
Type Inference for Recordsin a Natural Extension of MLDidier R�emyINRIA-Rocquencourt�AbstractWe describe an extension of ML with records where inheritance is given by ML generic poly-morphism. All common operations on records but concatenation are supported, in particularthe free extension of records. Other operations such as renaming of �elds are added. The solu-tion relies on an extension of ML, where the language of types is sorted and considered moduloequations, and on a record extension of types. The solution is simple and modular and the typeinference algorithm is e�cient in practice.IntroductionThe aim of typechecking is to guarantee that well-typed programs will not produce runtime errors.A type error is usually due to a programmer's mistake, and thus typechecking also helps him indebugging his programs. Some programmers do not like writing the types of their programs byhand. In the ML language for instance, type inference requires as little type information as thedeclaration of data structures; then all types of programs will be automatically computed.Our goal is to provide type inference for labeled products, a data structure commonly calledrecords, allowing some inheritance between them: records with more labels should be allowed whererecords with fewer labels are required.After de�ning the operations on records and recalling related work, we �rst review the solutionfor a �nite (and small) set of labels, which was presented in [R�em89], then we extend it to adenumerable set of labels. In the last part we discuss the power and weakness of the solution, wedescribe some variations, and suggest improvements.Without records, data structures are built using product types, as in ML, for instance.("Peter", "John", "Professor", 27, 5467567, 56478356, ("toyota", "old", 8929901))With records one would write, instead:fname = "Peter"; lastname = "John"; job = "Professor"; age = 27; id = 5467567;license = 56478356; vehicle = fname = "Toyota"; id = 8929901; age = "old"ggThe latter program is de�nitely more readable than the former. It is also more precise, sincecomponents are named. Records can also be used to name several arguments or several results ofa function. More generally, in communication between processes records permit the naming of thedi�erent ports on which processes can exchange information. One nice example of this is the LCSlanguage [Ber88], which is a combination of ML and Milner's CCS [Mil80].Besides typechecking records, the challenge is to avoid record type declarations and �x sizerecords. Extensible records introduced by Wand [Wan89, CM89] can be built from older records byadding new �elds. This feature is the basis of inheritance in the view of objects as records [Wan89,CM89].�Author's address: INRIA, B.P. 105, F-78153 Le Chesnay Cedex. Email: Didier.Remy@inria.fr1



The main operations on records are introduced by examples, using a syntax similar to CAMLsyntax [CH89,Wei89]. Like variable names, labels do not have particular meanings, though choosinggood names (good is subjective) helps in writing and reading programs. Names can, of course, bereused in di�erent records, even to build �elds of di�erent types. This is illustrated in the followingthree examples:let car = fname = "Toyota"; age = "old"; id = 7866g;;let truck = fname = "Blazer"; id = 6587867567g;;let person = fname = "Tim"; age = 31; id = 5656787g;;Remark that no declaration is required before the use of labels. The record person is de�ned onexactly the same �elds as the record car, though those �elds do not have the same intuitive meaning.The �eld age holds values of di�erent types in car and in person.All these records have been created in one step. Records can also be build from older ones. Forinstance, a value driver can be de�ned as being a copy of the record person but with one more �eld,vehicle, �lled with the previously de�ned car object.let driver = fperson with vehicle = carg;;Note that there is no sharing between the records person and driver. You can simply think as ifthe former were copied into a new empty record before adding a �eld car to build the latter. Thisconstruction is called the extension of a record with a new �eld. In this example the newly de�ned�eld was not present in the record person, but that should not be a restriction. For instance, if ourdriver needs a more robust vehicle, we write:let truck driver = fdriver with vehicle = truckg;;As previously, the operation is not a physical replacement of the vehicle �eld by a new value. Wedo not wish the old and the new value of the vehicle �eld to have the same type. To distinguishbetween the two kinds of extensions of a record with a new �eld, we will say that the extension isstrict when the new �eld must not be previously de�ned, and free otherwise.A more general operation than extension is concatenation, which constructs a new record fromtwo previously de�ned ones, taking the union of their de�ned �elds. If the car has a rusty body buta good engine, one could think of building the hybrid vehicle:let repaired truck = fcar and truckg;;This raises the question: what value should be assigned to �elds which are de�ned in both car andtruck? When there is a con
ict (the same �eld is de�ned in both records), priority could be given tothe last record. As with free extension, the last record would eventually overwrite �elds of the �rstone. But one might also expect a typechecker to prevent this situation from happening. Althoughconcatenation is less common in the literature, probably because it causes more trouble, it seemsinteresting in some cases. Concatenation is used in the standard ML language [HMT91] when astructure is opened and extended with another one. In the LCS language, the visible ports of twoprocesses run in parallel are exactly the ports visible in any of them. And as shown by MitchellWand [Wan89] multiple inheritance can be coded with concatenation.The constructions described above are not exhaustive but are the most common ones. Weshould also mention the permutation, renaming and erasure of �elds. We described how to buildrecords, but of course we also want to read them. There is actually a unique construction for thispurpose.let id x = x.id;; let age x = x.age;;Accessing some �eld a of a record x can be abstracted over x, but not over a: Labels are not valuesand there is no function which could take a label as argument and would access the �eld of some2



�xed record corresponding to that label. Thus, we need one extraction function per label, as for idand age above. Then, they can be applied to di�erent records of di�erent types but all possessingthe �eld to access. For instance,age person, age driver;;They can also be passed to other functions, as in:let car info �eld = �eld car;; car info age;;The testing function eq below should of course accept arguments of di�erent types provided theyhave an id �eld of the same type.let eq x y = equal x.id y.id;; eq car truck;;These examples were very simple. We will typecheck them below, but we will also meet more trickyones.Related workLuca Cardelli has always claimed that functional languages should have record operations. In 1986,when he designed Amber, his choice was to provide the language with records rather than poly-morphism. Later, he introduced bounded quanti�cation in the language FUN , which he extendedto higher order bounded quanti�cation in the language QUEST. Bounded quanti�cation is an ex-tension of ordinary quanti�cation where quanti�ed variables range in the subset of types that areall subtypes of the bound. The subtyping relation is a lattice on types. In this language, subtypingis essential for having some inheritance between records. A slight but signi�cant improvement ofbounded quanti�cation has been made in [CCH+89] to better consider recursive objects; a moregeneral but less tractable system was studied by Pavel Curtis [Cur87]. Today, the trend seems to bethe simpli�cation rather than the enrichment of existing systems [LC90, HP90, Car91]. For instance,an interesting goal was to remove the subtype relation in bounded quanti�cation [HP90]. Recordshave also been formulated with explicit labeled conjunctive types in the language Forsythe [Rey88].In contrast, records in implicitly typed languages have been less studied, and the proposedextensions of ML are still very restrictive. The language Amber [Car84, Car86] is monomorphic andinheritance is obtained by type inclusion. A major step toward combining records and type inferencehas been Wand's proposal [Wan87] where inheritance is obtained from ML generic polymorphism.Though type inference is incomplete for this system, it remains a reference, for it was the �rstconcrete proposal for extending ML with records having inheritance. The year after, completetype inference algorithms were found for a strong restriction of this system [JM88, OB88]. Therestriction only allows the strict extension of a record. Then, the author proposed a completetype inference algorithm for Wand's system [R�em89], but it was formalized only in the case of a�nite set of labels (a previous solution given by Wand in 1988 did not admit principal types butcomplete sets of principal types, and was exponential in size in practice). Mitchell Wand revisitedthis approach and extended it with an \and" operation1 but did not provide correctness proofs.The case of an in�nite set of labels has been addressed in [R�em90], which we review in this article.1 A simple solution when the set of labels is �niteThough the solution below will be made obsolete by the extension to a denumerable set of labels, wechoose to present it �rst, since it is very simple and the extension will be based on the same ideas.It will also be a decent solution in cases where only few labels are needed. And it will emphasize a1It can be understood as an \append" on association lists in lisp compared to the \with" operation which shouldbe understood as a \cons". 3



method for getting more polymorphism in ML (in fact, we will not put more polymorphism in MLbut we will make more use of it, sometimes in unexpected ways).We will sketch the path from Wand's proposal to this solution, for it may be of some interest todescribe the method which we think could be applied in other situations. As intuitions are rathersubjective, and ours may not be yours, the section 1.1 can be skipped whenever it does not help.1.1 The methodRecords are partial functions from a set L of labels to the set of values. We simplify the problemby considering only three labels a, b and c. Records can be represented in three �eld boxes, oncelabels have been ordered: a b cDe�ning a record is the same as �lling some of the �elds with values. For example, we will put thevalues 1 and true in the a and c �elds respectively and leave the b �eld unde�ned.1 trueTypechecking means forgetting some information about values. For instance, it does not distinguishtwo numbers but only remember them as being numbers. The structure of types usually re
ectsthe structure of values, but with fewer details. It is thus natural to type record values with partialfunctions from labels (L) to types (T ), that is, elements of L �* T . We �rst make record typestotal functions on labels using an explicitly unde�ned constant abs (\absent"): L �! T [ fabs g.In fact, we replace the union by the sum pre (T ) + abs . Finally, we decompose record types asfollows: L �! [1;Card (L)] �! pre (T ) + absThe �rst function is an ordering from L to the segment [1;Card (L)] and can be set once and forall. Thus record types can be represented only by the second component, which is a tuple of lengthCard (L) of types in pre (T ) + abs . The previous example is typed by1 true�( pre (num) , abs , pre (bool) )A function :a reading the a �eld accepts as argument any record having the a �eld de�ned with avalue M , and returns M . The a �eld of the type of the argument must be pre (�) if � is the typeof M . We do not care whether other �elds are de�ned or not, so their types may be anything. Wechoose to represent them by variables � and ". The result has type �.:a : �(pre (�); �; ")! �1.2 A formulationWe are given a collection of symbols C with their arities (Cn)n2IN that contains at least an arrowsymbol ! of arity 2, a unary symbol pre and a nullary symbol abs . We are also given two sortstype and �eld. The signature of a symbol is a sequence of sorts, written � for a nullary symbol and4



�1 : : :
 �n ) � for a symbol of arity n. The signature S is de�ned by the following assertions (wewrite S ` f :: � for (f; �) 2 S):S ` pre :: type ) �eldS ` abs :: �eldS ` � :: �eldcard(L) ) typeS ` f :: typen ) type f 2 Cn n fpre ; abs ;�gThe language of types is the free sorted algebra T (S;V). The extension of ML with sorted types isstraightforward. We will not formalize it further, since this will be subsumed in the next section.The inference rules are the same as in ML though the language of types is sorted. The typingrelation de�ned by these rules is still decidable and admits principal typings (see next section fora precise formulation). In this language, we assume the following primitive environment:fg : � (abs ; : : :abs ):a : � (�1 : : : ; pre (�); : : :�l)! �f with a = g : � (�1 ; : : :�l)! �! � (�1 : : : ; pre (�); : : : �l)Basic constants for �MLfinThe constant fg is the empty record. The :a constant reads the a �eld from its argument, wewrite r:a the application ( :a) r. Similarly fr with a = Mg extends the records r on label a withvalue M .2 Extension to large recordsThough the previous solution is simple, and perfect when there are only two or three labels involved,it is clearly no longer acceptable when the set of labels is getting larger. This is because the sizeof record types is proportional to the size of this set | even for the type of the null record, whichhas no �eld de�ned. When a local use of records is needed, labels may be fewer than ten and thesolution works perfectly. But in large systems where some records are used globally, the number oflabels will quickly be over one hundred.In any program, the number of labels will always be �nite, but with modular programming,the whole set of labels is not known at the beginning (though in this case, some of the labels maybe local to a module and solved independently). In practice, it is thus interesting to reason on an\open", i.e. countable, set of labels. From a theoretical point of view, it is the only way to avoidreasoning outside of the formalism and show that any computation done in a system with a smallset of labels would still be valid in a system with a larger set of labels, and that the typing inthe latter case could be deduced from the typing in the former case. A better solution consists inworking in a system where all potential labels are taken into account from the beginning.In the �rst part, we will illustrate the discussion above and describe the intuitions. Then weformalize the solution in three steps. First we extend types with record types in a more generalframework of sorted algebras; record types will be sorted types modulo equations. The next stepdescribes an extension of ML with sorts and equations on types. Last, we apply the results to aspecial case, re-using the same encoding as for the �nite case.2.1 An intuitive approachWe �rst assume that there are only two labels a and b. Let r be the record fa = 1 ; b = trueg andf the function that reads the a �eld. Assuming f has type � ! � 0 and r has type �, f can beapplied to r if the two types � and � are uni�able. In our example, we have� = � (a : pre (�) ; b : �b) ;� = � (a : pre (num) ; b : pre (bool)) ; 5



and � 0 is equal to �. The uni�cation of � and � is done �eld by �eld and their most general uni�eris: �� 7! num�b 7! pre (bool)If we had one more label c, the types � and � would be� = � (a : pre (�) ; b : �b ; c : �c) ;� = � (a : pre (num) ; b : pre (bool) ; c : abs ) :and their most general uni�er 8<:� 7! num�b 7! pre (bool)�c 7! absWe can play again with one more label d. The types would be� = � (a : pre (�) ; b : �b ; c : �c ; d : �d) ;� = � (a : pre (num) ; b : pre (bool) ; c : abs ; d : abs ) :whose most general uni�er is: 8>>><>>>:� 7! num�b 7! pre (bool)�c 7! abs�d 7! absSince labels c and d appear neither in the expressions r nor in f , it is clear that �elds c and d behavethe same, and that all their type components in the types of f and r are equal up to renaming ofvariables (they are isomorphic types). So we can guess the component of the most general uni�eron any new �eld ` simply by taking a copy of its component on the c �eld or on the d �eld. Insteadof writing types of all �elds, we only need to write a template type for all �elds whose types areisomorphic, in addition to the types of signi�cant �elds, that is those which are not isomorphic tothe template.� = � (a : pre (�) ; b : �b ; 1 : �1) ;� = � (a : pre (num) ; b : pre (bool) ; 1 : abs ) :The expression � ((` : �`)`2I ; 1 : �1) should be read asỲ2L�` : � �` if ` 2 I�` otherwise, where �` is a copy of �1 �The most general uni�er can be computed without developing this expression, thus allowing theset of labels to be in�nite. We summarize the successive steps studied above in this �gure:Labels a b c d 1� pre (�) �b �c �d �1� pre (num) pre (bool) abs abs abs� ^ � pre (num) pre (bool) abs abs absThis approach is so intuitive that it seems very simple. There is a di�culty though, due to thesharing between templates. Sometimes a �eld has to be extracted from its template, because itmust be uni�ed with a signi�cant �eld. 6



The macroscopic operation that we need is the transformation of a template � into a copy� 0 (the type of the extracted �eld) and another copy � 00 (the new template). We regenerate thetemplate during an extraction mainly because of sharing. But it is also intuitive that once a �eldhas been extracted, the retained template should remember that, and thus it cannot be the same.In order to keep sharing, we must extract a �eld step by step, starting from the leaves.For a template variable �, the extraction consists in replacing that variable by two fresh variables� and 
, more precisely by the term ` : � ; 
. This is exactly the substitution� 7! ` : � ; 
For a term f(�), assuming that we have already extracted �eld ` from �, i.e. we have f(` : � ; 
),we now want to replace it by ` : f(�) ; f(
). The solution is simply to ask it to be true, that is, toassume the axiom f(` : � ; 
) = ` : f(�) ; f(
)for every given symbol f but �.2.2 Extending a free algebra with a record algebraThe intuitions of previous sections are formalized by the algebra of record terms. The algebra ofrecord terms is introduced for an arbitrary free algebra; record types are an instance. The recordalgebra was introduced in [R�em90] and revisited in [R�em92b]. We summarize it below but werecommend [R�em92b] for a more thorough presentation.We are given a set of variables V and a set of symbols C with their arities (Cn)n2IN .Raw termsWe call unsorted record terms the terms of the free unsorted algebra T 0(D0;V) where D0 is the setof symbols composed of C plus a unary symbol � and a collection of projection symbols f(` : ; ) j` 2 Lg of arity two. Projection symbols associate to the right, that is (a : � ; b : � ; � 0) stands for(a : � ; (b : � ; � 0)).Example 1 The expressions� (a : pre (num) ; c : pre (bool) ; abs ) and � (a : pre (b : num ; num) ; abs )are raw terms. In section 2.4 we will consider the former as a possible type for the recordfa = 1 ; c = trueg but we will not give a meaning to the latter. There are too many raw terms. Theraw term fa : � ; �g ! � must also be rejected since the template composed of the raw variable� should de�ne the a �eld on the right but should not on the left. We de�ne record terms usingsorts to constrain their formation. Only a few of the raw terms will have associated record terms.Record termsLet L be a denumerable set of labels. Let K be composed of a sort type , and a �nite collection ofsorts (row (L)) where L range over �nite subsets of labels. Let S be the signature composed of thefollowing symbols given with their sorts:S ` � :: Row(;)) TypeS ` fK :: Kn ) K f 2 Cn; K 2 KS ` (`L : ; ) :: Type 
 Row(L [ f`g)) Row(L) ` 2 L; L 2 Pfin(L n f`g)The superscripts are parts of symbols, so that the signature S is not overloaded, that is, everysymbol has a unique signature. We write D the set of symbols in S.7



De�nition 1 Record terms are the terms of the free sorted algebra T (S;V).Example 2 The left term below is a record term. On the right, we drew a raw term with thesame structure. ����� @@@@� (a : ; );���� @@@@fType gRow(fag)j j� (b : ; )fag���� @@@@� 

����� @@@@� (a : ; )���� @@@@f gj j� (b : ; )���� @@@@� 
Script erasureTo any record term, we associate the raw term obtained by erasing all superscripts of symbols.Conversely, for any raw term � 0, and any sort � there is at most one record term whose erasureis � 0. Thus any record term � of sort � is completely de�ned by its erasure � 0 and the sort �. In therest of the paper we will mostly use this convention. Moreover we usually drop the sort wheneverit is implicit from context.Example 3 The erasure of� �a; : fType(gType) ; �cfag : fType(�) ; hRow(fa;cg)��is the raw term � (a : f(g) ; c : f(�) ; h)There is no record term whose erasure would be� (a : f(b : g ; �) ; h)Record algebraThe permutation and the extraction of �elds in record terms will be obtained by equations, of leftcommutativity and distributivity respectively. Precisely, let E be the set of axioms� Left commutativity. For any labels a and b and any �nite subset of labels L that do notcontain a and b, aL : � ; �bL[fag : � ; 
� = bL : � ; �aL[fbg : � ; 
�� Distributivity. For any symbol f , any label a and any �nite subset of labels L that do notcontain a,fRow(L)(aL : �1 ; �1; : : :aL : �p ; �p) = aL : fType(�1; : : :�p) ; fRow(L[fag)(�1; : : :�p)With the raw notation the equations are written:8



� Left commutativity. At any sort row (L), where L does not contain labels a and b:a : � ; (b : � ; 
) = b : � ; (a : � ; 
)� Distributivity. At any sort row (L) where L does not contain label a, and for any symbol f :f(a : �1 ; �1; : : :a : �p ; �p) = a : f(�1; : : :�p) ; f(�1; : : :�p)All axioms are regular, that is, the set of variables of both sides of equations are always identical.Example 4 In the term � (a : pre (num) ; c : pre (bool) ; abs )we can replace abs by b : abs ; abs using distributivity, and use left commutativity to end withthe term: � (a : pre (num) ; b : abs ; c : pre (bool) ; abs )In the term � (a : pre (�) ; �)we can substitute � by b : �b ; c ; �c ; " to get� (a : pre (�) ; b : �b ; c : �c ; ")which can then be uni�ed with the previous term �eld by �eld.De�nition 2 The algebra of record terms is the algebra T (S;V) modulo the equational theory E,written T (S;V)=E.Uni�cation in the algebra of record terms has been studied in [R�em92b].Theorem 1 Uni�cation in the record algebra is decidable and unitary (every solvable uni�cationproblem has a principal uni�er).A uni�cation algorithm is given in the appendix.Instances of record termsThe construction of the record algebra is parameterized by the initial set of symbols C, from whichthe signature S is deduced. The signature S may also be restricted by a signature S 0 that iscompatible with the equations E, that is, a signature S 0 such that for all axioms r and all sorts �of S 0, S 0 ` rl :: � () S 0 ` rr :: �The algebra (T =E)j�S 0 and (T j�S0)=(Ej�S0) are then isomorphic, and consequently uni�cation in(T j�S 0)=(Ej�S0) is decidable and unitary, and solved by the same algorithm as in T =E. The S 0-record algebra is the restriction T (S;V)j�S 0 of the record algebra by a compatible signature S 0.We now consider a particular instance of record algebra, where �elds are distinguished fromarbitrary types, and structured as in section 1. The signature S 0 distinguishes a constant symbolabs and a unary symbol pre in C, and is de�ned with two sorts type and �eld :S 0 ` � :: �eld ) typeS 0 ` abs � :: �eld � 2 KS 0 ` pre :: type ) �eldS 0 ` fType :: type n ) type f 2 Cn n fabs ; pre ;�gS 0 ` (`L : ; ) :: �eld 
 �eld ) �eld ` 2 L; L 2 Pfin(L n f`g)9



The signature S 0 is compatible with the equations of the record algebra. We call record types theS0-record algebra.In fact, record types have a very simple structure. Terms of the sort Row(L) are either ofdepth 0 (reduced to a variable or a symbol) or are of the form (a : � ; � 0). By induction, they arealways of the form (a1 : �1 ; : : : ap : �p ; �)where � is either abs or a variable, including the case where p is zero and the term is reduced to �.Record types are also generated by the pseudo-BNF grammar:� ::= � j � ! � j ��; types�L ::= �L j abs L j a : ' ; �L[fag a =2 L rows' ::= � j abs j pre (�) �eldswhere �, �, 
 and � are type variables, �, � and � are row variables and � and " are �eld variables.We prefer the algebraic approach which is more general.2.3 Extending the types of ML with a sorted equational theoryIn this section we consider a sorted regular theory T =E for which uni�cation is decidable andunitary. A regular theory is one whose left and right hand sides of axioms always have the sameset of variables. For any term � of T =E we write V(�) for the set of its variables. We privilege asort Type.The addition of a sorted equational theory to the types of ML has been studied in [R�em90,R�em92a]. We recall here the main de�nitions and results. The language ML that we study islambda-calculus extended with constants and a LET construct in order to mark some of theredexes, namely:M ::= Terms M, Nx Variable x, yj c Constant cj � x: M AbstractionjM M Applicationj let x = M in M Let bindingThe letter W ranges over �nite set of variables. Type schemes are pairs noted 8W � � of a set ofvariables and a term � . The symbol 8 is treated as a binder and we consider type schemes equalmodulo �-conversion. The sort of a type scheme 8W � � is the sort of � . Contexts as sequences ofassertions, that is, pairs of a term variable and a type. We write A the set of contexts.Every constant c comes with a closed type scheme 8W � � , written c : 8W � � . We write B thecollection of all such constant assertions. We de�ne a relation ` on A�ML�T and parameterizedby B as the smallest relation that satis�es the following rules:x : 8W � � 2 A � :W ! T (Var-Inst)A `S x : �(�) c : 8W � � 2 B � :W ! T (Const-Inst)A `S c : �(�)A[x : � ] `M : � � 2 T (Fun)A ` � x: M : � ! � A `M : � ! � A ` N : � (App)A `M N : �A `S M : � A[x : 8W � � ] `S N : � W \ V(A) = ; (Let-Gen)A `S let x = M in N : �A `M : � � =E � (Equal)A `M : �10



They are the usual rules for ML except the rule EQUAL that is added since the equality on typesis taken modulo the equations E.A typing problem is a triple of A�ML�T written A.M : � . The application of a substitution� to a typing problem A . M : � is the typing problem �(A) . M : �(�), where substitution of acontext is understood pointwise and only a�ects the type part of assertions. A solution of a typingproblem A.M : � is a substitution � such that �(A) `M : �(�). It is principal if all other solutionsare obtained by left composition with � of an arbitrary solution.Theorem 2 (principal typings) If the sorted theory T =E is regular and its uni�cation is decid-able and unitary, then the relation ` admits principal typings, that is, any solvable typing problemhas a principal solution.Moreover, there is an algorithm that given a typing problem computes a principal solution ifone exists, or returns failure otherwise.An algorithm can be obtained by replacing free uni�cation by uni�cation in the algebra of recordterms in the core-ML type inference algorithm. A clever algorithm for type inference is describedin [R�em92b].2.4 Typechecking record operationsUsing the two preceding results, we extend the types of ML with record types assuming given thefollowing basic constants: fg : � (abs ):a : � (a : pre (�) ; �) ! �f with a = g : � (a : � ; �) ! �! � (a : pre (�) ; �)Basic constants for �MLThere are countably many constants. We write fa1 = x1 ; : : :an = xng as syntactic sugar for:ffa1 = x1 ; : : : an�1 = xn�1g with an : xngWe illustrate this system by examples in the next section.The equational theory of record types is regular, and has a decidable and unitary uni�cation.It follows from theorems 2 and 1 that the typing relation of this language admits principal typings,and has a decidable type inference algorithm.3 Programming with recordsWe �rst show on simple examples how most of the constructions described in the introductionare typed, then we meet the limitations of this system. Some of them can be cured by slightlyimproving the encoding. Finally, we propose and discuss some further extensions.3.1 Typing examplesA typechecking prototype has been implemented in the CAML language. It was used to automat-ically type all the examples presented here and preceded by the # character. In programs, typevariables are printed according to their sort in S 0. Letters �, � and � are used for �eld variablesand letters �, �, etc. are used for variables of the sort type . We start with simple examples andend with a short program.Simple record values can be built as follows:11



#let car = fname = "Toyota"; age = "old"; id = 7866g;;car :� (name :pre (string); id :pre (num); age :pre (string); abs)#let truck = fname = "Blazer"; id = 6587867567g;;truck :� (name :pre (string); id :pre (num); abs)#let person = fname = "Tim"; age = 31; id = 5656787g;;person :� (name :pre (string); id :pre (num); age :pre (num); abs)Each �eld de�ned with a value of type � is signi�cant and typed with pre (�). Other �elds areinsigni�cant, and their types are gathered in the template abs . The record person can be extendedwith a new �eld vehicle:#let driver = fperson with vehicle = carg;;driver :� (vehicle :pre (� (name :pre (string); id :pre (num); age :pre (string); abs));name :pre (string); id :pre (num); age :pre (num); abs)This is possible whether this �eld was previously unde�ned as above, or de�ned as in:#let truck driver = fdriver with vehicle = truckg;;truck driver :� (vehicle :pre (� (name :pre (string); id :pre (num); abs)); name :pre (string);id :pre (num); age :pre (num); abs)The concatenation of two records is not provided by this system.The sole construction for accessing �elds is the \dot" operation.#let age x = x.age;;age :� (age :pre (�); �) ! � #let id x = x.id;;id :� (id :pre (�); �) ! �The accessed �eld must be de�ned with a value of type �, so it has type pre (�), and other �eldsmay or may not be de�ned; they are described by a template variable �. The returned value hastype �. As any value, age can be sent as an argument to another function:#let car info �eld = �eld car;;car info :(� (name :pre (string); id :pre (num); age :pre (string); abs) ! �) ! �#car info age;;it :stringThe function equal below takes two records both possessing an id �eld of the same type, and possiblyother �elds. For simplicity of examples we assume given a polymorphic equality equal.#let eq x y = equal x.id y.id;;eq :� (id :pre (�); �) ! � (id :pre (�); �) ! bool#eq car truck;;it :boolWe will show more examples in section 3.3.3.2 LimitationsThere are two sorts of limitations, one is due to the encoding method, the other one results fromML generic polymorphism. The only source of polymorphism in record operations is generic poly-morphism. A �eld de�ned with a value of type � in a record object is typed by pre (�). Thus, oncea �eld has been de�ned every function must see it de�ned. This forbids merging two records withdi�erent sets of de�ned �elds. We will use the following function to shorten examples:12



#let choice x y = if true then x else y;;choice :� ! � ! �Typechecking fails with:#choice car truck;;Typechecking error :collision between pre (string) and absThe age �eld is unde�ned in truck but de�ned in car. This is really a weakness, since the program#(choice car truck).name;;Typechecking error :collision between pre (string) and abswhich should be equivalent to the program#choice car.name truck.name;;it :stringmay actually be useful. We will partially solve this problem in section 3.3. A natural generalizationof the eq function de�ned above is to abstract over the �eld that is used for testing equality#let �eld eq �eld x y = equal (�eld x) (�eld y);;�eld eq :(� ! �) ! � ! � ! boolIt is enough general to test equality on other values than records. We get a function equivalent tothe program eq de�ned in section 3.1 by applying �eld eq to the function id.#let id eq = �eld eq id;;id eq :� (id :pre (�); �) ! � (id :pre (�); �) ! bool#id eq car truck;;Typechecking error :collision between pre (string) and absThe last example fails. This is not surprising since �eld is bound by a lambda in �eld eq, andtherefore its two instances have the same type, and so have both arguments x and y. In eq, thearguments x and y are independent since they are two instances of id. This is nothing else but MLgeneric polymorphism restriction. We emphasize that, as record polymorphism is entirely basedon generic polymorphism, the restriction applies drastically to records.3.3 Flexibility and ImprovementsThe method for typechecking records is very 
exible: the operations on records have not been �xedat the beginning, but at the very end. They are parameters that can vary in many ways.The easiest modi�cation is changing the types of basic constants. For instance, asserting thatf with a = g comes with type scheme:f with a = g : � (a : abs ; �) ! �! � (a : pre (�) ; �)makes the extension of a record with a new �eld possible only if the �eld was previously unde�ned.This slight change gives exactly the strict version that appears in both attempts to solve Wand'ssystem [JM88, OB88]. Weakening the type of this primitive may be interesting in some cases,because the strict construction may be easier to implement and more e�cient.We can freely change the types of primitives, provided we know how to implement them cor-rectly. More generally, we can change the operations on records themselves. Since a de�ned �eldmay not be dropped implicitly, it would be convenient to add a primitive removing explicitly a �eldfrom a record n a : � (a : � ; �) ! � (a : abs ; �) ;13



In fact, the constant f with a = g is not primitive. It should be replaced by the strict version:f with !a = g : � (a : abs ; �) ! �! � (a : pre (�) ; �) ;and the na constant, since the original version is the composition f n a with !a = g. Our encodingalso allows typing a function that renames �eldsrenamea b : � (a : � ; b : " ; �) ! � (a : abs ; b : � ; �)The renamed �eld may be unde�ned. In the result, it is no longer accessible. A more primitivefunction would just exchanges two �eldsexchangea$b : � (a : � ; b : " ; �) ! � (a : " ; b : � ; �)whether they are de�ned or not. Then the rename constant is simply the composition:( n a) � exchangea$bMore generally, the decidability of type inference does not depend on the speci�c signature of thepre and abs type symbols. The encoding of records can be revised. We are going to illustrate thisby presenting another variant for type-checking records.We suggested that a good type system should allow some polymorphism on records valuesthemselves. We recall the example that failed to type#choice car truck;;Typechecking error :collision between pre (string) and absbecause the age �eld was de�ned in car but unde�ned in truck. We would like the result to have atype with abs on this �eld to guarantee that it will not be accessed, but common, compatible �eldsshould remain accessible. The idea is that a de�ned �eld should be seen as unde�ned wheneverneeded. From the point of view of types, this would require that a de�ned �eld with a value oftype � should be typed with both pre (�) and abs .Conjunctive types [Cop80] could possibly solve this problem, but they are undecidable in gen-eral. Another attempt is to make abs of arity 1 by replacing each use of abs by abs (�) where � isa generic variable. However, it is not possible to write 8 � � �(�) where � ranges over abs and pre .The only possible solution is to make abs and pre constant symbols by introducing an in�x �eldsymbol \." and write abs :� and pre :� instead of abs (�) and pre (�). It is now possible to write8 " � (":�). Formally, the signature S 0 is replaced by the signature S 00 given below, with a new sort
ag : S00 ` � :: �eld ) typeS00 ` abs � :: 
ag � 2 KS00 ` pre � :: 
ag � 2 KS00 ` :� :: 
ag 
 type ) �eld � 2 KS00 ` fType :: type %(f) ) type f 2 C n fabs ; pre ; :gS00 ` (`L : ; ) :: �eld 
 �eld ) �eld ` 2 L; L 2 Pfin(L n f`g)Record constants now come with the following type schemes:fg : � (abs :�):a : � (a : pre :� ; �) ! �f with a = g : � (a : � ; �) ! �! � (a : ":� ; �)Basic constants for �ML0It is easy to see that system �ML0 is more general than system �ML; any expression typeable inthe system �ML is also typeable in the system �ML0: replacing in a proof all occurrences of abs14



by abs :� and all occurrence of pre (�) by pre :� (where � does not appear in the proof), we obtaina correct proof in �ML0.We show the types in the system �ML0 of some of previous examples. Flag variables arewritten ", � and �. Building a record creates a polymorphic object, since all �elds have a distinct
ag variable:#let car = fname = "Toyota"; age = "old"; id = 7866g;;car :� (name :".string; id :�.num; age :�.string; abs.�)#let truck = fname = "Blazer"; id = 6587867567g;;truck :� (name :".string; id :�.num; abs.�)Now these two records can be merged,#choice car truck;;it :� (name :".string; id :�.num; age :abs.string; abs.�)forgetting the age �eld in car. Note that if the presence of �eld age has been forgotten, its type hasnot: we always remember the types of values that have stayed in �elds. Thus, the type system�ML0 rejects the program:#let person = fname = "Tim"; age = 31; id = 5656787g;;person :� (name :".string; id :�.num; age :�.num; abs.�)#choice person car;;Typechecking error :collision between num and stringThis is really a weakness of our system, since both records have common �elds name and id,which might be tested on later. This example would be correct in the explicitly typed languageQUEST [Car89]. If we add a new collection of primitivesn a : � (a : � ; �) ! � (a : abs :� ; �) ;then we can turn around the failure above by explicitly forgetting label age in at least one record#choice (car n age) person;;it :� (age :abs.num; name :".string; id :�.num; abs.�)#choice car (person n age);;it :� (age :abs.string; name :".string; id :�.num; abs.�)#choice (car n age) (person n age);;it :� (age :abs.�; name :".string; id :�.num; abs.�)A more realistic example illustrates the ability to add annotations on data structures and typethe presence of these annotations. The example is run into the system �ML0, where we assumegiven an in�x addition + typed with num ! num ! num.#type tree (") = Leaf of num# j Node of fleft :pre.tree ("); right :pre.tree (");# annot :".num; abs.unitg#;;New constructors declared :Node :� (left :pre.tree ("); right :pre.tree ("); annot :".num; abs.unit) ! tree (")Leaf :num ! tree (")The variable " indicates the presence of the annotation annot. For instance this annotation is absentin the structure 15



#let winter = 'Node fleft = 'Leaf 1; right = 'Leaf 2 g;;winter : tree (abs)The following function annotates a structure.#let rec annotation =# function# Leaf n ! 'Leaf n, n# j Node fleft = r; right = sg !# let (r,p) = annotation r in# let (s,q) = annotation s in# 'Node fleft = r; right = s; annot = p+qg, p+q;;annotation :tree (") ! tree (�) * num#let annotate x = match annotation x with y, ! y;;annotate :tree (") ! tree (�)We use it to annotate the structure winter.#let spring = annotate winter;;spring :tree (")We will read a structure with the following function.#let read = function 'Leaf n ! n j 'Node r ! r.annot;;read :tree (pre) ! numIt can be applied to the value spring, but not to the empty structure winter.#read winter;;Typechecking error :collision between pre and abs #read spring;;it :numBut the following function may be applied to both winter and spring:#let rec left =# function# 'Leaf n ! n# j 'Node r ! left (r.left);;left :tree (") ! num #left winter;;it :num#left spring;;it :num3.4 ExtensionsIn this section we describe two possible extensions. The two of them have been implemented in aprototype, but not completely formalized yet.One important motivation for having records was the encoding of some object oriented featuresinto them. But the usual encoding uses recursive types [Car84, Wan89]. An extension of ML withvariant types is easy once we have record types, following the idea of [R�em89], but the extension isinteresting essentially if recursive types are allowed.Thus it would be necessary to extend the results presented here with recursive types. Uni�-cation on rational trees without equations is well understood [Hue76, MM82]. In the case of a�nite set of labels, the extension of theorem 2 to rational trees is easy. The in�nite case uses anequational theory, and uni�cation in the extension of �rst order equational theory to rational treeshas no decidable and unitary algorithm in general, even when the original theory has one. But thesimplicity of the record theory lets us conjecture that it can be extended with regular trees.Another extension, which was sketched in [R�em89], partially solves the restrictions due to MLpolymorphism. Because subtyping polymorphism goes through lambda abstractions, it could beused to type some of the examples that were wrongly rejected. ML type inference with subtyping16



polymorphism has been �rst studied by Mitchell in [Mit84] and later by Mishra and Fuh [FM88,FM89]. The LET -case has only been treated in [Jat89]. But as for recursive types, subtyping hasnever been studied in the presence of an equational theory. Although the general case of mergingsubtyping with an equational theory is certainly di�cult, we believe that subtyping is compatiblewith the axioms of the algebra of record types. We discuss below the extension with subtyping inthe �nite case only. The extension in the in�nite case would be similar, but it would rely on theprevious conjecture.It is straightforward to extend the results of [FM89] to deal with sorted types. It is thuspossible to embed the language �MLfin into a language with subtypes �ML�. In fact, we use thelanguage �ML0� that has the signature of the language �ML0 for a technical reason that will appearlater. The subtype relation we need is closed structural subtyping. Closed2 structural subtypingis de�ned relatively to a set of atomic coercions as the smallest E-re
exive (i.e. that contains=E) and transitive relation � that contains the atomic coercions and that satis�es the followingrules [FM89]: � � � � 0 � �0� ! � 0 � � ! �0�1 � �1; : : : �p � �pf(�1; : : : �p) � f(�1; : : :�p) f 2 C n f!gIn �ML0�, we consider the unique atomic coercion pre � abs . It says that if a �eld is de�ned, itcan also be view as unde�ned. We assign the following types to constants:fg : � (abs :�1; : : :abs :�l):a : � (�1 : : : ; pre :� : : :�l)! �f with a = g : � (�1 ; : : :�l)! �! � (�1 : : : ; pre :�; : : :�l)Basic constants for �ML0�If the types look the same as without subtyping, they are taken modulo subtyping, and are thusmore polymorphic. In this system, the programlet id eq = �eld eq id;;is typed with:id eq :fid :pre.�; �g ! fid :pre.�; �g ! boolThis allows the application modulo subtyping id eq car truck. The �eld age is implicitly forgotten intruck by the inclusion rules. However, we still fail with the example choice person car. The presenceof �elds can be forgotten, yet their types cannot, and there is a mismatch between num and stringin the old �eld of both arguments. A solution to this failure is to use the signature S 0 instead ofS00. However the inclusion relation now contains the assertion pre (�) � abs which is not atomic.Such coercions do not de�ne a structural subtyping relation. Type inference with non structuralinclusion has not been studied successfully yet and it is surely di�cult (the di�culty is emphasizedin [R�em89]). The type of primitives for records would be the same as in the system �MLfin, butmodulo the non-structural subtyping relation.ConclusionWe have described a simple, 
exible and e�cient solution for extending ML with operations onrecords allowing some sort of inheritance. The solution uses an extension of ML with a sorted2In [FM89], the structural subtyping is open. With open structural subtyping only some of the atomic coercionsare known, but there are potentially many others that can be used (opened) during typechecking of later phrases ofthe program. Closed subtyping is usually easier than open subtyping.17



If � 2 V(�)^ � 2 e n V , U ^ (� 7! �)(e)------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------;U ^ 9� � (e ^ � = �) (Generalize)U ^ a : � ; � 0 = abs = e--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------;U ^ V8<: abs = e� = abs� 0 = abs U ^ a : � ; �0 = b : � ; �0 = e-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------;U ^ 9 
 � V8><>: b : � ; �0 = e�0 = b : � ; 
�0 = a : � ; 
 (Mutate)U ^ f(�1; : : : �p) = f(�1; : : :�p) = e------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------;U ^ V( f(�1; : : :�p) = e�i = �i; i 2 [1; p] (Decompose)U ^ � = e ^ � = e0------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------;U ^ � = e = e0 (Fuse)Figure 1: Rewriting rules for record-type uni�cationequational theory over types. An immediate improvement is to allow recursive types needed inmany applications of records.The main limitation of our solution is ML polymorphism. In many cases, the problem can besolved by inserting retyping functions. We also propose structural subtyping as a more systematicsolution. But it is not clear yet whether we would want such an extension, for it might not beworth the extra cost in type inference.AcknowledgmentsI am grateful for interesting discussions with Peter Buneman, Val Breazu-Tannen and Carl Gunter,and particularly thankful to Xavier Leroy and Benjamin Pierce whose comments on the presentationof this article were very helpful.A Uni�cation on record typesThe algorithm is an adaptation of the one given in [R�em92b], which we recommend for a morethorough presentation. It is described by transformations on uni�cands that keep unchanged the setof solutions. Multi-equations are multi-sets of terms, written �1 = : : : �p, and uni�cands are systemsof multi-equations, that is, multi-sets of multi-equations, with existential quanti�ers. Systems ofmulti-equations are written U . The union of systems of multi-equations (as multi-sets) is writtenU ^U 0 and 9� � U is the existential quanti�cation of � in U . Indeed, 9 acts as a binder and systemsof multi-equations are taken modulo �-conversion, permutation of consecutive binders, and 9� � Uis assumed equal to U whenever � is not free in U . We also consider both uni�cands U ^ 9� � U 0and 9� � U ^ U 0 equal whenever � is not in U . Any uni�cand can be written 9W � U where W isa set of variables, and U does not contain any existantial.The algorithm reduces a uni�cand into a solved uni�cand in three steps, or fails. The �rst stepis described by rewriting rules of �gure 1. Rewriting always terminates. A uni�cand that cannotbe transformed anymore is said completely decomposed if no multi-equation has more than onenon-variable term, and the algorithm pursues with the occur check while instantiating the equations18



by partial solutions as described below, otherwise the uni�cand is not solvable and the algorithmfails.We say that a multi-equation e0 is inner a multi-equation e if there is at least a variable termof e0 that appears in a non-variable term of e, and we write e0 <� e. We also write U 0 6<� U for8e0 2 U 0; 8e 2 U; e0 6<� eThe system U is independent if U 6<� U .The second step applies the ruleIf e ^ U 6<� e, e ^ U--------------------------------------------------------------------------;e ^ ê(U) (Replace)until all possible candidates e have �red the rule once, where ê is the trivial solution of e that sendsall variable terms to the non-variable term if it exists, or to any (but �xed) variable term otherwise.If the resulting system U is independent (i.e. U 6<� U), then the algorithm pursues as describedbelow; otherwise it fails and U is not solvable.Last step eliminates useless existential quanti�ers and singleton multi-equations by repeatedapplication of the rules:If � =2 e ^ U , 9� � (� = e ^ U)------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------;e ^ U f�g ^ U---------------------------------------------------------------------;U (Garbage)This always succeeds, with a system 9W � U that is still independent. A principal solution of thesystem is Û , that is, the composition, in any order, of the trivial solutions of its multi-equations.It is de�ned up to a renaming of variables in W . The soundness and correctness of this algorithmis described in [R�em92b].The Replace step is actually not necessary, and a principal solution can be directly read froma completely decomposed form provided the transitive closure of the inner relation on the systemis acyclic (see [R�em92b] for details).With the signature S 00 the only change to the algorithm is the addition of the mutation rules:a : � ; � 0 = pre = e-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------;V8><>:pre = e� = pre� 0 = pre a : � ; � = 
1:
2 = e-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------;9�1�2�1�2 � V8>>>>><>>>>>:
1:
2 = e� = �1:�2� = �1:�2
1 = a : �1:�1
2 = a : �2:�2Note that in the �rst mutation rule, all occurrences of pre in the conclusion (the right hand side)of the rewriting rule have di�erent sorts and the three equations could not be merged into a multi-equation. They surely will not be merged later since a common constant cannot �re fusion of twoequations (only a variable can). As all rules are well sorted, rewriting keeps uni�cands well sorted.References[Ber88] Bernard Berthomieu. Une implantation de CCS. Technical Report 88367, LAAS, 7,Avenue du Colonnel Roche, 31077 Toulouse, France, d�ecembre 1988.[Car84] Luca Cardelli. A semantics of multiple inheritance. In Semantics of Data Types, volume173 of Lecture Notes in Computer Science, pages 51{68. Springer Verlag, 1984. Also inInformation and Computation, 1988.19
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