fetched into the cache can simply

be discarded from the cache on eviction. Two trends in memory

systems are causing the writeback cost to become increasingly

important:

Memory Bandwidth and Energy. Compared to traditional sys-

tems, modern processors have increased number of requests in-

flight in the memory system. These requests provide additional

parallelism, but result in many applications becoming bandwidth-

limited [36]. Moreover, the end of Dennard scaling [22] has caused

power consumption to become critical for a wide range of sys-

tems [20, 45]. The importance of thesemetrics has been underscored

by a significant amount of systems research [36, 44, 47].

∗
Supported in part by NSF grants CCF-1533858, CCF-1618280, CCF-1814603, CCF-

1527110, SHF-1815882, CCF-1725663, CCF-1750808, a Google Faculty Research Award,

and a Sloan Research Fellowship.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6184-2/19/06.

https://doi.org/10.1145/3323165.3323169

New Memory Technologies. Several new main memory tech-

nologies that store data in the physical state of material are being

developed [38]. Writing data into these memories requires more

time and energy than reading data, sometimes by an order of magni-

tude or more [29, 34, 41]. A variety of research has been done both

in the systems [2, 4, 17, 35, 40, 46, 48, 51, 52] and theory [8, 9, 11–

13, 16, 17, 28, 30, 46] communities investigating this asymmetry

and how it affects costs.

Related Work. Theoretical work on the original caching problem

is broad and detailed. The offline version, where the request se-

quence is known in advance, has been solved for versions with unit

size items [6, 7, 18, 37] and shown hard and approximated for ver-

sions with multiple item sizes [1, 3, 19] or similar variants [10, 14].

These offline algorithms have also been used as a baseline of com-

parison for online policies, which make decisions using only infor-

mation from previous requests [24, 26, 43, 49, 50].

Systems research has begun to consider writebacks in caching.

Initial work has been done considering partitioning [51] or tracking

frequently written items [40, 48] to reduce total costs.

Unfortunately, theoretical work on writeback-aware caching

is limited. Farach-Colton and Liberatore [25] showed the offline

decision problem for writeback-aware caching with unit size and

unit cost for both misses and writebacks is NP-complete. Belloch

et al. [11] provided a writeback-aware online algorithm that is

3-competitive to offline optimal when given 3× the cache size.

Our Contributions. In this paper, we bridge the gap between real

caching systems and the theoretical understanding of caches. We

define and study theWriteback-Aware Caching Problem, a general-

ization of the caching problem to account for writeback costs. This

problem divides accesses between writes, which modify data, and

reads, which do not. Whenever an item that has been written since

its previous load is evicted, a writeback occurs with a cost based

on the evicted item. The goal is to minimize the sum of the costs

paid for loads (misses) and the cost paid for writebacks.

Our main result is an online algorithm, called Writeback-Aware

Landlord, and analysis showing that it achieves the optimal bound:

Theorem 1.1. For theWriteback-Aware Caching Problem,Writeback-
Aware Landlord with cache size k has a competitive ratio of k/(k −

h + 1) to the optimal offline algorithm with cache size h ≤ k .

Although our algorithm competes with the offline optimal, com-

puting that optimal is hard. We extend Farach-Colton and Liber-

atore’s NP-completeness proof to show NP-completeness for any

writeback costs and we show that the problem is Max-SNP hard.

We also show that FitF, the optimal writeback-oblivious algo-

rithm, is a (ω + 1)-approximation to the writeback-aware optimal.

Finally, we perform an experimental study using real-world stor-

age traces. Writeback-Aware Landlord outperforms state-of-the-art

online replacement policies when writebacks are expensive, reduc-

ing the total cost by 24% on average across these traces.

https://doi.org/10.1145/3323165.3323169
https://doi.org/10.1145/3323165.3323169
https://doi.org/10.1145/3323165.3323169


def WritebackAwareLandlord(Item e , bool write) :
if e is not in cache :

while freeSpace < e . size : # make space for the item
minRank, victim = inf , None # find victim
for f in cache :

credit = f .wbCredit + f . loadCredit
if credit / f . size < minRank:

minRank = credit / f . size
victim = f

evict (victim)
for f in cache : # decrease other items ' credit

delta = f . size ∗ minRank
if delta > f .wbCredit : # decrease wb credit f i r s t

f . loadCredit −= (delta − f .wbCredit)
f .wbCredit = 0

else :
f .wbCredit −= delta

insert (e) # add the item to the cache
e . loadCredit = e . loadCost # update requested item ' s credit
if write :

e .wbCredit = e .wbCost

Figure 1: Writeback-Aware Landlord pseudocode.

2 AN OPTIMAL ONLINE ALGORITHM
Figure 1 gives pseudocode for Writeback-Aware Landlord. Similar

to Landlord [50], Writeback-Aware Landlord assigns credit to each

item based on its cost. Evictions remove the item whose credit to

size ratio is smallest, then decrease the credit of all other cached

items by their size times that ratio.

Unlike Landlord, Writeback-Aware Landlord associates two cred-
its with each item, corresponding to the cost of loading the item into

the cache and writing new data back to the next level of the stor-

age hierarchy. When decreasing credit, Writeback-Aware Landlord

decreases the writeback credit first.

Theorem 1.1 Proof Sketch. Consider a request trace and let O
andW be the items in the cache for the optimal offline policy and

Writeback-Aware Landlord. We define a potential function:

Φ = (h − 1)
∑
f ∈W

(
dl (f ) + dw (f )

)
+ k

∑
f ∈O

Dl (f ) + k
∑
f ∈O∗

Dw (f )

Dl (f ) = tl (f ) − dl (f ) and Dw (f ) = tw (f ) − dw (f )

whereO∗
is the set of items inO that are dirty, d and t refer to credit

and cost, and the subscripts l and w refer to load and writeback,

respectively. We show the following:

(1) Φ is zero at the beginning of the trace.

(2) Φ is always non-negative.

(3) Each cost c paid byWriteback-Aware Landlord can be charged

to a unique decrease in Φ of at least (k − h + 1)c .
(4) Φ can only ever increase by an amount kc when the optimal

algorithm pays a cost c .

These facts show that the cost ratio of Writeback-Aware Landlord

to optimal cannot exceed k/(k − h + 1). �

This matches the lower bound proven by Sleator and Tarjan [43],

showing that it is optimal in terms of worst-case analysis.

3 OFFLINE COMPLEXITY RESULTS
NP-Completeness.We extend the proof of [33] to show that for

any writeback cost ω > 0, the offline problem is NP-Complete.

Max-SNP-Hardness.We show that OfflineWriteback-Aware Caching

is Max-SNP-hard using a reduction from bounded 3-dimensional

matching. Our reduction shows that any approximation algorithm

for Offline Writeback-Aware Caching can be used to generate an

approximation algorithm for bounded 3-dimensional matching.

Furthest-in-the-Future. The FitF algorithm solves the writeback-

oblivious caching problem when all items have unit size and cost.

We show how algorithms like this are non-optimal with writebacks.

Theorem 3.1. FitF is anω+1 approximation for Writeback-Aware
Caching with unit sizes and load costs. This bound is tight.

4 EXPERIMENTAL EVALUATION
To show that the theory behindWriteback-Aware Landlord holds up

well in practice, we evaluated Writeback-Aware Landlord against

the LRU and Greedy Dual Size (GDS) [15] policies on five storage

traces from Microsoft Research (MSR) [39]. These traces represent

many commonly seen workload behaviors. LRU is the simplest pol-

icy commonly used in practice. It treats all items equally, ignoring

the size and cost of items. GDS is an efficient implementation of the

original (writeback-oblivious) Landlord algorithm, which considers

item cost and size when making decisions.

Fair comparisons against prior writeback-aware policies [40, 47,

51] are not possible because these policies assume items have fixed

size, whereas in our traces item sizes vary. This would cause these

prior policies to perform poorly for reasons unrelated to writebacks.

Metrics. Since MSR trace requests do not specify cost, we consider

two accounting methods. In the fault model, each item has unit load

cost and writeback cost ω. This represents a system where com-

munication cost is largely independent of size, i.e., latency trumps

bandwidth. In the bit model these costs are multiplied by the size of

the requested item. This models a system where communication is

charged on a per byte basis, such as bandwidth-constrained mem-

ory. We set ω = 10, which approximates the read-write asymmetry

of flash memory [27] and emerging technologies [21].

Implementation. Writeback-Aware Landlord as described in Fig-

ure 1 requires work linear in the number of cached items per evic-

tion. We implement an equivalent version based on GDS’ improve-

ments to Landlord that requires only logarithmic work per eviction.

Results.Writeback-Aware Landlord outperforms GDS and LRU by

a fairly uniform margin across four of the five MSR traces for cache

sizes from 16 to 512GB. One trace (src1_0) has access patterns that
do not benefit from Writeback-Aware Landlord.

By geometric mean across traces and cache sizes, Writeback-

Aware Landlord’s miss cost is the same as GDS (up to three sig-

nificant figures), while reducing writeback cost by 36%. The result

is that the Writeback-Aware Landlord’s total cost ranges from 12–

100% of GDS and 8.7–110% of LRU, with a geometric mean cost of

76% of GDS and 59% of LRU.

We see similar results for different writeback costs, performance

metrics, and additional heuristics.

ACKNOWLEDGMENTS
We thank David Wajc for his contributions to the reduction from

3-dimensional matching.



REFERENCES
[1] Susanne Albers, Sanjeev Arora, and Sanjeev Khanna. 1999. Page replacement for

general caching problems. In SODA, Vol. 99. Citeseer, 31–40.
[2] Joy Arulraj and Andrew Pavlo. 2017. How to build a non-volatile memory

database management system. In Proceedings of the 2017 ACM International
Conference on Management of Data. ACM, 1753–1758.

[3] Amotz Bar-Noy, Reuven Bar-Yehuda, Ari Freund, Joseph Naor, and Baruch

Schieber. 2001. A unified approach to approximating resource allocation and

scheduling. Journal of the ACM (JACM) 48, 5 (2001), 1069–1090.
[4] Daniel Bausch, Ilia Petrov, and Alejandro Buchmann. 2012. Making cost-based

query optimization asymmetry-aware. In Proceedings of the Eighth International
Workshop on Data Management on New Hardware. ACM, 24–32.

[5] Nathan Beckmann and Daniel Sanchez. 2017. Maximizing cache performance

under uncertainty. In High Performance Computer Architecture (HPCA), 2017 IEEE
International Symposium on. IEEE, 109–120.

[6] Laszlo A. Belady. 1966. A study of replacement algorithms for a virtual-storage

computer. IBM Systems journal 5, 2 (1966), 78–101.
[7] Laszlo A. Belady and Frank P. Palermo. 1974. On-line measurement of pag-

ing behavior by the multivalued MIN algorithm. IBM Journal of Research and
Development 18, 1 (1974), 2–19.

[8] Naama Ben-David, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Yan

Gu, Charles McGuffey, and Julian Shun. 2016. Parallel algorithms for asymmetric

read-write costs. In Proceedings of the 28th ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA). ACM, 145–156.

[9] Naama Ben-David, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Yan

Gu, Charles McGuffey, and Julian Shun. 2018. Implicit Decomposition for Write-

Efficient Connnectivity Algorithms. In International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 711–722.

[10] Daniel S. Berger, Nathan Beckmann, and Mor Harchol-Balter. 2018. Practical

Bounds on Optimal Caching with Variable Object Sizes. Proc. ACM Meas. Anal.
Comput. Syst. (SIGMETRICS’18) (2018). https://doi.org/10.1145/3224427

[11] Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Yan Gu, and Julian Shun.

2015. Sorting with asymmetric read and write costs. In Proceedings of the 27th
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA). ACM,

1–12.

[12] Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Yan Gu, and Julian Shun.

2016. Efficient algorithms with asymmetric read and write costs. In European
Symposium on Algorithms.

[13] Guy E. Blelloch, Yan Gu, Julian Shun, and Yihan Sun. 2018. Parallel write-efficient

algorithms and data structures for computational geometry. In Proceedings of
the 30th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA).
ACM, 235–246.

[14] Mark Brehob, Stephen Wagner, Eric Torng, and Richard Enbody. 2004. Optimal

replacement is NP-hard for nonstandard caches. IEEE Transactions on computers
53, 1 (2004), 73–76.

[15] Pei Cao and Sandy Irani. 1997. Cost-aware www proxy caching algorithms.. In

Usenix symposium on internet technologies and systems, Vol. 12. 193–206.
[16] Erin Carson, James Demmel, Laura Grigori, Nicholas Knight, Penporn Koanan-

takool, Oded Schwartz, and Harsha Vardhan Simhadri. 2016. Write-avoiding

algorithms. In 2016 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS). IEEE, 648–658.

[17] Shimin Chen, Phillip B. Gibbons, and Suman Nath. 2011. Rethinking Database

Algorithms for Phase Change Memory. In Proc. Conference on Innovative Data
Systems Research (CIDR).

[18] Marek Chrobak, Howard J. Karloff, T. H. Payne, and Sundar Vishwanathan. 1991.

New Results on Server Problems. In SIAM Journal on Discrete Mathematics. 172–
181.

[19] Marek Chrobak, Gerhard J. Woeginger, Kazuhisa Makino, and Haifeng Xu. 2012.

Caching is hard-even in the fault model. Algorithmica 63, 4 (2012), 781–794.
[20] Alexei Colin and Brandon Lucia. 2018. Termination checking and task decomposi-

tion for task-based intermittent programs. In Proceedings of the 27th International
Conference on Compiler Construction. ACM, 116–127.

[21] Intel Corporation. 2018. Optane SSD DC P4800X Series. Re-

trieved online on 11 Jan 2019 at https://ark.intel.com/products/97161/

Intel-Optane-SSD-DC-P4800X-Series-375GB-2-5in-PCIe-x4-3D-XPoint-.

[22] Robert H. Dennard, Fritz H. Gaensslen, V. Leo Rideout, Ernest Bassous, and

Andre R. LeBlanc. 1974. Design of ion-implanted MOSFET’s with very small

physical dimensions. IEEE Journal of Solid-State Circuits 9, 5 (1974), 256–268.
[23] Nam Duong, Dali Zhao, Taesu Kim, Rosario Cammarota, Mateo Valero, and

Alexander V. Veidenbaum. 2012. Improving cache management policies using dy-

namic reuse distances. InMicroarchitecture (MICRO), 2012 45th Annual IEEE/ACM
International Symposium on. IEEE, 389–400.

[24] Guy Even, Moti Medina, and Dror Rawitz. 2018. Online generalized caching

with varying weights and costs. In Proceedings of the 30th ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA). ACM, 205–212.

[25] Martin Farach-Colton and Vincenzo Liberatore. 2000. On local register allocation.

Journal of Algorithms 37, 1 (2000), 37–65.

[26] Amos Fiat, Richard M. Karp, Michael Luby, Lyle A McGeoch, Daniel D. Sleator,

and Neal E. Young. 1991. Competitive paging algorithms. Journal of Algorithms
12, 4 (1991), 685–699.

[27] LauraM. Grupp, AdrianM. Caulfield, Joel Coburn, Steven Swanson, Eitan Yaakobi,

Paul H. Siegel, and Jack K. Wolf. 2009. Characterizing flash memory: anomalies,

observations, and applications. InMicroarchitecture, 2009. MICRO-42. 42nd Annual
IEEE/ACM International Symposium on. IEEE, 24–33.

[28] Yan Gu, Yihan Sun, and Guy E. Blelloch. 2018. Algorithmic building blocks for

asymmetric memories. In European Symposium on Algorithms. 44:1–44:15.
[29] IBM 2014. www.slideshare.net/IBMZRL/theseus-pss-nvmw2014.

[30] Riko Jacob and Nodari Sitchinava. 2017. Lower bounds in the asymmetric external

memory model. In Proceedings of the 29th ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA). ACM, 247–254.

[31] Akanksha Jain and Calvin Lin. 2016. Back to the future: leveraging Belady’s

algorithm for improved cache replacement. In Computer Architecture (ISCA), 2016
ACM/IEEE 43rd Annual International Symposium on. IEEE, 78–89.

[32] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely Jr, and Joel Emer. 2010. High

performance cache replacement using re-reference interval prediction (RRIP). In

ACM SIGARCH Computer Architecture News, Vol. 38. ACM, 60–71.

[33] Georgios Keramidas, Pavlos Petoumenos, and Stefanos Kaxiras. 2007. Cache

replacement based on reuse-distance prediction. In Computer Design, 2007. ICCD
2007. 25th International Conference on. IEEE, 245–250.

[34] Hyojun Kim, Sangeetha Seshadri, Clement L. Dickey, and Lawrence Chiu. 2014.

Evaluating phase change memory for enterprise storage systems: A study of

caching and tiering approaches. ACM Transactions on Storage (TOS) 10, 4 (2014),
15.

[35] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. 2009. Architecting

phase change memory as a scalable dram alternative. In ACM SIGARCH Computer
Architecture News, Vol. 37. ACM, 2–13.

[36] Chang Joo Lee, Veynu Narasiman, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt.

2010. DRAM-aware last-level cache writeback: Reducing write-caused interference
in memory systems. Technical Report. U.T. Austin.

[37] Richard L. Mattson, Jan Gecsei, Donald R. Slutz, and Irving L. Traiger. 1970.

Evaluation techniques for storage hierarchies. IBM Systems journal 9, 2 (1970),
78–117.

[38] Jagan Singh Meena, Simon Min Sze, Umesh Chand, and Tseung-Yuen Tseng. 2014.

Overview of emerging nonvolatile memory technologies. Nanoscale research
letters 9, 1 (2014), 526.

[39] Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron. 2008. Write off-

loading: Practical power management for enterprise storage. ACM Transactions
on Storage (TOS) 4, 3 (2008), 10.

[40] Hanfeng Qin and Hai Jin. 2017. Warstack: Improving LLC Replacement for NVM

with a Writeback-Aware Reuse Stack. In Parallel, Distributed and Network-based
Processing (PDP), 2017 25th Euromicro International Conference on. IEEE, 233–236.

[41] Moinuddin K. Qureshi, Sudhanva Gurumurthi, and Bipin Rajendran. 2011. Phase

change memory: From devices to systems. Synthesis Lectures on Computer Archi-
tecture 6, 4 (2011), 1–134.

[42] Moinuddin K. Qureshi, Aamer Jaleel, Yale N. Patt, Simon C. Steely, and Joel

Emer. 2007. Adaptive insertion policies for high performance caching. In ACM
SIGARCH Computer Architecture News, Vol. 35. ACM, 381–391.

[43] Daniel D. Sleator and Robert E. Tarjan. 1985. Amortized efficiency of list update

and paging rules. Commun. ACM 28, 2 (1985), 202–208.

[44] Jeffrey Stuecheli, Dimitris Kaseridis, David Daly, Hillery C. Hunter, and Lizy K.

John. 2010. The virtual write queue: Coordinating DRAM and last-level cache

policies. ACM SIGARCH Computer Architecture News 38, 3 (2010), 72–82.
[45] Qinghui Tang, Sandeep Kumar S. Gupta, and Georgios Varsamopoulos.

2008. Energy-efficient thermal-aware task scheduling for homogeneous high-

performance computing data centers: A cyber-physical approach. IEEE Transac-
tions on Parallel and Distributed Systems 19, 11 (2008), 1458–1472.

[46] Stratis D. Viglas. 2014. Write-limited sorts and joins for persistent memory.

Proceedings of the VLDB Endowment 7, 5 (2014), 413–424.
[47] Zhe Wang, Samira M. Khan, and Daniel A. Jiménez. 2012. Improving writeback

efficiency with decoupled last-write prediction. In ACM SIGARCH Computer
Architecture News, Vol. 40. IEEE Computer Society, 309–320.

[48] Zhe Wang, Shuchang Shan, Ting Cao, Junli Gu, Yi Xu, Shuai Mu, Yuan Xie, and

Daniel A. Jiménez. 2013. WADE: Writeback-aware dynamic cache management

for NVM-based main memory system. ACM Transactions on Architecture and
Code Optimization (TACO) 10, 4 (2013), 51.

[49] Neal Young. 1994. The k-server dual and loose competitiveness for paging.

Algorithmica 11, 6 (1994), 525–541.
[50] Neal E. Young. 2002. On-line file caching. Algorithmica 33, 3 (2002), 371–383.
[51] Miao Zhou, Yu Du, Bruce Childers, Rami Melhem, and Daniel Mossé. 2012.

Writeback-aware partitioning and replacement for last-level caches in phase

change main memory systems. ACM Transactions on Architecture and Code
Optimization (TACO) 8, 4 (2012), 53.

[52] Omer Zilberberg, Shlomo Weiss, and Sivan Toledo. 2013. Phase-change memory:

An architectural perspective. ACM Computing Surveys (CSUR) 45, 3 (2013), 29.

https://doi.org/10.1145/3224427
https://ark.intel.com/products/97161/Intel-Optane-SSD-DC-P4800X-Series-375GB-2-5in-PCIe-x4-3D-XPoint-
https://ark.intel.com/products/97161/Intel-Optane-SSD-DC-P4800X-Series-375GB-2-5in-PCIe-x4-3D-XPoint-

	Abstract
	1 Introduction
	2 An Optimal Online Algorithm
	3 Offline Complexity Results
	4 Experimental Evaluation
	Acknowledgments
	References

